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Chapter 2
Bias and Discrimination in Machine 
Decision-Making Systems

Jorge Casillas

Abstract  There exists a perception, which is occasionally incorrect, that the pres-
ence of machines in decision-making processes leads to improved outcomes. The 
rationale for this belief is that machines are more trustworthy since they are not 
prone to errors and possess superior knowledge to deduce what is optimal. 
Nonetheless, machines are crafted by humans and their data is sourced from human-
generated information. Consequently, the machine can be influenced by the same 
issues that afflict humans, whether that is caused by design inadequacies, by delib-
erately skewed design, or by biased data resulting from human actions. But, with an 
added problem, any failure of a machine is much more serious than that of a human; 
mainly due to three factors: they are massive, invisible, and sovereign. When 
machine decision-making systems are applied to very sensitive problems such as 
employee hiring, credit risk assessment, granting of subsidies, or medical diagnosis, 
a failure means thousands of people are disadvantaged. Many of these errors result 
in unfair treatment of minority groups (such as those defined in terms of ethnicity or 
gender), thus incurring discrimination. This chapter reviews different forms and 
definitions of machine discrimination, identifies the causes that lead to it, and dis-
cusses different solutions to avoid or, at least, mitigate its harmful effect.

2.1 � Introduction

Human decision-making is a complex and nuanced process that involves a multi-
tude of factors and variables. From the most mundane decisions like what to wear 
in the morning to the most critical ones like choosing a career or partner, our 
decision-making processes shape our lives and determine our future.
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Today, many of our decisions are conditioned by the assistance of automatic 
systems that help digest information to suggest the best decision or, in more and 
more situations, we delegate directly to these machines to decide for us. This dele-
gation, in turn, is sometimes conscious but, in many other cases, we do it even 
without awareness.

Automatism helps humans by improving efficiency, thus reducing the time and 
effort required to complete tasks, reducing errors by avoiding fatigue, distractions, 
or oversight. Its more interesting aspect is its capability to provide innovation and 
launch us into doing things that we would never have thought we would be 
capable of.

Perhaps because of the attractive opportunities it offers, we are falling into a new 
alienation, trusting more and more in technology with unlimited power, forgetting 
along the way that machines also fail, and the consequences are a thousand times 
more serious. Indeed, machine learning algorithms are increasingly being used to 
make decisions—such as in hiring, lending, and criminal justice—that have signifi-
cant impacts on people’s lives.

When these algorithms are biased, they can perpetuate and even exacerbate 
existing discrimination and inequality. For example, if a hiring algorithm is biased 
against a certain demographic group, it can result in fewer members of that group 
being hired, thus depriving them of work experience and perpetuating the existing 
discrimination. Similarly, if a lending algorithm is biased against certain groups, it 
can result in those groups having less access to credit, perpetuating the existing 
economic inequality. In addition to perpetuating existing discrimination, machine 
discrimination can also lead to new forms of discrimination. Indeed, algorithms are 
so powerful these days discovering the unthinkable, that can learn to make predic-
tions based on proxies for protected characteristics, such as ZIP codes or educa-
tional attainment, resulting in discriminatory outcomes for certain groups. It has 
already been observed how difficult it is to tame them (Dastin 2018).

Therefore, it is crucial to ensure that machine learning algorithms are designed 
and evaluated with fairness in mind, and that they do not perpetuate or create new 
forms of discrimination. By addressing machine discrimination, we can work 
towards a more equitable and just society. If we do not soon become aware of how 
serious the problem is, it will be very difficult to redirect the orientation of these 
automatisms to the point of being irreversible in certain scenarios. Some may accept 
risk for reward, but others may think that we are going too far and need to slow 
down and give ourselves time to reflect in this acceleration of artificial intelligence 
(AI) (Bengio et al. 2023).

Only a society that is aware and knowledgeable about these issues can build the 
foundations for a reliable development of AI. To this end, this chapter aims to open 
a space for reflection on the potential discriminatory danger of machine decision-
making systems. I will begin by reflecting on why the failure of a machine is more 
serious than that of a human; then I will give an informative introduction to the 
basics of machine learning (without knowing it, it is not possible to gain aware-
ness); I will continue by analyzing what is meant by machine discrimination; then I 
will identify the main reasons that cause such discrimination; and I will finish with 
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solutions to avoid or alleviate this discrimination or, in other words, how to ensure 
fairness.

2.2 � Why Machine Failure Is More Serious

In later sections we will see what is meant by discrimination but, first, I want to start 
the chapter by deliberating on the importance of a machine discriminating. Only 
when we are able to visualize the magnitude of the problem and the scope that it 
has, we will be able to assess the seriousness of a machine discriminating and we 
will look for solutions to alleviate it.

Automation (control, big data, AI...) is used to gain efficiency (resources and 
time) and effectiveness (better performance). In the end, it all comes down to that, 
make something faster/cheaper, or better. Who is going to give up those advantages! 
Indeed, using automation to make decisions is a very tempting and sometimes 
unavoidable solution in today’s society. Companies need it to remain competitive, 
people need it to do their jobs better, or to spend less time in an increasingly demand-
ing world, or simply because the app we use on our mobile, or the website we visit, 
offers no alternative.

There is a (sometimes false) belief that when there is a machine involved in deci-
sions, everything works better. We trust machines because they do not make mis-
takes and are better informed than we are to deduce what is best. However, machines 
are designed by humans, and machines are fed with data produced by humans. So, 
whether by design flaws, or by intentionally biased design, or by data collected from 
biased human behavior, in the end, the machine can be affected by the same prob-
lems as humans.

At this point, we might think that well, in the end, although a machine may also 
have biased behavior, it will be no worse than that of a human. But here we run into 
another reality, any failure of a machine is much more serious than that of a human. 
Mainly due to three factors. The automatisms executed by machines are, or can be, 
massive, invisible, and sovereign.

They are massive because they are highly scalable, making millions of decisions 
in a second. But any failure in its decision is magnified to a scale unthinkable for a 
human. Suppose a postal officer decides to make blacks wait in line twice as long as 
whites. First, it would be inconceivable and illegal in our times. But, at the end of 
the day, the impact of this discriminatory act would reach no more than 100 people. 
Now, when Amazon decided in 2016 to offer same-day service in select ZIP codes 
in major U.S. cities based on analysis of data about its customers, it marginalized 
neighborhoods where primarily blacks live. The impact of that measure affected 
millions of people every day and caused such a scandal that Amazon had to rectify 
(Ingold and Soper 2016).

They are invisible because the automatisms are often not perceived, there is no 
awareness that it is a machine that is behind the decision-making process. The case 
I have just cited of same-day service was very visible, but on other occasions, the 
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victim of certain decisions does not know that it was all or partly due to a machine. 
For instance, Deloitte, one of the Big Four accounting firms, explains that it uses 
powerful machine learning for Credit Risk Management (Phaure and Robin 2020)—
they all do it, also the banks. When someone is turned down for a credit application, 
they simply say that the operation is not viable, they do not say there is an algorithm 
behind it, let alone how the algorithm arrived at that conclusion (usually because no 
one really knows how the machine made the decision). Advertising is also a good 
example of its invisibility; we already know that digital advertising is automated, 
but we got ads on our screens from Facebook that we do not know have been tar-
geted because of our race, religion, or national origin (Benner et al. 2019).

They are sovereign because the machine does not usually “assume” responsibil-
ity, there is a lack of accountability. They simply decide, and their decisions are 
considered final. So it is when you search Google Images for ‘unprofessional hair-
styles’, the photos that come up are mostly of black women. This is not the case if 
you search for ‘professional hairstyles’. Since this became known in 2016 
(Alexander 2016), the results have been nuanced, but differences are still observed 
nowadays (include ‘-google’ in the query to avoid images related to the scandal). 
Google quickly disassociated itself from this by arguing that it did nothing, it is 
simply what you see on the internet. The question is whether something that many 
give more credence to than a god they think so, or do they really expect to find a 
reflection of society when searching.

Add to this, the belief that thinking that a machine is unbiased masks possible 
discriminatory effects, and that technology generates dependence on it, it does not 
turn back, to form a perfect storm. Finally, let us think about scenarios in which the 
machine already decides for itself, and on particularly sensitive matters such as 
granting a subsidy, a loan, passing a court sentence, or diagnosing a disease. In addi-
tion, of course, to other daily issues where machines condition your way of think-
ing, such as what news should be interesting for you and what videos you 
should watch.

Naturally, a well-designed automatic decision-making system would not cause 
these problems. In this chapter, I will focus on situations where this design is not 
correct or is subject to an interpretation of what is correct that might be questionable 
or skewed. Under these premises, a machine can be biased and lead to discrimina-
tory decisions against certain social groups. Therefore, once the reasons for this 
malfunction have been identified, the chapter will also look at solutions for 
good design.

2.3 � How Machine Learning Works

Before continuing, it is useful to briefly review how to build a model that, based on 
data, ends up supporting decision making in a given problem, or even directly makes 
the decision itself. The decision-making system (generally called model) most com-
monly used in AI is based on machine learning from data.
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The data contain values of input variables (attributes or features) that determine 
specific cases, and, in the case of supervised learning (the most common type of 
machine learning), each data is accompanied by the value of the dependent variable 
(the one that constitutes the case study or target) that defines what should be the 
correct response of the system for that combination of input variables. This is why 
the data is called example (or instance), because it serves to teach the algorithm 
what is the optimal response it should give for a particular case.

When the system is built to predict a certain nominal variable, which takes dif-
ferent categories as possible values, it is called classification. For example, a model, 
based on different attributes/features such as the income of a family unit, fixed 
monthly expenses, work stability, outstanding debts, minors and other dependents 
under their care, can decide whether that family is worthy or not (two classes or 
categories, yes or no) of receiving a social subsidy. Another example could be using 
an automated system to recruit applicants. Based on several characteristics such as 
level of education, affinity of their education to the job position, previous work 
experience in the sector, outstanding work achievements, etc., the machine can 
decide to hire or not to hire.

I will return to this last example later. For now, let us move on to a less contro-
versial one. Let us imagine that we want to build a model (decision-making system) 
that is able to classify traffic related images, something very useful in the driverless 
era. For instance, it could detect if the image corresponds to a car, a speed limit sign, 
or a traffic light. The process is depicted in Fig. 2.1.

To do this, we extract different attributes (features) of the images that describe 
what is there (things such as colors and shapes). Actually, in the era of deep learning 
(the most successful machine learning tool today), the image is sent raw to the 

… …

(color, shapes…)

Fig. 2.1  Illustrative example of the machine learning pipeline, from data and labeling to model 
generation and subsequent prediction

2  Bias and Discrimination in Machine Decision-Making Systems



18

algorithm, but for our purpose of illustrating how machine learning works in gen-
eral, we will use features. To perform machine learning to build a model capable of 
automatic classification, we will need to label (or tag) each image. This labeling 
must be done by humans; this is how we transfer our knowledge to machines. It is 
still necessary today, despite the overwhelming power of the algorithms currently in 
use. So, either they pay ridiculous salaries as micro jobs (Hara et al. 2018) for a 
person to spend hours in front of a screen labelling, or they take advantage of the 
free labor of millions of people who every day fill out a reCAPTCHA to claim that 
‘we are not a robot’ (Von Ahn et al. 2008).

At the end, we will build a data table where each row represents an example or 
instance, that is, a particular image. Each column will contain the value of each 
attribute/feature, plus a special last column that tells if that image is of a car, traffic 
light, etc. This data set constitutes all the knowledge we have about traffic images, 
and will serve to illustrate the algorithm, to teach it how to respond in each situation, 
i.e., it will serve to train it. Thus, in the training phase, the algorithm will build a 
model whose responses are as close as possible to the real ones in the hope that it 
will work as well (or even better) as the humans so that we can dispense with their 
services and use, from now on, the model built by the algorithm to classify traf-
fic images.

Since errors will inevitably be made, we will have different ways of measuring 
where that error occurs, so there will be multiple possible measures of performance 
(cost functions), and part of the design of the algorithm will be to decide which 
measure is best for our interests. For instance, when diagnosing a disease, it is pref-
erable to reduce false negatives (avoid missing someone who does have the disease), 
while a system that issues traffic tickets is preferable to minimize false positives 
(avoid issuing tickets to innocent drivers).

However, even if the ticketing machine is conservative, it cannot be so conserva-
tive that it does not serve its purpose, and it is not helpful to diagnose everyone for 
a disease either. Ultimately, the performance measure (cost function) should be a 
trade-off between hit and miss.

In a binary classification problem where a decision is made between two possible 
alternatives (usually called the positive and the negative class, the positive being the 
target of the problem), the outcomes of a classifier can be summarized in a contin-
gency table that collects true positives (cases that are positive and are indeed pre-
dicted to be so), true negatives (cases that are negative and are so predicted), false 
negatives (cases that are positive but are erroneously predicted to be negative), and 
false positives (cases that are negative but are erroneously predicted to be positive). 
From these values, a series of measures are derived that assess the performance of 
the classifier from different points of view. Figure 2.2 shows those of interest to us 
throughout the chapter to define different fairness criteria.

In summary, we can see that in these machine learning tasks there are some key 
ingredients that determine the whole process. On the one hand, we have the data, 
which condense the human knowledge that we want to imitate. It is clear that biased 
data will lead to a biased algorithm. We also have the features, the variables with 
which we define each possible case, the lenses we use to see the real world. Poorly 
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Fig. 2.2  Contingency table and some performance measures derived therefrom

chosen or faulty features can also lead to undesired algorithm behavior. I have also 
mentioned the performance measure or cost function, which is the way we decide to 
quantify what is right or wrong, and consequently the algorithm will generate a 
model that satisfies that criterion in the best way it is able to find.

Other important design decisions are the structure and size of the model we want 
to generate. If it is too simple (for example, a small decision tree), it will have very 
low efficacy and will not be useful. If the system is excessively intricate (for example, 
a huge artificial neural network), it becomes challenging or even unfeasible to inter-
pret. Consequently, we might not have the capability to elucidate the rationale behind 
decision-making, a necessity for addressing especially sensitive issues like those 
exemplified by social subsidy or hiring practices, as introduced earlier in this section.

Understanding the role played by each of these ingredients (data, variables, cost 
function, model type and size...) is key to identify risks where a bad design can lead 
to a discriminating machine.

2.4 � What Is Meant by Machine Discrimination

Machine discrimination refers to the unfair treatment of individuals or groups based 
on the results of automated decision-making algorithms. A recurring question here 
is whether the machine discriminates, whether something inert can indeed discrimi-
nate. Or, ultimately, it is just a tool at the service of the human, who is the one who 
really discriminates.

I believe this is a superfluous question. A smokescreen to draw attention away 
from algorithms, to offload responsibility onto AI, and to frame the debate exclu-
sively on humans. Although, for the moment, the truth is that there are no laws for 
algorithms, there are only laws for those humans who design and use those algo-
rithms. Perhaps these words are still premature in 2024, to talk about an algorithm 
discriminating may seem futuristic, unrealistic, or simply sensationalist. I take that 
risk in this chapter. The reader will end up drawing his or her own conclusions after 
following this book and completing the puzzle with other sources.
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In my view, the algorithm does discriminate. Something that makes an autono-
mous decision is responsible for its actions. So is the adult who decides based on the 
education he/she received from his/her parents. Perhaps in an early version of algo-
rithms, say a decade ago, they were still in their teens and were somewhat irrespon-
sible for their actions, as they were dedicated to supporting human decision making 
rather than deciding for themselves. But that phase is over, that screen has passed, 
what we have now well into the twenty-first century is a scenario in which there are 
algorithms designing other algorithms, machines trained with trillions of data rep-
resenting trillions of real-world cases that decide, and their word is the law: unques-
tionable, irrefutable, irreversible.

In these preceding paragraphs I have deviated from the interest of this chapter, 
but they have been necessary to justify why throughout the text I will speak of 
machine discrimination. Those who do not recognize themselves with this defini-
tion can continue to speak of human discrimination through the machine…; the 
result, after all, is the same.

Let us look for some formality in this discrimination thing, although it is some-
thing that has already been dealt with in such depth and at such length, I refer the 
reader to other sources such as (Ntoutsi et al. 2020; Hardt et al. 2023) for a deeper 
understanding of the issue. Here I will limit myself to summarizing some keys that 
may help to explain the milestones of this chapter. I will try to do it in an informative 
way that brings this field closer to the general reader, so I will skip some excessively 
formal and rigorous descriptions.

We have seen how we built a machine to recognize traffic-related images. 
Suppose we reduce it to just recognizing whether there is a car in the image. This 
typical case is that of binary classification. Classification, because the decision con-
sists of choosing (predicting) a category within a possible set of alternatives (with 
no order among them). Binary, because there are only two possible categories: there 
is a car or there is not. To now bring this problem of binary classification to the field 
where discrimination is relevant, let us substitute images for persons: ‘there is a car’ 
would stand for ‘being hired’.

Before continuing, we will call a decision-making system that chooses a response 
for a given situation a decider. This situation is measured through different attri-
butes/features/variables, and among them there will be at least one that we will call 
protected attribute, that is, an attribute that determines a group against which dis-
crimination could be exercised. Examples of protected attributes may be ethnicity, 
gender, or socioeconomic status.

A decider discriminates with respect to a protected attribute if for cases that only 
differ by their protected attribute, that decider makes different decisions (choose 
different classes). For example, if the machine systematically decides to hire a male 
person and not a female one, even though both are equally qualified, the system is 
discriminating against women and the protected attribute is ‘gender’.

To discriminate is to make an unfair decision, so discrimination can be measured 
in terms of fairness. Greater fairness means less discrimination. There is extensive 
literature around the definition of fairness (Mitchell et al. 2018; Barocas et al. 2017; 
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Gajane and Pechenizkiy 2017); here I just introduce the best known and used for 
machine learning.

2.4.1 � Fairness Through Unawareness

A decider is said to achieve fairness through unawareness if protected attributes are 
not explicitly used in the decision process (Chen et al. 2019). In our example, if the 
decider ignores the gender to hire people, which can be easily done by simply hid-
ing this attribute during training stage. This approach may be naïve because the 
interdependence with other factors may mean that, even without knowing the pro-
tected attribute, one is discriminating. For example, it may reward a type of work 
experience that, due to past discrimination, has been more accessible to one gender 
than to the other. Besides, while there may be situations where concealing the pro-
tected attribute is sufficient—think on blind auditions for musicians (Goldin and 
Rouse 2000)—, at other times it proves to be insufficient—e.g., in race-blind 
approaches (Fryer Jr et al. 2008).

In general, rather than relying on the system to decide fairly if it is not told the 
protected attribute, it is better to have control over the process to measure and regu-
late the degree of unfairness, for which it is necessary to know the value of the 
protected attribute.

2.4.2 � Individual Fairness

A different approach is proposed in the seminar work of Dwork et al. (2012), where 
being aware that failure to control fairness leads to discriminatory systems, a mech-
anism is proposed to guarantee fairness based on an irrefutable fact: two equal cases 
(except for the difference that they belong to different groups) should be treated 
equally. In the hiring example, if a man and a woman are equally qualified (equal 
education, experience, professional achievements, etc.) when applying for a job, 
both should be treated equally in terms of being hired or not.

Since this definition considers fairness on an individual basis, the authors call it 
individual fairness: similar individuals are treated similarly. The question here is to 
define what is similar, how we assess that two individuals are similar except for the 
group to which they belong. To address this in machine learning, we must define a 
metric, i.e. a quantitative measure that assesses the degree to which two individuals 
are equal or not. On paper, this seems an ideal fairness criterion, provided that the 
metric is well chosen and made public. However, sometimes it is not an easy task to 
quantify social similarities. To the extent that this metric is fair, individual fairness 
will be achieved. In addition, we will get that on many occasions it will not be easy 
to find similar individuals among the data set; given an individual, we may have 
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difficulty finding his or her peer in the other group, so the individual fairness can be 
difficult to prove.

2.4.3 � Counterfactual Fairness

Another way of looking at fairness is to analyze what would happen if an individual 
were to be changed from one group to another. Ideally, the system should have the 
same results, which would be a sign that it is making a fair decision. In other words, 
a decision is counterfactually fair toward an individual if it is the same in (a) the real 
world and (b) a counterfactual world in which the individual belonged to a different 
demographic group (Kusner et al. 2017).

Finding this counterfactual world is not so simple, it is not enough to flip the 
protected attribute. In fact, normally that attribute is not taught to the algorithm, it 
does not know it, so there is nothing to change there.

There really is a causal relationship that makes one attribute influence others. For 
example, even if race is not considered in hiring someone, that condition may have 
influenced a whole prior history with respect to the educational opportunities or 
prior work experience they had. Therefore, it becomes necessary to first define this 
causal graph (which itself may not find consensus) and then determine the process 
by which reversing the protected attribute that is not being directly observed triggers 
changes in other observable attributes that, in turn, propagate other changes accord-
ing to that causal graph.

2.4.4 � Group Fairness

Due to the above reasons that hinder achieving individual or counterfactual fairness, 
in most cases where machine learning is being applied, other measures are sought. 
In this way, instead of following an individual definition—that do value the specific 
discrimination of the individual—, group definitions are chosen—discrimination of 
an individual is not analyzed, but that of the group as a whole to which that indi-
vidual belongs. In this type of group fairness criteria we find, in turn, several fami-
lies of definitions:

•	 Demographic parity (also known as independence or statistical parity): it refers 
to a situation where the results of the decider ensure a proportional balance 
between the groups. For example, in a hiring process, to select a similar ratio of 
male and female. If ten employees are to be hired, five should be men and five 
women. It should be noted that this measure does not assess the correctness of 
the decision; it does not ultimately matter if those selected are well qualified, 
only the final proportion of the decision is assessed. The fifth best qualified can-
didate in one group may be much less qualified than the candidate holding a 
similar position in the other group.
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•	 Equalized odds (also known as separation or positive rate parity): it measures the 
degree to which a decider provides similar rates of true positive (among all truly 
positive, how many are chosen as positive by the decider) and false positive 
(among all truly negative, how many are chosen as positive by the decider) pre-
dictions across different groups (Hardt et al. 2016). It can be relaxed to ensure 
only equal true positive rate (what is known as equal opportunity). In the hiring 
example, equal opportunity is guaranteed if in both groups (men and women) the 
same percentage of applicants is selected from all qualified candidates in that 
group. If, in addition, we have that the percentage of those selected among all the 
unqualified (those who should not deserve the position) is similar in both groups, 
we would have equalized odds.

•	 Predictive rate parity (also known as sufficiency): both the positive predictive 
ratio (among all cases where the decider chooses the positive class, how many of 
them are truly positive) and the negative predictive ratio (likewise for the nega-
tive class) are equal in the two groups. If a decider is 80% correct in choosing in 
the man group (8 out of 10 cases hired were actually qualified for the position), 
a similar percentage of correct choices should be made in the women group to 
ensure positive predictive ratio. If, in addition, the precision in denying employ-
ment is also similar, we would have predictive rate parity.

2.4.5 � Impossibility of Fairness

The main challenge is that these three group measures of fairness are mathemati-
cally incompatible, they cannot be simultaneously satisfied (except under unrealis-
tic circumstances). Therefore, satisfying two of them results in non-compliance 
with the third one. Even under certain conditions that are easily encountered in real 
problems, these three fairness conditions are mutually exclusive. It is known as the 
impossibility of fairness (Miconi 2017).

To illustrate the complexity of satisfying different criteria of fairness at the same 
time, I will borrow the clever example given by Zafar et al. (2017) but with some 
modifications that will better serve the purpose of our exposition. Suppose we want 
to build a classifier to decide whether to stop a person on suspicion of carrying a 
prohibited weapon. For this aim, we have a data set based on real cases where it was 
known whether the subject was carrying a weapon. As features, we know if the 
person had a visible bulge in his/her clothing and if he/she was in the vicinity of 
where a crime had been committed. We also know the gender (male or female), 
which is the protected attribute. It is shown in Table 2.1.

We will analyze the results shown in Table 2.2 of four classifiers (each one iden-
tified with ‘C’) that decide whether the subject should be stopped or not, depending 
on the case. For each of them, the results obtained with the three group fairness 
criteria are shown (positive difference of the corresponding measurement in the two 
groups), as well as the degree of accuracy achieved.
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Table 2.1  Illustrative example of a data set and a hypothetical response from four classifiers

Gender Clothing bulge Prox. crime Ground truth (has weapon) C1 C2 C3 C4

m Yes Yes Yes Yes Yes Yes Yes
m Yes No Yes Yes Yes Yes No
m No Yes No No Yes No No
f Yes Yes Yes Yes Yes Yes Yes
f Yes No No No Yes Yes No
f No No No No Yes No No

Table 2.2  Results obtained by the four classifiers in Table 2.1 with respect to various measures of 
fairness

C1 C2

Demographic parity DR diff. 33% Demographic parity DR diff. 0%
Equalized odds TPR diff. 0% Equalized odds TPR diff. 0%

FPR diff. 0% FPR diff. 0%
Predictive rate parity PPV diff. 0% Predictive rate parity PPV diff. 33%

NPV diff. 0% NPV diff. 0%
Accuracy 100% Accuracy 50%
C3 C4

Demographic parity DR diff. 0% Demographic parity DR diff. 0%
Equalized odds TPR diff. 0% Equalized odds TPR diff. 50%

FPR diff. 50% FPR diff. 0%
Predictive rate parity PPV diff. 50% Predictive rate parity PPV diff. 0%

NPV diff. 0% NPV diff. 50%
Accuracy 83% Accuracy 83%

•	 C1 is the same response as the ground truth knowledge, so the accuracy is obvi-
ously 100%. This is an inconceivable situation in a moderately complex real 
problem. There is no such thing as a perfect classifier, some mistake is always 
made. However, if this perfect classifier existed, although it would logically sat-
isfy equalized odds (since TPR would be 100% and FPR 0% in both groups) and 
predictive rate parity (both PPV and NPV would be 100% in both groups), it 
could not guarantee demographic parity, since DR (demographic rate) would be 
66.6% in men (two of the three men are stopped) and 33.3% in women. Nor does 
it comply with individual fairness, given that when faced with two identical cases 
that differ only in gender (both with a bulge in their clothing and not in the vicin-
ity of a crime), the classifier decides to stop the man but not the woman.

•	 C2 manages the problem with a simple decision: stop everyone. In this way, it 
gets to treat everyone with individual fairness, it also ensures demographic par-
ity, and even holds equalized odds. However, while the PPV for men is 66.6% (of 
the three cases it decides to stop, it is right in two of them), for women it is 33.3% 
(it fails in two of the three cases). In addition, the classifier makes many errors 
(accuracy of 50%) with an FPR of 100% in both genders, which is totally 
unacceptable.
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•	 C3 and C4 offer two alternative solutions with a good accuracy of 83% and guar-
anteeing demographic parity. In both cases, individual fairness is also achieved. 
However, C3 has an FPR of 0% in males and 50% in females, while PPV is 100% 
in males and 50% in females. On the other hand, C4 has a TPR of 50% in men 
and 100% in women, in addition to an NPV of 50% in men and 100% in women. 
Thus, none of them can satisfy either equalized odds or predictive rate parity.

Which classifier would one choose between C3 and C4? Or, in other words, if we are 
going to make a mistake, where do we want it to be made? If we prioritize the safety 
of no one escaping with a weapon, C3 is better. If we prioritize the individual’s right 
not to be unfairly stopped, C4 is more appropriate. But both cases commit discrimi-
nation by treating men and women differently. Each problem has different social 
implications, and it is up to experts in the field to decide what orientation should be 
given to the machine decider, assuming that it will inevitably be biased.

2.5 � What We Are Talking About: Example 
of Machine Discrimination

There are multiple examples where the use of machine learning has generated cases 
of discrimination (O’Neil 2016; Barocas et al. 2017; Eubanks 2018). There are also 
many available data sets on fairness (Fabris et al. 2022). Among all of them, if I 
have to choose one to illustrate the situation, I will inevitably choose the ProPublica 
case (Angwin et al. 2016), for multiple reasons. It is a situation of special social 
connotations where an error has a significant impact of discrimination, where the 
positions between those who use the system and those who suffer from it are drasti-
cally opposed, it is still being used and is on the rise, it has been widely studied and, 
in a way, it marked a before and after in the way of approaching machine learning 
by clearly revealing the difficulty of solving the problem with fairness awareness.

In the machine learning community, it is known as the ProPublica case after the 
name of the media wherein the investigation of four journalists was published under 
the title “Machine Bias” in 2016. It was already known that several U.S. courts use 
a decision support system that rates the risk that a defendant may reoffend with a 
score between 1 and 10—see, e.g., State v. Loomis (Liu et  al. 2019). Even 
U.S. Attorney General Eric Holder warned in 2014 that the use of data-driven crimi-
nal justice programs could harm minorities (Holder 2014): “By basing sentencing 
decisions on static factors and immutable characteristics—like the defendant’s edu-
cation level, socioeconomic background, or neighborhood—they may exacerbate 
unwarranted and unjust disparities that are already far too common in our criminal 
justice system and in our society.”

However, until the article in ProPublica, it had not been possible to demonstrate 
with data how the system that is known as COMPAS works. Correctional Offender 
Management Profiling for Alternative Sanctions (COMPAS) is a software used for 
years (Brennan et al. 2009) developed by Northpointe (Equivant since 2017) as a 
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decision-making system powered by collected data from a defendant about different 
constructs such as current charges, criminal history, family criminality, peers, resi-
dence, social environment, or education, among others. Journalists were able to 
access records on thousands of cases collected between 2013 and 2014 in which 
they knew the risk assessment made by COMPAS and whether or not each person 
reoffended in the two subsequent years—which is the criterion used by the com-
pany to validate COMPAS (Equivant 2019). This data is now public and is being 
intensively used by the fairness machine learning community (Larson 2023). 
COMPAS was found to score African Americans at higher risk of recidivism than 
Caucasians, as shown in Fig. 2.3.

However, Northpointe argued that there really is equal treatment between blacks 
and whites because the hit rate is similar in both groups. For this, they refer to the 
PPV (positive predictive value), which measures the percentage of success in pre-
dicting the positive class (medium-high risk of recidivism) among all cases that are 
truly positive (actually recidivated). According to this measure, COMPAS obtains a 
value of 63% correct for blacks and 59% for whites, i.e. only a 4% difference, which 
is considered within the reasonably allowable range. As for the NPV (negative pre-
dictive value) measure, i.e., the percentage predicting non-recidivism among those 
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Fig. 2.3  Number of cases according to race and recidivism for each score assigned by 
COMPAS. Percentage of persons out of the total group assigned to each risk score is shown in 
square brackets above each bar. Percentage of repeat offenders for each set of scores is shown 
inside each bar. For example, 10% of blacks are scored with a risk of 9 versus 4% of whites. 
However, the recidivism rate among those who are rated a 9 is similar in both groups (71% 
vs. 69%)
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who did not reoffend, the results were 65% for blacks and 71% for whites (6% dif-
ference). In short, from the point of view of the degree of precision, it could be said 
that the COMPAS treatment is fair.

But there is another way of looking at things. If we put the focus on the individ-
ual and the way in which he or she is severely handicapped by COMPAS in a predic-
tion error, we can analyze FPR (false positive rate, the proportion of cases that do 
not recidivate despite receiving a high-risk score), where it is observed that there is 
a significant imbalance between the black and white groups, against the former. The 
error made in wrongly predicting that someone will reoffend when in fact she/he 
does not is 22 points higher for blacks (45%) versus whites (23%). Figure 2.4 com-
pares the fairness interpretation of both Northpointe and ProPublica.

The reason for this huge discrepancy lies in a social reality: more blacks than 
whites recidivate in the data set, 51% versus 39% respectively, as shown in Fig. 2.5. 
Discussing the causes why there is more black recidivism is beyond the scope of 
this chapter, but it clearly has its roots in a multitude of historical circumstances. I 
will only note one reflection: what does recidivism mean? One might think that it 
refers to “the act of continuing to commit crimes even after having been punished,” 
as defined by Cambridge Dictionary. But, in the eyes of procedural law in any state 
under the rule of law, recidivism is more than just committing a crime again... as a 
recidivist must also get caught.

A policing system that is focused more on catching blacks will logically find 
more crime and make more arrests in that community, reinforcing the perception 
that there is more crime among blacks. This is a classic chicken-egg example that 
generates a spiral from which it is difficult to escape. Whilst race is an attribute that 
is hidden from the machine, among the 137 features (variables) used by COMPAS, 
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Fig. 2.4  Fairness results obtained in COMPAS as interpreted by Northpointe on the left (predic-
tive rate parity satisfied) and ProPublica on the right (equalized odds violated). From Northpointe’s 
point of view, the system is fair because it maintains a balance in PPV (percentage of cases that do 
reoffend among all cases that the system predicts will reoffend). However, from ProPublica’s point 
of view, the system is not fair because there is a high disparity in FPR (percentage of cases that the 
system predicts will reoffend but actually do not) and TPR (percentage of cases that the system 
predicts will reoffend and actually do). Due to the difference in prevalence (the percentage of 
recidivists in the black group is higher than in the white group) as shown in Fig. 2.5, it is not pos-
sible to achieve both fairness criteria (balance of PPV and FPR at the same time), so it is crucial to 
understand the nature of the case and choose the most appropriate fairness criterion
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arrested and prosecuted

questions are asked and records are analyzed that disadvantage blacks (e.g., neigh-
borhood or arrest history questions). So looking the other way does not solve the 
problem, it just lets it get out of control.

Indeed, in this case, where there is a marked difference of recidivism prevalence 
between the two groups, forcing the system to have an equal PPV mathematically 
makes unequal FPR and, therefore, discriminatory from that point of view. In other 
words, as it is not possible to satisfy different criteria of fairness at the same time 
(Chouldechova 2017), an in-depth study of the problem is necessary to design the 
best strategy. The issue here is that the efficiency interest (low false negative) of a 
company/administration is not aligned with the efficacy interest (low false positive) 
of the individual. For this reason, the ProPublica case opens an interesting debate 
that questions the convenience of using machine decision-making systems in a situ-
ation where there is no optimal solution and the error is critical, as it seriously harms 
the individual.

Finally, I show the result of a machine learning algorithm (Valdivia et al. 2021) 
that, based on a few variables together with the COMPAS prediction, can signifi-
cantly improve its performance, as a proof of how fair we can go (see Fig. 2.6). 
Firstly, the COMPAS system is easily improved in terms of accuracy—see (Dressel 
and Farid 2018)—and, secondly, a well-designed algorithm can offer a range of 
possible best alternatives with different trade-offs of accuracy and fairness. As 
shown, the algorithm can generate solutions with an error rate similar to that 
obtained by COMPAS (35%), but with a difference in FPR between blacks and 
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Equal opportunity (FPR difference)

Error

Fig. 2.6  Using a multi-objective optimization technique (Valdivia et al. 2021), multiple alterna-
tive classifiers can be generated. Each orange point is the result of an alternative decider, while the 
blue dots represent the average behavior. It can be seen how COMPAS (red dot) is easily outper-
formed in accuracy and fairness and that, with the same error rate as COMPAS (about 35%), it is 
possible to improve equality of opportunity significantly (reducing FPR difference from 12.5% 
to 4.5%)

whites of lower than 5% instead of the 12% that COMPAS obtained. In other words, 
if you want to be fairer, you can. It is just a matter of having fairness awareness and 
the machine learning skills necessary to employ algorithms that do not 
discriminate.

The ProPublica case exemplifies many of the bad practices that can lead to dis-
crimination, such as the choice of variables, the selection of the set of examples, the 
use of a certain cost function to guide the algorithm, or the existence of proxies that 
correlate with race. In the next section I formalize some of the main reasons why a 
machine can discriminate.

2.6 � Why Machine Learning Can Discriminate

Machine learning can end up generating decision-making systems that are unfair or 
cause discrimination because of different factors (Barocas and Selbst 2016). 
Sometimes it is due to the use of data that teaches the algorithm discriminatory 
behaviors previously performed by humans. At other times, a performance measure 
is used—which, in short, is the reference used by the algorithm to know whether the 
system it is generating is right or wrong—that leads to biased or unfair behavior. 
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The problem may also lie in the fact that the system supports decisions on variables 
that offer an incomplete or distorted view of reality.

Specifically, we can distinguish five causes that lead the algorithm to generate 
unfair or discriminatory deciders:

	1.	 The use of contaminated examples: any machine learning system maintains 
the existing bias in the old data caused by human bias. Such bias can be aggra-
vated over time as future observations confirm the prediction and there are fewer 
opportunities to make observations that contradict it.

An example is the case of Amazon (Dastin 2018), when in 2014 it developed 
an automated recruitment system based on screening resumes. To do so, it trained 
its algorithm with the history of recruitment cases carried out by the company in 
its previous 10 years. The project ended up failing because it was found to have 
a gender biased behavior, favoring the hiring of men over women with equal 
qualifications. It was observed that the data used to train the algorithm were 
biased and, consequently, the algorithm learned to mimic that bias to maximize 
its performance.

	2.	 The choice of the wrong performance measure: the algorithm is guided by a 
performance measure (cost function) to generate models that maximize (mini-
mize) it; if that measure rewards a certain balance to the detriment of another, 
from a point of view, the solution could discriminate.

The ProPublica case is a clear example of this (Angwin et al. 2016). While 
the company that developed COMPAS, the algorithm that scores an offender’s 
risk of recidivism, claims that its system is fair because it satisfies equal PPV 
(positive predictive value, the proportion of subjects with a high risk score who 
actually recidivate) between blacks and whites, in terms of FPR (false positive 
rate, the proportion of cases that do not recidivate despite receiving a high risk 
score) there is a high imbalance between the black and white groups, against 
the former.

	3.	 The use of non-representative samples: if the training data coming from the 
minority group are smaller than those coming from the majority group, the 
minority group is less likely to be perfectly modeled.

Let us mention here the cases of AI models used for medical diagnosis based 
on genomic information. A 2016 meta-analysis analyzing 2511 studies from 
around the world found that 81% of participants in genome mapping studies 
were of European ancestry (Popejoy and Fullerton 2016). The data overrepre-
sents people who get sicker. In addition, demographic information on the neigh-
borhood where a hospital is located, how it advertises clinical trials, and who 
enrolls in them further exacerbates the bias. While another study (Aizer et al. 
2014) pointed out that the lack of diversity of research subjects is a key reason 
why black Americans are significantly more likely to die of cancer than white 
Americans.

In short, the survivorship bias (Brown et al. 1992) coined during the World 
War II when analyzing the impact of projectiles on aircraft—information from 
heavily damaged aircrafts, the most interesting to be analyzed, was not available 
as they did not return from battle—is still in force today, especially in the field of 
health: the algorithm cannot understand what is not shown to it.
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	4.	 The use of limited attributes: some attributes (variables) may be less informa-
tive or less reliably collected for minority groups, making the system less accu-
rate on this group. This fact is aggravated when the variable that is not very 
representative is the object of study, i.e., the dependent variable or target.

The scandal in the Netherlands where 26,000 families (mostly immigrants) 
had been unjustly classified as fraudsters through data analysis between 2013 
and 2019, and thus forced to repay thousands of euros worth of benefits, is an 
example (Peeters and Widlak 2023). This was partly due to the use of a form that 
was cumbersome and difficult to understand for non-native Dutch speakers, so 
that erroneous data collected on it were interpreted as fraud for these families. In 
a nutshell, attributes were used that were not representative for certain social 
groups, causing them harm.

	5.	 The effect of proxies: even if the protected attribute (e.g., ethnicity) is not used 
to train a system, other features may be proxies for the protected attribute (e.g., 
neighborhood). If such features are included, bias will occur, and it is sometimes 
very difficult to determine these dependencies.

This is a classic case in the field of sociology. There are different causal rela-
tionships among variables that generate indirect relationships and back doors. 
An example is provided by Mitchell et al. (2018), where a complex historical 
process creates an individual’s race and socioeconomic status at birth, both 
affecting the hiring decision, including through education. Even if we hide an 
individual’s race and socioeconomic status from the algorithm, other variables, 
such as the quality of their education, will condition their chances of being hired. 
This variable is not likely to be independent, but likely to be entangled with their 
race and socioeconomic status.

Unfortunately, in a real-world complex problem, several of these factors combine, 
making it very difficult to avoid that machine learning does not discriminate, or that, 
being fair from one point of view, it is unfair from another. However, there are solu-
tions for all these drawbacks. The key is to include validation mechanisms to detect 
these discriminations and the causes, in order to take action to mitigate discrimina-
tory effects.

2.7 � How Machine Discrimination Can Be Overcome

Fortunately, various solutions have been proposed from the machine learning com-
munity to address fairness. These techniques can help reduce bias in machine learn-
ing models, even if they are not a panacea. It is crucial to continually assess and 
monitor the performance of the model to ensure that it remains fair and unbiased.

Different approaches have been adopted that can be grouped into three catego-
ries, depending on the point in the machine learning pipeline at which the mecha-
nism is incorporated to correct the operation of the process towards better fairness: 
the pre-processing stage, the in-training stage, or the post-processing stage. These 
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can be combined, so that it is possible to improve the data first, to apply algorithms 
designed for fairness subsequently, and finally to polish the results in post-
processing. I will describe some existing alternatives in each approach.

2.7.1 � Pre-processing for Fairness

Pre-processing approaches can be used to address fairness in machine learning by 
manipulating the input data before it is used to train a model. They attempt to obtain 
new representations of the data to satisfy fairness definitions. They are especially 
useful when the cause of the discrimination is due to biased data. Among the most 
common pre-processing techniques used for fairness, we find the following:

•	 Data sampling/weighting: one approach is to sample the data in a way that 
ensures equal representation of all groups. For example, if a dataset contains 
unequal representation of different races, we can oversample the underrepre-
sented groups (or undersample the overrepresented one) to create a more bal-
anced dataset (Kamiran and Calders 2010; Gu et al. 2020). Another way to reach 
a similar effect is to weight data (Krasanakis et al. 2018) in an iterative process, 
together with the algorithm (so it is a hybrid approach of pre-processing and in-
training). Either by repeating (reducing) data from the minority (majority) group, 
or by giving more weight to data from the minority group, the objective of these 
techniques is to balance the representativeness of each group in the hope of 
reducing imbalances that affect fairness.

•	 Data generation: by using generative adversarial networks it is also possible to 
generate high quality fairness-aware synthetic data (Xu et  al. 2018; Sattigeri 
et al. 2019). In this case, again, the aim is to create new minority group data, but 
in this case, it is fictitious data (based on real data), so there is more flexibility to 
direct the generation to reduce the fairness.

•	 Feature selection: another approach is to select features that are not biased 
towards any particular group (Grgić-Hlača et al. 2018). This can be done using 
statistical methods to identify features that have a low correlation with protected 
attributes (such as race or gender) or by using domain knowledge to select rele-
vant features that do not discriminate. To the extent that there are attributes cor-
related with the protected attribute, this selection approach can be effective.

•	 Data encoding: to achieve fairness, we can frame it as an optimization challenge 
where we aim to discover an intermediate data representation that optimally cap-
tures the information while also hiding certain features that could reveal the pro-
tected group membership (Zemel et al. 2013; Calmon et al. 2017). Here we are 
looking for a data transformation aimed at reducing disparity that causes lack of 
fairness.

•	 Preprocessing with fairness constraints: some preprocessing techniques add con-
straints that promote fairness (Donini et  al. 2018). We can also create a new 
attribute optimized by a kind of adversarial debiasing that trains a model to 
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minimize the accuracy of a discriminator that tries to predict protected attributes 
like race or gender (Zhang et al. 2018).

The main advantage of pre-processing is that the modified data can be used for any 
subsequent task. This helps people who are not very skilled in machine learning or 
who do not have access to the means to develop new algorithms on an ad hoc basis. 
Besides, there is no need to access protected attributes at prediction time, which is 
sometimes a limitation in projects where it is not legal or feasible to know that infor-
mation. However, pre-processing approaches are inferior to in-training approaches 
in terms of performance of both accuracy and fairness, as well as less flexible com-
pared to post-processing approaches.

2.7.2 � In-training for Fairness

The methods in the training phase consist of modifying the classification algorithm 
by adding fairness criteria or by developing an optimization process considering 
these fairness measures. Since they work in the training phase, that is, when the 
algorithm determines how to generate the decider, they have great potential. Some 
possible in-training techniques are the following:

•	 Fairness cost-sensitive regularization: one approach is to incorporate fairness 
constraints into the model’s objective function. This can be done by adding a 
regularization term that penalizes the model (decider) for making predictions 
that are biased towards certain groups. For example, we can use a fairness metric 
(usually the group ones) to penalize the model for making biased predictions or 
incorporate these measures to decide components of the model such as nodes, 
rules, or weights (Zafar et al. 2017b; Agarwal et al. 2018).

•	 Adversarial training: another approach is to use adversarial training to make the 
model more robust to biases in the input data (Kearns et al. 2018; Zhang et al. 
2018). This involves training a discriminator model that tries to predict the pro-
tected attributes of the input data (such as race or gender) and using the output of 
the discriminator to update the classifier’s weights. In other words, an algorithm 
oversees the potential discrimination caused by the models generated by another 
algorithm, so that iteratively the second one manages to improve the solution 
until it passes the approval of the first one.

•	 Counterfactual data augmentation: in some cases, it may be possible to generate 
counterfactual examples that help to mitigate bias in the input data. Counterfactual 
data augmentation involves generating new training examples that are similar to 
the original examples but with modified attributes that remove the bias following 
the given causal graph (Kusner et al. 2017).

•	 Individual fairness: given the metric to assess similarities among data, it can be 
used in training stage to force the algorithm to generate equal predictions for 
similar data (Dwork et al. 2012).
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•	 Multiobjective optimization: finally, a powerful approach is to develop a wrap-
ping scheme (a kind of meta-learning) where the hyperparameters of a standard 
algorithm are optimized to direct the learner to generate models with specific 
fairness measures (Valdivia et al. 2021; Villar and Casillas 2021). In this sense, 
fairness is not conceived as a constraint but as guide to optimize the model. 
When multiobjective optimization is incorporated in this meta-learning approach, 
it is possible to generate a wide variety of models with different accuracy-fairness 
trade-offs.

These in-training approaches achieve the best results in both accuracy and fairness, 
and they have a greater flexibility to choose the desired balance between them. Any 
fairness criteria can be incorporated at this stage. However, the adaptation of exist-
ing algorithms or the creation of new algorithms is required, which represents a 
major development effort. In some projects where fairness awareness is incorpo-
rated into previous developments, it is not easy to access previous algorithms.

2.7.3 � Post-processing for Fairness

Post-processing methods aim to eliminate discriminatory decisions once the model 
has been trained by manipulating the output of the model according to some criteria. 
Here we have some common postprocessing techniques:

•	 Calibrated equality: an approach is adjusting the model’s output using statistical 
methods or by using post-hoc adjustments to calibrate the output for each group 
(Canetti et al. 2019). This is the case of the equalized odds technique (Hardt et al. 
2016) to ensure that the model predicts outcomes with equal false positive and 
false negative rates for all groups. This is possible in deciders that return an out-
put with a degree of certainty, so that by varying the threshold of that certainty it 
is possible to alter the final output. For example, output 0 means that the loan is 
not granted and 1 that it is, so that, initially, a certainty greater than 0.5 concludes 
that the loan is granted (1) and a lower value that it is not (0). In this case, the 0.5 
border can be varied, for example to 0.7, as long as better equity between groups 
is achieved. As can be seen, neither the data nor the algorithm is modified, what 
is altered is the output of the decider generated by the algorithm.

•	 Rejection sampling: in some cases, it may be necessary to reject certain predic-
tions that are likely to be biased. Rejection sampling is a technique that involves 
refusing predictions that are too confident or too uncertain (Kamiran et al. 2018). 
By doing so, the model can avoid making biased predictions that are likely to be 
incorrect.

•	 Model regularization: finally, model regularization can be used to ensure fairness 
in machine learning. Regularization techniques can be used to penalize/con-
strain/modify the model to produce outputs that are consistent with a fairness 
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metric (Pedreschi et al. 2009; Calders and Verwer 2010; Kamiran et al. 2010). 
Here a transformation of the generated decision plane is pursued in order to 
improve fairness. It is a similar effect to calibrated equality but through a more 
complex and potentially more effective process.

These post-processing approaches have a good performance, especially with group 
fairness measures. As in the case of pre-processing approaches, there is no need to 
modify the algorithm, it can work with standard machine learning algorithms. 
However, these approaches are more limited than in-training approaches to get the 
desired balance between accuracy and fairness. Moreover, the protected attribute 
must be accessed in the prediction stage, which is sometimes not possible. Whilst 
the sensitive information can be known during the development of the algorithm for 
its correct design, it will not always be available (for legal or practical reasons) at 
the time of using the already trained model.

2.8 � Conclusion

Throughout the chapter we have seen many examples where the use of algorithms 
and massive data analysis generate discrimination based on gender, race, origin, or 
socioeconomic status in fields as diverse as recruitment, recidivism assessment, 
advertising, internet searches, credit risk assessment, subsidy payment, health treat-
ment, and online shopping delivery. When discrimination is generated by automa-
tisms, their consequences are much more serious due to its scalability, invisibility, 
and lack of accountability. Different perspectives on discrimination have been 
reviewed and different causes have been analyzed. We have also been able to see 
how there are solutions for most cases, as long as there is a will and the means to 
solve them.

AI will continue to bring wonderful things to society, but it must also be con-
strained by the values of that same society. It is advancing at great speed. The best 
way to deal with this evolution is to move at the same pace in ethics, awareness, 
education, and regulation.

The legislature should work closely with experts to investigate, prevent, and 
mitigate malicious uses of AI. AI experts must take the nature of their work seri-
ously, proactively communicating with relevant stakeholders when harmful applica-
tions are foreseeable. External audits should be incorporated into potentially 
discriminatory projects, both in the private and public sectors. We should bring 
together data scientists and experts in social sciences to infuse a social lens into 
solutions and examine potential discriminations.

I hope that this chapter contributes to raising awareness about the serious dis-
criminatory potential that machine decision-making systems can have, open the 
eyes of AI experts to the consequences of their work, and show that, although there 
are solutions to alleviate it, these are not as simple as fixing a bias in the data.
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