
Genetic Tuning of Fuzzy Rule-Based Systems

Integrating Linguistic Hedges ∗
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Abstract

Tuning fuzzy rule-based systems for linguistic
modeling is an interesting and widely devel-
oped task. It involves adjusting the member-
ship functions composing the knowledge base.
To do that, as changing the parameters defin-
ing each membership function as using lin-
guistic hedges to slightly modify them may
be considered.

This contribution introduces a genetic tun-
ing process for jointly making these two tun-
ing approaches. The experimental results
show that our method obtain accurate linguis-
tic models in both approximation and gener-
alization aspects.

1 Introduction

The interpretability required from linguis-
tic fuzzy rule-based systems (FRBSs) (also
known as Mamdani-type FRBS) makes them
less accurate than other approaches such
as Takagi-Sugeno [13] or Non-Grid-Oriented
ones (also known as approximate FRBSs) [1].
Nevertheless, improvements in the linguistic
model learning process and model structure
can be performed allowing it to have more
freedom degrees different from the usually
considered [3].

Indeed, in the last few years, many ap-
proaches have been presented to automati-
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cally learn the rule base (RB), constituted
by the collection of linguistic rules them-
selves joined by means of the connective also,
from numerical information (input-output
data pairs representing the system behavior).
However, there is not much information about
the way to derive the data base (DB), which
contains the term sets and the membership
functions defining their semantics. A good
DB learning would significantly improve the
system accuracy. This is why some propos-
als try to adjust the membership functions in-
volved in the variable fuzzy partitions, which
is known as tuning process.

Two main approaches have been followed
to perform the tuning process. On the one
hand, the basic tuning [2, 5, 7, 8, 12] changes
the membership functions by fitting the pa-
rameters defining their shapes. Within this
approach, some proposals even consider the
use of different kinds of fuzzy sets [11]. On the
other hand, the extended tuning [4, 6] changes
the shape of the membership functions by us-
ing linguistic hedges [15]. However, no pro-
posals combining both approaches have been
considered till now. This contribution aims
at introducing a method based on genetic al-
gorithms (GAs) that jointly performs a basic
and extended tuning.

The paper is organized as follows: Section 2
is devoted to present the mentioned two dif-
ferent tuning approaches, Section 3 introduces
the use of linguistic hedges to change the
shape of the membership functions, Section 4
proposes a genetic tuning that combines both
approaches, Section 5 shows experimental re-
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sults, and Section 6 outlines some conclusions
and future works.

2 Basic and Extended Tuning

Firstly, it seems to be necessary to clarify
what we mean with basic and extended tuning:

• Basic tuning [2, 5, 7, 8, 12]: One of the
most common ways of tuning the mem-
bership functions is to change the ba-
sic parameters defining such functions.
For example, if the following triangular-
shape membership function is consid-
ered:

µ(x) =





x−a
b−a , if a ≤ x < b

c−x
c−b , if b ≤ x ≤ c ,

0, otherwise

changing the basic parameters—a, b, and
c—will vary the shape of the fuzzy set as-
sociated to the membership function (see
Figure 1(a)), thus influencing the FRBS
performance.

• Extended tuning [4, 6]: Sometimes, more
flexible alternative expressions for the
membership functions are considered to
vary the compatibility degree to the fuzzy
sets. For example, a new member-
ship function can be obtained raising the
membership value to the power of α, a
positive parameter that defines a non-
linear scaling function, i.e.,

µ′(x) = (µ(x))α, 0 < α,

In this case, the tuning process involves
adjusting the additional α parameter to
improve the FRBS performance (Fig-
ure 1(b) shows the effect of this tun-
ing approach). The extended tuning has
associated some changes in the model
structure to admit the additional param-
eters. These new expressions will be an-
alyzed in more detail in the next sec-
tion. In this kind of tuning, the process is
usually restricted to a set of values (e.g.

α ∈ {0.5, 1, 2}) [4, 6] where, moreover of
improving the interpretability (as we will
see in the next section), the search space
is reduced.

T T' T(a) (b)

a a' b'b c' c

T'

T''

α > 1

0 < α < 1

Figure 1: Two kinds of tuning for the mem-
bership function shapes: (a) basic tuning by
changing the basic membership function pa-
rameters, (b) extended tuning by changing
additional membership function parameters

These tuning processes can be basically ap-
plied in two different ways: different param-
eters for each of the membership functions
composing the DB (DB level) or a different
parameter for each membership function in-
volved in each linguistic rule (RB level).

3 Alternative Model Struc-
ture with Linguistic Hedges

To perform extended tuning at RB level, it is
necessary to relax the model structure by in-
cluding certain operators that slightly change
the meaning of the linguistic labels involved
in the system.

A way to do so without losing the descrip-
tion to a high degree is to use linguistic hedges
(as Zadeh highlighted in [15]). A linguistic
hedge (also known as linguistic modifier) is
a function that lets us alter the membership
functions for the fuzzy sets associated to the
linguistic labels, obtaining a definition with
a higher or lower precision depending on the
case. Two of the most well known modifiers
are the concentration linguistic hedge “very”
and the dilation linguistic hedge “more-or-
less”. Their expressions are

µvery
T (x) = (µT (x))2 ,

2



µmore−or−less
T (x) =

√
µT (x),

and their effects on a triangular membership
function are showed in Figure 2.

T very  T more-or-less  T

Figure 2: Effects of the linguistic hedges
“very” and “more-or-less”

An example of the use of linguistic hedges
at RB level would be, for instance, the follow-
ing:

IF X1 is very high and X2 is good
THEN Y is more-or-less small.

When extended tuning at RB level is ap-
plied using linguistic hedges, the process
should be considered as a tuning of rules—
instead tuning of membership functions—
because actually the rule structure is changed
(considering the rule structure as the map-
ping between linguistic variables and linguis-
tic terms).

4 A Basic and Extended Ge-
netic Tuning Process for
FRBSs

Basic [2, 5, 7, 8, 12] and extended [4, 6] tuning
have been considered under separate cover in
the specialized literature. However, no pro-
cesses combining both approaches have been
proposed till now. In this section, a tuning
based on GAs will be introduced to jointly
fitting the membership functions by changing
their basic parameters and fitting the rules
using linguistic hedges. The tuning involves
starting from a previous RB derived by any
linguistic learning method.

The main components of the proposed ge-
netic tuning process are the following:

• A generational GA with the Baker’s
stochastic universal sampling procedure

together with an elitist selection scheme
is considered.

• The objective (fitness function) will be
to minimize the well-known mean square
error (MSE):

MSE =
1

2 ·N
N∑

l=1

(Y l − yl)2,

with N being the data set size, Y l be-
ing the output obtained from the FRBS
when the l-th example is considered, and
yl being the known desired output.

• A double coding scheme (CSa + CSb)
for both membership function (CSa part)
and rule (CSb part) tuning is used.

– For the CSa part, a 3-tuple of real
values for each triangular member-
ship function is used, thus being the
DB encoded into a real-coded chro-
mosome built by joining the mem-
bership functions involved in each
variable fuzzy partition. A varia-
tion interval to every gene in the
CSa part is used to preserve mean-
ingful fuzzy sets. Figure 3 shows
an example of the interval varia-
tions considered for each member-
ship function parameter according
to the cross points between fuzzy
sets.

– For the CSb part, the coding scheme
generates integer-coded strings of
length Nr · (n + 1) (with Nr be-
ing the number of rules and n be-
ing the number of input variables).
Each gene can take any value in the
set {0, 1, 2} with the following cor-
respondence to the linguistic hedge
used: cij = 0 for the “very” linguis-
tic hedge, cij = 1 when no linguis-
tic hedge is used, and cij = 2 for
the “more-or-less” linguistic hedge
(with cij being the gene correspond-
ing to the j-th variable of the i-th
rule).
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Figure 3: Variation intervals for each mem-
bership function parameter to preserve mean-
ingful fuzzy sets

• The initial population is generated in
the following way:

1. A chromosome that represents the
previously obtained DB and RB,
i.e., all genes taking the original val-
ues in the CSa part and the allele 1
in the CSb part.

2. A half of the population is gen-
erated with the CSa part at ran-
dom (within the variation interval
for each gene) whilst the genes in
CSb part will take the value 1.

3. The remaining chromosomes are
generated with the original values
for the DB in the CSa part and
values at random (within the set
{0, 1, 2}) in the CSb part.

• The crossover operator will depend on
the chromosome part where it is applied:

– In the CSa part, the max-min-
arithmetical crossover [7] is consid-
ered. Thanks to its formulation,
this operator avoids violation of the
restrictions imposed by the varia-
tion intervals.

– In the CSb part, the standard two-
point crossover is used.

The two best chromosomes among the
eight (four different CSa parts combined
with two different CSb parts) offspring
obtained will be selected to replace their
parents.

• The mutation operator will also depend
on the chromosome part where it is ap-
plied:

– In the CSa part, the Michalewicz’s
non-uniform mutation operator [9]
within the variation interval for each
gene is considered.

– In the CSb part, the mutation oper-
ator changes the gene to the allele 1
when a gene with alleles 0 or 2 must
be mutated, and randomly to 0 or
2 when a gene with allele 1 must be
mutated.

5 The Rice Taste Evaluation
Problem

5.1 Introduction

Qualification of rice taste is usually put into
effect by means of a subjective evaluation
called the sensory test. In this test, a group of
experts evaluates the rice according to a set
of characteristics associated to it. These fac-
tors are: flavor, appearance, taste, stickiness,
and toughness. Because of the large quantity
of relevant variables, the problem of rice taste
analysis becomes very complex, thus leading
to solve it by means of modeling techniques
capable of obtaining a model representing the
non-linear relationships existing in it. To do
so, we are going to use the data set presented
in [10]. This set is composed of 105 data vec-
tors collecting subjective evaluations of the
six variables in question (the five mentioned
and the overall evaluation of the kind of rice),
made up by experts on this number of kinds
of rice grown in Japan.

With the aim of not biasing the learning,
we have randomly obtained ten different par-
titions of the mentioned set, composed by 75
pieces of data in the training set and 30 in
the test one, to generate ten models in each
experiment.
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5.2 Experimental Results

A model (with 15 linguistic rules) previ-
ously obtained by the well-known Wang and
Mendel’s learning method (WM-method) [14]
when solving the rice evaluation problem will
be used to be adjusted by our tuning process
(BE-tun-method). Its performance will be
compared with two different methods where
basic (B-tun-method) [5] and extended (E-
tun-method) [4] tuning are respectively per-
formed at DB and RB levels.

An initial DB constituted by a primary
fuzzy partition for each variable will be con-
sidered in the WM-method. Every partition is
formed by two labels with triangular-shaped
equally distributed fuzzy sets giving meaning
to them. The values of parameters used in
the GA processes are the following: a popu-
lation size of 61 individuals, 100 generations,
0.6 as crossover probability, 0.2 as mutation
probability, 0.35 for the weight factor in the
max-min-arithmetical crossover, and 5 for the
weight factor in the non-uniform mutation.

Table 1 collects the results obtained by the
learning and tuning methods, where MSEtra

and MSEtst stand for the values of the MSE
function (multiplied by 1,000) obtained over
the training and test data sets, respectively.
The best results are shown in boldface.

Concerning the computational cost, the
tuning methods lasted 93 (B-tun), 37 (E-tun),
and 131 (BE-tun) seconds to perform the ad-
justment in a Pentium II 350 MHz. The
reason of these differences mainly lie in the
crossover operator employed. Anyway, the al-
gorithm executions took an acceptable time
in the linguistic modeling field.

Table 1: Results obtained when solving the
rice evaluation problem

Method MSEtra MSEtst

WM 13.284 13.284
WM + B-tun 1.106 2.138
WM + E-tun 1.758 1.731
WM + BE-tun 0.831 1.654

5.3 Analysis of Results

In view of the obtained results, significantly
good accuracy degrees—both in approxima-
tion (MSEtra) and generalization (MSEtst)—
are obtained by our tuning proposal.

As may be observed, the genetic tuning
that changes the membership functions by
fitting their basic parameters (the B-tun-
method) has a clear tendency to overfit the
problem. On the contrary, the method that
tunes the rules using linguistic hedges (the E-
tun-method) obtains a good balance of accu-
racy, but it is not as high as desired.

However, thanks to the combined action
of the two tuning approaches done by our
method, better results both of approximation
and generalization degrees are obtained. On
the one hand, the good approximation capa-
bility provided by changing the basic param-
eters is considered while, on the other hand,
the use of linguistic hedges makes the ob-
tained model have a good generalization de-
gree as well.

Figure 4 shows the DB and RB gener-
ated by the WM+BE-tun method for a spe-
cific data set partition of the problem. In
that figure, we may observe how the fact
of adding linguistic hedges to some linguis-
tic variables of some rules and, at the same
time, slightly tuning the membership func-
tions composing the DB, causes the accu-
racy results to significantly improve. More-
over, thanks to the consideration of linguistic
hedges—which give a linguistic interpretation
to the changes performed—and to preserve
meaningful fuzzy sets, linguistic models with
a good interpretability are obtained.

6 Concluding Remarks and
Further Works

Two different approaches for tuning the mem-
bership functions involved in an FRBSs are
usually followed: either changing the param-
eters that define the fuzzy set shapes or using
linguistic hedges in the fuzzy rules. However,
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(a) Tuned DB
Flavor StickinessAppearance Taste

Bad
Bad

BadGood Good

Good

Not-
sticky

Sticky

Toughness Evaluation

Bad Good
Tender

Tough

(b) Tuned RB
Rule Flavor Appearance Taste Stickiness Toughness Evaluation

R1 m-or-l bad very bad very bad m-or-l not-sticky m-or-l tender m-or-l low
R2 very bad bad bad not-sticky m-or-l tough low
R3 m-or-l bad good very bad very not-sticky very tender m-or-l low
R4 very bad m-or-l good m-or-l good not-sticky m-or-l tender very low
R5 very bad m-or-l good m-or-l good sticky m-or-l tender very low
R6 m-or-l good m-or-l bad bad m-or-l not-sticky m-or-l tender very low
R7 good m-or-l bad m-or-l bad very not-sticky very tough m-or-l low
R8 good m-or-l bad very good very not-sticky m-or-l tender m-or-l low
R9 good good bad m-or-l not-sticky m-or-l tough low
R10 m-or-l good very good bad very not-sticky m-or-l tender very high
R11 good very good very bad sticky very tender m-or-l high
R12 m-or-l good m-or-l good very good m-or-l not-sticky tender very high
R13 good m-or-l good m-or-l good m-or-l not-sticky m-or-l tough high
R14 m-or-l good very good very good m-or-l sticky m-or-l tender m-or-l high
R15 m-or-l good very good very good very sticky tough m-or-l high

Figure 4: DB and RB generated by the WM+BE-tun method for a specific data set partition.
MSEtra/tst before tuning = 0.014704/0.016700, MSEtra/tst after tuning = 0.000873/0.001314

no tuning methods performing both tasks to-
gether have been properly considered.

In this paper, we have introduced a GA
for jointly performing the said two tuning ap-
proaches. The application of our proposal to
a real-world linguistic modeling problem has
shown good results appropriately facing one
of most usual drawbacks presented in tuning
processes: the lack of accuracy when a good
generalization degree is claimed.

As further works, with the aim of improv-
ing the accuracy at the expense of losing cer-
tain interpretability, we propose to employ
a more flexible extended tuning by directly
using real-coded additional parameters (e.g,
any value in the range [0, 5]) instead linguis-
tic hedges (which actually consider only three
possible values, {0.5, 1, 2}). Moreover, consid-
eration of the combined tuning for fuzzy rule-
based classification systems should be made.
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