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Abstract. This paper proposes a novel fully automatic computer-aided diagnosis (CAD) system for the early detection of
Alzheimer’s disease (AD) based on supervised machine learning methods. The novelty of the approach, which is based on
histogram analysis, is twofold: 1) a feature extraction process that aims to detect differences in brain regions of interest
(ROIs) relevant for the recognition of subjects with AD and 2) an original greedy algorithm that predicts the severity of the
effects of AD on these regions. This algorithm takes account of the progressive nature of AD that affects the brain structure
with different levels of severity, i.e., the loss of gray matter in AD is found first in memory-related areas of the brain such as
the hippocampus. Moreover, the proposed feature extraction process generates a reduced set of attributes which allows the
use of general-purpose classification machine learning algorithms. In particular, the proposed feature extraction approach
assesses the ROI image separability between classes in order to identify the ones with greater discriminant power. These
regions will have the highest influence in the classification decision at the final stage. Several experiments were carried out
on segmented magnetic resonance images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) in order to show
the benefits of the overall method. The proposed CAD system achieved competitive classification results in a highly efficient
and straightforward way.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common
cause of dementia among elderly people, affecting
30 million people worldwide. The increasing life
expectancy and the aging of the population in devel-
oped countries suggests that AD will affect 60 million
people worldwide in the next 50 years [1]. This kind
of disease has a big impact on today’s society, as it
involves not only health services, but also a conglom-
erate of social, psychological, and family care issues.
Therefore, neurodegenerative diseases, such as AD,
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are considered to be one of the biggest challenges
of the XXI century. AD is a slow neurodegenerative
disease associated with the production of amyloid-
β peptide (Aβ) and its extracellular deposition as
well as the flame-shaped neurofibrillary tangles of
the microtubule binding protein tau [2]. The loss of
nerve cells leads to symptoms usually starting with
mild memory problems and turning into severe brain
damage over the course of time. There is no cure
for AD, and nowadays the developed drugs can only
offer mild symptomatic benefits but are otherwise
palliative [3]. Any approach oriented to anticipate and
improve the diagnosis is desirable as early diagnosis
facilitates effective treatment.

The emergence and improvement of new imaging
technologies, such as magnetic resonance imag-
ing (MRI), electroencefalography (EEG), functional
MRI (fMRI), or positron emission tomography (PET)
have caused a breakthrough in the procedure of diag-
nosis. Capturing the anatomical variability caused
by AD in the brain structure MRI appears to be an
important tool in the AD classification. Beyond man-
ual processing of the images, a trend in the usage
of computer-aided systems has been developed to
assist in the image pre-processing [4, 5], to perform
differential diagnosis [6–8] and even to predict the
conversion from prodromal stages such as subjective
memory complaints (SMC) [9, 10] or mild cogni-
tive impairment (MCI) to AD [11–13]. In particular,
since the AD neurodegeneration progressively affects
different brain functions, tomographic functional
images, single emission computerized tomography
(SPECT) [14–16] or positron emission tomography
(PET) [17, 18] have been extensively used in com-
puter aided diagnosis (CAD) systems. MRI has been
recently used in many studies for CAD-based auto-
matic diagnosis reaching accuracies up to 90% in AD
versus normal controls (NC) [19–22]. Nevertheless, it
is worth mentioning that in [19–22] different subjects
are assessed within a different set of cross-validation
folds and even when they are matched, the cross-
validation partitions are seldom the same, thus it is
hard to make a fair comparison.

Most of the approaches for brain image processing,
such as the one proposed in [23–26], are based on uni-
variate analysis. This kind of analysis is performed
using one single feature at a time and frequently
consists of a voxel-wise comparison between inten-
sity levels, either over the images themselves (voxel
based morphometry, or VBM [27, 28]), regions of
interest (ROIs) [29] or models of brain features, such
as cortical thickness [30] or intrinsic curvature [31].

These methodologies have been implemented in the
most prominent pieces of software used in clinical
practice, such as FreeSurfer or SPM [32], and they
are used the most in epidemiological studies. Other
approaches define weak classifiers on small enough
regions [33, 34]. Specifically, [33] use an ensemble
of sparse representation classifiers (SRC) defined on
equally-sized patches extracted from the gray mat-
ter (GM) image. By contrast, Savio and Graña [34]
use an ensemble of support vector machines (SVM)
to separately classify each area defined by the Auto-
mated Anatomical Labelling Atlas (AAL). Despite
showing good classification results, both approaches
present different drawbacks. In [33] the classifica-
tion is performed using voxel intensity values instead
of computing discriminative features. Therefore, it
shares the curse of dimensionality problem. There
are several studies that show clear advantages of using
a reduced number of discriminative features, such as
eigenbrains-based methods [16], multivariate Gaus-
sian methods [15, 18], codebook based methods [19]
or SVM-based methods [35]. Savio and Graña [34]
extract some first order statistics from each brain area
to be used as features, and do not consider the spatial
relationship among voxels. Both these methods [33,
34] use supervised learning for both, computing the
statistical relevance of each brain region and training
the classifier, which could be a problem whenever not
all the training samples are labelled, or the labels are
not reliable enough to use them as ground truth. This
is a relatively common problem in the labelling pro-
cess in medical imaging. In the ADNI dataset, image
labels are mainly assigned from the Mini-Mental
State Examination (MMSE) score.

There is an increasing interest in multivariate
approaches. In contrast to univariate analysis, these
can effectively handle information that simultane-
ously affects the whole brain as well as characterizing
the relationship between different ROIs. Brain net-
works [36, 37], texture features [20, 38–41] and
other voxel and region-wise higher-level features
[42–46] could therefore reveal other information than
only volumetric, complementing and providing new
insights into the disease. In [47] a new framework
called spherical brain mapping (SBM) was proposed.
It performs feature extraction in MR Brain Images by
reducing the whole images to bidimensional maps
comprising a number of statistical and morphologi-
cal measures. Each pixel in the latter maps was the
result of computing a certain measure on a set of
voxels crossed by the mapping vector, centered at
the Anterior Commissure (AC) and spanning over
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all values of azimuth and elevation angles. The bidi-
mensional maps were related to anatomical changes
such as brain atrophy or cortical thickness, yielding
high performance in differential diagnosis. Further-
more, they provided a significant feature reduction,
as well as a visual representation of the underlying
information. In [48] an extension to the framework
using texture and volumetric Local Binary Patterns
(LBP) used in [39], is proposed. Authors of [49]
propose a new path tracing algorithm based on Hid-
den Markov Models (HMM). This method aims at
enhancing the mapping procedure in SBM. It replaces
the mapping vector with curvilinear paths that adapt
to the structural information present in MRI. This
goal is achieved by the computation of the feature
maps and the direct use of the intensity distribution
along the path, as a characterization of the structural
differences in normal or AD-affected subjects. Since
the gray level co-occurrence matrix (GLCM), firstly
developed by Haralick [50], has been used in brain
characterization in [41, 45], an extension of this strat-
egy is proposed to characterize the brain texture along
each path and its neighborhood. Finally, in [52] deep
learning is employed in order to extract representa-
tive features from each brain area defined by the AAL
atlas in an unsupervised manner. With this strategy
we avoid the need for a ground truth at this stage.
Different architectures and voting schemes are imple-
mented and compared to define ensembles of deep
belief networks (DBN). An alternative architecture
where a SVM is used to fuse the DBN outcomes is
also presented. Each unit in the ensemble is respon-
sible not only for classifying the corresponding patch
but also for extracting representative features for the
different brain regions.

In this paper we propose a novel multivariate CAD
system for AD. It uses histograms as a representation
of the input MRI images and employs original dis-
similarity measurements between those histograms
as input attributes for machine learning algorithms.
The machine learning algorithms build highly accu-
rate models for the diagnosis of AD, being able to
predict if an input MRI image belongs to a subject
who has been labelled as patient with AD according to
neuropsychological tests. This study has a dual aim:
1) to propose a method that defines a well structured
dataset which can be used as input to classification
algorithms, as well as 2) proposing a new algorithm
to address this particular classification task. The steps
proposed reflect the prototypical Data Mining pro-
cess [53], involving: 1) Problem Specification; 2)
Problem Understanding; 3) Data Preprocessing [54]

(data preparation and reduction), we perform image
preprocessing and feature extraction; 4) Data Min-
ing, we choose classification as the most suitable
Data Mining task and apply several machine learn-
ing algorithms; 5) Evaluation, we collect results from
these machine learning algorithms and assess their
performance based on appropriate and interesting
measures; and 6) Results Exploitation, we report the
discovered knowledge through visualization tools.

The remainder of this paper is organized as
follows: First we describe the database of MRI
images used, the image preprocessing, and the fea-
ture extraction applied. Next, we present the proposed
greedy classifier and explain the methodology fol-
lowed in the experiments. Then we show the results
obtained applying the previously explained tech-
niques. Finally, we discuss the primary contributions
of this study, analyze the results obtained, provide
interesting visual support, and detail future work.

DATASET DESCRIPTION AND
PREPROCESSING

In this section we describe the database and explain
the image preprocessing and feature extraction pro-
cesses.

ADNI database

The images used in this paper were obtained
from the Alzheimer’s Disease Neuroimaging Ini-
tiative (ADNI) (http://www.loni.ucla.edu/ADNI and
http://www.adni-info.org). The ADNI database con-
tains 1.5T and 3.0T t1w MRI scans for AD, MCI,
and cognitively NC at several time points. All struc-
tural MR scans used in this paper were acquired from
a 1.5T MRI scanner and this database provides data
for three groups of patients: healthy patients (NC),
Alzheimer disease patients (AD), and patients with
mild cognitive symptoms (MCI). All subjects must
be willing and able to undergo all test procedures
including neuroimaging and agree to longitudinal
follow-up. Specific psychoactive medications were
excluded.

The dataset used in this study contains 1075 T1-
weighted MRI images from 229 NC, 401 MCI (312
stable MCI and 86 progressive MCI), and 188 AD
subjects. As only the first exam (Baseline) for each
patient has been used in this study, 818 images were
used for assessing the proposed approach. Demo-
graphic data of patients in the database is summarized
in Table 1.

http://www.loni.ucla.edu/ADNI
http://www.adni-info.org
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Table 1
Demographic data of patients in the database (ADNI 1075-T1)

Diagnosis Number Age Gender (M/F) MMSE

NC 229 75.97±5.0 119/110 29.00±1.0
MCI 401 74.85±7.4 258/143 27.01±1.8
AD 188 75.36±7.5 99/89 23.28±2.0

Image preprocessing

Raw magnetic resonance images from the ADNI
database were spatially normalized in order to ensure
that a given voxel corresponds to the same anatomical
position in different subjects. Intensity normaliza-
tion of images was also performed. After image
registration, segmentation is performed using the
voxel-based morphometry (VBM) toolbox [55] for
Statistical Parametric Mapping (SPM v8) software
[56]. For each patient, 121 × 145 × 121 gray matter
and white matter membership probability maps were
obtained with a 1.5 mm × 1.5 mm × 1.5 mm voxel
size.

Feature extraction

Using all the voxels of the probability maps as
direct input to classification algorithms would fall
into curse of dimensionality problem in many cases.
Thus, we use an atlas to classify voxels according
to regions of interest. We have selected the atlas of
the AAL toolbox for SPM that includes an anatomical
parcellation of 116 regions of the spatially normalized
single subject high resolution T1 volume provided by
the Montreal Neurological Institute (MNI) atlas [57].
The cerebral region definitions are fully described
in [58] and are based on the cerebellum parcellation
proposed by Schmahmann et al [59]. The parcella-
tion procedure is described as follows. T1-weighted
MRIs are normalized to MNI space and segmented
into three different brain tissues: cerebral spinal fluid,
gray matter and white matter. Each individual tis-
sue voxel is labeled with the MNI anatomical atlas
that was previously corregistered with the template
images.

Classification input attributes are going to depend
on the distance between the test sample and each class
mean for each region of interest, following an idea
similar to T-test feature selection. To discard pos-
sible outliers, we vectorize each ROI, i.e., form a
vector with probability values of all the voxels in the
region in all the maps. We compute the four quartiles
(Q1, Q2, Q3, and Q4) and the interquartile distance

(IQR):

IQR = Q3 − Q1 (1)

for each vectorized region of interest. Therefore,
voxel with a probability value greater than Q3 +
1.5 × IQR or lower than Q1 − 1.5 × IQR is clas-
sified as an outlier.

Afterwards, we compute the histogram (50 bins)
of the values of the voxels of each ROI for each one
of the probability maps. Each histogram is normal-
ized according to the total number of voxels in the
ROI with the purpose of avoiding that, in future steps,
ROIs relevance may be biased in favour of the biggest
ROIs. Then, we classify normalized histograms of
training samples according to type of subject (NC,
MCI, or AD) and ROI, and calculate the average his-
togram for each type of subject and ROI. We get 116
average histograms (one per ROI) for each type of
subject. All the histograms of a certain ROI are based
on the same set of bins (regardless of subject type).

As mentioned before, the idea is to quantify the
distance between a certain input image (or probability
map) and each type of training subjects’ mean. The
metric selected in the feature space is the bin-wise
mean squared error distance d, defined as:

d(A, B) =
∑n

j=1(Aj − Bj)2

n
(2)

where Aj and Bj are the values of the jth bin in A and
B, respectively. We address three binary problems: 1)
AD versus NC, 2) MCI versus NC, and 3) AD versus
MCI.

For each input MRI image (test image) we compute
the distance between the obtained GM histograms
and the average histograms of each class computed
in the training set. This distance is referred as dT (I) =
d(I, T ), where I is the histogram of the test individual
image for a certain ROI and T is the average training
histogram, template, for one class. To quantify the
relative proximity of the ith test sample to both classes
in one numeric measure for the jth ROI we propose
the following index:

fj(Ii) = 2 · d1(Ii)

d2(Ii) + d1(Ii)
− 1 (3)

where d1(Ii) and d2(Ii) are the distances computed
between the ith test subject’s histogram and the aver-
age training histograms of classes c1 (positive class)
and c2 (negative class), respectively. Thus, for each
jth ROI of the test image, there is a fj(Ii) whose value
is in [−1, +1], being closer to −1 as lower d1(Ii) is
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in relation to d2(Ii) and closer to +1 as lower d2(Ii) is
in relation to d1(Ii). That is, negative values mean the
jth ROI is labeled as class c1 (analogously, positive
values label as class c2), while the certainty of this
labeling becomes higher as the value becomes closer
to -1 (or +1).

Figure 1 illustrates some examples of d1(I), d2(I),
and fj(I) for two ROIs and three subjects, each one
from a different class and binary problem. This figure
shows that, depending on the ROI, a test subject can
be closer to its true class or to the wrong one, and
how d1(I), d2(I), and fj(I) change accordingly.

METHODOLOGY

Throughout this section we present a proposal of
a greedy classifier and we detail how we design the
classification experiments and which algorithms are
included in them.

Greedy classifier

Not all brain regions suffer AD damages to the
same grade. The proposed greedy algorithm3 tries
to incorporate this quality into the learning process
by assigning a particular weight to each ROI which
determines the influence of the region on the classi-
fication. The weight (w) is defined as follows:

wj(pP
j , pN

j ) = pP
j + pN

j

2
, (4)

where pP
j represents the ratio of subjects of the posi-

tive class whose fj(Ii) is lower than zero and pN
j the

ratio of subjects of the negative class whose fj(Ii)
is greater than zero for the jth ROI. Thus, those
regions with the highest percentage of samples which
are more similar to their own class mean than to the
opposite class mean are the regions with the highest
weights.

Once we have computed wj(pP
j , pN

j ) for each ROI
the weights are normalized with:

ŵj(pP
j , pN

j ) =
wj − min

k
wk

max
k

wk − min
k

wk

(5)

Given histogram Ii and percentages pP
j and pN

j of the

test image for a certain ROI j, we compute f ij as the
product of fj(Ii) and ŵj(pP

j , pN
j ):

f ij = fj(Ii) · ŵj(pP
j , pN

j ) (6)

We compute eq. 1 for every ROI and obtain a set of
m values (f i1, f i2, . . . , f im) where m is the number
of ROIs. Finally, we compute Fi as:

Fi = 1

m

m∑
j=1

f ij (7)

Fi is used to decide if the test subject is classified in
the positive or negative class. Fig. 2 provides some
visual examples of the relation between the distri-
bution of fj(Ii) in the training set of subjects, pP

j ,

pN
j , wj(pP

j , pN
j ) and ŵj(pP

j , pN
j ). In this figure it is

possible to observe the obvious relationship between
fj(Ii) distribution, and pP

j and pN
j , as well as, the

resulting effect on wj(pP
j , pN

j ).
ROIs’ weights have a dual aim. In addition to

using them as a way to estimate the influence of each
ROI on the classification process, we also use them
as a feature selection criterion [53]. To reduce the
dataset dimensions we remove irrelevant attributes
until getting a minimum set of features with which
the classification performance is as good as the one
obtained using all features or better. We perform a
series of experiments where in each experiment the
r highest weighted ROIs are included, starting with
r = 1 and adding one new ROI each time. At the
end of each experiment, every sample has a predicted
label l. According to the set of predicted labels and
to the true class of each sample, we use accuracy and
G-mean to assess the performance of the classifica-
tion task. Figs. 3–5 show accuracy and G-mean for
each experiment.

Figure 3 is the clearest example of the fact that
the best results can be obtained taking into account
a reduced set of ROIs. Including the full set of input
attributes turns out to be unhelpful or can even lead to
overfitting. In light of these results, the significance
of accomplishing a suitable feature selection to get
the optimal results of this greedy classifier is clear.
Taking this fact into account, we include a proper
feature selection mechanism as part of the algorithm:
the algorithm only includes in the classification pro-
cess those ROIs in which both pP

j and pN
j surpass

a certain threshold. Such threshold is a configurable
input parameter. Only the fj(Ii) values coming from
ROIs which satisfy this condition are included in the
computation of Fi for the test samples.

3The source code of this classifier and of the previous fea-
ture extraction technique is available at the following repository:
(https://github.com/eruizsanchez/CAD Alzheimers Disease).

https://github.com/eruizsanchez/CAD_Alzheimers_Disease
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Fig. 1. Histograms for ROIs 41 (“Amygdala L") and 20 (“Supp Motor Area R") of a certain test subject (I) along with the average histograms
(T ) of each binary problem’s classes: AD versus NC, MCI versus NC, and AD versus MCI. For each binary problem we choose a different
test subject. Each graph includes d1(I), d2(I) and fj(I) computed based on the three correspondent histograms.

Classification

As mentioned before, we address three binary clas-
sification problems using f (I) values for each region
of interest as input features. Five machine learning
classification algorithms are tested:

1. C4.5 [60, 61]: generates a decision tree from a
training dataset in the same way as ID3 does,
using the concept of information entropy

2. Random-Forest [62] (RF): combines bagging and
random attribute selection ideas to build a collec-
tion of k decision trees, k being a configurable
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Fig. 2. Distribution of fj(I) per class for j = 20 (“Supp Motor Area R") and j = 41 (“Amygdala L") in the three binary problems: AD
versus NC; MCI versus NC, and AD versus MCI. Plots also include pP

j , pN
j , wj(pP

j , pN
j ) and ŵj(pP

j , pN
j ).
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Fig. 3. Comparisons of Accuracy (a) and G-mean (b) registered using 10-fold cross-validation to afford AD versus NC problem, selecting
the n ROIs with higher weights (for n from 1 to 116). Shaded areas cover mean ± standard deviation.

input parameter (k = 100 is used in the experi-
ments of which results are shown in Table 2)

3. Support Vector Machine [63] (SVM): generates a
representation of the training examples as points
in space, mapped so that the examples of the dif-
ferent classes are separated by a gap that is as wide
as possible

4. eXtreme Gradient Boosting [64] (XGBoost): pro-
duces a prediction model in the form of an

ensemble of weak prediction models. It builds
the model in a stage-wise fashion and generalizes
them by allowing optimization of an arbitrary dif-
ferentiable loss function. XGBoost is applied with
the following input parameters: logistic regres-
sion for classification as objective function, 1 as
step size of each boosting step, 3 as maximum
depth of the tree and 500 as maximum number of
iterations
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Fig. 4. Comparisons of Accuracy (a) and G-mean (b) registered using 10-fold cross-validation to afford MCI versus NC problem, selecting
the n ROIs with higher weights (for n from 1 to 116). Shaded areas cover mean ± standard deviation.

5. The proposed greedy algorithm is applied with
the following feature selection thresholds: 0.65 in
the case of AD versus NC problem, 0.55 in MCI
versus NC, and 0.6 in AD versus MCI. We decide
to choose lower feature selection thresholds for
AD versus MCI and MCI versus NC to avoid an
excessive reduction of the number of ROIs since
pp and pn values are, in general, lower in these
two problems than in AD versus NC.

The results of applying these algorithms are com-
pared with the voxel-as-features (VAF) [65] baseline
method. A variant of this method, referred as VAF-
FS, is also included in the experimentation. VAF-FS
employs the same feature selection criterion as the
greedy classifier. Only those voxels of the selected
regions are used as input features of VAF. Since J48,
RF, SVM, and XGB have their own feature selection
mechanisms, we do not employ any other additional
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Fig. 5. Comparisons of Accuracy (a) and G-mean (b) registered using 10-fold cross-validation to afford AD versus MCI problem, selecting
the n ROIs with higher weights (for n from 1 to 116). Shaded areas cover mean ± standard deviation.

feature selection. Fig. 6 shows the relevance of the 30
main features according to RF in AD versus NC.

Given the limited number of images in the dataset,
the best option is to perform a series of experiments
varying the test and training sets in a way that each
sample will be in the test set once and in the train-
ing set for the other experiments. This allows to get
a wider set of test samples to check the quality of
the tested classifiers. With this approach, known as

cross-validation, the dataset is partitioned into k sub-
sets, k experiments are performed using a different
test subset each time and the union of the remaining
k − 1 subsets for training. In this particular case, 10-
fold cross-validation is used. In the proposed greedy
algorithm, f (I) and w(pP, pN ) values are computed
from the training set.

The evaluation measures used to assess the qual-
ity of the results are 1) Accuracy, 2) Sensitivity,
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Table 2
Performance results obtained with the six algorithms in the three binary problems (AD versus NC, MCI versus NC and AD versus MCI)

using 50-bins histograms. Performance is assessed in terms of accuracy, sensitivity, specificity, AUC, and G-mean

Subjects Classifier Accuracy Sensitivity Specificity AUC G-mean

VAF 0.7772±0.064 0.7658±0.122 0.7862±0.059 0.7760±0.068 0.7728±0.070
VAF-FS 0.8586±0.054 0.8404±0.079 0.8735±0.086 0.8569±0.053 0.8545±0.052

C4.5 0.7298±0.069 0.6769±0.125 0.7733±0.094 0.7166±0.080 0.7183±0.072

AD vs. NC

RF 0.8279±0.065 0.7880±0.122 0.8605±0.067 0.8889±0.052 0.8249±0.078
SVM 0.8131±0.034 0.7661±0.089 0.8516±0.062 0.8853±0.031 0.8071±0.041

XGBoost 0.7966±0.056 0.7509±0.148 0.8342±0.050 0.8667±0.048 0.7856±0.070
Greedy 0.8039±0.072 0.7243±0.142 0.8692±0.058 0.8942±0.048 0.7886±0.087

VAF 0.6157±0.062 0.7104±0.099 0.4498±0.095 0.5801±0.057 0.5676±0.082
VAF-FS 0.6777±0.061 0.8032±0.067 0.5107±0.096 0.6388±0.064 0.6362±0.055

C4.5 0.6398±0.066 0.7332±0.091 0.4769±0.109 0.5993±0.068 0.5860±0.072

MCI vs. NC

RF 0.7192±0.052 0.8729±0.042 0.4502±0.091 0.7611±0.067 0.6240±0.073
SVM 0.7130±0.082 0.8479±0.066 0.4769±0.137 0.7562±0.076 0.6301±0.112

XGBoosting 0.6922±0.050 0.7709±0.073 0.555±0.077 0.7532±0.052 0.6510±0.051
Greedy 0.6431±0.049 0.5912±0.051 0.7342±0.068 0.7373±0.068 0.6582±0.051

VAF 0.6332±0.031 0.3301±0.063 0.7755±0.058 0.5528±0.027 0.5020±0.042
VAF-FS 0.6435±0.031 0.3936±0.083 0.7607±0.050 0.5771±0.037 0.5424±0.057

C4.5 0.6247±0.048 0.3927±0.109 0.7334±0.056 0.5655±0.054 0.5302±0.078

AD vs. MCI

RF 0.6739±0.031 0.1330±0.073 0.9276±0.040 0.7008±0.059 0.3584±0.085
SVM 0.6841±0.030 0.1810±0.089 0.9201±0.047 0.6919±0.057 0.3958±0.063

XGBoost 0.6892±0.035 0.3673±0.077 0.8404±0.054 0.7008±0.052 0.5511±0.059
Greedy 0.6469±0.022 0.5164±0.122 0.7084±0.053 0.6459±0.059 0.5981±0.052

3) Specificity, 4) G-mean, and 5) Area Under ROC
Curve (AUC) [66, 67] described as follows:

Accuracy = TP + TN

TP + TN + FP + FN
(8)

Sensitivity = TPR = TP

TP + FN
(9)

Specificity = TNR = TN

TN + FP
(10)

G-mean =
√

Sensitivity · Specificity (11)

where TP is the number of true positives: number of
samples of the positive class correctly classified; TN

is the number of true negatives: number of samples
of the negative class correctly classified; FP is the
number of false positives: number of negative sam-
ples classified as positive; and FN is the number of
false negatives: number of positive samples classified
as negative. Sensitivity is also known as True Posi-
tive Rate (TPR) and specificity is also known as True
Negative Rate (TNR). AUC is computed based on the
probability assigned to each test example of belong-
ing to the positive class. Let pi be such probability
for a certain test example as follows:

pi = 0.5 +
{ |Fi|

2 , if Fi ≤ 0

1 − |Fi|
2 , if Fi > 0 (12)

Since the three problems are to a greater or lesser
degree imbalanced, accuracy may be not the most
fitting measure. High accuracy can be maintained
despite of high error rate in the minority class. There-
fore, we also use sensitivity, specificity, AUC and
G-mean to assess if the error is shared out between
classes and to obtain more information about how the
error is distributed. G-mean emphasizes not only the
importance of achieving good results in both classes,
but also a balance between the two results. This mea-
sure turns out to be specially suitable in this type of
medical problem where there can be a high imbalance
ratio. Due to this imbalance ratio, classifiers may tend
to high percentage of misclassified samples from the
minority class, even though this class might be the
most relevant.

In each binary problem we consider the positive
class to be the one which represents a closer state to
illness, which implies that: 1) AD versus NC: AD is
the positive class and NC is the negative one; 2) MCI
versus NC: MCI is the positive class and NC is the
negative one; and 3) AD versus MCI: AD is the pos-
itive class while MCI is the negative one. In regards
to the number of samples of positive and negative
classes, we can make one distinction between prob-
lems. On one hand, in AD versus NC and AD versus
MCI the positive class is the minority one (AD). On
the other hand, in MCI versus NC the positive class
(MCI) is the majority one. This fact along with the
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Fig. 6. Importance of the 30 most relevant features for AD versus NC problem according to RF.

imbalance ratio must be taken into account during the
results analysis.

RESULTS

In this section we present and analyze the results
obtained from the different tested techniques. In this
sense, Table 2 shows the quality of the classifica-
tion results obtained applying each of the classifiers
specified in the previous section for each binary prob-
lem (AD versus NC, MCI versus NC, and AD versus
MCI).

In Table 2 it is possible to appreciate how speci-
ficity tends to be higher than sensitivity when the
positive class is the minority and how this trend
is reversed when the positive class is the majority.

This means that it is usually easier for most of
the classifiers to correctly classify samples from the
majority class. We can also notice that these differ-
ences between sensitivity and specificity increase as
the imbalance ratio increases.

Figure 7 shows a comparative analysis of the differ-
ent algorithms and experiments executed. Regarding
G-mean we find differences between problems. G-
mean values for AD versus NC are the highest,
followed by MCI versus NC and AD versus MCI in
last place. This is possibly due to the higher imbalance
ratio in AD versus MCI.

We can also analyze Table 2 and Fig. 7 from other
perspectives, i.e., studying if the number of bins that
form the histograms has a systematic and signifi-
cant impact on the quality of the classification and
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Fig. 7. G-mean values for tests performed with histograms of three different sizes (20, 50 or 100 bins), seven classification algorithms and
10-fold cross-validation for each binary problem addressed: (a) AD versus NC, (b) MCI versus NC and (c) AD versus MCI.
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Fig. 8. Distribution of f (I) (shown in boxplots) along with weight of each ROI (gray line) for AD subjects (left) and NC subjects (right)
inside the AD versus NC problem. ROIs are sorted from higher to lower weight. We compute both measures using 10-fold cross validation.
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Fig. 9. Distribution of f (I) (shown in boxplots) along with weight of each ROI (gray line) sorting ROIs by weigth for MCI subjects (left)
and NC subjects (right) inside the MCI versus NC problem. ROIs are sorted from higher to lower weight. We compute both measures using
10-fold cross validation.
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Fig. 10. Distribution of f (I) (shown in boxplots) along with weight of each ROI (gray line) sorting ROIs by weigth for AD subjects (left)
and MCI subjects (right) inside the AD versus MCI problem. ROIs are sorted from higher to lower weight. We compute both measures using
10-fold cross validation.
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Fig. 11. Human brain representation in (a) axial, (b) coronal and (c) sagittal views colouring each of the 116 ROIs according to their weight
in AD versus NC problem. Blue tones for the lowest weights and red tones for the highest.
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Fig. 12. Human brain representation in colouring the ten most discriminant ROIs according to their weight in AD versus NC problem. Green
tones for the highest weights and blue tones for the lowest.

comparing tested classifiers to determine which of
them would be the most desirable option. In Fig. 7
we can appreciate that VAF and VAF-FS results do
not depend on the number of bins since both options
imply that the classifier is applied directly to voxels.
The results of the other classifiers undergo certain
variations when the number of bins is modified. Nev-
ertheless, these changes are not significant in most
cases. It may seem that 100 bins is the option which
maintains a good position in a greater number of cases
but still not in all of them. No significant patterns
are appreciated regardless of whether we perform the
analysis by problem, measure, or classifier.

VAF-FS clearly improves VAF results in all cases,
as shown in both Table 2 and Fig. 7. Furthermore, the
fact of applying feature selection before VAF implies
these better results obtained by VAF-FS have been
achieved using a lower number of input features. It
is also important to have in mind that to make this

selection of features possible it is necessary to carry
out almost the full process of the greedy proposal.
Indeed, the process must be completed until the com-
putation of ŵj(pP

j , pN
j ) for every ROI to be able to

select only those that surpass the threshold imposed.
G-mean is quite high for all the tested classifiers

in AD versus NC and even in MCI versus NC, as
shown in Table 2 and Fig. 7. In both problems, results
achieved by all the classifiers are quite similar. The
specially quite high G-mean values in AD versus NC
are possibly because the low error rate is well bal-
anced between both classes. However, it can be noted
that VAF and C4.5 achieve the worst results.

In the case of AD versus MCI, differences between
classifiers are much more noticeable. G-mean val-
ues for algorithms like RF or SVM are specially low
since most misclassified instances belong to the same
class (positive and minority one). It is worth men-
tioning that greedy approach is capable of correctly
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Table 3
ROI’s index, name and weight of the 116 ROIs in the AD versus NC problem. ROIs are sorted from higher to lower weight. ROIs written in

italics have pp or pn lower than 0.5 and, consequently, are dismissed

Index Area Weight Index Area Weight Index Area Weight

38 Hippocampus R 1.0000 32 Cingulum Ant R 0.6930 48 Lingual R 0.5788
42 Amygdala R 0.9728 13 Frontal Inf Tri L 0.6888 54 Occipital Inf R 0.5783
37 Hippocampus L 0.9544 51 Occipital Mid L 0.6866 23 Frontal Sup Medial L 0.5762
39 ParaHippocampal L 0.9512 7 Frontal Mid L 0.6844 102 Cerebelum 7b R 0.5757
41 Amygdala L 0.9380 18 Rolandic Oper R 0.6826 50 Occipital Sup R 0.5721
86 Temporal Mid R 0.8899 73 Putamen L 0.6815 10 Frontal Mid Orb R 0.5716
85 Temporal Mid L 0.8873 66 Angular R 0.6790 99 Cerebelum 6 L 0.5645
40 ParaHippocampal R 0.8777 1 Precentral L 0.6784 47 Lingual L 0.5638
89 Temporal Inf L 0.8763 36 Cingulum Post R 0.6775 114 Vermis 8 0.5573
90 Temporal Inf R 0.8719 8 Frontal Mid R 0.6695 95 Cerebelum 3 L 0.5567
29 Insula L 0.8547 31 Cingulum Ant L 0.6637 91 Cerebelum Crus1 L 0.5562
81 Temporal Sup L 0.8454 4 Frontal Sup R 0.6596 92 Cerebelum Crus1 R 0.5559
30 Insula R 0.8106 16 Frontal Inf Orb R 0.6559 97 Cerebelum 4 5 L 0.5488
21 Olfactory L 0.8038 71 Caudate L 0.6504 104 Cerebelum 8 R 0.5483
82 Temporal Sup R 0.7998 26 Frontal Mid Orb R 0.6474 103 Cerebelum 8 L 0.5466
55 Fusiform L 0.7987 19 Supp Motor Area L 0.6370 94 Cerebelum Crus2 R 0.5465
87 Temporal Pole Mid L 0.7886 46 Cuneus R 0.6326 101 Cerebelum 7b L 0.5463
63 SupraMarginal L 0.7881 68 Precuneus R 0.6324 112 Vermis 6 0.5417
78 Thalamus R 0.7746 57 Postcentral L 0.6283 44 Calcarine R 0.5401
22 Olfactory R 0.7741 3 Frontal Sup L 0.6262 6 Frontal Sup Orb R 0.5369
83 Temporal Pole Sup L 0.7688 27 Rectus L 0.6262 20 Supp Motor Area R 0.5347
88 Temporal Pole Mid R 0.7684 67 Precuneus L 0.6172 106 Cerebelum 9 R 0.5343
17 Rolandic Oper L 0.7683 110 Vermis 3 0.6130 93 Cerebelum Crus2 L 0.5189
84 Temporal Pole Sup R 0.7526 12 Frontal Inf Oper R 0.6122 49 Occipital Sup L 0.5180
65 Angular L 0.7462 25 Frontal Mid Orb L 0.6119 115 Vermis 9 0.5175
33 Cingulum Mid L 0.7457 2 Precentral R 0.6112 45 Cuneus L 0.5157
56 Fusiform R 0.7448 72 Caudate R 0.6110 76 Pallidum R 0.5063
34 Cingulum Mid R 0.7393 98 Cerebelum 4 5 R 0.6110 109 Vermis 1 2 0.5048
11 Frontal Inf Oper L 0.7317 5 Frontal Sup Orb L 0.6077 75 Pallidum L 0.5008
35 Cingulum Post L 0.7307 53 Occipital Inf L 0.6071 105 Cerebelum 9 L 0.4966
77 Thalamus L 0.7299 9 Frontal Mid Orb L 0.5983 111 Vermis 4 5 0.4945
61 Parietal Inf L 0.7291 58 Postcentral R 0.5972 108 Cerebelum 10 R 0.4944
79 Heschl L 0.7264 24 Frontal Sup Medial R 0.5942 107 Cerebelum 10 L 0.4903
80 Heschl R 0.7254 60 Parietal Sup R 0.5910 113 Vermis 7 0.4882
15 Frontal Inf Orb L 0.7109 100 Cerebelum 6 R 0.5907 70 Paracentral Lobule R 0.4837
74 Putamen R 0.7096 28 Rectus R 0.5848 43 Calcarine L 0.4698
62 Parietal Inf R 0.7033 14 Frontal Inf Tri R 0.5838 116 Vermis 10 0.4611
64 SupraMarginal R 0.7028 96 Cerebelum 3 R 0.5834 69 Paracentral Lobule L 0.0000
52 Occipital Mid R 0.6997 59 Parietal Sup L 0.5829

classifying a high percentage of instances of the pos-
itive class, despite the high imbalance ratio and the
simplicity of the proposal. Thus, the greedy classi-
fier achieves very good G-mean and maintains quite
balanced sensitivity and specificity values. It obtains
the highest sensitivity in AD versus MCI while other
algorithms (e.g., RF or SVM) fail, as shown in Table
2. This type of scenario where the positive class which
suffers from a lack of samples turns out to be the
most relevant is quite common in disease diagnosis
problems.

Furthermore, from the greedy approach we can
extract some additional information which has proven
to be really valuable to help us gain more knowledge
about the problem, i.e., we can analyze the values

of f (I) of each region and subject as well as exam-
ine weight distribution among the different regions.
With this aim, in Figs. 8–10 distribution of f (I) and
weight of each ROI are represented. Fig. 10 shows
human brain representations in three different views
coloring each ROI according to its weight in AD ver-
sus NC problem. Finally, Fig. 12 also shows human
brain representations but focuses only on the ten most
discriminant regions according to the greedy classi-
fier.

DISCUSSION

The aims of this study were, on the one hand,
to process the brain image dataset until compress-
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ing the information into a well structured dataset
which is valid and efficient for supervised-learning
approaches and to apply certain classiffication algo-
rithms to said dataset; and on the other hand, to
develop an ad hoc greedy algorithm which is easily
comprehensible but obtains competitive results.

VAF is used as a baseline classifier with which we
compare the proposed methods. This technique uses
all voxels in each image as input features for a classi-
fier. In this case, the only classifier tested in the VAF
approximation is linear SVM, due to the high num-
ber of input features. Because of its simplicity and
the quality of its performance, VAF is considered as a
reference: in [65], a pathological confirmed database
was used to estimate a performance superior to visual
assessments by experts.

The method proposed to reduce the number of
input features passed to the machine learning algo-
rithms (having one feature per ROI instead of per
voxel) works really well. The number of features
is significantly reduced improving efficiency and
widening the range of viable classification algo-
rithms. Furthermore, this is achieved without losing
accuracy since the performance results stay at the
same level or even improve depending on the clas-
sification algorithm used, as shown in Table 2. All
these results correspond to experiments performed
considering 10-fold cross-validation.

The original greedy algorithm gets very competi-
tive results in the three binary problems, being better
than other approaches which are much more com-
plex. One of the principles behind this algorithm is to
take into account that not all the brain regions suf-
fer AD to the same effect. As we have explained
before, this greedy algorithm includes a mechanism
to assign a specific weight to each ROI. Those ROIs
with the greatest distances between subjects of one
class and of the other have the most influence on the
classification result.

Furthermore, a feature selection threshold is
included in this greedy proposal with the purpose
of avoiding favoring ROIs whose weight are high
because they are strong in one class at the expense
of being weak in the other. ROIs’ weights are deter-
mined by the mean of pp and pn (percentages of
subjects whose f (I) values for the ROI are in the right
range for the positive or negative class, respectively),
the weight of a certain ROI may be high or medium
due to high enough value of one of these two measures
(pp or pn), even though the other one is low. Subjects
of the positive class are expected to have values of

f (I) in [−1, 0) while subjects of the negative class
are expected to have values higher than zero between
(0, +1]. However, in Figs. 8–10 we can observe how
for certain ROIs there is a high percentage of subjects
(reaching 50% or higher in some cases) in the wrong
interval. This means that for these ROIs, at least, a
significant percentage of the examples of a certain
class have histograms that are closer to the average
histogram of the wrong class than to the one of their
own class.

From this weight-base proposal (greedy algorithm)
we can infer some additional knowledge that helps
us to better understand the problem. Table 3 along
with Figs. 11 and 12 are some examples of such extra
knowledge. Table 2 shows the 116 brain regions of
interest sorted from higher to lower weight for the
AD versus NC classification; while Fig. 11 shows a
representation of the human brain in which each of
these 116 ROIs is colored according to its weight.
Similar knowledge can be also extracted from some
of the others classifiers (not from all of them) as evi-
denced in Fig. 6. This figure shows the most relevant
features according to RF in AD versus NC. Most of
the relevant features for this classifier match with the
most relevant features in accordance to the greedy
approach. Concretely, the ten most relevant features
for RF are also the most relevant for greedy. This type
of interpretable results are much easier to attain if the
input features are at ROI level instead of at voxel
level. The contents of this table and the noted figures
corroborate progressive cerebral atrophy as a char-
acteristic feature of neurodegeneration in patients
progressing from a cognitive normal healthy state
to MCI and AD [68]. Traditional studies of regional
MRI volumes have shown that AD is characterized by
a progression of atrophy in the medial temporal lobe
[69] the entorhinal cortex typically being the earliest
region of atrophy, closely followed by the hippocam-
pus, amygdala, and parahippocampus [70–72], which
fits perfectly with the information shown in Table 3,
and Figs. 11 and 12. Even more, other ROIs within the
limbic lobe (ie., posterior cingulate) are also affected
during the early stage of the disease.

CONCLUSION

In this study we propose a new AD CAD system
based on the estimation of distance per ROI in MRI
between AD, MCI, and NC samples and the use of
machine learning algorithms for classification (e.g.,
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classification trees, ensembles, SVM, boosting or
greedy techniques). Among these algorithms, we
include a new proposal based on discovering which
are the brain regions (ROIs) that exhibit the greatest
loss of GM caused by AD, and also on the particular
distances per ROI between a certain sample and the
mean computed for each possible type of subject
(AD, MCI, or NC). The source code of this technique
can be found in the following repository: https://
github.com/eruizsanchez/CAD Alzheimers Disease.
Furthermore, a meaningful visual support is offered
together with the proposed classifier’s results,
including several graphics related with relevance
of ROIs in the classification process and how these
discriminative regions are actually distributed in
brain. This enriches the CAD system and allows to
better understand the underlying logic in the CAD
output.

The performance results have shown that most
of the algorithms tested on the datasets built with
the originally proposed histogram-based preprocess-
ing method obtain better results than the baseline
(VAF), reaching an improvement of 12% of AUC
and 5% of G-mean in AD versus NC; 14% of AUC
and 9% of G-mean in AD versus MCI, and 18%
of AUC and 9% of G-mean in MCI versus NC. In
addition, the greedy algorithm originally proposed in
this study surpasses the baseline method and some of
the other complex algorithms tested. This algorithm
maintains a desirable balance between sensitivity
and specificity. It should be noted that this greedy
proposal is efficient and easy to program, notwith-
standing it obtains competitive results facing some
more advanced and complex machine learning algo-
rithms. This suggests that the proposed technique of
histogram analysis works in the current problem set-
ting. However, the proposal still has one important
limitation since classifiers are applied to three differ-
ent binary problems (AD versus NC, MCI versus NC
and AD versus MCI) instead of directly to the raw
three-class problem. Furthermore, some work still
has to be done to minimize the impact of the imbal-
anced classification problem on the results of the
classifiers.

To conclude, we want to extend our study by
including other databases that allow the algorithms
to learn new information, improve the classifica-
tion models making them even more accurate and
reliable. It is also our intention to work to achieve
accurate classification models facing the problem
with multiclass approaches. Furthermore, we will

apply association rules mining on the information
generated by this study to delve deeper and bet-
ter understand the relationship between different
brain ROIs.
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