
A Cooperative Coevolutionary Algorithm for
Jointly Learning Fuzzy Rule Bases and Membership Functions∗

Jorge Casillas
DECSAI, Univ. of Granada,

E-18071 Granada, Spain
casillas@decsai.ugr.es

Oscar Cordón
DECSAI, Univ. of Granada,

E-18071 Granada, Spain
ocordon@decsai.ugr.es

Francisco Herrera
DECSAI, Univ. of Granada,

E-18071 Granada, Spain
herrera@decsai.ugr.es

Abstract

When a whole knowledge base must be
derived for a fuzzy rule-based system,
learning methods usually address this
task with two or more sequential stages
by separately designing each of its com-
ponents (mainly the rule base and the
data base). Instead, we propose a si-
multaneous derivation process to prop-
erly consider their dependency. Since
the problem complexity rises, the pro-
posed method will be based on a coop-
erative coevolutionary algorithm.

Keywords: fuzzy models, learning,
tuning, cooperative coevolution.

1 Introduction

Several tasks have to be performed in order to
design a linguistic FRBS for a concrete applica-
tion. One of the most important and difficult ones
is to derive an appropriate knowledge base (KB)
about the problem being solved. The KB stores
the available knowledge in the form of fuzzy lin-
guistic IF-THEN rules. It consists of the rule base
(RB), comprised of the collection of rules in their
symbolic forms, and the data base (DB), which
contains the linguistic term sets and the member-
ship functions defining their meanings.

Numerous automatic methods have been devel-
oped to perform the derivation task. When only
the derivation of the RB is addressed, methods
generally operate in only one stage [10, 11].
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However, methods that design both RB and DB
are preferable since the automation is higher. In
this case, we can distinguish between two different
approaches:

• Simultaneous derivation: It relates to the
process of directly obtaining the whole KB
(RB and DB) from the available data in a
simultaneous way [6]. This task is usually
known as learning process.

• Sequential derivation: The task is divided
into two or more stages, each of them per-
forming a partial or complete derivation of
the KB.

Generally, one of the last stages adjusts the
previously learnt/obtained DB with slight
modifications to increase the system perfor-
mance [4, 5]. This stage is known as tuning
process. In most cases, a sequential process
by firstly learning the RB and then tuning
the DB is considered [2].

When the RB and the DB are simultaneously de-
rived, the strong dependency of both components
is properly addressed. However, the derivation
process becomes significantly more complex be-
cause the search space rises and the selection of
an appropriate search technique is crucial.

Recently, the coevolutionary paradigm [7] has
shown an increasing interest thanks to its high
ability to manage with huge search spaces and
decomposable problems. The direct decomposi-
tion of the KB derivation process (thus obtaining
two interdependent components, learning of the
RB and DB) makes cooperative coevolutionary
algorithms [9] very useful for this purpose.



We propose a KB derivation method within this
novel evolutionary paradigm. Actually, a method
has been already proposed by Peña-Reyes and
Sipper with this cooperative coevolutionary phi-
losophy [8]. However, ur proposal performs a
more sophisticated learning of the RB based on
the COR methodology [1], whose good perfor-
mance relates to the consideration of cooperation
among rules.

In the following sections, the proposed KB deriva-
tion method, some experimental results, conclu-
sions, and further work are shown.

2 A Cooperative Coevolutionary
Algorithm for Jointly Learning
Fuzzy Rule Bases and Membership
Functions

Within the evolutionary computation field, a new
paradigm has been recently proposed, coevolu-
tionary algorithms [7]. They involve two or more
species (populations) that permanently interact
among them by a coupled fitness. Thereby, in
spite of each species has its own coding scheme
and reproduction operators, when an individual
must be evaluated, its goodness will be calculated
considering some individuals of the other species.
This coevolution makes easier to find solutions to
complex problems.

Intuitively, we may decompose the problem of de-
riving a proper KB for an FRBS into two sub-
tasks: to obtain linguistic rule symbolic represen-
tations (learning the RB) and to define member-
ship function shapes (learning the DB). There-
fore, our algorithm consists of two species that
cooperate to build the whole solution.

In the following subsections, a formulation for
both learning tasks and the cooperative coevo-
lutionary algorithm are introduced.

2.1 The Knowledge Base Derivation
Process

The RB learning task is based on the COR
methodology proposed in [1]. Let E be the input-
output data set, el = (xl

1, . . . , x
l
n, yl) one of its el-

ements (example), and n be the number of input
variables. Let Ai be the set of linguistic terms of

the i-th input variable and B the set of linguistic
terms of the output variable. Its operation mode
is the following:

1. Define a set of fuzzy input subspaces,
{Ss | s ∈ {1, . . . , NS}}, with the antecedent
combinations containing at least a positive
example, i.e., Ss = (As

1, . . . , A
s
i , . . . , A

s
n) ∈

A1 × . . . × An such that E′
s 6= ∅ — with

As
i ∈ Ai, E′

s being the set of positive exam-
ples of the subspace Ss, and NS the number
of subspaces with positive examples —.

In this contribution, the set of positive exam-
ples for the subspace Ss is defined as follows:

E′
s = {el ∈ E | ∀i ∈ {1, . . . , n},
∀A ∈ Ai, µAs

i
(xl

i) ≥ µA(xl
i)} .

2. For each subspace Ss, obtain a set of candi-
date consequents (i.e., linguistic terms of the
output variable) Bs to build the correspond-
ing linguistic rule.

In this contribution, the set of candidate con-
sequents for Ss is defined as follows:

Bs = {Bk ∈ B | ∃els ∈ E′
s where

∀Bl ∈ B, µBk
(yls) ≥ µBl

(yls)} .

3. Perform a combinatorial search among these
sets looking for the combination of conse-
quents (one for each subspace) with the best
global accuracy.

On the other hand, the derivation of the DB in-
volves determining the shape of each membership
function. These shapes will have a high influ-
ence in the FRBS performance. In this contri-
bution, we will consider triangular-shaped mem-
bership functions.

2.2 The Cooperative Coevolutionary
Algorithm

2.2.1 Cooperative Interaction Scheme

Let Fij be the FRBS obtained by composing the
subcomponents encoded in the chromosomes i
and j of the species 1 (RBs) and 2 (membership



functions), respectively. The objective will be to
minimize the well-known mean square error:

MSEij =
1

2 ·N
N∑

l=1

(
Fij(xl)− yl

)2
,

with N being the data set size, Fij(xl) being the
output obtained from the designed FRBS when
the l-th example is considered, and yl being the
known desired output.

Each individual of species 1 or 2 is evaluated
with the corresponding fitness function f1 or
f2, which are defined as follows:

f1(i) = min
j∈R2∪P2

MSEij , f2(j) = min
i∈R1∪P1

MSEij ,

with i and j being individuals of species 1 and
2 respectively, R1 and R2 being the set of the
fittest individuals in the previous generation of
the species 1 and 2 respectively, and P1 and P2

being individual sets selected at random from the
previous generation of the species 1 and 2 respec-
tively. The combined use of both kinds of sets
makes the algorithm have a trade-off between ex-
ploitation (R1|2) and exploration (P1|2).

A generational GA scheme is followed in both
species. Baker’s stochastic universal sampling
procedure together with an elitist mechanism that
ensures to select the best individual of the previ-
ous generation are used.

The specific operators employed in each species
are described in the following sections.

2.2.2 Species 1: Learning Fuzzy Rule
Bases

An integer-valued vector (c) of size NS (number
of subspaces with positive examples) is employed
as coding scheme. Each cell of the vector rep-
resents the index of the consequent used to build
the rule in the corresponding subspace:

∀s ∈ {1, . . . , NS}, c[s] = ks s.t. Bks ∈ Bs.

The initial pool of this species is generated
building the first individual as follows

∀s ∈ {1, . . . , NS},
c1[s] = arg

ks

max
Bks∈Bs

max
els∈E′s

Min
(
µAs

1
(xls

1 ), . . . , µAs
n
(xls

n ), µBks (yls)
)
,

and the remaining chromosomes at random.

The standard two-point crossover operator is
used. The mutation operator randomly selects
a specific s ∈ {1, . . . , NS} where |Bs| ≥ 2, and
changes at random c[s] = ks by c[s] = ks′ such
that Bks′ ∈ Bs and ks′ 6= ks.

2.2.3 Species 2: Learning Fuzzy
Membership Functions

As coding scheme, a 3-tuple of real values for
each triangular membership function is used, thus
being the DB encoded into a real-coded chromo-
some built by joining the membership functions
involved in each variable fuzzy partition. A vari-
ation interval is associated to every gene to pre-
serve meaningful fuzzy sets.

The initial population of this species is gener-
ated with a chromosome representing the origi-
nal DB and the remaining chromosomes gener-
ated with values generated at random within the
corresponding variation interval.

The max-min-arithmetical crossover operator [4]
is considered. Its formulation avoids the violation
of the restrictions imposed by the variation in-
tervals. As regards the mutation operator, it
simply involves changing the value of the selected
gene by other value obtained at random within
the corresponding variation interval.

3 Experimental Results

This experimental study will be devoted to an-
alyze the behavior of the proposed derivation
method (CORMF-CC) when solving the prob-
lem of estimating the maintenance costs of the
medium voltage electrical network in a town
considering four different criteria (input vari-
ables) [3]. We will deal with a sample of 1,059
towns, randomly divided in two subsets, the train-
ing and test ones, with an 80%-20% of the original
size respectively. Five linguistic terms for each
variable are considered.

We will analyze linguistic models generated from
the proposed process compared to the four fol-
lowing methods: the well-known ad hoc data-
driven method proposed by Wang and Mendel
(WM) [11]; a GA-based learning method follow-



ing the COR methodology (COR-GA) [1]; and
two sequential methods, WM+Tun and COR-
GA+Tun, that firstly perform a learning of the
RB with WM or COR-GA, respectively, and then
adjust the membership functions with the tuning
method proposed in [2].

The results obtained by the five methods ana-
lyzed are collected in Table 1, where MSEtra and
MSEtst respectively stand for the error obtained
over the training and test data sets. The best re-
sults are shown in boldface. A total of 66 fuzzy
linguistic rules were obtained in all cases.

Table 1: Results obtained
Method MSEtra MSEtst

WM 71,294 80,934
COR-GA 67,237 69,457
WM+Tun 23,440 31,988
COR-GA+Tun 22,373 28,947
CORMF-CC 14,237 20,742

In view of the obtained results, the CORMF-
CC method shows the best performance combin-
ing both approximation (MSEtra) and generaliza-
tion (MSEtst). Analyzing the two-stage methods
(WM+Tun and COR-GA+Tun), we may observe
how the tuning process significantly improves the
accuracy of the linguistic models generated by
the WM and COR-GA learning methods. How-
ever, when the derivation process is made in only
one stage with the cooperative coevolutionary ap-
proach, the linguistic model obtained overcomes
the remainder thanks to the proper consideration
of the dependency between the RB and the DB
in the learning process.

4 Conclusions and Further Work

Performing the tasks of learning fuzzy linguistic
rules and membership functions together allows
our proposal to consider the tight relation be-
tween them, thus obtaining better linguistic mod-
els. To address this process, we have used a coop-
erative coevolutionary approach with a sophisti-
cated rule learning component based on the co-
operation among the fuzzy rules derived. The
good performance of the proposed method has
been shown when solving a real-world problem.

As further work, we propose to extend the compo-
nents of the KB to be derived (number of labels,
more flexible linguistic rules, etc.) and to coevolve
other metaheuristics.
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