
Received: 9 June 2020 | Revised: 13 November 2020 | Accepted: 6 December 2020

DOI: 10.1002/int.22354

RE S EARCH ART I C L E

How fair can we go in machine learning?
Assessing the boundaries of accuracy
and fairness

Ana Valdivia1 | Javier Sánchez‐Monedero2 | Jorge Casillas3

1Department of War Studies, King's
College London, London, UK
2School of Journalism, Media and
Culture, Data Justice Lab, Cardiff
University, Cardiff, UK
3Department of Computer Science and
Artificial Intelligence, Data Science and
Computational Intelligence Institute
(DaSCI), University of Granada,
Granada, Spain

Correspondence
Ana Valdivia, Department of War
Studies, King's College London, London
WC2R 2SL, UK.
Email: ana.valdivia@kcl.ac.uk

Funding information

European Research Council,
Grant/Award Number: 759903;
European Union's Horizon 2020 research
and innovation programme,
Grant/Award Number: 819213; Spanish
Ministry of Science and Innovation,
Institute of Health Carlos III,
Grant/Award Number: PI20/01435

Abstract

Fair machine learning has been focusing on the develop-

ment of equitable algorithms that address discrimination.

Yet, many of these fairness‐aware approaches aim to

obtain a unique solution to the problem, which leads to a

poor understanding of the statistical limits of bias mitiga-

tion interventions. In this study, a novel methodology is

presented to explore the tradeoff in terms of a Pareto front

between accuracy and fairness. To this end, we propose a

multiobjective framework that seeks to optimize both

measures. The experimental framework is focused on

logistiregression and decision tree classifiers since they

are well‐known by the machine learning community. We

conclude experimentally that our method can optimize

classifiers by being fairer with a small cost on the classi-

fication accuracy. We believe that our contribution will

help stakeholders of sociotechnical systems to assess how

far they can go being fair and accurate, thus serving in the

support of enhanced decision making where machine

learning is used.
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1 | INTRODUCTION

Algorithmic and data‐driven decision making has rapidly swept through several social, political,
and industry contexts. Beyond the possible misuses of technology, there is an increased awareness
that these processes are not neutral and can reproduce and amplify past and current structural
inequalities.1,2 Within this context, particular interest is paid to the role of machine learning (ML)
with well known examples of models biased against historically discriminated groups3‐5 or the
intersection of these groups.6,7 Fairness, Accountability, Transparency, and Ethics (FATE) in ML
has emerged as a community initially motivated to develop technological solutions to the disparate
impact and treatment by biased algorithms5,8‐11 that also moves to a broader and multidisciplinary
understanding of the issues of sociotechnological interventions.12‐15 The present work contributes
to this field by studying how far bias mitigation can go while satisfying the accuracy of the models,
providing a tool for a wider understanding of accuracy and fairness tradeoff.

Bias mitigation techniques can broadly be divided into three nonexclusive categories16: (1)
preprocessing, (2) inprocessing, and (3) postprocessing. The preprocessing techniques attempt
to learn new representations of data to satisfy fairness definitions. The inprocessing methods
involve modifying the classifier algorithm by adding a fairness criteria to the optimization
problem. The postprocessing methods aim at removing discriminatory decisions after the
model is trained. Normally, in inprocessing approaches the fairness criteria are used as an
optimization constraint rather than as a guide to build a more equitable prediction model. As a
result of the optimization process, those fixed restrictions will come out with a degree of equity
that might not match the problem requirements whereas the space of solutions that can be
reached remains unknown so that decision makers cannot observe the range of possibilities
and their behavior.

The main contribution of this paper is a methodology that explores optimal ML solutions
and evaluates the boundaries of fairness in relation to other dimensions of the evaluation of an
ML model. We claim that multiobjective evolutionary algorithms might be used to direct a
meta‐learning process for optimizing the hyperparameters of a classifier. Thus, we propose to
use a genetic algorithm to tune learner hyperparameters to find models that offer a wide
repertoire of balances between precision and fairness. The architecture of this methodology can
be applied to any type of classifier and hyperparameter set and the optimization is independent
of the definition of fairness and precision. In particular, we focus the study on the suitability of
both logistic regression and decision trees as base learners because of their properties of good
accuracy with considerable simplicity (in the former case) and transparency (in the latter case).
As a result of the meta‐learning process, the method produces a Pareto front with a set of
suboptimal feasible solutions. In this way, the method addresses the previous issues of single
constrained optimization proposals to build fair models.

We conduct an extensive set of experiments based on five real‐world data sets which are widely
used in the FATE literature. The solution space obtained by our approach indicates that there exists
a wide number of optimal solutions (Pareto optimal) that are characterized by not being dominated
by each other. We also evaluate the boundaries between accuracy and fairness that can be achieved
on each problem, giving an empirical visualization of the limits between both measures. In
addition, we assess how decision trees hyperparameters are affected by this tradeoff. Finally, a
convergence analysis is also presented to evaluate the evolutionary methodology.

As far as we know, multiobjective optimization has not yet been used in the field of FATE
in ML, so we believe that the proposal will open a very fruitful and beneficial research line,
enriching the current state‐of‐the‐art.
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2 | BACKGROUND

To ground our methodology, we begin by reviewing relevant works in bias mitigation
(Section 2.1). We then introduce evolutionary algorithms for multiobjective optimization
(Section 2.2).

2.1 | Optimizing fairness and accuracy

Bias mitigation algorithms often explicitly or implicitly add fairness constraints on model group
performance. Typically there is a categorical binary variable for group membership which is
often referred as sensitive attribute. In this section, we introduce some related works that aim at
optimizing for fairness and accuracy. For further information on the relation between accuracy
and fairness measures, we refer to Reference [17].

Logistic regression algorithms have been widely used in fairness literature. For instance, the
authors in Reference [8] presented a flexible convex optimization framework that minimizes
the accuracy loss function subject to fairness constraints. The method is valid for boundary‐
based classifiers such as logistic regression and proved that it allows to control fairness, often at
a small cost in accuracy. In the context of decision trees, in Reference [18] the information gain
function used for splitting and pruning is modified to add the entropy with respect to the
sensitive attribute as splitting or pruning criteria. The authors explored several options. The
first one considers the entropy with respect to the class label, but it does not allow splitting if it
introduces discrimination with respect to sensitive attribute. The second alternative imple-
ments a tradeoff between objectives by dividing the gain in accuracy by the gain in dis-
crimination however this option did not achieve suitable results.

More recently, authors in Reference [19] proposed to reduce fair classification to a sequence
of cost‐sensitive classification tasks to obtain Pareto optimality between overall accuracy and
any fairness definition. In related work,20 Balashankar et al. found a Pareto optimal
point which maximizes multiple subgroup accuracy measures while satisfying equality of
opportunity.

Zafar et al.21 formulated the problem as a convex constrained optimization problem that
allows a dual formulation in which accuracy is optimized under fairness constraints. In their
formulation, fairness is introduced in terms of a measure of the fairness of the decision
boundary that serves as a proxy to many fairness statistical metrics. The tradeoff between
accuracy and fairness due to disparate mistreatment is expressed as a threshold parameter
established by the user. Moreover, the formulation allows introducing several attributes as
constraints, for example, race and gender.

Hu et al.22 transformed the constrained loss minimization problem into a social welfare
maximization problem. Using support vector machines regularization path and techniques
from parametric programming, they showed that always preferring more fair solutions does not
abide by the Pareto Principle. They concluded that applying strict fairness criteria can lead to
worse welfare outcomes for the groups.

This brief literature review reveals the research interest in exploring the simultaneous
optimization of accuracy and fairness. While some proposals obtain Pareto optimal solutions
that implicitly set a tradeoff between objectives, other works introduce a user parameter to
explicitly define the tradeoff. As an alternative to this, our work aims to provide the whole
Pareto front as a means to train learners and to explore the impact of the models, and, in
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general, to better understand the behavior of the combination between a data set and
knowledge representation.

2.2 | Multiobjective evolutionary algorithms

Multiobjective optimization is a field of decision making which aims at optimizing simulta-
neously more than one objective function. This field of research has developed a large number
of applications in engineering, economics, and logistics, where optimal decisions need to be
taken in the presence of tradeoffs between two or more competitive objectives. Maximizing
comfort and energy saving in a climatization system is a practical example of multiobjective
problem involving two objectives. Mathematically, this can be formulated as follows:

∈f x f x x Xmin( ( ), …, ( )) s. t . ,n1

where n > 1 is the number of objective functions and X is the set of feasible solutions.
When multiple objective functions appear in a problem, no single solution exists that

optimizes each function at once. Otherwise, the presence of multiple objectives gives a set of
optimal solutions, possibly infinite. A solution is nondominated whether does not exist another
solution that dominates the current one, that is, it does not improve one objective function
without worsening other objective functions.

Definition 2.1. A solution ∈x X is said to dominate another solution ∈x X′ , if it is
better or equal in all the objectives and strictly better in at least on of them, that is,

• ≼ ∀ ∈f x f x i n( ) ( ′), {1, …, }i i and,
• ≺ ∈f x f x j n( ) ( ′), for at least one index {1, …, }j j .

A solution is called Pareto optimal if there does not exist another solution that dominates it.
Consequently, the set of all Pareto optimal solutions is defined as Pareto front or boundary.
Assessing this frontier allows decision‐makers to select any efficient solution, depending on the
worthiness of each objective function.

An evolutionary algorithm is a family of bioinspired meta‐heuristic algorithms which often
are well‐suited for solving optimization problems. Inspired by some aspects of natural evolu-
tion, the basic idea is that fitter individual, this is the solutions to a problem, are more likely to
survive and thus contribute to the gene pool of the offspring while unfit members will not likely
contribute to the following generations. Over the last decades, a number of multiobjective
evolutionary algorithms have been developed to search for multiple Pareto optimal solutions.

3 | MULTIOBJECTIVE METHOD FOR ACCURATE AND
FAIR MACHINE LEARNING

We propose a methodology based on the nondominated sorting genetic algorithm II (NSGA‐II)
(see Appendix A) to train a set of classifiers that best tradeoff accuracy and fairness. To obtain
the Pareto optimal solutions, the meta‐heuristic algorithm will optimize the combination of
learner parameters. The selection mechanisms are inspired by the elitist NSGA‐II method23
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which was described in the previous section. As proof of concept, we tested our methodology
with logistic regression and decision trees as base ML classifiers.

3.1 | Meta‐learning approach

The pseudo‐code of the meta‐learning approach is presented in Algorithm 1. Additionally,
Figure 1 presents a visual diagram of the workflow.

Algorithm 1: Meta‐learning algorithm

Input: objective function of accuracy and fairness ( f1 and f2), number of hyperparameters of the ML classifier
(m), intervals of hyperparameters ( hmin( )i and ∀ ∈h i mmax( ) {1, …, }i ), data sets, and the protected
attribute

Output: Set of ML models with different accuracy‐fairness tradeoffs
Data: training (learning and validation) and testing data set (Dlearn, Dval, and Dtest)
Parameters: number of generations (G), population size (N ), crossover probability (pc), mutation probability

(pm), mutation parameter (μ)
begin
initialize population P1

evaluate objective functions (P D, val1 )
nondominated rank individuals of P1

while ≤k G do
←Pk

(1) elitist selection (Pk−1)
←Pk

(2) crossover (Pk
(1))

←Pk
(3) mutation (Pk

(2))
while ≤ ≤l N1 do
create Skl solution by training classifier (I D,kl learn)
evaluate objective functions (S D,kl val)

end while
nondominated rank individuals of population Pk

(3)

←Pk elitist nondominated replacement (P P,k k
(3)

−1)
end while
return nondominated solutions in Pk

end

Specifically, the meta‐learning consists of dividing the training set into two subsets
(learning and validation) where the classification models will be built from the first set, and
fairness and accuracy will be measured with the second one. The multiobjective algorithm will
ensure that, in each iteration, the set of the best hyperparameter configurations will survive so
that the NSGA‐II will explore new settings around them. At the end of the meta‐learning
process, a set of suboptimal solutions is returned and evaluated with the testing set.

The main advantage of the proposed method is that it can obtain a wide number of sub-
optimal solutions in one run. Also, the method allows to use any ML classifier without mod-
ifying it as unlike the inprocessing technique. These learner‐dependent components (coding
scheme and initialization) are described in next Section 3.2, while subsequent Sections 3.3–3.5
extensively describe the rest of evolutionary algorithm components that are independent of the
base learner used.
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3.2 | Coding scheme and pool initialization: Machine learning
classifiers

The coding scheme and the pool initialization are the two only components of the proposed
method that depends on the base machine learner. In this section we explain the coding
scheme and initialization for logistic regression and decision trees.

3.2.1 | Logistic regression

Classifier
Logistic regression also referred to as logit, is considered one of the most used learning methods
for classification. This classifier is a very transparent and intelligible model, it fits a linear
equation that predicts an outcome for a binary variable. However, the input data needs to be
standardized to properly interpret the coefficients and the relationship between the input and
output.

One important concept related with logistic regression is regularization. Any modification
of a learning method to improve performance on the unseen data sets is called regularization.
Generally, in the logistic regression model a penalty term is added to the loss function, which is
known as the l2 penalty.

FIGURE 1 This diagram overviews the flow of the proposed meta‐learning. The first population is randomly
generated at the initialization step. Given the values of each gene, N learners are trained and evaluated with each
combination of hyperparameters afterwards. The NSGA‐II ranks the individuals, that is the trained learners, by
evaluating the objective functions on the validation set. After that, the NSGA‐II generates an offspring population
which is also evaluated. Finally, the method selects the best N ‐members among parents and children to form the
next population using a selection mechanism known as elitist nondominated sorting. This process is repeated until
the last generation G is reached [Color figure can be viewed at wileyonlinelibrary.com]
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Hyperparameters
We have considered the following hyperparameters of the logistic regression:

• max_iter: Maximum number of iterations taken for the solvers to converge with values in
[20,200].

• tol: Tolerance for stopping criteria taking values in [1e‐4,1e‐1].
• lambda: Regularization parameter taking values in [1e‐3,1e5].
• l1_ratio: It is used to specify a combination of penalties L1 and L2. The paremeter takes
values in [0,1], with 0 meaning that only L2 is used, while 1 means only L1 is used.

• class_weight: It is used to give weight to each class, which is considered when
measuring the quality of the splits. It is very useful for unbalanced datasets where models
usually misclassified the minority class. It takes values in [0, 1]. The positive class is weighted
with class_weight, while the negative one is 1‐class_weight. A value of 0.5
means both classes are evenly considered.

Using the logistic regression learner, the jth‐individual, Ikj, of the kth‐population, Pk is a
trained model. In turn, this model is trained with am‐tuple gen, gkj, which contains the values
of each hyperparameter h h h= { , …, }m1 on each corresponding position, hence m = 5:

≔

≔

I g

h

logistic_regression( )

{max_iter, tol, lambda, l1_ratio, class_weight}.

kj kj

Pool initialization
The initialization step generates the first pool. The first individual generated (I11) is created with the
folloging default values of hyperparameters: g None= (100, 0.0001, 1, 0, )11 . The second individual
(I12) is created with the same values but using L1 norm: g None= (100, 0.0001, 1, 1, )11 . The re-
maining individuals are generated at random within the variation interval of each hyperparameter.

3.2.2 | Decision tree

Classifier
Decision trees are considered white box models, since it is easy to analyze the steps taken to
classify data.24 They are easy to interpret, and they can be summarized in a set of rules. This
fact supports another of the FATE community's claims, which is transparency. By using de-
cision trees as classifiers, we allow decision makers to understand the behavior of the model.

In addition, these kind of algorithms do not require data normalization or dummy variables
creation, since they are able to use both numerical and categorical data. This fact simplifies the
preprocessing step, which can directly affect the accuracy and fairness of the classifier.16

Hyperparameters
We consider the following hyperparameters of the decision tree learner:

• criterion: This function measures the quality of a split. Decision trees split nodes as long as
this value decreases. The purity of a node can be measured with the Gini index and the entropy.

• max_depth: The maximum depth of the tree. Deeper trees are more complex.
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• min_samples_split: The minimum number of samples required to divide an internal
node. In this case, a higher number of samples tends to produce simpler trees.

• max_leaf_nodes: Total number of leaves in a tree. The higher the number of leaves, the
more complex the tree.

• class_weight: Same as before (See hyperparameters of logistic regression).

The criterion, max_depth, and min_samples_split adjust the size of the tree in
different directions, which means that different balances between precision and complexity can be
found. Moreover, if the search of the best set of hyperparameters is guided by any fairness metric, the
structure of the tree can be regulated towards branches that do not generate disparities among
groups. The class_weight hyperparameter addresses disparity by transferring instances be-
tween false‐positives and false‐negatives.

In this case, the jth‐individual, Ikj, of the kth‐population, Pk, is a trained decision tree.
In turn, this tree is trained with a m‐tuple gen, gkj, which contains the values of each
hyperparameter h h h= { , …, }m1 on each corresponding position, hence m = 5:

≔I gdecision_tree( )kj kj

≔h {criterion, max_depth, min_samples_split, max_leaf_nodes, class_weight}.

Since three of the hyperparameters are categorical or integer numbers, those genes are rounded
after their decoding to obtain the proper value for the classifier.

Pool initialization
The initialization step generates the first pool. The first individual generated (I11) is created with
default values of hyperparameters: ∞ ∞g Gini= ( , , 2, , 0.5)11 . The purity of the node is measured
with the Gini index; the tree can be widened and deepened as needed since the limits for the depth
and number of leaves within a node is not fixed and the lowest minimum of samples to split is
used; both positive and negative class have the same weight. After training the first tree with these
hyperparameters, the remaining individuals are generated considering the actual values of depth
and leaves of that first tree as limit. The second individual will be generated with entropy criterion
and those limits, while the rest of individuals are generated with random hyperparameters within
the limits fixed by the first individual.

For a better understanding of the previous paragraph, we propose a practical case.
Given the first individual of the first generation of the meta‐learning (I11), the first tree is
trained with the specific values of the hyperparameters ∞ ∞Gini( , , 2, , 0.5). Thereafter, the
decision tree has a depth of value depth I D( ) =11 and a total number of leaves equals to
leaves I L( ) =11 . The second individual (I12) is then trained with the following hyperpara-
meter set: entropy D L( , , 2, , 0.5). These limits for the depth and number of leaves of
the tree (D and L) will be preserved throughout the process until completion, that
is, I c d s l w= ( , , , , )j1 with c Gini entropy~{ , }, d U D~ (1, ), s U~ (2, training_set_size), l U L~ (1, ),
and w U~ (0, 1). In this way, this ad hoc modification will let the meta‐learning to better
adjust to data set characteristics.
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3.3 | Crossover operator

The crossover generates two individuals (Ikj and Ik j, +1) that inherit the hyperparameters given
by two parents (Ik a−1, and Ik b−1, ), depending on the crossover probability (pc). Concretely, this
match is based on a given parameter u ~ (0, 1) which follows a uniform distribution. If this
value is ≤u pc, the crossover function assigns the same hyperparameter value of the parents to
the children. Otherwise, it assigns a linear combination of parents' hyperparameters (gk a−1, and
gk b−1, ), where the parameter β~ (0, 1) :

∣ ∣

∣ ∣

g
g g

β
g g

g
g g

β
g g

=
+

2
+

−

2

=
+

2
−

−

2

kj
k a k b k a k b

k j
k a k b k a k b

−1, −1, −1, −1,

, +1
−1, −1, −1, −1,

After that, genes of the resulting offspring are rounded off and decoded to obtain the proper
values for the hyperparameters. In integer genes, the rounded values replaces the decimal ones
to ensure a more effective search space.

3.4 | Mutation operator

The mutation operator changes the real membership function hyperparameter values encoded
in the chromosome, according to the mutation probability (pm) per individual. The
gene (hyperparameter) to be mutated is randomly selected over the five genes. Then, given
u u′, ″~ (0, 1) , the chromosome is mutated as follows:

≥{g
g δ g h u

g δ h g u
=

+ ( − min( )), ′ < 0.5

+ (max( ) − ), ′ 0.5kj

kj kj i

kj i kj

where

≤{δ
u u

u u
=

−1 + 2 ″ , ″ 0.5

1 − 2(1 − ″) , ″ > 0.5.

μ

μ

1
+1

1
+1

3.5 | Multiobjective approach

The multiobjective optimization is based on two objective functions to be minimized:
f1 evaluates the accuracy and f2 the fairness of the model. Thus, f1 is focused on improving
the prediction performance while f2 is used to mitigate the discrimination of the ML
algorithm.

Both concepts of accuracy and fairness can be defined in several ways, referring to
different meanings. Although the proposed methodology is totally flexible for using any
definition, in this study we focus on two of them. We define y as the binary class label
vector where 1 is the positive outcome and 0 is the negative outcome; ŷ is the predicted
outcome of the ML classifier; z is the associated protected feature of each individual, where
1 is the privileged class.
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3.5.1 | Error

We consider the Geometric Mean (G‐mean) to evaluate the performance of the assessment task.
G‐mean is also widely used for quantifying the classifier performance in class imbalanced
problems, since it evaluates both positive and negative classes. It combines true‐positive rate
(TPR) ( ∣Pr y y( ˆ = 1 = 1)) and true‐negative rate (TNR) ( ∣Pr y y( ˆ = 0 = 0)):

∣ ⋅ ∣y y P y y P y yG ‐mean( ˆ, ) = ( ˆ = 1 = 1) ( ˆ = 0 = 0) .

By maximizing this measure, we ensure the cost of false‐positive and false‐negative to be
low. Since our method is designed for a minimization problem, we consider the first objective
function as the G‐mean error, that is, f y y y y( ˆ, ) = 1 − G ‐mean( ˆ, )1 .

3.5.2 | (Un)fairness

There is no unified statistical or computational formalization of (un)fairness and thus multiple
definitions have been proposed in the late years.25 Indeed, the general consensus is that the
meaning and implication of each approach highly depends on the context and consequential
decisions associated with an intelligent system.26 Fairness can be procedural or substantive,
what is also referred to as equal treatment or opportunity‐based versus outcome‐based notions
of bias.15 Proposals can be widely categorized as individual, similar individuals will get similar
predictions, and group fairness, as equal impact on groups. In real conditions, individual and
group fairness are often incompatible objectives11,27 and thus the selection criteria corresponds
to each particular context.26 For instance, it has been argued that equal opportunity is a suitable
metric for designing nondiscriminatory loan strategies28 whereas disparate false positive rate is
a widely used metric to quantify discriminator behavior of recidivism algorithms.4

For the purpose of this study, we selected one unfairness metric as one of the objective
functions for all the data sets but any of the metrics available in the literature could be used
(notice that the proposed method optimizes hyperparameters of learners and, therefore, the
fairness criteria do not need to be differentiable, thus allowing a wider bank of definitions). We
consider the difference of the unfairness measure proposed for avoiding disparate mistreatment,
defined as false‐positive rate (FPR).8,27 This definition ensures that misclassification rates are
balanced across groups of the protected attribute z:

∣ ≠ ∣ ≠ ∣ ∣f y y y y P y y z y P y y z y( ˆ, ) = FPR ( ˆ, ) = ( ˆ = 0, = 0) − ( ˆ = 1, = 0) .2 diff

3.5.3 | Domination criterion

In case of using logistic regression as base learner, the domination criterion is standard, that is,
a set of hyperparameters X dominates other set Y if the classification model generated from X

is better or equal than the one generated by Y in both accuracy and fairness and strictly better
in at least one of them.

In case of using decision trees, the domination criterion is more sophisticated to achieve a
more effective optimization. Given X the genotype (learner's hyperparameters) and Y the
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phenotype (classification model, i.e., decision tree), the →f X Y: map obtained by the pro-
posed method is characterized by being a noninjective nonsurjective function. It is not injective
as different values of hyperparameters can lead to obtain exactly the same decision tree. It is not
surjective as the image (set of all possible decision trees generated by our method) does not fill
the whole codomain, that is, it is not possible to obtain any decision tree, only those generated
by the learner. The cardinality of Y is much more lesser than the cardinality of X .

As a result, there are many different individuals that generate exactly the same decision
tree, and so the same objective functions. This impairs the search process as variations gen-
erated by crossover and mutation do not change the objective functions. To palliate this effect,
we have improved the domination criterion as follows. Once two individuals have the same
values for both objectives, we consider that the individual that generates the tree with the
lowest number of leaves dominates the other one. In case of a tie also in this value, the
individual with the lowest value of the hyperparameter max_leaf_nodes is considered to
dominate the other one.

4 | EXPERIMENTAL ANALYSIS

In this section we first describe the data sets used for assessing the proposed methodology.
After that, we define the parameter setup used in these experiments. Finally, the obtained
results and its analysis is provided.

4.1 | Data sets

We ran experiments based on five realworld data sets from different domains like salaries,
recruitment processes, credit risks, or recidivism risk assessment. These data sets have been
widely used as benchmarking in state‐of‐the‐art in fairness.16 They are freely available in a
Github repository1. A brief description of the data set context is given below:

• Adults: This data set contains demographic information about the U.S. citizens in 19942.
There are 32,561 instances and 14 attributes. The prediction task is to asses whether an
individual earns more (positive class) or less (negative class) than $50K per year. The pro-
tected attribute considered is race.

• German: It contains financial information about individuals3. There are 1000 instances and
20 attributes. The prediction task is to assess the credit risk of individuals. The protected
attribute considered is age.

• ProPublica: This data set is about the performance of COMPAS algorithm, a statistical
method for assigning risk scores within the U.S. criminal justice system created by
Northpointe. It was published by ProPublica in 2016,4 claiming that this risk tool was biased
against African‐American individuals. In this data set, they analyzed the COMPAS scores for
“risk of recidivism” and checked to see how many were charged with new crimes over the

1
https://github.com/algofairness/fairness‐comparison/tree/master/fairness/data. Last date accessed: November 8, 2020
2
http://archive.ics.uci.edu/ml/datasets/adult
3
http://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data)
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next 2 years. It contains individuals from the Broward County (Florida) in 2013 and 2014.
There are 7214 individuals containing 52 attributes. From these attributes, we have used the
following 12 in the experiments of this paper16: sex, age, age_cat, race,
juv_fel_count, juv_misd_count, juv_other_count, priors_count,
c_charge_degree, c_charge_desc, decile_score, score_text. The
prediction variable is whether the individual will be rearrested in 2 years or not. The protected
attribute is race.

• ProPublica violent: This data set describes the same scenario as the previous one, but in
this case the outcome is whether the rearrest happened within 2 years was for a violent
crime.4 It contains 4743 individuals and also the 12 attributes. The protected attribute is
also race.

• Ricci: This data set comes from labor law case from the United States, where several fire-
fighters from New Haven (Connectitut) claimed for disparate impact on the promotion
decision. It contains the scores obtained in the exam taken to be promoted.3 There are a total
number of 118 rows and 4 attributes. The protected attribute is race.

Each data set is preprocessed to assure that the input data satisfies the classifier require-
ments by removing features that should not be used for the classification task, imputing
missing values or transforming features like dates, and so forth. We also transform all the
protected attributes into binary (e.g., “white”–“not white,” “younger than 25 years old”–“older
than 25 years old,” “caucasian”–“not caucasian”). Table 1 shows the number of features se-
lected for each data set and class distribution.

4.2 | Parameter setup

The experiments are replicated 10 times with different seeds to ensure stability and reprodu-
cibility. In each seed, the training (75%) and testing sets (25%) are randomly sampled. Then, the
training set is split again in the learning (75%) and validation (25%) sets. Therefore, the testing
set is never used in the learning phase. The parameters for the evolutionary method are set as
follows:

• 300 generations (G = 300),
• 50 individuals (N = 50),
• 1 as crossover probability (p = 1c ),
• 0.3 as mutation probability (p = 0.3m ),
• 5 as mutation parameter (μ = 5).

The code is implemented in Python using libraries such as pandas for data processing,
sklearn.linear_model.LogisticRegression for logistic regression classi-
fier, sklearn.tree.DecisionTreeClassifier for decision tree classifier
(CART algorithm) and numpy for numerical processing. The original code of the NSGA‐II
algorithm is available at github.com/baopng/NSGA‐II (last date accessed: June 9, 2020).
This study complies with research reproducibility principles. Code and data are made open
and available in a public repository: https://github.com/anavaldi/fairness_nsga (last date
accessed: November 8, 2020).
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4.3 | Analysis of results

In this section, we empirically study the limits of the accuracy‐fairness tradeoff. We first
analyze the properties of the Pareto optimal solutions obtained when optimizing both together.
We also analyze the relationship between decision tree learner's hyperparameters and mea-
sures' values. Finally, we present the convergence properties of the meta‐learning approach.

4.3.1 | Analysis of accuracy‐fairness tradeoff

The averaged results over 10 runs are shown in Tables 2 and 3 for the five real‐world problems.
To represent the average distribution of the obtained results, we have computed the average of
the 10 runs at minimum value of error in validation data set (Errorv), 25th percentile (Q1), 50th
(Q2), 75th (Q3) and maximum value of error. As the set of inferred solutions are Pareto efficient,
the corresponding values of unfairness are reversely sorted. In the case of the two ProPublica
problems, the results obtained by COMPAS are also included to better understand the room for
improvement in those cases.

The obtained results in Ricci are very particular. We found that this problem is very easy to
be solved in terms of accuracy, that is, it is possible to obtain solutions with almost zero error
and, therefore, almost one unfairness. In fact, in some partitions the solution found was perfect.
Consequently, the multiobjective optimization tends to obtain very spread Pareto solutions, so
we decided to leave this problem out of the rest of the analysis.

While the validation data set is used to guide the meta‐learning algorithm, the test data set
is never used. When comparing validation and test columns, we observe that, although the
scores in test are slightly worse than validation (as expected), the Pareto efficiency in test also
remains in both learners (logistic regression and decision trees), which shows the robustness of
our methodology. Yet the results are overfitted regarding the unfairness measure (i.e., strong
differences between Unfairnessv and Unfairnesst) when it comes to very low values, being this
effect more pronounced in the decision tree case.

When comparing the average results of the first (min) and 50th (Q2) positions of error (Q1 in
Adult), we are able to estimate the percentage of accuracy that needs to be killed to improve
fairness. In the case of logistic regression, the accuracy lost in test (Errort) is 17%, 18%, 27%, and
28% in Adult, German, ProPublica, and ProPublica violent problems, respectively, while the
fairness improvement in test is 71%, 41%, 16%, and 29%, respectively. In the case of decision
trees, the accuracy lost in test is 6%, 10%, 8%, and 13% in Adult, German, ProPublica, and
ProPublica violent problems, respectively, while the fairness improvement is of 81%, 66%, 54%,

TABLE 1 Summary of data sets

Data set # Features # Positive # Negative

Adults 14 7841 24,720

German 20 300 700

ProPublica 12 3251 3963

ProPublica Violent 12 775 3968

Ricci 4 56 62
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and 53%, respectively. This reveals how the meta‐learning algorithm is able to balance accuracy
and fairness in practice. It is clear how decision trees are able to get better fairness levels with a
moderate degradation of accuracy. Indeed, logistic regression has difficulties to improve the
fairness without noticeably degrading the accuracy in the two ProPublica datasets. This gives us
an idea of how it is possible to optimize the ML process to generate fairer solutions, specially

TABLE 2 Accuracy‐fairness tradeoff (how fair can we go) in each real‐world problem with logistic regression
classifiers

Errorv Unfairnessv Errort Unfairnesst

Adult

min 0.22171 0.14605 0.22833 0.23870

Q1 (25%) 0.24668 0.08250 0.26651 0.16854

Q2 (50%) 0.30253 0.04525 0.33614 0.06859

Q3 (75%) 0.38124 0.01792 0.44643 0.01827

max 0.55002 0.00000 0.66207 0.00051

German

min 0.25026 0.25581 0.29674 0.40670

Q1 (25%) 0.26723 0.19179 0.31927 0.22520

Q2 (50%) 0.29794 0.13682 0.35017 0.16746

Q3 (75%) 0.38014 0.08188 0.40965 0.10518

max 0.59302 0.02313 0.55505 0.04560

ProPublica

min 0.31820 0.10792 0.33085 0.38621

Q1 (25%) 0.34400 0.06296 0.35429 0.09125

Q2 (50%) 0.42376 0.04289 0.41944 0.06044

Q3 (75%) 0.55705 0.02613 0.53796 0.04111

max 0.78094 0.00343 0.80841 0.00843

COMPAS 0.35002 0.12519 0.34759 0.14751

ProPublica violent

min 0.30517 0.11799 0.33315 0.20196

Q1 (25%) 0.34591 0.06655 0.38866 0.07698

Q2 (50%) 0.40163 0.03914 0.42673 0.05837

Q3 (75%) 0.49521 0.01753 0.52636 0.02962

max 0.70346 0.00061 0.71792 0.00727

COMPAS 0.32388 0.13474 0.33494 0.13897

Ricci

min 0.00000 1.0000 0.09053 0.83833

Q1 (25%) 0.02715 0.73786 0.10505 0.78631

Q2 (50%) 0.04870 0.57073 0.12571 0.73429

Q3 (75%) 0.06685 0.50466 0.14074 0.71394

max 0.08776 0.43860 0.14821 0.69359

Note: The table shows the averaged distribution of error (I−G mean) and unfairness (FPRdiff) measured in the Pareto optimal
solutions for validation (v) and test (t).
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when using decision trees, without an excessive loss of precision, which should encourage ML
designers to incorporate fairness criteria into these processes.

Focusing on the two ProPublica problems, where the prediction made by COMPAS is
widely known, we can analyze the accuracy and fairness achieved by the Northpointe's soft-
ware when assessing a criminal defendant's likelihood to re‐offend. We can observe that, with a
similar accuracy, the fairness of the solutions got by our methodology is much fairer than the

TABLE 3 Accuracy‐fairness tradeoff (how fair can we go) in each real‐world problem with decision tree
classifiers

Errorv Unfairnessv Errort Unfairnesst Depth Leaves

Adult

min 0.17644 0.06743 0.18238 0.07218 8.4 95.5

Q1 (25%) 0.19374 0.04036 0.19412 0.05822 12.1 211.2

Q2 (50%) 0.21715 0.02423 0.22220 0.04577 14.5 352.4

Q3 (75%) 0.26488 0.00971 0.26804 0.02620 16.8 518.9

max 0.35766 0.00034 0.35759 0.00794 22.6 945.6

German

min 0.26780 0.12406 0.32393 0.16990 6.9 22.3

Q1 (25%) 0.27830 0.08135 0.34387 0.13916 7.9 28.1

Q2 (50%) 0.29442 0.04411 0.35488 0.11279 9.1 34.0

Q3 (75%) 0.31977 0.01989 0.37343 0.07821 9.4 40.2

max 0.38101 0.00099 0.43214 0.02597 10.3 47.6

ProPublica

min 0.32759 0.12471 0.33676 0.12871 6.7 50.5

Q1 (25%) 0.34078 0.08052 0.35094 0.08936 10.0 145.2

Q2 (50%) 0.35572 0.03476 0.36223 0.07011 12.1 238.4

Q3 (75%) 0.38492 0.01362 0.39121 0.04591 14.4 312.0

max 0.39997 0.00293 0.40881 0.03026 16.7 467.4

COMPAS 0.35002 0.12519 0.34759 0.14751 – –

ProPublica violent

min 0.31366 0.10367 0.33176 0.10261 6.2 34.6

Q1 (25%) 0.33651 0.06047 0.35422 0.07879 8.9 71.7

Q2 (50%) 0.35388 0.03446 0.37430 0.05461 10.8 109.6

Q3 (75%) 0.38638 0.01011 0.41021 0.03251 12.2 148.2

max 0.48942 0.00021 0.50264 0.01794 14.4 210.1

COMPAS 0.32388 0.13474 0.33494 0.13897 – –

Ricci

min 0.04487 1.0000 0.12249 0.80222 1.8 2.9

Q1 (25%) 0.09006 0.71526 0.15782 0.66326 2.1 3.4

Q2 (50%) 0.13134 0.46007 0.18936 0.54931 2.4 3.8

Q3 (75%) 0.17195 0.30838 0.21820 0.43881 2.6 4.1

max 0.21268 0.15669 0.24781 0.32831 2.9 4.4

Note: The averaged distribution of error (I‐G‐mean) and unfairness (FPRdiff) measures in the obtained Pareto optimal solutions
for validation (v) and test (t) data sets are shown. Depth and leaves (complexity) are the actual values of the generated decision
trees.
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obtained by COMPAS regardless of the classifier used. This demonstrates the improvement
margin of fairness in these problems when guiding the ML process by unbiased measurements.
When using decision trees, if we interpolate the fairness scores got by our methodology for an
accuracy equal to COMPAS's, the test results would be (Error , Unfairness ) = (0.3476, 0.0987)t t

in ProPublica and (Error , Unfairness ) = (0.3349, 0.0992)t t in ProPublica violent, showing that
our method improves the fairness of COMPAS's solutions in 67% and 71%, respectively, without
compromising accuracy.

When analyzing the performance of solutions, we are additionally concerned with trans-
parency of the classifiers. Indeed, in the problems considered in our experimental analysis,
where wrong outcomes may discriminate unfavored social groups, to understand the reasoning
behind a machine decision is critical. Therefore, we analyze in which degree the Pareto optimal
models are also easy to interpret in the case of considering decision trees as classifiers. The fact
of being using this kind of structure to represent the knowledge helps to understand the
machine decision criteria compared with other black‐box models, but the complexity of these
trees will also influence on its interpretability, as an excessively fine‐grain decision boundary
(high number of leaves) and complex multivariate conditions (high depth of the tree) would be
hardly understandable.

Analyzing the complexity results in Table 3, we observe that the number of leaves is
relatively low in the most accurate solutions, but tends to increase as fairness improves.
This effect shows that the method needs to use more leaves to improve fairness with a mini-
mum loss of accuracy. This is an expected result since equalizing FPR between the two people
groups forces a finer partitioning of data. The high depth with a relatively low number of leaves
suggests the construction of unbalanced decision trees (keep in mind than a perfectly balanced
binary tree would need 2 depth leaves, which is very far from what we get). That is, some few
leaves need a high depth (i.e., extensive multiple conditions) to be effective.

Analogously, it is well known that a lower error implies a higher complexity, so it is curious
to observe that this relation is not shown in the obtained results. The reason is simply that the
complexity (number of leaves and depth) is not considered as a criteria to be optimized by our
methodology, so this variable is freely adapted to the two contradictory objectives (accuracy and
fairness), both of them demanding higher complexity to be reached. It seems that the fairness
objective ends up winning the battle. In other words, the algorithm finds it harder to improve
fairness than accuracy with a reduced complexity. Nevertheless, this interesting effect deserves
a deeper study that would divert us from the main goal of our research in this paper, so we
leave it as a further research line.

To better understand the behavior of the proposed method, Figures 2 and 3 plot the ob-
tained Pareto optimal solutions with the two base classifiers considered in this paper, with gray
dots being the solutions of each run and brown (logistic regression) or violet (decision trees)
dots connected by lines represent the average Pareto front. This average Pareto is obtained by
first getting the rounded mean number of different solutions n (which corresponds to the
number of solid dots) and then obtaining the average values at n different percentiles positions
equally distributed. For example, if we have three runs where we got 3, 5, and 7 Pareto optimal
solutions, we would obtain the n = 5 evenly distributed percentiles (i.e., 1th, 25th, 50th, 75th,
and 100th) with linear interpolation between adjacent ranks in each run and then calculate the
average value for each percentile. The interquartile range (Q − Q3 1) of the error is represented
with the light brown/violet area in the figures.

The spread of the dots (especially in the fairness dimension) and the width of the inter-
quartile range suggest us that the attainable levels of accuracy and fairness is quite sensitive to
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the data set partitions into training and test. This is particularly serious in German. The
exception is represented by Adult, where the solutions in different data partitions are very
compact. This may be due the fact that Adult has a considerably high number of data so that
the bias of the data partitioning is mitigated. As our methodology splits the training data into
learning and validation, it suffers when very little data is available, as in German.

As we can observe from the plotted Pareto fronts, the contradictory condition between
accuracy and fairness is clear: more accuracy implies less fairness, and vice versa, as
analyzed in previous works.19,20 Although what is really interesting to analyze is the shapes
of the averaged Pareto fronts as they provide valuable information about how the combi-
nation data set and classifier is working. In fact, beyond generating a wide repertoire of
solutions with different balances of accuracy and fairness, our methodology also returns a
greater understanding of the problem by explaining how these contradictory criteria are
related.

Let us take as example the ProPublica problem with decision trees (Figure 3C). The
accuracy–fairness relation is rather linear in the range [0.026, 0.125] of unfairness, that is, range
[0.328, 0.361] of error. Then, we see a clear knee of the curve below an unfairness of 0.026,
meaning beyond this threshold, improving a bit the fairness has a relatively high cost in
accuracy. Similar conclusion can be taken in the other problems, where the unfairness
threshold is around 0.01 in Adult, and 0.02 in German and ProPublica Violent with decision
trees. In the case of logistic regression, the knees are around 0.03 in the two ProPublica and
0.12 in German. This knowledge could be used by other researchers and practitioners to set
different fairness requirements depending on the problem and the type of classifier that is
being used.

Finally, for a better comparison of the behavior of the two base classifiers analyzed in this
paper, Figure 4 shows the average Pareto obtained in each problem with logistic regression and
decision trees. As we already mentioned when analyzing the tables of results, we can observe
that the use of decision trees as base learners makes our proposed methodology to perform
better. This is very clear in adult data set, where the decision trees' Pareto completely dom-
inates the logistic regression's one. In the other three cases, however, we can see how logistic
regression can achieve a slightly better accuracy (with subsequent worse fairness). Never-
theless, when it comes to fairness, decision trees allow a greater improvement with a more
restrained degradation of accuracy than logistic regression. We believe this effect is related with
the highest capability of decision trees to partition the attribute space, as they are able to fix
decision boundaries that compartmentalize data with a finer grain than the linear planes fixed
with logistic regression. This finer division of data allows to distribute better the FPR between
groups, thus being able to better reduce disparate mistreatment.

4.3.2 | Analysis of learner's hyperparameters

As we are proposing a meta‐learning method that indirectly controls the generated classifi-
cation models by tuning the hyperparameters of the learner, we are also interested in assessing
the impact of learner's hyperparameters on the performance. We will focus this study on
decision trees. We have already discussed in the previous section the effect of demanding
optimal fairness in the complexity of the trees (good fairness needs higher number of leaves).
Here we analyze the effect of two other hyperparameters: min_samples_split and
class_weight. We did not find significant results in the fifth hyperparameter
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(criterion). Figure 5 shows the values of these two hyperparameters in the obtained
Pareto optimal solutions of ProPublica violent. The mean values over all the runs is plotted as
lines and dots, while the shaded areas and error bars correspond to the SD. Blue color is used
for error and red color for unfairness, both in test data sets (Errort and Unfairnesst).

In the case of min_samples_split, the results confirm our guess that to improve
fairness it is necessary to deepen certain branches of the tree, so that a low value of the limit of
samples needed to divide a node helps to generate fairer trees. It is interesting to see here how a
high value of this limit hurts fairness a lot but does not influence accuracy.

With regard to class_weight, which controls the importance of the positive class (and
reversely the negative one), the effect is as follows. In accuracy, a higher weight of the positive
class implies generating more accurate solutions in this imbalance data set (there are five times

(A)

(C) (D)

(B)

FIGURE 2 Solutions obtained with logistic regression classifiers. Gray dots represent Pareto optimal
solutions—minimizing error (I–G‐mean) versus unfairness (FPR diff )—found by the proposed algorithm in different
problems. Brown dots indicate the average Pareto set, which is a way of representing how fair can we go with logistic
regression in a specific problem or, in other words, which shape takes the accuracy‐fairness tradeoff with such a kind
of classifier. Light brown area is the interquartile range. Our methodology is effective to find a wide spread of
solutions that are accurate and fair at the same time. In the two ProPublica datasets, the meta‐learning algorithm also
finds better solutions than the obtained by COMPAS (red dots), showing that there is a wide range of possibilities to
be fairer without worsening accuracy [Color figure can be viewed at wileyonlinelibrary.com]
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more of the negative than the positive). This makes sense as G‐mean measure rewards balanced
predictive precision in the two classes, so making more important the minority (positive) class
helps to this goal. This hyperparameter has the contrary effect in fairness. Here, fairer solutions
are obtained when a positive class weight in [3, 5] is given (moreover, with a low variance that
ensure statistical significance), that is, to decrease the importance of the positive class (which in
the analyzed problem means that the criminal defendant reoffends) reduces the false‐positives,
which makes easier to generate decision trees with a better balance of FPR between the two
groups (Caucasian vs. rest of ethnics). In other words, giving less credibility to the positive class
(reoffend) allows for fairer classifiers. However, we cannot ignore that this could also be a side
effect of the Pareto efficiency followed by the optimization process.

(A)

(C)

(B)

(D)

FIGURE 3 Solutions obtained with decision tree classifiers. Gray dots represent Pareto optimal solutions—
minimizing error (I–G‐mean) versus unfairness (FPR diff )—found by the proposed algorithm in different problems.
Violet dots indicate the average Pareto set, which is a way of representing how fair can we go with decision trees in a
specific problem or, in other words, which shape takes the accuracy‐fairness tradeoff with such a kind of classifier.
Light violet area is the interquartile range. Our methodology is effective to find a wide spread of solutions that are
accurate and fair at the same time. In the two ProPublica data sets, the meta‐learning algorithm also finds better
solutions than the obtained by COMPAS (red dots), showing that there is a wide range of possibilities to be fairer
without worsening accuracy [Color figure can be viewed at wileyonlinelibrary.com]
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4.3.3 | Analysis of convergence

An algorithm converges when there is no significant improvement in the values of the objective
functions of the population from one to the next generation. This aspect is important to be
studied to assess the efficiency of the method. At the same time, its analysis can reveal the
resistance of each problem to allow improvements of the accuracy and fairness measures.

In multiobjective optimization, convergence is more complex to analyze as many optimal
solutions evolve at the same time. To summarize the behavior of the process, Figure 6 presents
the mean, Q1 and Q3 of the two objectives (error and unfairness in validation set) for the
obtained Pareto set at each generation (averaged results over 10 runs are plotted) when using
decision tree as base classifier. In some way, the mean gives an idea about the quality of the
solutions (the lower the better) while the interval [Q , Q ]1 3 represents the diversity of the Pareto
sets (the wider the better). In Ricci, the algorithm fully converges very quickly (these values do
not change at all after 27 generations), so we omit this plot for the sake of clarity of the paper.

We observe that low unfairness is faster to get than low error, so in the first third of the
evolution good fairness is reached in all the problems, while the accuracy is slowly improved
until the end of the process. Adult has the most stable convergence of the four shown problems

(A)

(C)

(B)

(D)

FIGURE 4 Comparison between using logistic regression versus decision trees as classifiers in the proposed
meta‐learning algorithm. Average Pareto sets are plotted [Color figure can be viewed at wileyonlinelibrary.com]
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due to the reduced bias in data partitions as above said. German also converges very well, but
with a slight improvement of accuracy in the last 40 generations at the expense of making
fairness slightly worse. ProPublica shows the most continuous convergence where accuracy
and fairness are persistently improved. In ProPublica Violent, good fairness is very quickly
obtained while accuracy is continually enhanced.

5 | CONCLUSIONS

In this study we propose a meta‐learning multi‐objective optimization algorithm to explore the
boundaries of fairness in real‐world problems. We present a methodology that (1) enables standard
ML algorithms to be fairness‐aware, (2) obtains the experimental frontier of the accuracy‐fairness
tradeoff, (3) uses interpretable models as base learners to comply with transparency values, and (4)
converges rapidly to optimal solutions. To the best of our knowledge, this is the first work that
proposes both accuracy and fairness as objective functions for a multiobjective ML approach.

Accuracy versus Fairness: Throughout the experimental analysis, we show the optimal fit-
ness that can be achieved by optimizing the geometric mean of the predictive precision of each
class versus FPR equality of the groups, that is, no disparate mistreatment as defined in
Reference [21]. The cost in accuracy when satisfying fairness criteria has been theoretically
studied (e.g., References [17,21]). These studies demonstrate the existence of an unavoidable
tradeoff between accuracy with respect to the target variable and fairness with respect to the
sensitive attribute. That is, when one objective is improved by the model the second one is
penalized. Or what is the same, these two objectives are contradictory. Based on this assertion,
we design in this paper an optimization process able to push both objectives to the frontier
where the mentioned Pareto efficiency is reached, thus returning a plethora of solutions with
different accuracy‐fairness balances. Besides, the experimental analysis shows how fair can we
go in a specific problem by logistic regression and decision trees, providing further insight
about the capability of standard ML algorithms to get good fairness and the flexibility of the

(A) (B)

FIGURE 5 Effect of two hyperparameters of the decision tree classifier in ProPublica violent. Notice how
different values of them impacts varyingly on accuracy and fairness. Low threshold to split a node and low
weight of the positive (minority) class favor the generation of decision trees with a good fairness [Color figure
can be viewed at wileyonlinelibrary.com]
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problem (data set) to allow this. In fact, we show how the fairness of the COMPAS solutions in
the two ProPublica datasets can by improved by about 70% without compromising accuracy.

Logistic Regression versus Decision Trees: The paper presented two examples of the metho-
dology by using either logistic regression or decision trees as base classifiers within the pro-
posed meta‐learning. The comparative experimental analysis yields interesting results. It can be
observed that decision trees are superior than logistic regression as far as fairness is concerned;
in other words, with decision trees we can obtain fairer solutions with a lower accuracy
sacrifice. This effect may be due to the fact that the decision boundaries managed by trees can
split data in a finer way, which is a competitive advantage when it comes to fairness, as in this
way it is possible to better distribute data to balance the FPR between groups, thus favoring a
fairer treatment. However, it is important to emphasize that these results are achieved thanks
to the intensive tuning of hyperparameters that our methodology performs, so a standard
application of these two learners with default hyperparameters values might not make the
remarkable difference obtained in this paper. What is clear is that by learning decision trees
there is much more room for improvement of the fairness with a restrained loss of accuracy.

(A)

(C) (D)

(B)

FIGURE 6 Evolution of nondominated solutions through 300 generations of the meta‐learning algorithm
with decision tree as base classifier. To represent the distribution of these Pareto sets, mean (line) and Q − Q1 3

(area) of error and unfairness objectives (i.e., in validation set) averaged over 10 runs are plotted
[Color figure can be viewed at wileyonlinelibrary.com]

22 | VALDIVIA ET AL.

http://wileyonlinelibrary.com


Fairness versus Transparency: As it is well known in ML, decision trees can improve ac-
curacy (at least, while the sweet spot without overfitting is reached) often by increasing the
model complexity (i.e., tree depth and number of leaves). Moreover, we believe that, to improve
fairness, the decision tree needs to be deeper for a fine‐grain data partition to hold mis-
classification parity between different groups having different values of the sensitive attribute.
Therefore, both accuracy and fairness demand more complex decision trees. When optimizing
accuracy and fairness together, we find that the process tends to solve the conflict by generating
more complex trees in fairer solutions even when their accuracies are not so good. This may be
due to the fact that, when optimizing learner's hyperparameters as our methodology do, fair-
ness is mainly reached by more complex trees while there are other chances of improving
accuracy by fine‐tuning the remaining hyperparameters.

Convergence: Evolutionary algorithms are sharply criticized because of its low convergence
in many problems. Nevertheless, we show that this methodology early achieves optimal so-
lutions. Objective functions cooperate to generate good solutions in the first generations, but
they compete to obtain optimal solutions at the end.

Future Work: Although we know that technology interventions alone will not address social
injustice, there are several interesting directions highlighted by our findings. From the obtained
results, it is clear further research is needed to understand the role of transparency (in terms of
model complexity) in the accuracy‐fairness tradeoff. Therefore, we propose to add the com-
plexity of the trees as a third objective function ( f3). Regarding the fact that fairness can be
defined in multiple ways, we plan to develop further analysis with different measures of
mistreatment. In relation to claims by Reference [17], it would be interesting to study data set
properties, such as correlation of the sensitive attribute with the target variable. We are aware
that the experiments presented in this study only include one binary sensitive attribute. We
propose to consider more attributes in further experiments to analyze how convergence is
affected. Differential fairness29 is a growing concept highly related with this study, which
addresses intersectionality. We propose to run new experiments of our meta‐learning algorithm
proposing this new fairness definition. Finally, it is worth mentioning that our approach is
completely flexible, and its design allows the use of any type of classifier and hyperparameters,
which serving as a tool to experimentally analyze several dimensions of the behavior of ML
methods.
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APPENDIX A: NSGA ‐II
The nondominated sorting genetic algorithm (NSGA)30 was one of the first EAs developed for
multiobjective problem optimization. Yet this approach was criticized due to: (1) the high
computational complexity, (2) the lack of elitism, and (3) the low spread of solutions. Then, the
NSGA‐II23 was proposed as a modification to address these disadvantages. To solve (1) the
authors proposed a nondominated sorting procedure where all the individuals are sorted ac-
cording to the level of nondominance. Issue (2) is mitigated thought an elitism strategy that
stores all nondominated solutions and avoids removing good solutions from the pool. This
aspect also enhances the convergence property of EAs.31 Finally, they adapted a suitable au-
tomatic mechanism based on the crowding distance to ensure diversity in a population and then
solve (3). This distance function assigns a distance metric to all individuals within a population
and then compares whether two solutions are close enough. A solution with a smaller value is
more crowded by other solutions, therefore is more likely to not survive in further populations.

This approach starts by creating a random parent population P of size N . The population is
evaluated by the objective functions and sorted following the non‐dominance criteria 2.1. After
that, each solution is ranked where the first level corresponds to the best individuals, the
second level is the next‐best set of members, and so on. After that, the binary tournament
selection, crossover, and mutation operators are used to create an offspring population. These
children are also evaluated by the objective functions and combined together with the previous
population. All individuals are then ranked and sorted by the nondomination rank and the
crowding distance, which is considered the elitist step. The N ‐best members are then selected
to pass to the following generation that will complete the next population of solutions by
applying crossover and mutation operators. Finally, the algorithm ends when the last gen-
eration is reached.
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