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Abstract

Nowadays, Linguistic Modeling is considered to be one of the most important areas of ap-
plication for Fuzzy Logic. Linguistic Mamdani-type Fuzzy Rule-Based Systems (FRBSs), the
ones used to perform this task, provide a human-readable description of the model in the form
of linguistic rules, which is a desirable characteristic in many problems.

In this Chapter we are going to accomplish a short revision of the FRBSs where we shall see
the different types that currently exist, along with their structures and characteristics, centering
our attention on linguistic Mamdani-type FRBS. The performance of a linguistic FRBS depends
on its Rule Base and the membership functions associated to the fuzzy partitions. Due to the
complexity in the design of these components, a large quantity of automatic techniques has been
proposed to put it into effect.

Thereafter, we are going to review several learning (when it sets the Rule Base and sometimes
the Data Base as well) and tuning (when it only sets the Data Base) methods. These methods
are inspired in the three most well known approaches: ad hoc data covering, neural networks,
and genetic algorithms. We shall introduce a brief description of these techniques and their
synergy with FRBSs.

The accuracy of the reviewed methods will be compared when solving two real-world ap-
plications. Some interesting conclusions will be obtained about the behavior of the methods,
approaches, and techniques.

I Introduction

At present, the most important application of Fuzzy Set Theory as developed by Zadeh in 1965 [1]
are Fuzzy Rule-Based Systems (FRBSs). These kinds of systems constitute an extension of classical
Rule-Based Systems, because they deal with fuzzy rules instead of classical logic rules. Thanks to
this, they have been successfully applied to a wide range of problems from different areas presenting
uncertainty and vagueness in different ways [2, 3, 4, 5].

An FRBS presents two main components: 1) the Inference System, which puts into effect the
fuzzy inference process needed to obtain an output from the FRBS when an input is specified, and
2) the Knowledge Base (KB) representing the knowledge known about the problem being solved,
constituted by a collection of fuzzy rules.
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There are two different kinds of FRBSs in the literature, the Mamdani and TSK ones, depending
on the expression of the consequent of the fuzzy rules composing the KB. While Mamdani-type fuzzy
rules consider a linguistic variable in the consequent, TSK fuzzy rules are based on representing
the consequent as a polynomial function of the inputs.

Linguistic Modeling based on Fuzzy Logic is considered as a system model constituting a lin-
guistic description, being put into effect by means of a linguistic Mamdani-type FRBS. Thereby
the concept of linguistic variable plays a central role. A crucial reason why the linguistic fuzzy rule-
based approach is worth considering is that it may remain verbally interpretable. These FRBSs
have been widely used and have obtained very good results in many different applications.

The main of this Chapter is to present a short description of linguistic FRBSs and a review
of different design techniques for them. Many different approaches have been presented taking
different learning algorithms as a base, such as, ad hoc methods, neural networks (NNs), genetic
algorithms (GAs), clustering, etc. We shall present the most well known approaches to learn and
tune linguistic FRBSs, apply them to some examples, analyze their results, and give finally some
guidelines for their application.

In this Chapter, we use the terms learning and tuning of FRBSs refering to the design of an
FRBS by means of a learning process, deriving the Rule Base and sometimes defining the Data
Base as well, or by a tuning process, which only defines the Data Base. Therefore, we shall use the
first expressions to make easy the reading of this Chapter.

We arrange this Chapter as follows. Section II presents some preliminaries by briefly introducing
the different types and structures of FRBSs. In Sections III and IV, several linguistic FRBSs
learning and tuning methods will be presented, covering the different types of techniques. Section V
shows two experiments developed to evaluate the behavior of the methods. Finally, in Section VI,
some concluding remarks are pointed out.

II Fuzzy Rule-Based Systems

In a very wide sense, an FRBS is a Rule-Based System where Fuzzy Logic may be used as a tool for
representing different forms of knowledge about the problem being solved, as well as for modeling
the interactions and relationships existing between its variables. Thanks to this, they have been
successfully applied to a wide range of problems from different areas presenting uncertainty and
vagueness in different ways [2, 3, 4, 5].

In this section, the basic aspects of FRBSs will be introduced: the different existing types,
their composition and functioning will be described. Nevertheless, we shall not focus on the basic
principles of Fuzzy Logic, that are to be found in texts like [6, 7].

II.A Framework: Fuzzy Logic and Fuzzy Systems

As it is known, Rule-Based Systems (production rule systems) have been successfully used to
model human problem-solving activity and adaptive behavior, where a classical way to represent
the human knowledge is the use of “IF-THEN” rules. The satisfaction of the rule antecedent gives
rise to the execution of the consequent, i.e., one action is performed. Conventional approaches
to knowledge representation are based on bivalent logic, which makes them have a serious short-
coming associated: their inability to deal with the issue of uncertainty and imprecision. As a
consequence, conventional approaches do not provide an adequate model for modes of reasoning
and all commonsense reasoning fall into this category.

Fuzzy Logic may be viewed as an extension of classical logical systems, providing an effective
conceptual framework for dealing with the problem of knowledge representation in an environment
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of uncertainty and imprecision. Fuzzy Logic, as its name suggests, is the logic underlying modes
of reasoning which are approximate rather than exact. The importance of Fuzzy Logic derives
from the fact that most modes of human reasoning —and especially commonsense reasoning— are
approximate in nature. Fuzzy Logic is concerned in the main with imprecision and Approximate
Reasoning [8].

In a wide interpretation of Fuzzy Logic (in terms of which it is coextensive with Fuzzy Set
Theory, that is, classes of objects in which the transition from membership to nonmembership is
gradual rather than abrupt), Fuzzy Logic and fuzzy sets have placed modeling into a new and
broader perspective by providing innovative tools to cope with complex and ill-defined systems.
The area of fuzzy sets has emerged following some pioneer works of Zadeh [1, 8] where the first
fundamentals of Fuzzy Systems were established.

From a very broad point of view, a Fuzzy System is any Fuzzy Logic-Based System, where
Fuzzy Logic may be used either as the basis for the representation of different forms of knowledge,
or to model the interactions and relationships among the system variables. Fuzzy Systems have
proven to be an important tool for modeling complex systems in which, due to the complexity or
the imprecision, classical tools are unsuccessful [2, 3, 4, 5].

Concretely, the application of Fuzzy Logic to Rule-Based Systems leads us to FRBSs. These
systems consider rules with the “IF-THEN” form whose antecedents and consequents are composed
of Fuzzy Logic statements, thus presenting two essential advantages with respect to classical Rule-
Based Systems:

• the key features of knowledge captured by fuzzy sets involve handling uncertainty, and

• inference methods become more robust and flexible with approximate reasoning methods of
Fuzzy Logic.

Knowledge representation is enhanced with the use of linguistic variables and their linguistic
values, that are defined by context-dependent fuzzy sets whose meanings are specified by graded
membership functions [8]. On the other hand, inference methods such as generalized modus ponens,
tollens, etc., which are based on Fuzzy Logic, form the basis of Approximate Reasoning with pattern
matching scores of similarity [8]. Hence, Fuzzy Logic provides a unique computational framework
for inference in Rule-Based Systems. Unlike traditional logical systems, Fuzzy Logic is aimed at
providing modes of reasoning which are approximate and analog rather than exact.

II.B Types of Fuzzy Rule-Based Systems

Two different types of FRBSs are usually distinguished in the specialized literature according to
the form of the fuzzy rules considered and to the types of inputs and outputs used [9]. We shall
introduce them in the next subsections.

II.B.1 Mamdani Fuzzy Rule-Based Systems

This type of FRBS was proposed by Mamdani [10], who was able to translate Zadeh’s preliminary
assumptions to the first FRBS applied to a control problem. These kinds of Fuzzy Systems, the
ones most used since then, are also referred to as FRBSs with Fuzzifier and Defuzzifier or, more
commonly, as fuzzy logic controllers (name proposed by Mamdani in his pioneer papers [11]), due
to the fact that their main application has been system control historically.

Mamdani FRBSs are composed of four main components: a Knowledge Base (KB), an Inference
System and the Fuzzification and Defuzzification Interfaces. The KB —composed of Data Base (DB)
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and Rule Base (RB)— stores the available knowledge about the problem in the form of linguistic
“IF-THEN” rules. The Inference System puts into effect the inference process on the system inputs
making use of the information stored in the KB. The generic structure of Mamdani FRBSs is shown
in Figure 1.

Figure 1: Basic structure of a Mamdani Fuzzy Rule-Based System

The Mamdani-type FRBS has several very interesting characteristics:

• On the one hand, it may be used in real-world applications due to the fact that it is able to
deal with real-valued inputs and outputs.

• On the other hand, it provides a natural framework to include expert knowledge in the
form of linguistic rules and allows us to combine, in a very simple way, the latter with rules
automatically generated from data sets representing the behavior of the system.

• Finally, it has more freedom in the choice of the Fuzzification and Defuzzification Interface
components, as well as the Inference System ones, thus allowing us to design a more suitable
FRBS for a specific problem. We shall analyze these aspects in the next subsection.

As we shall see in Section II.C, where each of the components of this system kind will be
analyzed in deep, the Fuzzification Interface establishes a mapping between crisp values in
the input domain U of the system outputs and fuzzy sets defined in the same universe of
discourse. On the other hand, the Defuzzification Interface develops the opposite operation
by defining a mapping between fuzzy sets defined in the output domain V and crisp values
defined in the same universe.

These systems present the maximum description level. The fuzzy rules are composed of input
and output linguistic variables taking values from a linguistic term set with a real-world meaning.
Therefore, each rule is a description of a condition-action statement that may be clearly interpreted
by human beings. This fact makes Mamdani FRBSs appropriate for Linguistic Modeling, subarea
of Fuzzy Logic Modeling in which the main characteristic is the model interpretability [12], and
System Control [13] problems.

There exists an extension of Mamdani FRBSs based on changing the linguistic rule structure
making it more flexible. This new type of FRBS makes use of DNF (Disjunctive Normal Form)
fuzzy rules with the following form [14, 15, 16, 17]:

IF X1 is ˜A1 and . . . and Xn is ˜An THEN Y is B ,

where each variable Xi has a referential set Ui and takes values in a finite domain (term set) Di,
i = 1, . . . , n. The referential set for Y is V and its domain is F . The value of the variable Y is B,
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where B ∈ F and the value of the variable Xi is ˜Ai, where ˜Ai ∈ P (Di) and P (Di) denotes the set
of subsets of Di. Thus, the complete syntax for the antecedent of the rule is

X1 is ˜A1 = {A11 or . . . or A1l1} and . . . and Xn is ˜An = {An1 or . . . or Anln} .

An example of this kind of rule is shown as follows. Let us suppose we have three input variables,
X1, X2, and X3, and one output variable, Y , such that the linguistic term set associated with each
one is

D1 = {A11, A12, A13} , D2 = {A21, A22, A23, A24, A25} , D3 = {A31, A32} , F = {B1, B2, B3} .

In this case, a possible DNF rule may be

IF X1 is {A11 or A13} and X2 is {A23 or A25} and X3 is {A31 or A32} THEN Y is B2 .

Recently a new more flexible KB structure that allows us to improve the accuracy of Linguistic
Models without losing their interpretability has been proposed [18]. Now, it is allowed the linguistic
rule to have two different consequents associated. This will allow the FRBS to locally improve its
accuracy in complex space zones, because the final rule output lie in an intermediate zone between
the both main labels. This transformation has a linguistic interpretation:

IF X1 is A1 and . . . and Xn is An THEN Y is between B1 and B2 .

On the other hand, in the last few years it has been proposed a new variant of these kinds
of systems, in which the system accuracy is more preferable than its interpretability. These sys-
tems are usually called approximate Mamdani-type FRBSs [2, 19, 20, 21, 22], the opposite to the
ones following the classical structure presented that are usually named as linguistic or descriptive
Mamdani-type FRBSs. The main application of the former is the area of Fuzzy Modeling [2], where
the model accuracy is the main requirement instead of its description ability.

The structure of an approximate FRBS is the same that the descriptive one, which was shown in
Figure 1. The only difference is related to the type of rule considered in the KB and, consequently,
to the composition of this component. In this case, the rules do not use linguistic variables but,
directly, fuzzy variables. Therefore, the structure of the fuzzy rules considered in approximate
systems is the following:

IF X1 is A1 and . . . and Xn is An THEN Y is B ,

where Ai and B are fuzzy sets without a direct interpretation instead of linguistic labels.
Hence, in these systems a DB is not found storing the existing linguistic terms and the fuzzy

sets associated defining their semantics. In this case, the KB used in FRBSs of the previous types,
that was composed of the said DB and of the RB, becomes a single Fuzzy Rule Base formed by a
set of rules presenting the latter structure shown, where each individual rule directly contains the
meaning describing it. Figure 2 graphically shows this.

II.B.2 Takagi-Sugeno-Kang Fuzzy Rule-Based Systems

Instead of working with linguistic rules of the kind introduced in the previous subsection, Takagi,
Sugeno, and Kang [23, 24] proposed a new model based on rules where the antecedent was composed
of linguistic variables and the consequent was represented by a function of the input variables. The
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Figure 2: Graphical comparison between a linguistic KB and an approximate Fuzzy Rule Base

most usual form of these kinds of rules is the one shown in the following, in which the consequent
constitutes a linear combination of the variables involved in the antecedent:

IF X1 is A1 and . . . and Xn is An THEN Y = p1 ·X1 + . . . + pn ·Xn + p0 ,

with Xi being the system input variables, Y being the output variable, and pi being real parameters.
As regards Ai, they may be either linguistic labels with a meaning associated in the form of fuzzy
sets, or fuzzy sets, in the case in which they are directly fuzzy variables. These kinds of rules are
usually called TSK fuzzy rules, in reference to their creators.

The output of a TSK FRBS using a KB composed of m rules is obtained as the weighted average
of the individual outputs provided by each rule, Yi, i = 1, . . . , m, as follows:

∑m
i=1 hi · Yi
∑m

i=1 Yi
,

with hi = T (Ai
1(x1), . . . , Ai

n(xn)) being the matching degree between the antecedent part of the i-th
rule and the current inputs to the system, x = (x1, . . . , xn). T stands for a conjunctive operator
modeled by a t-norm.

Therefore, and as it was enunciated by its creators in [23], this FRBS is based on dividing the
input space in several fuzzy subspaces and defining a linear input-output relationship in each one of
these subspaces. In the inference process, these partial relationships are combined in the said way
for obtaining the global input-output relationship, taking into account the dominance of the partial
relationships in their respective areas of application and the conflict existing in the overlapped
zones. A graphical representation of this second kind of FRBSs is shown in Figure 3.

The main advantage of these systems is the fact that they present a compact system equation
that allows us to estimate the parameters pi by means of classical methods, which makes its design
easier. Nevertheless, the main drawback relates to the form of the rule consequents as well, which
causes the system not to constitute a natural framework for representing expert knowledge. It
is possible to integrate expert knowledge in these FRBSs by performing a small modification on
the rule consequent: when a linguistic rule with consequent Y is B is provided by an expert, this
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Figure 3: Basic structure of a TSK FRBS

consequent is substituted by Y = p0, with p0 standing for a characteristic value of the fuzzy set
associated to the label B. These kinds of rules are usually called simplified TSK rules or zero order
TSK rules.

II.C Components of a Linguistic Mamdani-type Fuzzy Rule-Based System

Summarizing the concepts introduced previously, a Mamdani-type FRBS is composed of the fol-
lowing components:

• A Knowledge Base, that contains the linguistic rules which guide the system behavior.

• A Fuzzification Interface, that takes care on transforming the crisp input data in values that
may be handled in the fuzzy reasoning process, i.e., in fuzzy sets of any kind.

• An Inference System, that makes use of these values and of the information stored in the base
to put into effect the inference process.

• A Defuzzification Interface, that transforms the fuzzy action obtained from the inference
process in a crisp action that constitutes the global output of the FRBS.

We shall analyze in deep each one of these components in the following subsections.

II.C.1 The Knowledge Base

As we have mentioned, the component that stores these rules is the KB that is composed of two
different components:

• RB: Formed by a set of linguistic “IF-THEN” rules that, in the case of multiple input-single
output FRBSs, present the following structure:

IF X1 is A1 and . . . and Xn is An THEN Y is B ,

with Xi and Y being input and output linguistic variables, respectively, and with Ai and B
being linguistic labels. The RB is comprised by a collection of rules of this kind joined by the
also operator, which means that, as we shall see in the following subsection, all of them may
be fired when a specific input is given to the system.

• DB: Containing the definitions of the fuzzy sets associated to the linguistic terms used in the
rules collected in the RB, that is, the membership function parameters.
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II.C.2 The Fuzzification Interface

The Fuzzification Interface is one of the two components that allow Mamdani-type FRBSs to deal
with real inputs and outputs. Its aim is to define a mapping that establishes a correspondence
between each value in the crisp input space and a fuzzy set defined in the universe of discourse
of this input, obtaining the membership function associated to each one of the system inputs.
Symbolically, this component works as follows:

A′ = F (x0) ,

with x0 being a crisp input value for the FRBS defined in the universe of discourse U, A′ being a
fuzzy set defined in the same domain, and F being a fuzzification operator.

There are two main possibilities to choose the operator F :

1. Punctual fuzzification: A′ is built as a punctual fuzzy set (a singleton) with support x0, i.e.,
it presents the following membership function:

A′(x) =

{

1, if x = x0
0, otherwise .

2. Non punctual or approximate fuzzification: In this case, A′(x0) = 1 and the membership
degree of the remaining values decreases when moving away from x0. This second kind of
operator allows us to deal with different types of membership functions. For example, in the
case of triangular-shaped fuzzy sets, it is possible to use the following one:

A′(x) =

{

1− |x−x0|
σ , if |x− x0| ≤ σ

0, otherwise .

The former is the one most used due to its simplicity.

II.C.3 The Inference System

The Inference System is the component that puts into effect the fuzzy inference process. To do
so, it makes use of Fuzzy Logic principles for establishing a mapping between fuzzy sets defined in
U = U1 ×U2 × . . .×Un and fuzzy sets defined in V (with U1, . . . ,Un and V being the domains
where the input variables X1, . . . , Xn, and the output one Y are defined, respectively).

The fuzzy inference process is based on the application of the Generalized Modus Ponens, an
extension of the classical Modus Ponens, proposed by Zadeh in the way [8]:

IF X is A THEN Y is B
X is A′

Y is B′ .

A fuzzy conditional statement with the form “IF X is A THEN Y is B” represents a fuzzy
relation between A and B defined in U × V. This fuzzy relation is expressed by a fuzzy set R
whose membership function µR(x, y) is given by:

µR(x, y) = I(µA(x), µB(y)),∀x ∈ U, y ∈ V ,

with µA(x) and µB(y) being the membership functions of the fuzzy sets A and B, respectively, and
I being a fuzzy implication operator modeling the existing fuzzy relation.
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The membership function of the fuzzy set B′ is obtained as a result of the application of the
Compositional Rule of Inference (CRI) introduced by Zadeh in [8] as follows: “If R is a fuzzy
relation defined in U and V and A′ is a fuzzy set defined in U, then the fuzzy set B′, induced by
A′, is obtained from the composition of R and A′”, that is:

B′ = A′ ◦R .

Therefore, when the CRI is applied on rules whose antecedent is formed by n input variables
and whose consequent has only one output variable, it presents the following expression:

µB′(y) = Supx∈U
{

T ′(µA′(x), I(µA(x), µB(y)))
}

,

where µA′(x) = T (µA′1
(x), . . . , µA′n(x)), µA(x) = T (µA1(x), . . . , µAn(x)), with T and T ′ being fuzzy

conjunctive operators (t-norms) and with I being a fuzzy implication operator.
Since, as we mentioned in the previous subsection, in the great majority of the cases the Fuzzi-

fication Interface transforms the input x0 = (x1, . . . , xn) received by the system in several punctual
fuzzy sets A′1, . . . , A

′
n, and due to the application of the properties T (1, 1) = 1 and T (x, 1) = x,

satisfied by t-norms [25, 26], the CRI is finally reduced to the form:

µB′(y) = I(µA(x0), µB(y)) .

II.C.4 The Defuzzification Interface

From the operation mode of the linguistic Mamdani-type FRBS Inference System introduced in
the previous subsection, it may be clearly drawn the fact that the fuzzy inference process is applied
at the level of individual rules. Thus, once the CRI has been applied on the m rules composing the
KB, m fuzzy sets B′

i are obtained representing the fuzzy actions deduced by the FRBS from the
inputs received.

Since the system must give a crisp output, the Defuzzification Interface has to develop the task
of aggregating the information provided by each one of the fuzzy sets and transform it in a single
crisp value. There are two different operation modes to do this aggregation [27]:

1. Mode A: Aggregation first, defuzzification after: In this first case, the Defuzzification Interface
performs the following tasks:

• Aggregates the individual fuzzy sets inferred, B′
i, for obtaining a final fuzzy set B′ by

means of a fuzzy aggregation operator, G, which models the also operator that relates
the rules in the base:

µB′(y) = G
{

µB′1
(y), µB′2

(y), . . . , µB′n(y)
}

.

• By using a defuzzification method, D, transforms the fuzzy set B′ obtained in a crisp
value, y0, that will be given as system global output:

y0 = D(µB′(y)) .

2. Mode B: Defuzzification first, aggregation after: In this second operation mode, the contri-
bution of each fuzzy set inferred is individually considered by means of a characteristic value
(center of gravity, mean of maximum value, etc.) and the final crisp value is obtained by
means of an aggregation operator (an average, a weighted average, or the selection of one of
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them, among others) performed on a crisp characteristic value of each one of the individual
fuzzy sets.

This operation mode constitutes a different approach of the concept represented by the also
operator.

Historically, the first mode proposed was the Mode A, that was already used by Mamdani in
his first approach to Fuzzy Control [10]. In the last few years, the second approach is becoming
more used [27, 28].

III Learning of Linguistic FRBSs

As we have mentioned, two main tasks have to be performed to design an intelligent system of
this kind for a specific application: to select the fuzzy operators involved in the Inference System
—i.e., to define the way in which the fuzzy inference process will be performed—, and to derive an
adequate KB about the problem being solved. The accuracy of the FRBS in solving this problem
will directly depend on both components.

The first design task has been widely analyzed in the specialized literature, and a big amount
of theoretical and comparative studies have been carried out in order to deal with the problem of
the selection of the best possible fuzzy operators in the Inference System [27, 29, 30].

As regards the second design task, it seems to be a more difficult decision because the compo-
sition of the KB depends directly on the problem being solved. Due to the complexity of the KB
derivation, a large quantity of automatic techniques has been proposed to put it into effect.

Many of these techniques are collected under the name of Soft Computing (SC) [31, 32]. SC
is a new field of Computer Science that deals with the integration of problem-solving techniques
such as Fuzzy Logic, NNs, or GAs. Each of these techniques provides us with complementary
reasoning and search methods to solve complex problems. Among all the possible combinations,
we are interested on how NNs [33] or GAs [34] can help us to design an FRBS by defining the KB,
acting as it is shown in Figure 4.

First of all, it is interesting to distinguish between tuning and learning problems. In tuning
problems, a predefined RB and a preliminary DB are used and the objective is to find a better set
of parameters defining the DB. In learning problems, a process including the learning of the RB or
of the whole KB is performed.

In this section we shall focus on the learning of linguistic FRBSs. As we have mentioned in the
previous section, Linguistic Models are characterized by offering a very appropriate interpretabil-
ity that have repercussions on an expensive efficiency loss. Therefore, the methods for learning
Linguistic Models are adopted in problems that require a high degree of interpretability.

We are going to introduce several learning algorithms for linguistic FRBSs. These are grouped
in three approaches according to the three most well know techniques: ad hoc data covering ap-
proaches, NNs, and GAs. The methods that we shall see are collected in Table 1.

III.A Ad Hoc Data Covering Methods

With this name, “Ad Hoc Data Covering Methods”, we are collecting those methods that are based
on processes in which the learning of the fuzzy rules is guided by covering criteria of the data in the
example set. Generally, they are characterized by being methods based on a short time-consuming
iterative procedure.
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Figure 4: Design of FRBSs

III.A.1 Wang and Mendel’s Learning Method

The ad hoc data covering RB generation process proposed by Wang and Mendel in [35] has been
widely known because of its simplicity and good performance. It is based on working with an input-
output data set representing the behavior of the problem being solved, using a previous definition
of the DB composed of the input and output primary fuzzy partitions.

The generation of the RB is put into effect by means of the following steps:

1. Consider a fuzzy partition of the input variable spaces: It may be obtained from the expert
information (if it is available) or by a normalization process. If the latter is the case, perform
a fuzzy partition of the input variable spaces dividing each universe of discourse into a number
of equal or unequal partitions, select a kind of membership function and assign one fuzzy set
to each subspace. In our case, we shall work with symmetrical fuzzy partitions of triangular
membership functions (see Figure 5).

Figure 5: Graphical representation of a uniform fuzzy partition

2. Generate a preliminary linguistic rule set: This set will be formed by the rule best covering
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Table 1: Learning and Tuning Methods used

Reference Author(s) of the Method Technique used
[35] Wang and Mendel Ad hoc Data Covering
[36] Nozaki, Ishibuchi, and Tanaka Ad hoc Data Covering
[37] Shann and Fu Neural Network
[38] Jang (ANFIS) Neural Network
[39] Thrift Genetic Algorithm
[40] Liska and Melsheimer Genetic Algorithm
[15] González and Pérez (SLAVE) Genetic Algorithm
[20] Cordón and Herrera (D-MOGUL) Ad hoc DC + Genetic Algorithma

[18] Cordón and Herrera (WM-ALM) Ad hoc DC + Genetic Algorithma

[38] Jang (ANFIS for tuning) Neural Network
[20] Cordón and Herrera (tuning) Genetic Algorithm

a They are composed of two stages: the first (Generation Process) is Ad Hoc and the second (Simplifi-
cation Process) is GA-based.

each example (input-output data pair) contained in the input-output data set. The structure
of these rules is obtained by taking a specific example, i.e., an n + 1-dimensional real array
(n input and 1 output values), and setting each one of the variables to the linguistic label
(associated fuzzy set) best covering every array component.

3. Give an importance degree to each rule: Let Rl = IF x1 is A1 and . . . and xn is An THEN y
is C be the linguistic rule generated from the example el = (xl

1, . . . , x
l
n, yl). The importance

degree associated to it will be obtained as follows:

G(Rl) = µA1(x
l
1) · . . . · µAn(xl

n) · µB(yl) .

4. Obtain a final RB from the preliminary fuzzy rule set: The rule with the highest importance
degree is chosen for each combination of antecedents.

III.A.2 Nozaki, Ishibuchi, and Tanaka’s Learning Method

Nozaki et al. try to obtain a Linguistic Model that, maintaining the level of interpretability, presents
a higher accuracy. To achieve it, they design a fuzzy model based on simplified TSK-type rules
to, thereinafter, transform it into a Linguistic Model (having linguistic terms in the consequent)
with the same performance. As we have said, the method consists of two phases. In a first step, a
simplified TSK KB is learnt. The rule consequents are composed of a single real value that can be
considered as the independent term of the linear combination in a TSK representation (introduced
in Section II.B.2). In the second phase, each TSK rule is associated to two descriptive Mamdani-
type rules defined in the same input subspace. To do so, we shall have two RBs: a main and a
secondary ones. The method works as follows:

1. First phase: Generation of TSK Rules. To determine the real consequent of each rule, a
weight is defined for each training data array as the result of raising the membership function
of the input to the power of α (a parameter that defines a non-linear scaling function) and of
getting the product of the membership function values of each input. The real consequent will
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be obtained as the weighted average of the known output value of each array of input values.
If the weight is zero, the rule will not be considered. In this way, we can quickly obtain a
base of TSK rules with a linguistic antecedent and whose consequent is a real number.

2. Second phase: Derivation of Mamdani rules from TSK rules. To obtain better results taking
the advantage offered by the TSK representation, the authors use two Mamdani-type RBs:
the main and secondary ones. In the first place it will be necessary to accomplish a fuzzy
partition of the universe of discourse of the consequent in some linguistic labels. They consider
uniformly distributed partitions with triangular membership functions (see Figure 5).

For each TSK rule, the greatest value of the membership function applied to the consequent
is searched. The real value (x0) will be substituted for the corresponding label obtaining a
Mamdani rule. This rule will be inserted in the main RB. The corresponding label to the
second best value will form the rule that is included in the secondary RB. Figure 6 graphically
clarifies the operation mode.

Figure 6: Derivation of Mamdani rules from TSK rules in the Nozaki et al.’s Method

To draw profit from the two RBs, the authors present an Inference System capable of obtaining
a combined result from them. To do so, a real value between 0 and 1 that acts as a certainty
factor is associated to each rule. This value is the result of evaluating the TSK consequent on the
corresponding membership functions, according to the RB (in the drawing, it would be h3 and h2).

III.B Neural Learning FRBS

A short introduction to Neural Networks and Neuro-Fuzzy Systems is presented in Appendix A. In
the next subsections we introduce two specific methods with different characteristics: the first one
learns fuzzy rules through the weights setting while the second one learns the membership function
shapes.

III.B.1 Shann and Fu’s Learning Method

The method proposed by Shann and Fu [37] use a layer-structured Neuro-Fuzzy System (NFS)
for learning fuzzy rules by considering weights. The learning is produced adjusting the certainty
factors of each rule.

The method is a two-phase learning procedure. The first phase is an error-backpropagation
(EBP) training, and the second one is a rule-pruning algorithm.

1. First phase: EBP training. The NFS is composed of five layers (as shown in Figure 7).

13



Figure 7: Neural Network Structure proposed by Shann and Fu

• Layer 1 (input layer): Each node in this layer represents an input linguistic variable of
the network and it is used as a buffer to broadcast the input to the next layer. The
domain of each input linguistic variable is determined by the application and it does not
need to be constrained within [0,1].

• Layer 2 (membership-function layer): Each node in this layer represents the membership
function of a linguistic value associated to an input linguistic variable. Therefore, a
membership function node is a fuzzifier. We can use any shape of membership function
such as the triangle, trapezoid or bell-shaped ones. The function of the nodes in this
layer are determined and formulated by applications.

• Layer 3 (AND layer): Each node in layer 3 represents a possible IF-part for the fuzzy
rules. In fuzzy set theory, there are many different operators for fuzzy intersection
[6, 7, 27, 29, 30]. The authors choose the most commonly used one, i.e., the min-
operator, which is simple and effective and has strong characteristics of competition.

• Layer 4 (OR layer): Each node in layer 4 represents a possible THEN-part for the fuzzy
rules. The operation performed by an OR node is to combine fuzzy rules with the same
consequent. In this first phase, the links between layers 3 and 4 are fully connected so
that all the possible fuzzy rules are embedded in the structure of the network. As in the
previous layer, the authors choose the most commonly used one, i.e., the max-operator
suggested by Zadeh [1], as the function of an OR node.
The links of this layer have weights associated. For example, the weight wkj of an input
link in layer 4 represents the certainty factor of a fuzzy rule, which comprises the AND
node j in layer 3 as the IF-part and the OR node k in layer 4 as the THEN-part. Hence,
these weights are adjustable while learning the knowledge of fuzzy rules and they have
to be nonnegative real numbers.
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• Layer 5 (defuzzification layer): Each node in this layer represents an output linguistic
variable and performs defuzzification, taking into account the effects of all membership
functions of the output linguistic values. Suppose that the correlation-product inference
and the fuzzy centroid defuzzification scheme [41] are used. Then, the function of node
l in layer 5 is defined as follows:

zl =
∑

k∈Pl
(xlkalkclk)

∑

k∈Pl
(xlkalk)

,

with Pl being the set of indices of the nodes in layer 4 that have an output link connected
to node l, xlk = zk, and with alk and clk being the area and centroid of the membership
function of the output linguistic value represented by node k in layer 4, respectively.
Since it is assumed that the membership functions of the output linguistic values are
known, the areas and centroids can be calculated before learning.

2. Second phase: Pruning. The RB directly obtained right after the training phase will contain
all the rules with nonzero weight, i.e., certainty factor. This causes the size of the RB to be
very large in most cases. With this second phase, a concise RB is obtained. At the meantime,
the structure of the NFS will be reduced as well. The technique involves calculating the
centroids among the rules with the same antecedent. The linguistic variable where each
centroid lies will determine the rule selected for each set of rules.

III.B.2 Jang’s Learning Method (ANFIS)

In [38], Jang presents a new algorithm called ANFIS (Adaptive-Network-Based Fuzzy Inference
System) that defines the composition of the DB. The inference system is implemented in an NN
that uses an hybrid method to adjust the parameters in its nodes, a gradient method and the least
squares estimate (LSE) to identify the parameters.

The proposed ANFIS can construct an input-output mapping based on both expert knowledge
(in the form of linguistic rules) and specified input-output data pairs.

In spite of the fact that the author talks about several types of inference systems, he focuses on
a TSK system to describe ANFIS, but he notes that it is possible to implement a Mamdani system
as well. In the following, it will be first explained the TSK system and then the modifications to
transform to Mamdani.

An adaptive network is a multilayer feedforward network in which each node performs a partic-
ular function (node function) on the incoming signals as well as a set of parameters pertaining to
this node of which its output depends. These parameters can be fixed or variable, and it is through
the change of the last ones that the network is tuned. ANFIS has nodes with variable parameters,
called square nodes, which will represent the membership functions of the antecedents, and the
membership function for the Mamdani-type consequent or the linear functions for the TSK-type
consequent. The nodes in the intermediate layers connect the antecedents with the consequent.
Their parameters are fixed and they are called circular nodes.

The node functions in the same layer belong the same function family as described below:
Layer 1: Parameters in this layer are referred to as premise parameters. In fact, any differen-

tiable function, such as bell and triangular-shaped membership functions are valid for the nodes
in this layer. Every node i in this layer is a square node with a node function. From now on, we
consider that bell-shaped membership functions are used:

O1
i = µAi(x) , µAi(x) =

1
1 + [(x−ci

ai
)2]bi

.
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Bell-shaped membership functions are used.
Layer 2: Each node represents the firing strength of a rule ωi through a conjunction operator.

The function considered is the minimum t-norm. They are circular nodes with a node function:

ωi =

{

µAi(x), if µAi(x) ≤ µBi(x)

µBi(x), if µAi(x) > µBi(x)
, i = 1, 2 .

Layer 3: It calculates the ratio of ith rule’s firing strength with respect to the sum of all the
rule’s firing strengths.

ωi =
ωi

ω1 + ω2
, i = 1, 2

Layer 4: Every node i in this layer is a square node with a node function:

O4
i = ω̄ifi = ω̄i (pix + qiy + ri) .

Layer 5: The single node in this layer computes the overall output as the sum of all incoming
signals.

O5
i =

∑

i

ω̄ifi =
∑

i ωifi
∑

i ωi

The initial values of the antecedent and consequent parameters are set through a partition of
the input universe of each variable.

After the network parameters are set with their initial values, the consequent is adjusted through
the LSE [42]. This method is used because the structure of the TSK consequent, a linear combina-
tion of the inputs, makes it suitable to learn the weights composing the consequent. On the other
hand, this is preferred to the strict gradient descent due to the former is quicker than the latter.

In order to achieve a desired input-output mapping, the network parameters are updated ac-
cording to the given training data and the gradient descent method [43], that propagates the error
rates from the output end towards the input end as a linear combination of the error in the nodes
of the following layer which is multiplied by the derivative from the function of these nodes with
respect to the output of this. By using this measure, it will be able to calculate the error that
is produced by each parameter and to correct it. Let us suppose an adaptive network with L
layers and #(k) nodes in layer k, we can denote by (k, i) the node at position i in layer k, and its
membership function by

Ok
i = Ok

i (Ok−1
i , . . . , Ok−1

#(k−1), a, b, c, . . .) ,

with a, b, c, . . . being the parameters pertaining to this node.
Assuming that the given training data set has P entries, taking Tm,p as the mth component of

the pth target output vector and Olm,p as the mth component of the actual output vector produced
by the presentation of the pth input vector, the error measure for the pth entry of training data
entry will be:

Ep =
#(L)
∑

m=1

(Tm,p −OL
m,p)

2 =⇒ E =
P

∑

p=1

Ep .

The error rate for the output node at (L, i) can be calculated as

∂Ep

∂OL
i,p

= −2(Ti,p −OL
i,p) ,
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and for the internal node (k, i), the error rate can be derived by the chain rule as

∂Ep

∂OL
i,p

=
#(k+1)

∑

m=1

∂Ep

∂Ok+1
m,p

∂Ok+1
m,p

∂Ok
i,p

.

Therefore, by means of these two expressions we can find ∂Ep

∂Ok
i,p

for each node in the network.

Then, the derivative of the overall error measure E with respect to α is

∂E
∂α

=
P

∑

p=1

∂Ep

∂α
.

Thus, the update formula for the generic parameter α is

4α = −η
∂E
∂α

,

in which η is a learning rate which can be further expresed as

η =
s

√

∑

α (∂E
∂α )2

,

with s being the step size, the length of each gradient transition in the parameter space. Usually,
we can change the value of s to vary the speed of convergence.

Some modifications have been made over the original system proposed by Jang in order to
transform it in a Mamdani system and to consider triangular-shaped membership functions. These
changes let the method vary the number of rules and tune the rules learnt previously.

In order to construct a Mamdani system, the expression of node function in the layer 4 must
be changed: Every node in this layer calculates the rule consequent multiplied by the output of its
corresponding node in layer 3. The consequent of the rule is obtained through the center of gravity
weighted by the matching degree,

O4
i = ω̄ifi = ω̄i (

∫

V y · µCi(y) · dy
∫

V µCi(y) · dy
) ,

whith Ci being the consequent membership function for the i rule.
The network architecture for a Mamdani system in ANFIS is shown in Figure 8.
It will not be permitted the use of the LSE technique in a Mamdani system with linguistic

variables in the consequent. In Mamdani systems, the complete network will be adjusted by the
gradient method.

To provide well formed triangular-shaped membership functions using the gradient method,
each triangle must be represented by three parameters, its center, the square root of the distance
to its left extreme, and the square root of the distance to its extreme right, allowing any type of
triangle to be obtained. Thus, if the updated parameter has a negative value the triangle will still
be correct.

Fuzzy partitions considering triangular-shaped membership functions do not necessarily have
to satisfy the epsilon-completeness, which means that given a value x of one of the inputs in the
universe of discourse, a linguistic label A can always be found so that µA(x) ≥ ε, being

µAi(x) =















x−a
b−a , if a ≤ x ≤ b
c−x
c−b , if b > x ≥ c

0, if x < a or x > c .
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Figure 8: Structure of a Mamdani-type ANFIS, Jang’s Method

Using the gradient method, the membership functions could fall apart from the domain causing
the corresponding rules to be eliminated. If too many rules are eliminated, the system will have a
wrong behavior. The solution is to insert in the universe of discourse, according to a probability
defined beforehand, some of those membership functions, so that they can be tuned again. This is
done for the antecedents as well as for the consequent.

III.C Genetic Learning FRBS

A short introduction to GAs and Genetic Fuzzy Systems is presented in Appendix B. In the following
we shall review several methods based on GAs under the Pittsburgh and IRL approaches.

III.C.1 Thrift’s Learning Method

This method is based on encoding all the cells of the complete decision table in the chromosomes.
In this way, Thrift [39] establishes a mapping between the label set associated to the system output
variable and an ordered integer set (containing one more element and taking 0 as its first element)
representing the allele set. An example is shown to clarify the concept. Let {NB, NS, ZR, PS, PB}
be the term set associated to the output variable, and let us note the absence of value for the output
variable by the symbol “–”. The complete set formed joining this symbol to the term set is mapped
into the set {0, 1, 2, 3, 4, 5}. Hence the label NB is associated with the value 0, NS with 1, . . . ,
PB with 4 and the blank symbol “–” with 5.

Therefore, the GA employs an integer coding. Each one of the chromosomes is constituted by
joining the partial coding associated to each one of the linguistic labels contained in the decision
table cells. A gene presenting the alelle “–” will represent the absence of the fuzzy rule contained
in the corresponding cell in the RB.

The GA proposed employs an elitist selection scheme and the genetic operators used are of
different nature. While the crossover operator is the standard two-point crossover, the mutation
operator is specifically designed for the process. When it is applied over an allele different from
the blank symbol, changes it one level either up or down or to the blank code. When the previous
gene value is the blank symbol, it selects a new value at random.

Finally, the fitness function is based on an application specific measure. The fitness of an
individual is determined by applying the FRBS considering the RB coded in its genotype to the
controlled system with several different starting points and computing the convergence to the
desired equilibrium point.
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III.C.2 Liska and Melsheimer’s Learning Method

Liska and Melsheimer [40] present a general method that covers all the areas of KB learning:
number of fuzzy rules, structure of the rules, and membership function parameters. The power
of their method lies on learning optimizing all the three parts simultaneously, against doing it
separately, which could result in a suboptimal solution from the authors’ point of view.

The KB is represented as a chromosome composed of three substrings:

• The first substring of real numbers encodes the membership functions associated to all system
variables. Each membership function is represented by two parameters —center and width—
that allow to use bell-shaped or isosceles triangular-shaped membership functions.

• The second substring of integer numbers encodes the structure of each rule in the RB so that
one integer number represents one membership function in the space of an input variable.
Membership functions are numbered in ascending order according to their centers, i.e., a
number ‘1’ refers to the membership function with the lowest value of the membership function
center in a particular input variable. The value ‘0’ in the second substring indicates the “null”
membership function, i.e., the input variable is not involved in the rule.

• The third substring of integer numbers encodes membership functions in the rule consequents.
The integer numbers refer to membership functions in the same way as in the second substring.
A value ‘0’ in the third substring means that the rule is deleted from the FRBS RB.

The inclusion of ‘0’ in the second and third substrings allows both the number of input variables
involved in each rule and the number of rules to change dynamically during the GA search. The
number of rules is constrained by an upper limit specified by the designer.

As regards the genetic operators (crossover and mutation), they act in a different way depending
on what substring of the chromosome they are applied on.

On the one hand, if we are working with the first substring it is necesary that the operator
acts in the way that the relative order of membership functions in each variable is preserved, e.g.,
a center of the membership function with a linguistic meaning “low” can take any value in the
variable range but always lower than a center of the membership function “high”.

On the other hand, with the second and the third substring we shall use three specific operators
that are not applied at the level of genes but of fields in the second substring. In this case, a field
is considered to be the antecedents of a rule.

• Uniform crossover creates two offspring from two parents by deciding randomly, field by field,
which offspring receives the field from which parent.

• Mutation randomly replaces selected fields in a parent by a random value between the mini-
mum and maximum allowed values.

• Creep creates one offspring from one parent by randomly altering its field within a specified
range.

The performance of each chromosome in a population is evaluated by an exponential ranking
technique based on the error function. This technique assigns the highest fitness fitness(1) = 1000
to the chromosome with the lowest value of the error function, the chromosome with the next
lowest value of the error function receives fitness(2) = α ∗ fitness(1), α ∈ [0, 1], or generally,
fitness(N + 1) = α ∗ fitness(N) with the exception that no string was given a fitness lesser than
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1. The higher the fitness a string receives, the higher the probability it has to be selected for
reproduction. Liska and Melsheimer obtained the best results when α was set constant to 0.96. In
their GA implementation they also do not allow duplicates, i.e., a new offspring is introduced into
the current population only if it differs from every member of the current population at least in
one field.

Once the genetic learning process has finished, the method applies a second phase of tuning of
membership functions for ensuring the optimum adjustment. The objective is to avoid the stagna-
tion of the GA. This fine-tuning is developed with a multilayer feedforward network [40]. In contrast
to the feedforward NNs, the tuned parameters in this realization are the centers and widths of mem-
bership functions in the fuzzification and defuzzification interfaces, and all the interconnections are
assigned a constant weight 1.

III.C.3 González and Pérez’s Learning Method (SLAVE)

SLAVE (Structural Learning Algorithms in Vague Environments) is a inductive learning algorithm,
that was initially proposed in [14] and later developed in [15, 44]. The basic element of the SLAVE
learning algorithm is its model of rule

IF X1 is ˜A1 and . . . and Xn is ˜An THEN Y is B ,

where each variable Xi has a referential set Ui and takes values in a finite domain (term set) Di,
i = 1, . . . , n. The referential set for Y is V and its domain is F . The value of the variable Y is
B, where B ∈ F and the value of the variable Xi is ˜Ai, where ˜Ai ∈ P (Di) and P (Di) denotes the
set of subsets of Di. As we saw in Section II.B.1, this type of FRBS are called DNF (Disjunctive
Normal Form). It has been used by other authors [16, 17] as well.

The key to this rule model is that each variable can take as a value an element or a subset of
elements from its domain. The concept may be clarified with the following example:

Let Xi be a variable whose domain is shown in Figure 5(a). An antecedent like

. . . and Xi = {ZR, PS, PM} and . . . ,

is equivalent to
. . . and {Xi is ZR or Xi is PS or Xi is PM} and . . .

Using the previous model of rule, the set of all possible rules is

∆ = P (D1)× P (D2)× . . .× P (Dn)× F .

Another important characteristic of this learning algorithm is that it uses the genetic IRL
approach for generating the rule set (see Genetic Fuzzy Systems in Appendix B). The iterative
approach is presented as an alternative to the well-known Michigan and Pittsburgh approaches
for genetic learning. This approach involves including a GA in a iterative scheme similar to the
following [45]:

1. Use a GA to obtain a rule for the system.

2. Incorporate the rule into the final set of rules.

3. Penalize this rule.

4. If the set of rules obtained is sufficient to represent the examples in the training set, the
system will return this set of rules as the solution. Otherwise return to step 1.
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The GA obtains a rule that is a partial solution of the learning problem in each step. The true
solution is obtained by appending each rule to the rule set. In the recent literature we may find
different algorithms that use this new approach, such as [14, 20, 46]. A study about the problems
generated by the use of the IRL approaches can be seen in [45].

The SLAVE parameters are described in [15]. For measuring the goodness of the rule are intro-
duced two definitions that are based on the classical consistency and completeness conditions. These
conditions provide the logical foundation of the algorithms for concept learning from examples.

Definition 1. The completeness condition states that every example in some class must verify some
rule from this class.

Definition 2. The consistency condition states that if an example satisfies a description of some class,
then it cannot be a member of a training set of any other class.

These definitions are associated to the whole set of rules, but SLAVE obtains the set of rules
that describes the system by extracting one rule in each iteration of the learning process. For this
reason, the authors need to define these concepts on each rule. Moreover, they are not interested
in proposing hard definitions on fuzzy problems, thus, they propose a degree of completeness and
a degree of consistency, both definitions using the concepts proposed in [15].

Definition 3. The degree of completeness of a rule RB(A) is defined as

Λ(RB(A)) =
n+(RB(A))

nB
,

where nB is the number of examples of the B class and n+(RB(A)) is the number of positive examples
covered by RB(A).

The soft consistency degree is based on the possibility of admitting some noise in the rules.
Thus, in order to define the soft consistency degree the authors use the following set:

∆k = {RB(A)/n−(RB(A)) < k n+(RB(A))} ,

that represents the set of rules having a number of negative examples (n−(RB(A))) strictly lesser
than a percentage (depending on k) of the positive examples (n+(RB(A))).

Definition 4. The degree in which a rule R satisfies the soft consistency condition is

Γk1k2(R) =











1 if R ∈ ∆k1

k2n+(R)−n−(R)
n+(R)(k2−k1) if R /∈ ∆k1 y R ∈ ∆k2

0 otherwise

where k1, k2 ∈ [0, 1] and k1 < k2, and n−(R), n+(R) are the number of positive and negative examples
to the rule R.

This definition uses two parameters, k1 is a lower bound of the noisy threshold and k2 is an
upper bound of the noisy threshold.

These definitions are based on the use of the cardinality of two fuzzy sets (the positive and
negative example sets). We can say that an example is positive for a rule when it matches the
antecedent and consequent of the rule. On the contrary, we consider it as a negative example when
it matches the antecedent but not the consequent. In any other case, we can say that it has no
influence on this rule.
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SLAVE selects the rule that simultaneously verifies the completeness and soft consistency con-
ditions to a high degree. Therefore, the rule selection in SLAVE can be accomplished by solving
the following optimization problem:

max
A∈D

{ Λ(RB(A)) Γk1k2(RB(A))} ,

where D = P (D1)× P (D2)× . . .× P (Dn).
Figure 9 shows the different elements of the SLAVE learning algorithm and the relations among

them.

Figure 9: Description of SLAVE Learning Process

III.C.4 Cordón and Herrera’s Learning Method (D-MOGUL)

In this subsection we are going to introduce the Descriptive-MOGUL approach [20] based in the
MOGUL paradigm presented in [47]. Making use of this method it will be possible to automatically
generate a complete KB when a example training set is available. It consists of the following three
steps:

1. An iterative RB generation process of desirable fuzzy rules able to include the complete
knowledge of the set of examples.

2. A genetic simplification process, which finds the final RB able to approximate the input-output
behavior of the real system. It is based on eliminating some unnecessary rules from the rule
set obtained in the previous stage, avoiding thus the possible overlearning, by selecting the
subset of rules best cooperating.

3. A genetic tuning process of the DB used in order to improve as far as possible the accuracy
of the final KB.
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The Rule Base Generation Process

The first stage consists of an increasing RB generation process based on an iterative exploration
of the problem search space. Apart from the training data set Ep, a previously defined DB,
constituted by uniform fuzzy partitions with triangular membership functions crossing at height
0.5, is considered. The FRBS designer can specify the number of linguistic terms forming each one
of them in order to obtain the desired granularity level. Figure 5 shows the generic structure of a
fuzzy partition with seven linguistic labels.

This component allows us to obtain a set of Mamdani-type fuzzy rules Bg describing the system
behavior. In order to do that, it is necessary to establish a condition for it. This is the requirement
of covering all possible situation-action pairs, el ∈ Ep, the completeness property [15, 48]. This
may be formalized for a constant τ ∈ [0, 1], it requires the non-zero union of fuzzy sets Ai(·), Bi(·),
i = 1, ..., T , T = |Bg|, and is formulated by the following expressions:

CR(el) =
⋃

i=1..T

Ri(el) ≥ τ , l = 1, ..., p

Ri : If x1 is Ai1 and ... and xn is Ain then y is B

el = (exl
1, . . . , ex

l
n, eyl)

Ri(el) = ∗(Ai(exl), Bi(eyl))

Ai(exl) = ∗(Ai1(exl
1), ..., Ain(exl

n)) ;

where ∗ is a t-norm, and Ri(el) is the compatibility degree between the rule Ri and the example el.
Given a set of rules R, the covering value of an example el is defined as

CVR(el) =
T

∑

i=1

Ri(el) ,

and we require the following condition

CVR(el) ≥ ε , l = 1, ..., p .

A good set of rules must satisfy both the conditions presented above, to verify the completeness
property and to have an adequate final covering value.

The RB is derived rule by rule, selecting the most accurate one at each step in the algorithm.
Once this rule is obtained, its covering over the training set examples is taken into account. Those
examples covered in a degree higher than a value ε specified by the FRBS designer are removed
from the training set. Hence, the increasing example covering guides the search to other promising
space zones at each step.

Each time the best rule has to be selected in the generation process, the accuracy of the
candidates is measured by using a multicriteria fitness function. This function is designed taking
into account the following three criteria allowing us to ensure the completeness and consistency of
the final KB generated:
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a) High frequency value [48]

The frequency of a fuzzy rule, Ri, through the set of examples, Ep, is defined as:

ΨEp(Ri) =
∑p

l=1 Ri(el)
p

.

b) High average covering degree over positive examples [48]

The set of positive examples to Ri with compatibility degree greater than or equal to ω is
defined as:

E+
ω (Ri) = {el ∈ Ep/Ri(el) ≥ ω} .

The average covering degree on E+
ω (Ri) can be defined as:

Gω(Ri) =
∑

el∈E+
ω (Ri)

Ri(el)/n+
ω (Ri) .

where n+
ω (Ri) = |E+

ω (Ri)|.

c) Small negative examples set [15]

The set of the negative examples to Ri is defined as:

E−(Ri) = {el ∈ Ep/Ri(el) = 0 and Ai(exl) > 0} .

An example is considered negative for a rule when it better matches some another rule that has
the same antecedent but a different consequent. The negative examples are always considered
over the complete training set.

With n−Ri
= |E−(Ri)| being the number of negative examples, the penalty function on the

negative examples set will be:

gn(Ri
−) =







1 if n−Ri
≤ k · n+

ω (Ri)
1

n−Ri
−kn+

ω (Ri)+exp(1)
otherwise ,

where we permit up to a percentage of the number of positive examples, k ·n+
ω (Ri), of negative

examples per rule without any penalty. This percentage is determined by the parameter
k ∈ [0, 1].

Therefore these three criteria are combined into a fitness function using any aggregation function
increasing in the three variables. The authors propose the product:

F (Ri) = ΨEp(Ri) ·Gω(Ri) · gn(Ri
−) .

Rules getting a higher value in this function will be more accurate.
Taking the previous comments into account, the generation method is developed in the following

steps:

1. Initialization:

(a) To introduce the k, ω, and ε parameter values.
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(b) To set the example covering degree CV [l] ← 0, l = 1, ..., p.

(c) To initialize the final Rule Base Bg to empty.

2. To initialize the candidate fuzzy rule set Bc to empty.

3. For every el ∈ Ep, generate the fuzzy rule Rc best covering it by taking the linguistic label
matching best with the el component value for each variable. If Rc 6∈ Bc, add it to Bc.

4. To evaluate all the fuzzy rules contained in Bc and to select the one getting a higher value in
the fitness function, Rr.

5. To introduce Rr into the set of rules Bg.

6. For every el ∈ Ep do

(a) CV [l] ← CV [l] + Rr(el).

(b) If CV [l] ≥ ε then remove el from Ep.

7. If Ep = ∅ then Stop else return to Step 2.

The Genetic Simplification Process

Due to the iterative nature of the generation process, an overlearning phenomenon may appear.
This occurs when some examples are covered at a higher degree than the desired one and it makes
the RB obtained perform worse. In order to solve this problem and improve its accuracy, it is
necessary to simplify the rule set obtained from the previous process, removing the redundant rules
and selecting the rule subset with best cooperation for deriving the final RB solving the problem.

The simplification process used was proposed in [48]. It is based on a binary coded GA, in
which the selection of the individuals is developed using the stochastic universal sampling procedure
proposed by Baker in [49] together with an elitist selection scheme, and the recombination is put
into effect by using the classical binary multipoint crossover (performed at two points) and uniform
mutation operators.

The coding scheme generates fixed-length chromosomes. Considering the rules contained in
the rule set derived from the previous step counted from 1 to m, an m-bit string C = (c1, ..., cm)
represents a subset of candidate rules to form the RB finally obtained as this stage output, Bs,
such that,

If ci = 1 then Ri ∈ Bs else Ri 6∈ Bs .

The initial population is generated by introducing a chromosome representing the complete
previously obtained rule set Bg, that is, with every ci = 1. The remaining chromosomes are
selected at random.

As regards to the fitness function, E(·) it is based on an application specific measure usually
employed in the design of FRBSs, the mean square error over a training data set, ETDS , which is
represented by the following expression:

E(Cj) =
1

2|ETDS |
∑

el∈ETDS

(eyl − S(exl))2 ,

whith S(exl) being the output value obtained from the FRBS using the RB coded in Cj , R(Cj)
when the input variable values are exl, and eyl is the known desired value.
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Anyway, there is a need to keep the control rule completeness property considered in the previous
stage. An FRBS must always be able to infer a proper output for every system input. We shall
ensure this condition by forcing every example contained in the training set to be covered by the
encoded RB in a degree greater than or equal to τ ,

CR(Cj)(el) =
⋃

j=1..T

Rj(el) ≥ τ , ∀el ∈ ETDS and Rj ∈ R(Cj) ,

where τ is the minimal training set completeness degree acepted in the simplification process.
Usually, τ is less than or equal to ω, the compatibility degree used in the generation process.

Therefore, we define a training set completeness degree of R(Cj) over the set of examples ETDS
as

TSCD(R(Cj), ETDS) =
⋂

el∈ETDS

CR(Cj)(el) ,

and the final fitness function penalizing the lack of the completeness property is:

F (Cj) =

{

E(Cj) if TSCD(R(Cj), ETDS) ≥ τ
1
2

∑

el∈ETDS
(eyl)2 otherwise

.

The Genetic Tuning Process

Finally, a modified version of the genetic tuning method presented in [50] is applied by the
authors. Since we are going to use this third phase as a independent algorithm to adjust the KB
previously learned with some of the reviewed methods, it will be presented in Section IV.B.

III.C.5 Cordón and Herrera’s Learning Method (WM-ALM)

In [18], the authors propose a methodology to design Linguistic Models with high accuracy and a
good description level, called Accurate Linguistic Modeling (ALM). In the same paper, two different
learning methods based on the paradigm are proposed. The WM-ALM method is composed of two
stages, which will be described in the following:

1. A linguistic rule generation method from examples based on a modification made on a ad hoc
data covering fuzzy rule generation processes, the Wang and Mendel’s method [35] (showed in
Section III.A.1). The modification involves generating the two most important consequents
for each combination of antecedents (instead of only the most important one, as this kind
of methods usually do). The authors remark that an input subspace will only have two
consequents associated (and thus, two linguistic rules) when there is a need to do so, i.e.,
when there is any data in it or when two different consequents may be generated.

2. A rule selection genetic process, that removes the redundant or unnecesary rules from the
fuzzy rule set generated in the previous step to select the subset of them cooperating best.
This process will be implemented by means of a binary-coded Genetic Algorithm.

As mentioned, the Wang and Mendel’s method is modified to allow to have (if is necessary)
two consequent for a specific combination of antecedents. The fourth step (see Section III.A.1)
is the only one that is different from the original Wang and Mendel’s algorithm. Whilst in that
method the rule with the highest importance degree is the only one chosen for each combination of
antecedents, now two different rules, the two most important ones in each input subspace (if they
exist), are allowed to form part of the RB.
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Of course, a combination of antecedents may not have rules associated (if there are no examples
in that input subspace) or only one rule (if all the examples in that subspace generated the same
rule). Therefore, the generation of rules with double consequent is only addressed when the problem
complexity, represented by the example set, shows that it is necessary.

The operation mode of the generation method means that, in each input subspace, the rules are
created individually from the examples in the input-output data set without taking into account
the cooperation existing among them to give the final model output. That is, no information about
the neighbor rules is considered in order to generate them.

Because of this, the generated RB may present redundant or unnecessary rules making the
model using this KB less accurate. In order to avoid this fact and to achieve that more than
a single rule is used only in those zones where it is really necessary, the authors use a genetic
rule selection process with the aim of simplifying the initial linguistic rule set by removing the
unnecessary rules from it and generating a KB with good cooperation.

The selection of the subset of linguistic rules best cooperating is a combinatorial optimization
problem [12, 51]. Since the number of variables involved in it, i.e., the number of preliminary rules,
may be very large, they consider an approximate algorithm to solve it, a GA.

This selection algorithm was presented in the second subsection of the Section III.C.4 as a
simplification process.

IV Tuning of Linguistic FRBSs

The performance of an FRBS depends on its RB and on the membership functions of associated to
the fuzzy partition, i.e., the DB. Hence, it is very important to tune these parameters to the process
to be modeled. The tuning methods fit the membership functions of the fuzzy rules obtaining high-
performance membership functions by minimizing an error function defined by means of the system
behavior or the evaluation of a training example set.

Recent work has centered on the use of mathematical and heuristic optimization techniques
as gradient descent, GAs, etc. In the following, we shall present two approaches for tuning the
parameters of the membership functions, the first one that represents the KB by means of an NN,
being tuned by the EBP, and the second one that uses GAs.

IV.A Jang’s Tuning Method

The method proposed by Jang [38] is more a tuning method than a learning method. Jang initially
determines the labels of the input variables through a uniform partition of the universe of each
variable, and the parameters of the consequent are initiated to zero. A fixed rule base is created
from the one that it begins to adjust. A first assumption for using this approach as a tuning method
is that with a finer initialization, the method will work better. We shall allow it to start from a
KB already learnt through another method. If the initial KB is simplified, the nodes that do not
participate are disconnected. In this sense will be used ANFIS as a tuning method. The operation
of the method can be consulted in Section III.B.2.

IV.B Cordón and Herrera’s Tuning Method

This process, introduced in [20], is based on the existence of a previous complete Mamdani KB,
that is, an initial DB definition and an RB constituted by m Mamdani-type rules.

Each chromosome forming the genetic population will encode a complete DB definition that
will be combined with the existing RB in order to evaluate the individual adaptation.
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The GA designed for the tuning process presents real coding issue [52], uses the stochastic
universal sampling [49] as a selection procedure and Michalewicz’s non-uniform mutation operator.
As regards to the crossover operator, the Max-Min-Arithmetical [50], which makes use of fuzzy
tools in order to improve the GA behavior, is employed.

As it has been commented in Section III.C.4, the fuzzy partitions are triangular-shaped (see
Figure 5). Thus, each one of the membership functions has an associated parametric representation
based on a 3-tuple of real values and a primary fuzzy partition can be represented by an array
composed by 3 · N real values, with N being the number of terms forming the linguistic variable
term set. The DB is encoded into a fixed length real coded chromosome Cr built by joining the
partial representations of each one of the variable fuzzy partitions as is shown in the following:

Cri = (ai1, bi1, ci1, . . . , aiNi , biNi , ciNi)
Cr = Cr1 Cr2 ... Crm ,

where Cri codes the fuzzy partition of the i-th variable.
The initial gene pool is created making use of the initial DB definition. This is encoded directly

in a chromosome, denoted as C1. The remaining individuals are generated by associating an interval
of performance, [cl

h, cr
h] to every gene ch in C1, h = 1 . . .

∑m
i=1 Ni · 3. Each interval of performance

will be the interval of adjustment for the corresponding gene, ch ∈ [cl
h, cr

h].
If (t mod 3) = 1 then ct is the left value of the support of a fuzzy number. The fuzzy number is

defined by the three parameters (ct, ct+1, ct+2) and the intervals of performance are the following:

ct ∈ [cl
t, c

r
t ] = [ct − ct+1−ct

2 , ct + ct+1−ct
2 ] ,

ct+1 ∈ [cl
t+1, c

r
t+1] = [ct+1 − ct+1−ct

2 , ct+1 + ct+2−ct+1
2 ] ,

ct+2 ∈ [cl
t+2, c

r
t+2] = [ct+2 − ct+2−ct+1

2 , ct+2 + ct+2−ct+1
2 ] .

Figure 10 shows a graphical representation of these intervals.

Figure 10: Intervals of performance

Therefore the authors create a population of chromosomes containing C1 as its first individ-
ual and the remaining ones initiated randomly, with each gene being in its respective interval of
performance.

The fitness function E(·) presented in the genetic simplification process introduced in Sec-
tion III.C.4 is used for evaluating the adaptation of each individual of the population in the genetic
tuning process.
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V Examples of Application: Experiments Developed and Results
Obtained

To illustrate the performance of the seen methods, two applications with different features have been
chosen: the problem of rice taste evaluation [36] and a real-world Spanish electrical distribution
network problem [53, 54, 55].

We are going to develop a comparative study between the eleven methods for each problem.
Afterwards, in Section V.C, we shall carry out a global analysis where we shall look at the general
behavior of the different methods.

With the aim of making easier the identification of the methods, the abbreviations shown in
Table 2 will be considered.

Table 2: Notations considered in this section

Section Author(s) of the Method Abbreviation-Name
III.A.1 Wang and Mendel WM
III.A.2 Nozaki, Ishibuchi, and Tanaka NIT
III.B.1 Shann and Fu SF
III.B.2 Jang (ANFIS) J-ANFIS
III.C.1 Thrift T
III.C.2 Liska and Melsheimer LM
III.C.3 González and Pérez (SLAVE) GP -SLAV E
III.C.4 Cordón and Herrera (D-MOGUL) CH-D-MOGUL
III.C.5 Cordón and Herrera (WM-ALM) CH-WM -ALM
IV.A Jang (ANFIS for tuning) J-ANFIS-tuning
IV.B Cordón and Herrera (tuning) CH-tuning

We have considered the parameters showed in Table 3 for every method in every experiment
developed. With these values we have tried to select standard parameters that work well in most
cases instead of searching very specific values for each problem.

Each table of results will present three groups of data associated to each method: the results
obtained by the method itself (noted by Generation) and two columns showing those obtained after
the application of each one of the introduced tuning processes (noted by J-ANFIS-tuning and
CH-tuning respectively).

The NIT method uses a scale factor (α) that deforms the membership function shape, which
can make it to be considered as a tuning process. For this reason, we do not apply any additional
tuning to this method. In the case of the CH-D-MOGUL method, the generation results showed
are the ones obtained after the application of the Simplification Process (second stage).

To evaluate the quality of the results we are going to use an error function called mean square
error (MSE). We have defined MSE as

MSE =
1

2 ·N

N
∑

i=1

(y′i − yi)2 .

with y′ being the output obtained from the FRBS and with y being the known desired output. The
more closer to zero the measure is, the greater the efficiency is.
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Table 3: Parameters values considered for the methods

Method Parameters Decision
WM Without Parameters

NIT Parameter α 5

SF Maximum number of epochs 1000
Learning rate β 0.01

J-ANFIS Maximum number of epochs 1000
and Step size 0.1

J-ANFIS-tuning Decrease rate of step size 0.9
Increase rate of step size 1.1

Label insertion percentage 60%

T Genetic Parameters explained lower down

LM Creep probability 0.1
Maximum number of rules Max allow

Genetic Parameters explained lower down

GP -SLAV E Maximum number of iterations 1000
Parameter λ 0.8

Parameter K1 0
Parameter K2 1

Adaptation Degree 0

CH-D-MOGUL Generation:
Example covering value ε 1.5
Positive example degree ω 0.05

k-consistency property parameter 0.1
Simplification:

Completeness property parameter τ 0.1
Number of simplified KBs to generate 3

Niche radius r 10% of initial KB rule no.
Power factor β 0.5

Genetic Parameters explained lower down

CH-WM -ALM Genetic Parameters explained lower down
but with 500 generations

CH-tuning Non-uniform mutation parameter b 5
Max-min-arithmetical parameter a 0.35
Completeness property parameter τ 0.1

Genetic Parameters explained lower down

Genetic Parameters Maximum number of generations 1000
Population size 61

Crossover probability 0.6
Mutation probability 0.1

V.A Rice Taste Evaluation

V.A.1 The Rice Taste Evaluation Problem

Subjective qualification of food taste is a very important but difficult problem. In the case of the
rice taste qualification, it is usually put into effect by means of a subjective evaluation called the
sensory test. In this test, a group of experts, usually composed of 24 persons, evaluate the rice
according to a set of characteristics associated to it. These factors are: flavor, appearance, taste,
stickiness, and toughness [36].

Because of the large quantity of relevant variables, the problem of rice taste analysis becomes
very complex, thus leading to solve it by means of modeling techniques capable of obtaining a
model representing the non-linear relationships existing in it. Moreover, the problem-solving goal
is not only to obtain an accurate model, but to obtain a user-interpretable model as well, capable
of putting some light on the reasoning process performed by the expert for evaluating a kind of
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rice in a specific way. Due to all these reasons, in this section we deal with obtaining a linguistic
model to solve the said problem.

In order to do so, we are going to use the data set presented in [36]. This set is composed of
105 data arrays collecting subjective evaluations of the six variables in question (the five mentioned
and the overall evaluation of the kind of rice), made up by experts on this number of kinds of rice
grown in Japan (for example, Sasanishiki, Akita-Komachi, etc.). The six variables are normalized,
thus taking values in the real interval [0, 1].

With the aim of not biasing the learning, we have randomly obtained ten different partitions
of the set mentioned, composed by 75 pieces of data in the training set and 30 in the test one,
for generating ten qualitative models in each experiment. We have worked with fuzzy partitions
obtained from a normalization process in which the universe of discourse of each one of the six
variables has been equally divided into 2 parts, and a triangular fuzzy set has been associated to
each one of them. Figure 5 shows an example of a fuzzy partition with seven linguistic labels.

V.A.2 Experiments and Results in the Rice Taste Evaluation Problem

The results obtained in the experiments developed are collected in Table 4. The values shown
in columns MSEtra and MSEtst have been computed as an average of the MSE values obtained
in the approximation of the training and test data sets, respectively, by the ten linguistic models
generated in each case. The column #R stands for the average of the number of linguistic rules in
the KBs of the models generated from each process.

Table 4: Results obtained in the rice taste evaluation problem

Generation J-ANFIS-tuning CH-tuning
Method #R MSEtra MSEtst #R MSEtra MSEtst MSEtra MSEtst

WM 15 0.01328 0.01312 15 0.00363 0.00372 0.00111 0.00214
NIT 64 0.00300 0.00352 – — — — —
SF 32 0.01940 0.02137 32 0.00397 0.00481 0.00183 0.00331

J-ANFIS 32 0.00503 0.00563 – — — 0.00277 0.00387
T 15.9 0.00495 0.00600 15.9 0.00348 0.00483 0.00115 0.00293

LM 30.6 0.00128 0.00236 30.6 0.00128 0.00236 0.00081 0.00234
GP -SLAV E 24 0.01803 0.02049 24 0.01771 0.02290 0.00791 0.01325

CH-D-MOGUL 6 0.00486 0.00370 4 0.01018 0.01015 0.00108 0.00233
CH-WM -ALM 5 0.00341 0.00398 5 0.00247 0.00323 0.00103 0.00274

It is very remarkable the excellent treatment of the complexity by CH-D-MOGUL and CH-
WM -ALM that obtain bases with a very small number of rules (an average of 6 and 5 respectively).
The number of rules is extremely important in problems that need to be as highly interpretable as
this. Therefore, the work carried out in the phase of Simplification (used in both methods) is very
valuable.

On the other hand, LM obtains results of excellent accuracy but at the expense of to generate
a large number of rules that, as said, is not desirable in this case.

As regards the tuning processes, the adjustment of CH-tuning improves all the results and
equalizes the efficiency grades of the methods. The adjustment of J-ANFIS-tuning also improves
the results but less significantly than CH-tuning. When the models obtained by CH-D-MOGUL
are tuned, the results makes worse a lot. This is due to the fact that, upon to have a low number of
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rules, when J-ANFIS-tuning eliminates some of them, it increases the error. This newly indicates
that the selection realized in CH-D-MOGUL is very appropriate and the number of rules is optimal.

Although NIT generate good values, all of the methods produce less rules than it. We must
not forget that in this problem the complexity is very important. Furthermore, if CH-tuning is
applied, all except J-ANFIS and GP -SLAV E obtain also better accuracy.

V.B Electrical Distribution Networks

V.B.1 The Electrical Distribution Networks Problem

Sometimes, there is a need to measure the amount of electricity lines that an electric company owns.
This measurement may be useful for several aspects such us the estimation of the maintenance costs
of the network, which was the main goal of the problem presented here in Spain [53, 54, 55]. High
and medium voltage lines can be easily measured, but low voltage line is contained in cities and
villages, and it would be very expensive to measure it. This kind of line used to be very convoluted
and, in some cases, one company may serve more than 10,000 small nuclei. An indirect method for
determining the length of line is needed.

The problem involves finding a model that relates the total length of low voltage line installed
in a rural town with the number of inhabitants in the town and the mean of the distances from the
center of the town to the three furthest clients in it [54, 55]. This model will be used to estimate
the total length of line being maintained.

We shall limit ourselves to the estimation of the length of line in a town, given the inputs
mentioned before. Hence, our objective is to relate the first variable (line length) with the other
two ones (population, radius of village).

In this problem, it would be preferable that the solutions obtained verify the following require-
ment: they have not only to be numerically accurate in the problem-solving, but must be able to
explain how a specific value is computed for a certain village. That is, it is interesting that these
solutions are interpretable by human beings to some degree.

To compare the methods, we have randomly divided the sample, composed of 495 pieces of real
data obtained from direct measures in this number of villages [53], into two sets comprising 386
and 99 samples, labeled training and test. In this case, the linguistic variable fuzzy partitions are
divided into 7 fuzzy sets in the experiments developed.

V.B.2 Experiments and Results in the Electrical Distribution Networks Problem

The results obtained with the different linguistic modeling methods considered are shown in Table
5.

The significant differences existing between WM and CH-WM -ALM are because of the fact
that the RB obtained with WM is insufficient since in this application is necessary to deep in certain
zones. CH-WM -ALM allows us to use two different rules defined in the same input subspace but
presenting a different consequent in the case in which it is necessary.

In the generation phase, the genetic methods stand out against the remaining ones. Especially,
LM offers a good result since it generates a model accurate which is in both learning and prediction
thus not presenting overlearning.

SF obtains very bad results because of it has a big dependency of the value assigned to the
weights to accomplish the learning process. Let us suppose that an important rule begins with a
low weight associated, its influence on the NN evolution will be nonvalued and it will be eliminated
in the pruning phase. However, the authors propose to randomly initialize these weights, provoking
with this action the convergence to a local optimum.
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Table 5: Results obtained in the electrical application problem

Generation J-ANFIS-tuning CH-tuning
Method #R MSEtra MSEtst #R MSEtra MSEtst MSEtra MSEtst

WM 24 222623 240018 24 161889 160370 144510 173167
NIT 64 173230 190808 – — — — —
SF 45 1281547 1067993 45 247696 296587 233133 252569

J-ANFIS 49 256605 268451 – — — 244286 263940
T 47 185204 168060 47 184804 168318 169689 175985

LM 49 167014 167383 49 165650 296804 150224 290461
GP -SLAV E 61 346921 379076 39 184650 256420 176145 191721

CH-D-MOGUL 35 167621 207598 35 165633 208693 142503 181288
CH-WM -ALM 20 155866 178601 17 209259 256890 136437 210236

The adjustment of CH-tuning only causes overlearning precisely in the three methods that
obtained the best value of prediction in the generation phase, LM , T , and CH-WM -ALM . This
also occurs when J-ANFIS-tuning are applied. The adjustment of J-ANFIS-tuning works well
with the WM method, which has wrong results in the generation phase, but generally it does not
obtain significant improvement.

V.C Global Analysis

In the following, some conclusions about the methods’ behavior and about the different techniques
used are presented.

V.C.1 Learning Methods

We should underline the good behavior presented by the methods based on GAs on the generation
phase.

The bad results of J-ANFIS are due to the lack of the LSE technique in the Mamdani approach.
The power of this method is based on this technique, but it is only applicable when the consequents
are not linguistic terms (TSK approach). This also affects to the tuning method.

As regards the number of rules in the KBs, the models designed by means of process with Genetic
Simplification Phase (CH-D-MOGUL and CH-WM -ALM) should be highlighted as well, due to
the fact that they always present less rules than the ones in the models generated from remaining
methods.

The number of rules used by GP -SLAV E is only 2 and 9 for the rice and the electrical problems
respectively if we represent them in DNF form. This aspect provides a good interpretation to the
RB generated and, although its accuracy is worse than most methods, it is very interesting in
specific problems. For example, one of the RBs derived by GP -SLAV E in the rice test problem is
as simple as:

IF Taste is Bad and Stickiness is Not sticky THEN Overall Evaluation is Low
IF Taste is Good THEN Overall Evaluation is High
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V.C.2 Tuning Methods

We should remark the good performance of the tuning processes (especially the genetic approach,
CH-tuning), that broadly improve the accuracy of the preliminary RB definitions. However, some
problems of high complexity appear: the tuning applied to initial KBs with good accuracy does
not obtain beneficial results since it increases the overlearning and makes worse the generalization
ability. This is due to that the tuning tends to overfit on the training data in these cases.

A clear inconvenient of J-ANFIS-tuning is that it is more restrictive than the GA-based one
regarding the structure of the KBs to adapt. It does not allow initial KBs with several rules with
the same antecedents and different consequents. In this case, we must consider only one of them
in each input subspace, but this will provoke the loss of part of the input information.

V.C.3 Techniques Used

Next, we remark some comments on the techniques used by the different methods:

• The ad hoc approaches are generally based in data covering, i.e., in an attempt to cover
properly the example set. This implies a big dependency on the data training that may be
imprudent.

• The principal advantages of NNs is that they can learn by generalization and many NNs
are resistive against noise or partial damage after learning. As disadvantages we found that
the convergence of the learning process cannot be guaranteed but has to be gained by often-
extensive experimentation. The NNs have a serious problem when the number of variables
or the number of labels is increased, since the complexity grows geometrically. This is due to
the way considered to represent the rules by means of connections between nodes. Another
important weakness is that NNs are not flexible with the KB representation.

• Whereas GAs have a guaranteed local convergence and are easy to implement, there is no
guarantee to find the optimal solution, and the high amount of individuals to be processed
makes the algorithm relatively time consuming. Pittsburgh GA approaches, as NNs, also
have problems when they work with a lot of variables since the search space will be huge.
A good advantage is that GAs can represent different types of fuzzy rules as approximate
Mamdani or DNF ones.

VI Concluding Remarks

In this Chapter we have accomplished a short revision of FRBSs and we have seen the different
types that currently exist.

Thereinafter, we have focused on linguistic Mamdani FRBSs, which obtain better legibility in
exchange for offering worse accuracy. We have seen ad hoc learning methods and two techniques,
NNs and GAs, that can be applied to the learning of FRBSs. Several forms of facing the learning
have been presented.

Finally, through the application of the reviewed methods, two real applications have been
considered to analyze their behavior. In this study, we have obtained some interesting conclusions.
Among other things, we have proven that the GAs work best and that the tuning phase improves
significantly the accuracy. We have also been able to see the limitations associated with the
linguistic representation when the problem is complex.
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Appendix A: Neural Networks

A.1. Brief Description of Neural Networks

Artificial Neural Networks (ANNs) are computational models that emerged as mathematical
formalization attempts of the structure of the brain [56, 57, 58, 59]. They are outlined as calculation
models for those which exist algorithms that permit to develop cognition tasks such as learning,
classification or optimization. Furthermore, they are characterized by a massively parallel operation
that makes them very efficient. The ANN model can be understood as another way of representing
knowledge. It differs of the high-level mappings (rules, semantic networks, frames, . . . ) in which
works at a subsymbolic level.

An ANN is formed by a set of elemental processing units that are communicated mutually being
shipped signals through weighted connections. The main characteristics of an NN model are:

• A set of processing units, called neurons, cell process elements, etc.

• Each unit, i, receives an input series (from the environment or from other units), that can
take values in various domains. If the set is {0, 1}, the neuron is called binary. If values outlet
in {−1, 1} the name of the neuron is bipolar. But also there are very used the cases in which
the set is a continuous interval as [0, 1] or [−1, 1].

• The neurons are connected among them through links, also called connections or synapses,
that tend to be one-way, though there are models with symmetrical connections as well.
Each connection communicates two units and have associated a weighting or weight, wij ,
that determines the efficiency with which the signals of the neuron i affects the j one.

• An aggregation rule of the inputs, that determines the excitement level of a unit i.

• An activation function, f , that indicates the state or activation level, ai, according to the
excitement level, that can be propagated as input to other neurons.

• In many cases, an external input or trend for each unit, θi, is employed as well. Its performance
is equivalent to a threshold that the total signal that arrives to the neuron must exceed to
enable it.

Processing units. Each unit accomplishes a relatively simple role: it takes the inputs of the
neurons connected to it and the external one and obtains its new state or excitement level from
them. From a new state, and applying the activation function, the output value of the neuron
is obtained to be transmitted to the neurons connected to its output. This output value is the
activation state.

We can build networks by connecting neurons. In them, we distinguish three types of neurons:
input neurons, by which the network downloads from the environment; output neurons that provide
the result of the processing to the environment and hidden neurons whose input and output signals
remain within the system.

The network is inherently parallel in the sense of the fact that many units can accomplish
their calculations at the same time. During the processing, the units can update their state of
synchronous or asynchronous mode. In the synchronous mode, all the neurons are updated simul-
taneously. In the asynchronous one, each unit has a variable probability, time-sensitive, of being
updated and usually only one unit is updated in a given moment. In some instances, the second
mode is more advantageous.
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Connections among the units and aggregation rule. In most cases, it is supposed that
the contributions of the input units are additive. Thus, it is established that the excitement of the
unit j is the weighted sum of the inputs, result to which the threshold is added:

uj(t) =
∑

i

wij(t)xi(t) + θj(t) .

When a connection has a positive weight wij , it is said that the connection is exciting and when
it is negative, it is said it is inhibiting.

Activation rules and output rules. The effect of the excitement level on the activation state
of the neuron is established through the activation function, f . This function takes the current
state of the neuron and the excitement level as inputs and returns the new activation state:

aj(t + 1) = f(aj(t), uj(t)) .

Usually, the activation function is a non-diminishing function of the excitement level of the
neuron. The more employed functions are the step ones: the sign function, the linear function or
S elongated functions such as the logistics and the hyperbolic tangent.

In some instances, the output of a unit can be a stochastic function of the inputs. In this case,
the new activation state is a dependent random variable of the input.

Connection topologies. A relevant aspect of an ANN is the mode in which the units are
connected. According to the type of connection topology, the models of ANN are split into:

• Feed-forward networks. The neurons are arranged in sets called layers. The layers are ordered,
beginning in the input layer (the one which contains the input units) and terminating in the
output layer, so that the links only exist among the neurons of a layer and those of the
immediately next one and only in that sense. There are no links among neurons of a same
layer neither among neurons of non-consecutive layers. In this way, the signals flow from the
input to the output.

• Feed-back networks. Connections toward back and intralayer are allowed, disappearing basi-
cally the layer idea as a functional neurons group.

This distinction is important because the analysis of the network operation (above all, its
dynamic behavior) is very different according to if it spreads toward forward or with feedback.

Once the neurons which a given one is connected to are established, it can be represented the
set of connections with a weight vector. The ordered arrangement of the arrays permits us to build
a matrix that is designated weight matrix of the network. When there is no connection between
two neurons, it is understood that the associated weight is zero.

Training of an ANN. An ANN must be trained so that the application of a set of inputs
produces, well directly or through a learning process, the waited output. The learning involves
modifying the free parameters of the network, i.e., the weights of the connections, so that the
assignment target error to be made zero.

There are several methods to accomplish this. If there is enough knowledge, the weights can
be beforehand calculated. But the more usual method of training the network is based on showing
examples to it and modifying its weights in view of the error produced according to some learning
rule.

The learning methods are classified in two groups:
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• Supervised. Examples that include the desired input and output are shown to the network.

• Unsupervised. The network is trained with examples including only the inputs (the waited
output is not indicated to it). The network must be capable of discovering statistically the
main characteristics of the input samples and to employ them to classify the input patterns.
It does not exist any set of categories in which the patterns should be classified a priori; the
system must develop its own mapping of the input stimuli.

Learning rules. All the learning methods give the setting of the weights of the connections
among units as a result according to a rule.

Nearly all these learning rules are variations of the Hebb rule [60]. The basic idea of this rule is
that if two units i and j are activated simultaneously, their interconnections should be reinforced.
If i is connected to the input of j, the simplest formulation of the Hebb rule prescribes the following
modification:

∆wij = γaiaj ,

with γ being a constant of proportion that represents the learning rate. Another common rule
employs the discrepancy among the current and the desired output instead of the output of the
unit j:

∆wij = γai(dj − aj) ,

with dj being the value expected for the activation level, supplied by a teacher. This rule is known
as the delta rule [61].

Both the Hebb and the delta rules are adapted for the training of feed-forward propagation
networks in which there are no hidden neurons. However, these kinds of networks have a very
limited area of application since they are only capable of solving linearly separable problems. Hence,
simple problems as the representation of or-exclusive (XOR) function can not be solved employing
them. This limitation was demonstrated by Minsky and Papert [62], who also proved that it could
be solved employing hidden neurons. The problem was to find appropriate training procedures.
Rumelhart et al. [63] settled the problem with the presentation in 1986 of the error-backpropagation
algorithm that has turned out to be fruitful and very used.

The error-backpropagation algorithm (EBP). The EBP is a generalization of the delta
rule. The main idea is again to quantify the existing error through the difference among the system
output and the real output. The difficulty lies in that there is now a great number of connections
that increase the error, which do not only relate to the neurons of the output layer. Particularly,
since there is not information on the role that the hidden units play, their contribution to the total
error can not be directly calculated and it is not known how to correctly modify the weights of the
connections associated to them.

The problem can be tackled if it is admitted that the error observed in the output layer should
be primarily due to the action of the hidden units located in the immediately previous layer, that at
the same time are seen as influenced by the elements of the previous layer, and so on. The adaptive
process remains defined in two stages that are going to be repeated until the learning is considered
to be accomplished. In the first the activity level of all the neurons of the network is evaluated
maintaining fixed the values of the connections, which permits to determine the magnitude of the
existing error. In a second stage this error is propagated back layer to layer, successfully modifying
the weights that in the next stage will serve to calculate the new error. This process is the one
which gives name to the learning algorithm.
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Figure 11: Multilayer Neural Network

We consider a network with n input neurons, h hidden neurons and m output neurons (see
Figure 11). The activation function is a differential function of the actual input to the neuron:

ap
j = Fj(e

p
j ) ,

where
ep
j =

∑

i

wija
p
i + θj ,

that is the actual input to the j-th unit for the p-th example.
After the first epoch in which the assignment error by the network is evaluated, each weight is

adjusted according to:
∆pwij = γδp

j a
p
i .

The parameter δp
j adopts different values for the case of output and internal units. It is started

making the setting for the weights that bind the units of the hidden layer and the output ones. In
this case:

δp
j = (dp

j − ap
j )F

′
j(e

p
j )

for any output unit j. If a hidden unit is considered, the values of δp
j are calculated according to:

δp
j = F ′

j(e
p
j )

No
∑

h=1

δp
hwhj .

The latter two equations give us a recursive procedure to calculate the deltas for all the units
in the network. This procedure constitutes the generalized delta rule or the EBP.

The expressions of the algorithm for the case where the activation function is the logistics is
defined as:

F (ep
j ) =

1
1 + exp(−ep

j )
,

and its derivative is:
F ′(ep

j ) = ap
j (1− ap

j ) .

The deltas for the output units result:

δp
j = (dp

j − ap
j )a

p
j (1− ap

j ) ,
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and for the units of the hidden layer:

δp
j = ap

j (1− ap
j )

No
∑

h=1

δp
hwhj .

The gradient descent algorithm requires that the setting is accomplished through minimal steps,
but for practical effects it is interesting to consider a large learning rate γ that permits a quick
learning. The problem is that oscillations can appear. A way to avoid the oscillations for large
values is to accomplish changes in the dependent weights of the previous changes appending a term
moment:

∆wij(t + 1) = γδp
i a

p
j + α∆wij(t) ,

with α being a constant of the moment, measuring the importance of the previous setting in the
current one.

A.2. Neuro-Fuzzy Systems

Fuzzy Logic and NNs are two disciplines that efficiently deal with two different areas of infor-
mation processing. Fuzzy Logic deals with various aspects of uncertain knowledge representation
and processing, and it allows approximate reasoning in the field of knowledge based systems. NNs
are efficient computation structures capable of learning and adapting from examples.

Both techniques have their advantages and their weaknesses. In some sense, they become com-
plementary since some features lacking in one approach are dominant in the other. Fuzzy Systems
are not powerful in learning, adaptation, and parallel computation, where NNs offer a good per-
formance in these aspects. NNs lacks in flexibility, human interaction or knowledge representation,
where Fuzzy Logic is a powerful tool. In the last few years, a large research effort has been made
to synthesize Fuzzy Logic and NNs to produce hybrid Fuzzy-Neural systems.

We prefer to call Neuro-Fuzzy Systems (NFS) to these approaches where NNs are used to provide
inputs for a Fuzzy System, or to change the output of a Fuzzy System to remark that the parameters
of a Fuzzy System are not changed by a learning process in these approaches. If the creation of an
NN is the main target, it is possible to apply fuzzy techniques to speed up the learning process, or
to fuzzify an NN by the extension principle to be able to process fuzzy inputs. These approaches
could be called Fuzzy Neural Networks to stress that fuzzy techniques are used to create or enhance
NNs. We are interested in the first approach.

An NFS has the following five characteristics as in [64] is described:

• An NFS is a Fuzzy System that is trained by a learning algorithm usually derived from
NN theory. The learning procedure operates on local information, and causes only local
modifications in the underlying Fuzzy System. The learning process is not knowledge-based,
but data driven.

• It can be viewed as a special 3-layer feedforward NN. The units in this network use t-norms or
t-conorms instead of the activation functions common in NNs. The first layer represents input
variables, the middle or hidden layer represents fuzzy rules, and the third layer represents
output variables. Fuzzy sets are encoded as connection weights. This view of a Fuzzy System
illustrates the data flow within the system, and its parallel nature. However, this neural
network view is not a prerequisite for applying a learning procedure, but merely a convenience.

• An NFS can always —i.e., before, during, and after the learning— be interpreted as a FRBS.
It is both possible to create the system out of training data from scratch, and to initialize it
by prior knowledge in the form of fuzzy rules.
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• The learning procedure of an NFS takes the semantic properties of the underlying Fuzzy
System into account. This results in constraints on the possible modifications applicable to
the system parameters.

• An NFS approximates an n-dimensional unknown function that is partially given by the
training data. An NFS should not be seen as a kind of fuzzy expert system, and it has
nothing to do with Fuzzy Logic in the narrow sense.

NFSs can be considered as a technique to derive a Fuzzy System from data, or to enhance it by
learning from examples. It is possible to use an NN to learn certain parameters of a Fuzzy System,
like using a self-organizing feature map to find fuzzy rules [65] (cooperative models), or to view a
Fuzzy System as a special NN, and directly apply a learning algorithm [66] (hybrid models).

For more information, refer to [41, 64, 67, 68].

Appendix B: Genetic Algorithms

B.1. Brief Description of Genetic Algorithms

GAs are general-purpose search algorithms that use principles inspired by natural population
genetics to evolve solutions to problems [69]. The basic idea is to maintain a population of knowl-
edge structures that evolves over time through a process of competition and controlled variation.
Each structure in the population represents a candidate solution to the specific problem and has an
associated fitness to determine which structures are used to form new ones in the process of com-
petition. The new individuals are created using genetic operators such as crossover and mutation.
GAs have had a great measure of success in search and optimization problems. The reason of great
part of this success is their ability to exploit accumulative information about an initially unknown
search space in order to bias subsequent search into useful subspaces, i.e., their robustness. This
is their key feature, especially in large, complex and poorly understood search spaces, where the
classical search tools (enumerative, heuristic, . . . ) are inappropriate, offering a valid approach to
problems requiring efficient and effective search.

A GA starts with a population of randomly generated solutions, chromosomes, and advances
toward better solutions by applying genetic operators, modeled on the genetic processes occurring
in nature. As mentioned in these algorithms we maintain a population of solutions for a given
problem; this population undergoes evolution in a form of natural selection. In each generation,
relatively good solutions reproduce to give offspring that replace the relatively bad solutions, which
die. An evaluation or fitness function plays the role of the environment to distinguish between good
and bad solutions. The process of going from the current population to the next one constitutes
one generation in the execution of a genetic algorithm.

Although there are many possible variants of the basic GA, the fundamental underlying mech-
anism involves three operations:

(1) evaluation of individual fitness,

(2) formation of a gene pool (intermediate population), and

(3) recombination and mutation.

Figure 12 shows the structure of a simple GA.
A fitness function must be devised for each problem to be solved. Given a particular chro-

mosome, a solution, the fitness function returns a single numerical fitness that is supposed to be
proportional to the utility or adaptation of the solution represented by this chromosome.
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Procedure Genetic Algorithm
begin (1)

t = 0;
initialize P (t);
evaluate P (t);
While (Not termination-condition) do
begin (2)

t = t + 1;
select P (t) from P (t− 1);
recombine P (t);
evaluate P (t);

end (2)
end (1)

Figure 12: Structure of a GA

There are a number of ways to do selection. We might view the population as a mapping onto
a roulette wheel, where each individual is represented by a space that proportionally corresponds
to its fitness. By repeatedly spinning the roulette wheel, individuals are chosen using stochastic
sampling with replacement to fill the intermediate population. The selection procedure proposed
by Baker [49], called stochastic universal sampling, is one of the efficient proposals for avoiding the
genetic drift [70]. The number of offspring of any structure is bound by the floor and ceiling of the
expected number of offspring.

After selection has been carried out, the construction of the intermediate population is com-
pleted and recombination and mutation can occur.

The crossover operator combines the features of two parent structures to form two similar
offspring. Classically, it is applied at a random position with a probability of performance, the
crossover probability, Pc. The mutation operator arbitrarily alters one or more components of
a selected structure so as to increase the structural variability of the population. Each position
of each solution vector in the population undergoes a random change according to a probability
defined by a mutation rate, the mutation probability, Pm.

Figures 13, 14, and 15 illustrate the basic operations: reproduction, crossover, and mutation.

Figure 13: Evaluation and contribution to the gene pool

It is generally accepted that a GA must take into account the five following components to solve
a problem:
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Figure 14: Recombination. One-point crossover

Figure 15: Mutation

1. A genetic representation of solutions to the problem,

2. a way to create an initial population of solutions,

3. an evaluation function which gives the fitness of each individual,

4. genetic operators that alter the genetic composition of children during reproduction, and

5. values for the parameters that the GA uses (population size, probabilities of applying genetic
operators, etc.).

The basic principles of the GAs were first laid down rigorously by Holland [69] and are well
described in many texts as [70, 71].

B.2. Genetic Fuzzy Systems

Although GAs are not learning algorithms, they may offer a powerful and domain-independent
search method for a variety of learning tasks. In fact, there has been a good deal of interest in
using GAs for machine learning problems [72].

Three alternative approaches, in which GAs have been applied to learning processes, have
been proposed, the Michigan [73], the Pittsburgh [74], and the Iterative Rule Learning (IRL) [46]
approaches. In the first one, the chromosomes correspond to classifier rules that are evolved as a
whole, whereas in the Pittsburgh approach, each chromosome encodes a complete set of classifiers.
In the IRL approach each chromosome represents only one rule, but contrary to the first, only
the best individual is considered as the solution, discarding the remaining chromosomes in the
population.

Recently, numerous papers and applications combining fuzzy concepts and GAs have appeared,
and there is an increasing concern about the integration of these two topics. In particular, a great
number of publications explore the use of GAs for designing Fuzzy Systems. These approaches
receive the general name of Genetic Fuzzy Systems (GFSs) [19, 34].

The automatic design of Fuzzy Systems can be considered in many cases as an optimization or
search process on the space of potential solutions. GAs are the best known and most widely used
global search technique with an ability to explore and exploit a given operating space using available
performance measures. A priori knowledge in the form of linguistic variables, fuzzy membership
function parameters, fuzzy rules, number of rules, etc., may be easily incorporated into the genetic
design process. The generic code structure and independent performance features of GAs make
them suitable candidates for incorporating a priori knowledge. Over the last few years, these

42



advantages have extended the use of GAs in the development of a wide range of approaches for
designing Fuzzy Systems.

As in the general case of Fuzzy Systems, the main application area of GFSs is system modeling
and control. Regardless the kind of optimization problem, i.e., given a system to be modeled or
controlled, the involved learning or tuning process will be based on evolution. Three points are the
keys to a genetic process: the population of potential solutions, the pair evolution operators/code,
and the performance index.

A GFS combines the main aspects of the system to be obtained, a Fuzzy System, and the design
technique used to obtain it, a GA, with the aim of improving as far as possible the accuracy of
the final Fuzzy System generated. One of the most interesting features of a Fuzzy System is the
interpolated reasoning that develops. This characteristic plays a key role in the high performance
of Fuzzy Systems and is a consequence of the cooperation among the fuzzy rules composing the KB.
As is known, the output obtained from a Fuzzy System is not usually due to a single fuzzy rule but
to the cooperative action of several fuzzy rules that have been fired because they match the input
to the system to some degree.

On the other hand, the main feature of a GA is the competition among members of the population
representing possible solutions to the problem being solved. In this case, this characteristic is due
to the mechanisms of natural selection on which the GA is based.

Therefore, since a GFS combines both aforementioned features, it works by inducing compe-
tition to get the best possible cooperation. This seems to be a very interesting way to solve the
problem of designing a Fuzzy System, because the different members of the population compete
with one another to provide a final solution presenting the best cooperation among the fuzzy rules
composing it. The problem is to obtain the best possible way to put this way of working into
effect. This is referred to as Cooperation vs. Competition Problem [75]. The difficulty of solving
the introduced problem depends directly on the genetic learning approach followed by the GFS
(Michigan, Pittsburgh, or IRL).

Different GFS proposals can be found in [34, 76, 77, 78].
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[2] Bárdossy, A., and Duckstein, L. (1995). “Fuzzy rule-based modeling with application to geophysical,
biological and engineering systems.” CRC Press.

[3] Chi, Z., Yan, H., and Pham, T. (1996). “Fuzzy algorithms: with applications to image processing and
pattern recognition.” World Scientific.

[4] Hirota, K. (Ed.) (1993). “Industrial applications of fuzzy technology.” Springer-Verlag.

[5] Pedrycz, W. (Ed.) (1996). “Fuzzy Modelling. Paradigms and Practice.” Kluwer Academic Press.

[6] Klir, G. J., and Yuan, B. (1995). “Fuzzy sets and fuzzy logic.” Prentice-Hall.

[7] Zimmermann, H. J. (1996). “Fuzzy sets theory and its applications.” Kluwer Academic Press.

[8] Zadeh, L. A. (1973). Outline of a new approach to the analysis of complex systems and decision
processes. IEEE Transactions on Systems, Man, and Cybernetics 3, pp. 28–44.

[9] Wang, L. X. (1994). “Adaptive fuzzy systems and control.” Prentice-Hall.

[10] Mamdani, E. H. (1974). Applications of fuzzy algorithm for control a simple dynamic plant. Proc. of
the IEEE 121, pp. 1585–1588.

43



[11] Mamdani, E. H., and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic
controller. Int. Journal of Man-Machine Studies 7, pp. 1–13.

[12] Sugeno, M., and Yasukawa, T. (1993). A fuzzy-logic-based approach to qualitative modeling. IEEE
Transactions on Fuzzy Systems 1, pp. 7–31.

[13] Lee, C. C. (1990). Fuzzy logic in control systems: Fuzzy logic controller – Parts I and II. IEEE Trans-
actions on Systems, Man, and Cybernetics 20, pp. 404–435.
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[44] González, A., and Pérez, R. (1995). Structural learning of fuzzy rules from noisy examples. Proc. of the
4th IEEE Int. Conf. on Fuzzy Systems/IFES’95, Yokohama, Vol. 3, pp. 1323–1330.
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