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Abstract. System modeling with fuzzy rule-based systems (FRBSs), i.e. fuzzy
modeling (FM), usually comes with two contradictory requirements in the obtained
model: the interpretability, capability to express the behavior of the real system in
an understandable way, and the accuracy, capability to faithfully represent the real
system. While linguistic FM (mainly developed by linguistic FRBSs) is focused on
the interpretability, precise FM (mainly developed by Takagi-Sugeno-Kang FRBSs)
is focused on the accuracy. Since both criteria are of vital importance in system
modeling, the balance between them has started to pay attention in the fuzzy
community in the last few years.

The chapter analyzes mechanisms to find this balance by improving the inter-
pretability in linguistic FM: selecting input variables, reducing the fuzzy rule set,
using more descriptive expressions, or performing linguistic approximation; and
in precise FM: reducing the fuzzy rule set, reducing the number of fuzzy sets, or
exploiting the local description of the rules.

1 Introduction

System modeling is the action and effect of approaching to a model, i.e., to
a theoretical scheme that simplifies a real system or complex reality with
the aim of easing its understanding. Thanks to these models, the real system
can be explained, controlled, simulated, predicted, and even improved. The
development of reliable and comprehensible models is the main objective in
system modeling. If not so, the model loses its usefulness.

There are at least three different paradigms in system modeling. The most
traditional approach is the white box modeling, which assumes that a thor-
ough knowledge of the system’s nature and a suitable mathematical scheme
to represent it are available. As opposed to it, the black box modeling [60] is
performed entirely from data using no additional a priori knowledge and con-
sidering a sufficiently general structure. Whereas the white box modeling has
serious difficulties when complex and poorly understood systems are consid-
ered, the black box modeling deals with structures and associated parameters
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that usually do not have any physical significance [2]. Therefore, generally
the former approach does not adequately obtain reliable models while the
latter one does not adequately obtain comprehensible models.

A third, intermediate approach arises as a combination of the said para-
digms, the grey box modeling [28], where certain known parts of the system
are modeled considering the prior understood and the unknown or less certain
parts are identified with black box procedures. With this approach, the men-
tioned disadvantages are palliated and a better balance between reliability
and comprehensibility is attained.

Nowadays, one of the most successful tools to develop grey box models
is fuzzy modeling (FM) [41], which is an approach used to model a system
making use of a descriptive language based on fuzzy logic with fuzzy pred-
icates [63]. FM usually considers model structures (fuzzy systems) in the
form of fuzzy rule-based systems (FRBSs) and constructs them by means
of different parametric system identification techniques. Fuzzy systems have
demonstrated their ability for control [17], modeling [49], or classification [12]
in a huge number of applications. The keys for their success and interest are
the ability to incorporate human expert knowledge – which is the information
mostly provided for many real-world systems and is described by vague and
imprecise statements – and the facility to express the behavior of the system
with a language easily interpretable by human beings. These interesting ad-
vantages allow them to be even used as mechanisms to interpret black box
models such as neural networks [11].

As a system modeling discipline, FM is mainly characterized by two fea-
tures that assess the quality of the obtained fuzzy models:

• Interpretability — It refers to the capability of the fuzzy model to express
the behavior of the system in a understandable way. This is a subjective
property that depends on several factors, mainly the model structure,
the number of input variables, the number of fuzzy rules, the number of
linguistic terms, and the shape of the fuzzy sets. With the term inter-
pretability we englobe different criteria appeared in the literature such
as compactness, completeness, consistency, or transparency.

• Accuracy — It refers to the capability of the fuzzy model to faithfully
represent the modeled system. The closer the model to the system, the
higher its accuracy. As closeness we understand the similarity between
the responses of the real system and the fuzzy model. This is why the
term approximation is also used to express the accuracy, being a fuzzy
model a fuzzy function approximation model.

As Zadeh stated in its Principle of Incompatibility [75], “as the complexity
of a system increases, our ability to make precise and yet significant state-
ments about its behavior diminishes until a threshold is reached beyond which
precision and significance (or relevance) become almost mutually exclusive
characteristics.”
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Therefore, to obtain high degrees of interpretability and accuracy is a
contradictory purpose and, in practice, one of the two properties prevails
over the other one. Depending on what requirement is mainly pursued, the
FM field may be divided into two different areas:

• Linguistic fuzzy modeling (LFM) — The main objective is to obtain fuzzy
models with a good interpretability.

• Precise fuzzy modeling (PFM) — The main objective is to obtain fuzzy
models with a good accuracy.

The relatively easy design of fuzzy systems, their attractive advantages,
and their emergent proliferation have made FM to suffer a deviation from
the seminal purpose directed towards exploiting the descriptive power of the
concept of a linguistic variable [75,76]. Instead, in the last few years, the
prevailing research in FM has focused on increasing the accuracy as much as
possible paying little attention to the interpretability of the final model.

Nevertheless, a new tendency in the FM scientific community that looks
for a good balance between interpretability and accuracy is increasing in
importance [3,9,54,65]. The aim of this chapter is to review some of the recent
proposals that attempt to address this issue using mechanisms to improve the
interpretability of fuzzy models.

The chapter is organized as follows. Section 2 analyzes the different ex-
isting lines of research related to the improvement of interpretability and
accuracy to find a good balance in FM, Sect. 3 introduces the most impor-
tant kinds of FRBSs used to improve their interpretability, Sect. 4 shows
how to improve the interpretability of linguistic fuzzy models, Sect. 5 in-
troduces tools to improve the interpretability of precise fuzzy models and,
finally, Sect. 6 points out some conclusions.

2 Major Lines of Work

The two main objectives to be addressed in the FM field are interpretability
and accuracy. Of course, the ideal thing would be to satisfy both criteria
to a high degree but, since they are contradictory issues, it is generally not
possible. In this case, more priority is given to one of them (defined by the
problem nature), leaving the other one in the background. Hence, two FM
approaches arise depending on the main objective to be considered: LFM
(interpretability) and PFM (accuracy).

Regardless of the approach, a common scheme is found in the existing
literature to perform the FM:

1. Firstly, the main objective (interpretability or accuracy) is tackled defin-
ing a specific model structure to be used, thus setting the FM approach.

2. Then, the modeling components (model structure and/or modeling pro-
cess) are improved by means of different mechanisms to define the desired
ratio interpretability-accuracy.
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This procedure results in four different possibilities (see Fig. 1): LFM with
improved interpretability, LFM with improved accuracy, PFM with improved
interpretability, and PFM with improved accuracy.
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Fig. 1. Improvements of interpretability and accuracy in fuzzy modeling

Although historically more priority has been given to the accuracy, cur-
rently the search of a good balance between both criteria is increasing in
importance. Indeed, a significative effort is being performed by several re-
searchers proposing improvement mechanisms to compensate for the initial
difference. Among the four said lines of work, clearly this philosophy is pur-
sued by two of them: LFM with improved accuracy and PFM with improved
interpretability (approaches 2 and 3 in Fig. 1, respectively).

Moreover, another interesting proposal is LFM with improved interpretabil-
ity (approach 1 in Fig. 1). Although LFM uses a model structure with a high
description power by itself, there are some problems (curse of dimensionality,
excessive number of input variables or fuzzy rules, garbled fuzzy sets, etc.)
that make it not to be as interpretable as desired and the need of inter-
pretability improvements to restore the searched balance is justified.

Finally, the modus operandi of obtaining more accuracy in PFM (ap-
proach 4 in Fig. 1) does not pay attention to the comprehensibility of the
model and acts close to black box techniques. This approach does not follow
the original objective of FM and does not profit from the advantages that
distinguish it from other modeling techniques. Although the approach is use-
ful when only accuracy is required, it goes away from the aim of the present
book.

This chapter is devoted to review different interpretability improvements
that have been proposed to attain the desired balance. Thus, Sects. 4 and
5 show some mechanisms found in the recent literature to do so. In [27],
an overview from a different point of view is explored by analyzing the in-
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terpretability of several proposals instead of considering how the balance
interpretability-accuracy is achieved.

3 Types of Fuzzy Rule-Based Systems

Before presenting the search of a balance interpretability-accuracy in FM,
it seems that there is need to introduce the different kinds of FRBSs usu-
ally employed. It is a significant aspect to consider since depending on the
rule structure used, an FRBS has itself a specific capability of description
and approximation. The section is only focused on the FRBS types usually
considered to improve their interpretability for the sake of a good trade-off.

3.1 Linguistic Fuzzy Rule-Based System

Also known as Mamdani-type FRBS [44,45], the linguistic FRBS constitutes
the main tool to develop LFM. A crucial reason why this approach is worth
considering is that it may remain verbally interpretable, playing the concept
of linguistic variable [76] a central role. Linguistic FRBSs are formed by lin-
guistic rules with the following structure:

IF X1 is A1 and . . . and Xn is An

THEN Y1 is B1 and . . . and Ym is Bm ,

with Xi and Yj being input and output linguistic variables respectively, and
with Ai and Bj being linguistic labels with fuzzy sets associated defining
their meaning. These linguistic labels will be taken from a global semantic
defining the set of possible fuzzy sets used for each variable (Fig. 2 shows
an example with triangular membership functions). This structure provides
a natural framework to include expert knowledge in the form of fuzzy rules.

S M L VLVS

0.5

l r

Fig. 2. Graphical representation of an example of the semantic considered for a
variable, standing VS for very small, S for small, M for medium, L for large, and
VL for very large, with [l, r] being the corresponding variable domain

In these systems, the knowledge base (KB) – the component of the FRBS
that stores the knowledge about the problem being solved – is composed of:
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• the rule base (RB), constituted by the collection of linguistic rules them-
selves joined by means of the connective also, and

• the data base (DB), containing the term sets and the membership func-
tions defining their semantics.

3.2 Takagi-Sugeno-Kang-type Fuzzy Rule-Based Systems

The system proposed by Takagi, Sugeno, and Kang [62,64] (shortly called
TSK) differs from the linguistic one in the use of a different consequent struc-
ture. While linguistic rules consider a linguistic variable in the consequent,
TSK-type fuzzy rules are based on representing the output variables as poly-
nomial functions of the input variables, i.e.,

IF X1 is A1 and . . . and Xn is An

THEN Y1 = p1(X1, . . . , Xn) and . . . and Ym = pm(X1, . . . , Xn) ,

with pj(·) being the polynomial function defined for the jth output vari-
able. Using this fuzzy rule structure, the human interpretation on the action
suggested by each rule is garbled but, on the contrary, the approximation
capability is significantly increased. For this reason, TSK-type FRBSs are
very useful in PFM.

3.3 Other Kinds of Fuzzy Rule-Based Systems

Other model structures may be considered apart from the two main types
mentioned, some examples follow:

• The singleton FRBS, where the rule consequent takes a single real-valued
number, may be considered as a particular case of the linguistic FRBS
(the consequent is a fuzzy set where the membership function is one
for a specific value and zero for the remaining ones) or of the TSK-
type FRBS (the polynomial function of the consequent is a constant).
Since the single consequent seems to be more easily interpretable than a
polynomial function, the singleton FRBS may be used to develop LFM.
Nevertheless, compared with the linguistic FRBS, the fact of having a
different consequent value for each rule (no global semantic is used for
the output variable) worsens the interpretability.

• The fuzzy rule-based classification system, which is an automatic clas-
sification system that uses fuzzy rules as knowledge representation tool.
The classical fuzzy classification rule structure is the one that have a class
label in the consequent part instead of the mentioned fuzzy set. Other
alternative representations that consider a certainty degree for each rule
or that include all the possible class labels with their corresponding cer-
tainty degrees in the consequent part are usually also considered.
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• The approximate FRBS, which differs from the linguistic one in the direct
use of fuzzy variable [1,7,15,36,61]. Each fuzzy rule thus presents its own
semantic, i.e., the variables take different fuzzy sets as values and not
linguistic terms from a global term set. The fuzzy rule structure is then
as follows:

IF X1 is Â1 and . . . and Xn is Ân

THEN Y1 is B̂1 and . . . and Ym is B̂m ,

with Âi and B̂j being fuzzy sets. Since no global semantic is used in
approximate FRBSs, these fuzzy sets can not be interpreted. This more
flexible structure allows the model to be more accurate, being very ap-
propriate to develop PFM.
Other names have been proposed by different authors to designate ap-
proximate FRBSs. Among others, we may find FRBSs with local fuzzy
sets [7], rule-based FRBSs [14], or scatter-partitioning FRBSs [22].

Moreover, different extensions to the FRBSs such as adding rule weights
[20,74] or using disjunctive forms [13,42,24] have also been proposed.

4 Improving the Interpretability in Linguistic Fuzzy
Modeling

A possibility to achieve a good trade-off between interpretability and accu-
racy is to perform an LFM process trying to obtain accurate initial models,
and subsequently applying a process to improve the interpretability of the ob-
tained model even at the expense of losing certain accuracy. To generate these
accurate initial models in LFM, a large number of input variables, a great
variety of linguistic terms, oversized RBs, or illegible fuzzy sets are usually
considered. This section analyzes different mechanisms to improve the inter-
pretability in these kinds of models. Moreover, there is always the chance of
indirectly improving the accuracy in terms of generalization capability when
removing the existing redundancies and inconsistencies.

4.1 Selecting Input Variables in the Model and/or in the
Linguistic Rules

When managing high-dimensional problems with a large number of input
variables, the RB suffers from an exponential growth in its size due to the
homogeneous partitioning of the input and output spaces caused by the use
of linguistic variables [4] and, therefore, a good interpretability is not guaran-
teed. Moreover, with an excessive number of input variables, every linguistic
rule also loses part of its description ability since the understanding of the
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condition to activate the rule comes more difficult. A solution to these dis-
advantages is to make an input variable selection process that reduces the
number of variables used by the model.

Basically, we may distinguish between two variable selection processes:

• Selecting input variables in the model — This simplification task involves
selecting a subset of input variables to be used in the model or, similarly,
removing those input variables that do not significantly contribute to the
FRBS performance.
Usually, this variable (or feature) selection has been applied to LFM
in classification [8,30,35,40,58,59], where a large number of variables is
frequently tackled. Nevertheless, in [34] an interesting contribution is pro-
posed for linguistic FRBSs including the variable selection within a more
complex deriving process (with rule generation, DB tuning, and rule se-
lection).

• Selecting input variables in the linguistic rules — Other innovative ap-
proach involves the selection of a subset of input variables for each rule. In
this case, the antecedent length of each rule is variable avoiding the need
of using all the variables involved in the system. It does not mean that
a specific input variable ignored in a rule could not be used in another
one. To manage with this structure in the inference process, a special
linguistic term with a membership function with a value one in all the
domain may be assigned to the ignored variables.
In [35], this input variable selection at RB level is considered together with
a global selection of the variables and a merging of the rules. On the other
hand, the methods proposed in [10,26,43,68] obtain the most significative
input variable for each rule during the learning process, instead of making
an a priori variable selection.

It is important to emphasize that the fact of removing some input vari-
ables may cause the existence of several rules with identical antecedents
(mainly when the selection is performed a posteriori) that could imply an
inconsistence. In this case, the most usual solution is to merge these rules.
This process is explained in the following section.

4.2 Selecting/Merging Linguistic Rules

Sometimes, an RB with an excessive size must be used to reach an accept-
able accuracy degree in linguistic FRBSs. However, this effect is often caused
by a deficient RB learning process (sometimes advisedly) with tendency to
generate too many rules. Thus, in an RB we may find redundant rules, which
do not contain relevant information and whose actions are covered by other
rules; erroneous rules, which are wrong defined and distort the FRBS per-
formance; and conflictive rules, which perturb the FRBS performance when
coexist with others. Besides worsening the accuracy, an excessive number of
rules makes difficult to understand the model behavior.
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To face this problem, an RB reduction process can be developed by merg-
ing rules and/or selecting a subset of rules from a given RB to achieve the goal
of minimizing the number of rules used while maintaining (or even improv-
ing) the FRBS performance. Indeed, depending on the criteria considered to
reduce the RB, this process can be considered as a mechanism to improve
not only the interpretability but also the accuracy.

The RB reduction is generally applied as a postprocessing stage, once an
initial RB has been derived. We may distinguish between two approaches to
reduce the fuzzy rule set size in order to obtain a compact RB:

• Selecting linguistic rules — It involves obtaining an optimized subset of
rules from a previous RB by selecting some of them. We may find sev-
eral methods to do so with different search algorithms in the specialized
literature [15,16,23,29,32,33,38].
In [39], an interesting heuristic rule selection procedure is proposed where,
by means of statistical measures, a relevance factor is computed for each
fuzzy rule composing the linguistic FRBSs to subsequently select the
most relevant ones. The philosophy of ordering the rules with respect to
an importance criterion and selecting a subset of them seems similar to
the orthogonal transformation-methods used for TSK-type FRBSs [72]
(explained in Sect. 5.1). Another heuristic rule selection procedure is
proposed in [67].

• Merging linguistic rules — It is an alternative approach that reduces the
RB by merging the existing linguistic rules. In [35], the authors propose
to merge neighboring rules, i.e., linguistic rules where the linguistic terms
used by the same variable in each rule are adjacent. The merge is per-
formed in three different ways: using a new fuzzy set that groups the
adjacent linguistic terms, merging the adjacent fuzzy sets if they are very
similar, or giving the set of rules in disjunctive normal form. Another pro-
posal is presented in [31], where a special consideration to the merging
order is made.
From a different point of view, the RB may be reduced by using a dis-
junctive form for the fuzzy rules that groups several rules within a more
general expression, thus easing the interpretability. This approach is ex-
plained in next section.

4.3 Alternative Linguistic Rule Expressions

Another possibility to improve the interpretability of linguistic FRBSs is
to use an alternative model structure to give a higher descriptive power to
each rule. With this extended description we may represent a linguistic fuzzy
model in a more compact structure with minor accuracy loss. To do that, the
linguistic fuzzy rule expression is extended to make it more flexible. Some
examples are shown in the following:
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• Disjunctive normal form (DNF) — The DNF-type fuzzy rule has the
following form [24]:

IF X1 is Ã1 and . . . and Xn is Ãn THEN Y is B

where each input variable Xi takes as a value a set of linguistic terms
Ãi = {Ai1 or . . . or Aili}, whose members are joined by a disjunctive
operator, whilst the output variable remains a usual linguistic variable
with a single label associated.

This structure uses a more compact description that improves the in-
terpretability. Moreover, the structure is a natural support to allow the
absence of some input variables in each rule (simply making Ãi be the
whole set of linguistic terms). Several learning methods have been pro-
posed following this rule structure [10,24–26,35,42,43,68].

• Exception rules — Another interesting possibility to represent a more
interpretable and compact description is the use of exceptions [37]. In [6],
the authors make a fine-tuning of the meaning of each linguistic rule by
excluding a local region of its firing region. This consideration is espe-
cially useful when structures with multiple fuzzy input subspaces (e.g.,
the DNF one) are considered. An example follows:
IF X1 is {Big or Small} and X2 is {Medium or Small} THEN Y is Big
except IF X1 is Small and X2 is Medium

• Union-rule configuration — In [13], an attempt to palliate the curse of di-
mensionality problem (exponential growth in the number of rules when
a large number of input variables are considered) is proposed by con-
verting a multiple-input-variable linguistic rule into single-input-variable
linguistic rules connected by the disjunction operator.

4.4 Linguistic Approximation

The linguistic approximation [19] lies in finding a linguistic description that
represents a given fuzzy set. Given a linguistic FRBS where the DB has been
automatically obtained or optimized, this procedure may be used in LFM to
find an interpretation of the involved fuzzy sets to improve the comprehensi-
bility of the model. During this linguistic approximation, a certain accuracy
loss is assumed.

The linguistic approximation is usually performed with linguistic terms
and sometimes linguistic modifiers are used as well. Some examples of meth-
ods that improve the interpretability of the model with linguistic approxima-
tion are [18,46,63].
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5 Improving the Interpretability in Precise Fuzzy
Modeling

The birth of more flexible FRBSs such as TSK or approximate ones also
entails the eruption of PFM since the new structures allow the FM to achieve
more accurate fuzzy models. This fact causes a shift from the seminal intent
of FM and the modeling tasks with these kinds of FRBSs increasingly become
black box processes.

Fortunately, nowadays there is a sense shared by several researches in
the way of rescuing the good interpretability advantages offered by fuzzy
systems. This interpretability consideration is usually attained by reducing
the complexity of the model. On the other hand, approaches that improve
the local description of the TSK-type fuzzy rules are also proposed. In the
following subsections, some specific proposals are reviewed.

5.1 Ordering/Selecting TSK-type Fuzzy Rules

As mentioned in Sect. 4, an efficient way to improve the interpretability in
FM is to select a subset of significative fuzzy rules that represent in a more
compactly way the system to be modeled. Moreover, this selection of impor-
tant rules has the interesting advantage of reducing the possible redundancy
existing in the RB, thus improving the generalization capability of the sys-
tem, i.e., its accuracy.

Recently, one of the most successful approaches to make such rule selec-
tion in TSK-type FRBS has been proposed by obtaining a subset of impor-
tant fuzzy rules considering orthogonal transformations [47,48,55,57,66,69–
72]. This mechanism is used to give an importance degree to each fuzzy rule,
thus obtaining an ordering of them. Once they are sorted, the selection is
achieved using only the most promising ones.

Given a previously defined RB, let us assume we have a matrix that
allocates the firing degree of each rule for each training example considered:

F =




f11 f21 · · · fr1

f12 f22 · · · fr2

...
...

...
...

f1N f2N · · · frN




with fij being the normalized firing degree of the i-th rule when the j-th ex-
ample is used, r the number of rules, and N the data set size. The relevance of
each rule (column) may be analyzed by means of orthogonal transformations
of this matrix.

The two orthogonal transformations and the most usual extensions to
select a subset of TSK-type fuzzy rules are:
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• Orthogonal least-squares methods (OLS) — The OLS-based method (whose
first application to fuzzy rule selection was proposed in [66]) transforms
the columns of the firing matrix F into a set of orthogonal basis vectors.
With them, the individual error reduction ratio of each rule may be easily
computed, thus defining its importance in the whole set of possible rules.
Its main interest in system modeling is that it considers the output contri-
bution of the rules to sort them. However, since the OLS-based method is
guided by the approximation capabilities of the rules (fitting error) with-
out paying attention to the premise structures, it is possible to give a
high importance to redundant fuzzy rules with high firing degrees thanks
to their contributions to the output [72].
In [55], this drawback is faced considering the dependency between the
current rule to be selected and the set of rules previously selected. If the
firing vector corresponding to the current fuzzy rule is (or nearly is) a
linear combination of the firing vectors corresponding to the previously
selected rules, a low importance degree is assigned.
In [47], another improvement to the basic OLS approach is made to con-
sider the RB redundancy. Each time a new rule is selected, its similarity to
the previously rules is analyzed. If it significantly differs from the others,
the rule is added. Otherwise, the previously selected rule being similar to
the current one is properly updated considering the latter.

• Singular value decomposition and QR with column pivoting methods (SVD-
QR) — The first application of the SVD-QR method to the selection of
the most important fuzzy rules was proposed in [48]. Firstly, the SVD
algorithm obtains a factorization of the firing matrix F into a product of
three matrices. The obtained information will determine the rules to be
considered to construct the reduced RB. Then, QR with column pivoting
is applied to determine the most important fuzzy rules.
In [70], this method is improved disregarding the QR process to order
the selected rules and obtaining this information directly from the SVD
result (from the singular values). The main advantage of this improve-
ment is its simplicity in terms of implementation and computational time
consumption.
In [55], the authors support the opinion that methods based on SVD fails
to produce an importance ordering and they propose an optional solution
only considering the QR process.

Generally, the final objective of orthogonal transformation-based meth-
ods is to order the candidate fuzzy rules for subsequently selecting the most
important ones. Usually, the number of selected rules is established as a rule
of thumb. However, in [57,71], statistical information criteria are used to au-
tomatically decide the number of rules to reduce the human intervention and
consider a proper trade-off between simplicity of the model (interpretability)
and data approximation (accuracy). Moreover, the use of orthogonal trans-
formation has been used to perform other kinds of FM tasks with TSK-type
FRBSs, such as the estimation of the consequent model parameters [47,73].
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On the other hand, an interesting approach different from the orthogonal
transformation one is proposed in [20] to make the TSK-type fuzzy rule selec-
tion. In this case, the model structure is extended incorporating an intensity
parameter to each rule that allows the method to give different importance
degrees during the inference process. These parameters could be considered
as rule weights in linguistic FRBSs. This improvement makes the model more
flexible giving it a higher approximation capability. To select the rules, the
method considers an initial oversized RB and an iterative algorithm progres-
sively removes the most redundant fuzzy rules.

Finally, we should say that an RB reduction is also indirectly attained
when the fuzzy sets are merged or removed. The following section focuses on
this approach.

5.2 Merging/Removing Fuzzy Sets in Precise Fuzzy Rule-Based
Systems

Other successful way to obtain precise FRBSs (basically TSK or approxi-
mate ones) with a better interpretability is to reduce the number of rules
by merging the fuzzy sets involved in the system. In this section, two differ-
ent approaches are introduced in the following. While the former one tries
to simplify TSK-type FRBSs, the latter one starts from a linguistic FRBSs
with an excessive number of rules and fuzzy sets and generates a compact
approximate FRBSs that is mostly equivalent.

The interpretability of TSK-type FRBSs may be improved by removing
those fuzzy sets that, after an automatic adaptation and/or acquisition, do
not significatively contribute to the model behavior. There are two effects
caused by the fuzzy sets composing an FRBS that make the model unneces-
sarily more complex [52]:

• Redundancy — It refers to the coexistence of similar fuzzy sets repre-
senting compatible concepts. With these kinds of fuzzy sets, the model
becomes more complex and difficult to be understandable (the distin-
guishability property [65] is not met).

• Irrelevancy — It is given when fuzzy sets with a constant membership
degree equal to one, or close to it, are used. These kinds of fuzzy sets do
not furnish relevant information.

To automatically detect these undesired fuzzy sets, the use of similarity mea-
sures between fuzzy sets has been proposed [51–53,56]. To properly use these
measures for a RB reduction process, several properties – such as a similarity
value of zero for nonoverlapping fuzzy sets, a value greater than zero for over-
lapping fuzzy sets, a value equal to one for equal fuzzy sets, and a measure
independent of the scaling domain – must be satisfied [52]. For example, the
following similarity measure between the fuzzy sets A and B for a discrete
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domain is recommended to reduce the RB:

S(A,B) =

∑m
j=1 Min(µA(xj), µB(xj))∑m
j=1 Max(µA(xj), µB(xj))

.

The process to simplify the model consists of two steps:

1. Merging/removing fuzzy sets — Those fuzzy sets with a high degree of
similarity are merged to a unique fuzzy set that represent the collection
of similar fuzzy sets. On the other hand, those irrelevant fuzzy sets – i.e.,
the ones with a high similarity degree to the universal set (a fuzzy set
with a membership degree constantly one) – are removed. This step is
called RB simplification [53].

2. Merging fuzzy rules — Moreover, it is interesting to mention that the fact
of reducing the number of fuzzy sets in a variable fuzzy partition might
result in rules with equal antecedents that can also be merged. This step
is called RB reduction [53].

Hence, the precise fuzzy model go through an interpretability improvement
(or complexity reduction) process that make it less complex (more compact)
and more easily interpretable (more transparent).

Another interesting approach that also merges fuzzy sets is proposed
in [61]. In this case, linguistic FRBSs with a bad interpretability are trans-
formed into compact approximate FRBSs to develop PFM. Firstly, an iter-
ative algorithm generates fuzzy partitions with a number of fuzzy sets large
enough to achieve the desired accuracy degree, thus deliberately generating a
linguistic RB with an excessive size. Subsequently, a merging process reduces
it without losing accuracy by combining linguistic fuzzy rules that have ad-
jacent fuzzy sets, thus obtaining a set of approximate fuzzy rules where each
one has its own semantic.

5.3 Exploiting the Local Description of TSK-type Fuzzy Rules

In system modeling, a TSK-type FRBS is usually considered as the combina-
tion of simple models (the rules) that describe local behaviors of the system
to be modeled. Hence, insofar as each TSK-type fuzzy rule is either forced to
have a smoother consequent polynomial function or to develop an isolated ac-
tion, the interpretability will be improved. Several contributions follow these
approaches to make TSK models more comprehensible:

• Smoothing the consequent polynomial function — For example, in [21] the
author proposes a method that imposes several constraints to the weights
involved in the polynomial function of each rule consequent:

w0 = 0,

n∑

j=1

wj = 1, wj ≥ 0 (j = 1, . . . , n)
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with wj being the weight of the rule consequent polynomial function cor-
responding to the j-th input variable, w0 the independent term, and n the
number of input variables. Thanks to this, a convex combination of the
input variables is performed, thus contributing to a better understand-
ing of the model. Like in the previously mentioned contribution [20], a
parameter associated with each rule is used to modulate its action.
Another approach that softens the consequent polynomial functions is
proposed in [73]. To do that, an objective function that properly combines
two criteria during the regression algorithm is used. On the one hand,
the classical mean square error is considered as global measure error
to evaluate the quality of the rule set, thus favoring the cooperation.
On the other hand, a local error measure is used to induce competition
among the rules. While the former criterion increases the accuracy, the
latter allows the rules to describe each region better, thus improving
the interpretability. Figure 3 shows two models with different description
capabilities depending on the used polynomial functions.

Rule 1

Rule 2

Rule 3

Rule 4 Rule 1

Rule 2

Rule 3
Rule 4

(a) Model with garbled rules (b) Model with understandable rules

Fig. 3. The local interpretability of a TSK-type fuzzy model may be improved
with smooth consequent polynomial functions

• Isolating the fuzzy rule actions — In [50], an study concludes that the de-
scription of each TSK-type fuzzy rule is improved when the overlapping
between adjacent input fuzzy sets is reduced. This is because the perfor-
mance region of a particular rule is more clearly defined by avoiding that
other rules having a high firing degree in such an area. This approach is
an alternative proposal to improve the local description of the TSK-type
rules by designing the DB instead of the RB.

The proposal in [5] tries to englobe the two said philosophies for improving
the local interpretability of TSK-type FRBSs. On the one hand, the use of
a special type of membership function based on splines improves the local
behavior of the fuzzy system by only firing the most immediate rules to the
given input vector. On the other hand, the consequent polynomial structure
is modified to interpret the coefficients as a Taylor series expansion around
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the center of the corresponding rule (i.e., the vector containing the vertex
of each membership function considered for each input variable in the fuzzy
rule).

6 Concluding Remarks

The FM research developed in the last two decades was mainly focused on
exploiting the flexibility of FM to obtain the maximum accuracy. During
this evolution, the derivation methods were improved, the components to
be designed were extended, and new model structures were proposed. This
search of the accuracy usually set aside the interpretability of the obtained
models.

However, we should remember the initial philosophy of fuzzy set theory
directed to serve the bridge between the human understanding and the ma-
chine processing. In this challenge, the faculty of fuzzy models to express
the behavior of the real system in a comprehensible manner acquires a great
importance. This is why the current tendency in FM tries to find a better
balance between interpretability and accuracy.

This equilibrium is attained from different perspectives. One of the things
that attracts the eye is the fact that it is frequently performed by means of
previous existing extensions, but used in a more rational and moderate way.
Other times, however, new approaches explicitly proposed are considered.
This chapter was aimed to present an introduction to the different tends
recently proposed in the specialized literature to improve the interpretability
degree of the fuzzy models with the objective of finding the desired trade-off.

The remaining 26 chapters contained in this volume are excellent works
of research in the FM approach studied in this chapter and they properly
represent the existing state-of-the-art.
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genetic algorithms for selecting linguistic rules for pattern classification prob-
lems. Fuzzy Sets and Systems, 89(2):135–150, 1997.

33. H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka. Selecting fuzzy if-then
rules for classification problems using genetic algorithms. IEEE Transactions
on Fuzzy Systems, 3(3):260–270, 1995.

34. Y. Jin. Fuzzy modeling of high-dimensional systems: complexity reduction and
interpretability improvement. IEEE Transactions on Fuzzy Systems, 8(2):212–
221, 2000.

35. A. Klose, A. Nurnberger, and D. Nauck. Some approaches to improve the
interpretability of neuro-fuzzy classifiers. In Proceedings of the 6th Euro-
pean Congress on Intelligent Techniques and Soft Computing, pages 629–633,
Aachen, Germany, 1998.

36. L. Koczy. Fuzzy if ... then rule models and their transformation one another.
IEEE Transactions on Systems, Man, and Cybernetics, 26(5):621–637, 1996.

37. A. Krone and H. Kiendl. Automatic generation of positive and negative rules for
two-way fuzzy controllers. In Proceedings of the Second European Congress on
Intelligent Techniques and Soft Computing, volume 1, pages 438–447, Aachen,
Germany, 1994. Verlag Mainz.

38. A. Krone, P. Krause, and T. Slawinski. A new rule reduction method for
finding interpretable and small rule bases in high dimensional search spaces. In
Proceedings of the 9th IEEE International Conference on Fuzzy Systems, pages
693–699, San Antonio, TX, USA, 2000.

39. A. Krone and H. Taeger. Data-based fuzzy rule test for fuzzy modelling. Fuzzy
Sets and Systems, 123(3):343–358, 2001.

40. H.-M. Lee, C.-M. Chen, J.-M. Chen, and Y.-L. Jou. An efficient fuzzy classifier
with feature selection based on fuzzy entropy. IEEE Transactions on Systems,
Man, and Cybernetics—Part B: Cybernetics, 31(3):426–432, 2001.

41. P. Lindskog. Fuzzy identification from a grey box modeling point of view.
In H. Hellendoorn and D. Driankov, editors, Fuzzy model identification, pages
3–50. Springer-Verlag, Heidelberg, Germany, 1997.



Interpretability Improvements to Find the Trade-off in Fuzzy Modeling 19

42. L. Magdalena. Adapting the gain of an FLC with genetic algorithms. Interna-
tional Journal of Approximate Reasoning, 17(4):327–349, 1997.

43. L. Magdalena and F. Monasterio-Huelin. A fuzzy logic controller with learning
through the evolution of its knowledge base. International Journal of Approx-
imate Reasoning, 16(3):335–358, 1997.

44. E.H. Mamdani. Applications of fuzzy algorithms for control a simple dynamic
plant. Proceedings of the IEE 121, 12:1585–1588, 1974.

45. E.H. Mamdani and S. Assilian. An experiment in linguistic systhesis with fuzzy
logic controller. International Journal of Man-Machine Studies, 7:1–13, 1975.
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