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The amount of data being generated in industrial and scientific applications is constantly 
increasing. These are often generated as a chronologically ordered unlabeled data flow 
which exceeds usual storage and processing capacities. Association stream mining is an 
appealing field which models complex environments online by finding relationships among 
the attributes without presupposing any a priori structure. The discovered relationships 
are continuously adapted to the dynamics of the problem in a pure online way, being 
able to deal with both categorical and continuous attributes. This paper presents a new 
advanced version, Fuzzy-CSar-AFP, of an online genetic fuzzy system designed to obtain 
interesting fuzzy association rules from data streams. It is capable of managing partitions of 
different granularity for the variables, which allows the algorithm to adapt to the precision 
requirements of each variable in the rule. It can also work with data streams without 
needing to know the domains of the attributes as it includes a mechanism which updates 
them in real-time. Fuzzy-CSar-AFP performance is validated in an original real-world 
Psychophysiology problem where associations between different electroencephalogram 
signals in subjects which are put through different stimuli are analyzed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

We live in the age of data where all our actions are recorded (or they could be) and sometimes they also are stored and 
processed. The amounts of data being generated and recorded have been increasing significantly over the past few years. 
Obviously, a huge part of the information generated lacks of relevance or interest. Picking out what information is relevant, 
synthesizing it and extracting knowledge from this information is, each time, a more critical aspect in the current society. 
Frequently, the information is simply stored so that it might be consulted later but in other cases it is also used to obtain 
models (data mining) that simplify the complex reality such information contains. Many times these data are employed in 
prediction tasks. However, other times interest resides in supervising systems in order to prevent situations, understand 
certain processes, help in decision-making... Data sources which continuously produce chronologically ordered information 
that exceeds usual storage and processing capacities are becoming increasingly common.

To address this kind of problem, it is possible to manage data streams, infinitely structured record sequences that ar-
rive continuously [1]. The key characteristic of these systems is that the data produced by these flows are not stored in a 
permanent way but they are processed on-the-fly. Each datum is analyzed, processed and finally forgotten, making man-
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aging huge amounts of data in real-time possible, even with reduced storage and processing capacities. Thus, data stream 
techniques are also a good option for managing big data problems. Analyzing data as a stream, rather than permanently 
storing data and immediately processing datum once it is received, adds flexibility and scalability benefits, whether the data 
is real-time or historical. Regardless, data are born as a stream (e.g. a stream of transactions of a sale system) and it might 
be easier to stream mine big data than would be to batch it up and then deal with it in batches. Real-world applications are 
becoming more numerous every day, being increasingly frequent in telecommunications, vehicle traffic, commerce, finances, 
physiology, robotic or social networks, among others.

The main learning problems studied in data stream mining [1,2] are: (1) classification: the algorithms studied attempt 
to maximize the percentage of success but also react and adapt to changing situations — concept drift [3,4] —, (2) clustering 
[5] and (3) frequent patterns.

In the last years, most of the specialized literature in this area has been focused on classification (and concept drift 
[6]); despite of its lack of applicability in real-world cases. This lack of applicability often results in experimentation based 
exclusively on benchmarks and synthetic data [7–11].

In real world problems with very high arrival rates and immense volumes of data is very rare to find data which are 
completely labeled and structured. Moreover, when we find one case (e.g., web activity), it seems to make no sense to focus 
on predictive models which aspire to be, in the best case, hardly as accurate as the entity (human, community, machine...) 
that has been labeling each data first. It would be more realistic to generate descriptive models with good interpretability 
which enables system monitoring. Supervised learning for regression tasks makes more sense in real-world problems as the 
continuous output can be generated by a natural phenomenon or other similar sources [12].

In general, unsupervised learning is more directly applicable to real-world problems, so incremental clustering has also 
experienced a significant development. Nonetheless, the knowledge which is discovered (segmentation) is often insufficient 
to be able to help in decision making tasks. Hence, discovering frequent patterns and association rules is considered as a 
very good way to address many data stream problems where the purpose is to supervise or monitor (not predict) using 
independent, significant, readable, and simple models. Among these approaches, recently proposed Fuzzy-CSar [13] is a 
steady-state genetic algorithm designed to discover interesting association rules in data streams. Its learning process is 
performed to manage huge amounts of data and to adapt its knowledge to concept drifts. Furthermore, thanks to the use 
of fuzzy logic, it can deal with both categorical and continuous variables.

The aim of this paper is to propose an advanced version of the Fuzzy-CSar algorithm. Furthermore, this new algorithm 
is applied in a new challenging real-world problem. Most importantly, two new improvements are proposed: (1) new rep-
resentation and new genetic operators in order to allow the use of fuzzy partitions with different granularities (number 
of linguistic terms), and (2) a mechanism to update the range of each attribute in an online way (this mechanism makes 
unnecessary to know a priori the domain of each attribute), which is a demanding feature in real-world data stream en-
vironments. The results of this new algorithm, henceforth referred to as Fuzzy-CSar-AFP (Fuzzy-CSar with Adaptive Fuzzy 
Partitions), are validated in a real-world Psychophysiology problem where associations between different signals from elec-
troencephalogram electrodes are analyzed online while the subjects are subjected to undergo different activities and stimuli.

The remainder of this paper is organized as follows: Section 2 provides a short introduction to the association rule 
mining (ARM) field, describes the difficulties of learning from online environments, and briefly discusses the behavior and 
main characteristics of Fuzzy-CSar. Section 3 discusses the proposed characteristics of Fuzzy-CSar-AFP. In Section 4, we 
describe the real-world data streams that have been used to validate the functionality of Fuzzy-CSar-AFP. In Section 5, we 
explain the experiments conducted, also indicating the configuration of the algorithm. Section 6 discusses and analyses the 
results of the experiments conducted. In this section, two different types of analysis are performed: firstly, we validate the 
Fuzzy-CSar-AFP comparing it in various ways with Fuzzy-CSar and Fuzzy-Apriori [14]. Secondly, we study the relationships 
discovered between the data attributes with the help of several visualization tools originally proposed in this paper. Finally, 
Section 7 summarizes and concludes the paper.

2. Association rules in data streams and Fuzzy-CSar

2.1. Association rules in data streams

The need for extracting relevant information from massive amounts of data, usually as a continuous, high speed and 
time-changing data stream has greatly increased in the industrial and scientific environments [15,1]. Traditional data mining 
algorithms were not designed for handling these types of data so they are not able to obtain really meaningful models in 
this type of environments [16]. There are several challenges that must be faced in any learning problem in data streams [17]: 
(1) obtaining a fast reaction to concept changes, (2) data can only be handled once, (3) storage limitations, and (4) varying 
noise levels.

In most real-world problems, an unsupervised learning approach is more interesting than a supervised one. More con-
cretely, the discovery of associations in data streams, focused on discovering associations between variables with the use 
of association rule production in a completely online process, is particularly interesting due to: (1) the demand of inter-
pretability of the patterns discovered in data, (2) the need for discovering patterns while they are happening, and (3) the 
high and continuous volumes of data to be processed, which demand scalable learners.

Association stream mining is a new area and consequently, to the best of our knowledge, there are no fully operational 
approaches which fulfill all the requirements mentioned. The most similar approaches for knowledge extraction under these 
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conditions focus mainly on the identification of frequent items (online frequent pattern mining), without rule generation [18]
or relegating rule generation to a subsequent offline process [1]. This offline phase makes these algorithms mostly unpracti-
cal when handling association stream real-world problems, where the rules discovered have to be present immediately and 
adapt to the changing dynamics of the continuous flow of data. Some few approaches try to palliate this drawback by using 
sliding window [19,20], so the causality relationship contained in the rule is extracted by analyzing the discovered frequent 
items in this data window. This approach, however, has the disadvantage of requiring store data (that can be unrealistic) and 
determining the window size, which is revealed as crucial for a good performance. Furthermore, most of these algorithms 
can only work exclusively with problems that only contain categorical features [21–24].

In order to deal with continuous features, quantitative association rules are needed. Traditionally, two different strategies 
were explored to work with quantitative association rules: (1) to discretize the features and then deal with them in a purely 
qualitative way [25–27], and (2) to use an interval-based representation [28,29]. Later, fuzzy modeling was introduced to 
improve the legibility of models from domains with imprecision and to avoid rigid and unnatural boundaries produced by 
interval-based representations [30–34,20]. Fuzzy limits fit better with our normal use of language. Despite all, most of these 
proposals only focus on identifying frequent variables and not on the final rules extracted in a pure online process.

2.2. Fuzzy-CSar

Fuzzy-CSar [13] is an online genetic fuzzy system designed for mining fuzzy association rules from data which contain 
both quantitative and qualitative attributes by means of combining genetic algorithms and the apportionment of credit 
mechanisms online. Fuzzy-CSar actualizes a population of fuzzy association rules in an incremental mode and is able to 
quickly adapt to the presence of concept changes in the data.

A population of individuals is maintained, where each one is represented by a fuzzy association rule and a group of 
parameters which evaluate the quality of the rules. The fuzzy association rule consists of an antecedent and a consequent. 
The antecedent is allowed to have an arbitrary number of attributes while the consequent consists of only one attribute 
that must not be present in the antecedent of the same rule. Each variable can be represented by a disjunction of linguistic 
terms (labels) for a greater generalization. The group of quality parameters is formed by eight parameters: (1) the support 
supp, (2) the confidence conf, (3) the lift lif, (4) the accuracy acc, (5) the fitness F, (6) the experience exp, (7) the numerosity 
num, which represents the number of copies of the individual in the population, and (8) the average size of the action sets 
in which the individual has participated as.

At each iteration of the learning process of Fuzzy-CSar, an example arrives and the algorithm performs a sequence of 
steps in order to update the parameters of the individuals (association rules) and to discover new relevant rules. To discover 
these new rules, a niche based, steady-state genetic algorithm is applied. Furthermore, crossover operators, different types 
of mutation and covering are applied to the rules, with certain probabilities. After checking for subsumption, the new 
individuals are introduced into the population. In Algorithm 1 we can see a high-level description of the learning phase 
of Fuzzy-CSar. For a more complete and detailed explanation on the architecture and features of Fuzzy-CSar we refer the 
reader to [13].

Algorithm 1: A high-level description of the Fuzzy-CSar learning algorithm (from [13]).
procedure TrainFuzzy-CSar( trainingSample et, Population [P] at time t )
Data: et has the form {xi}�i=1
Result: Population [P] at time t + 1

begin
e′

t ← granulation(et )
generate [M] out of [P] using e′

t
if |[M]| < θmna then

generate θmna − |[M]| matching individuals using e′
t and updating [P]

end
group individuals in [M] by their antecedent forming distinct [A]i

select [A] probabilistically
subsume individuals in [A]
update individuals in [M] // Therefore, all [A]i are updated
if the average time of [A] since last GA > θG A then

perform a genetic event in [A] considering e′
t and updating [P]

end
end

3. Fuzzy-CSar-AFP: adaptive fuzzy partitions for association stream mining

In this paper we propose an advanced version of Fuzzy-CSar, Fuzzy-CSar-AFP, that has been designed in order to provide 
the system with greater flexibility to enable it to automatically adapt to the singularities of each problem. This adaptation 
capability allows the algorithm to deal with complex real-world data stream problems.
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Fig. 1. Illustration of fuzzy partitions with four different granularities (from 2 to 5) where VS stands for very small, S for small, M for medium, L for large, 
and VL for very large.

We propose two main axes for the algorithm’s improvement:

• The use of a new representation for the attributes which form the data stream, which allow fuzzy partitions of different 
granularity and fuzzy set shapes to be managed, thus adapting to the precision requirements of each variable in each 
rule. The genetic operators are also newly designed for this representation.

• In real world problems where the data are received as continuous flows of information (data stream) it is very likely 
that the attributes domain will not be known a priori, as this can evolve along the stream or simply not be bound to 
a static interval. Because of this, in the proposed algorithm we have included a method by which it is not necessary to 
fix the working range of each variable, the minimum and maximum values for each attribute are updated on-the-fly as 
the data are being processed.

These improvements, as well as the components of the learning architecture of Fuzzy-CSar whose comprehension is 
necessary to understand the modifications, are detailed in the following.

3.1. Representation

We propose a new way of encoding the fuzzy association rules in order to allocate patterns with different granularities 
per attribute. This mechanism allows the algorithm to precisely adapt the generality degree of each fuzzy association rule 
for an optimum covering of data. We consider fuzzy partitions from 2 to 5 fuzzy sets, though it can be easily adapted to 
other values. The advantage is twofold, as richer or poorer vocabulary can be used depending on performance demands 
and, at the same time, different support ranges and cores can be used to better locate the fuzzy set where required. This 
approach allows the system to also evolve not only symbolic structure of the fuzzy rules but also the fuzzy set parameters, 
which until now, is a field which has been poorly explored in the data stream, to the best of our knowledge.

In Fig. 1 each of the four possible granularities used in our experiments (from 2 to 5 fuzzy sets) are represented inde-
pendently, while in Fig. 2 we can observe how the fuzzy partitions of all these four granularities overlap in order to better 
visualize the different fuzzy set parameters applied by our method.

The idea of maintaining different granularities per attribute was originally proposed for classification tasks in [35] and 
has been widely applied by the same authors since then. In classification, this approach may suffer from an important lack 
of interpretability as the expert expects to understand the classification policy by viewing the fuzzy rule set as a whole. 
However, in unsupervised tasks by association rules, the target is to provide the expert with independent patterns that 
explain individual association relationships among different attributes, so the fact of using different granularities of the 
same attribute in different rules is compatible with expert’s understanding.
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Fig. 2. Illustration of the overlapping with the four different granularities used in this paper. It is possible to appreciate how the fuzzy partitions overlap 
each other and how some of the cores of the partitions from different granularities match (even the complete partitions do not).

3.2. Support, confidence, and fitness

In the Association Rules Mining field there are several measures for evaluating the quality of rules. We have mentioned 
that in Fuzzy-CSar and Fuzzy-CSar-AFP each individual from the population has 8 parameters, we are going to explain how 
both algorithms compute two of them, the two most meaningful for this paper and traditionally most commonly used: 
Support and Confidence. For information on the computation form of other parameters we refer the reader to [13].

To properly explain the calculation of these measures we are going to formally define Association Rules Mining field as 
follows [36]: Let I = i1, i2, . . . , il be a set of l binary features (items). Let T r = tr1, tr2, . . . , trN be a set of N transactions 
where each transaction tr j contains a binary vector indicating in each position if a particular item is present or not. An 
itemset X (X ⊂ I) is associated with a support which is a measure of its relevance in T and is computed as sup(X) =
|X(T )|/|T |, where X(T ) is the set of variables in the antecedent of the rule. An itemset is considered to be a frequent itemset
if its support gets over a user-defined threshold (minsup). An association rule R is an implication of the form X → Y , where 
both X and Y are frequent item sets and X ∩ Y = ∅. The most traditional qualitative measures for association rules are two: 
their support and their confidence:

supp(X → Y ) = supp(X ∪ Y )

|T | (1)

conf (X → Y ) = supp(X ∪ Y )

supp(X)
. (2)

Where support indicates the frequency of occurring patterns and confidence evaluates the strength of the implication 
denoted in the association rule.

Traditionally, the process of Association Rule Mining consists of two phases: (1) finding all the frequent itemsets in T
and (2) extracting rules from these frequent itemsets.

Real-world problems are flooded with imprecision and uncertainty that make difficult to traditional machine learning 
algorithms to find useful patterns from data. The use of fuzzy logic in Association Rules Mining allows the creation of highly 
legible models from both qualitative and quantitative data. Let I = {i1, i2, . . . i�} be a set of � features, and let A ⊂ I , C ⊂ I
and A ∩ C = ∅. A fuzzy association rule is, like before, an implication of the form X → Y in which:

X =
∧
ii∈A

μ Ã(ii) and Y =
∧
i j∈C

μC̃ (i j), (3)

where μC̃ (i j) is the membership degree of features in the consequent and μ Ã (ii) is the membership degree of features in 
the antecedent. In this situation, support is extended by using the product T-norm and confidence is extended by using the 
Dienes implication [31]:

supp(X → Y ) = 1

|T |
∑

μ Ã(X) · μC̃ (Y ) (4)

conf (X → Y ) =
∑

(μ Ã(X) · max{1 − μ Ã(X),μC̃ (Y )})∑
μ Ã(X)

(5)

where μ Ã(X) is the membership degree of the antecedent part of the rule and μC̃ (Y ) is the membership degree of the 
consequent part of the rule.
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3.3. Covering operator

The aim of this operator is to generate new fuzzy association rules when the current pool does not properly match 
the received sample data e. Indeed, the system creates the match set [M] with all the individuals in the population that 
matches e with a degree greater than 0 in both the antecedent and the consequent of the rule. If [M] contains less than 
θmna individuals θmna is a configuration parameter, the covering operator is applied until there are θmna individuals in [M].

The covering operator creates a new individual that matches e with the maximum degree: for each variable ei the 
operator randomly decides with a certain probability if the variable is in the antecedent of the rule. Then a variable which 
has not been selected for the antecedent is chosen to be in the consequent.

In the proposed Fuzzy-CSar-AFP, due to the new use of fuzzy partitions with different granularities, when the covering 
operator generates a new individual for each of the variables in the rule, a specific granularity is randomly chosen where 
two fuzzy labels are the minimum possible value and the maximum number of fuzzy labels is specified in a configuration 
parameter. Once the granularity of every variable in the rule has been established, each one of these variables is initialized 
with the linguistic label that maximizes the matching degree with the corresponding sample value. As in [13], individual’s 
parameters are all set to initial values (sup = exp = 0, conf = lif = acc = num = 1, F = 0.01, and as = the size of the actual 
action set).

3.4. Association set subsumption

During the learning iteration of Fuzzy-CSar, individuals in [M] are organized into various association set candidates [A]i

grouping individuals by their antecedent. Each [A]i has a probability of being selected that is proportional to the average 
confidence of the individuals that belong to it. The selected [A] experiments a subsumption process. The purpose of this 
mechanism is to reduce the number of different rules that express similar knowledge.

Each rule in [A] is checked for subsumption with each other rule of the set. A rule ri is a candidate subsumer of r j if: 
(1) ri has a similar confidence to r j and it is experienced enough, and (2) ri is more general than r j . In Fuzzy-CSar, a rule ri

was considered more general than r j if all the variables of ri are also defined in r j and ri has, at least, the same linguistic 
terms than r j for each one of its variables.

In the proposed Fuzzy-CSar-AFP, the same variable can have fuzzy partitions with different granularity in ri than in r j . 
Thus, ri will be more general than r j if all the variables of ri are also defined in r j ; for each one of its variables the number 
of fuzzy partitions in ri is lower or equal than the one in r j , and between the cores of the linguistic terms of ri are included 
the cores of all the linguistic terms of r j . Each time a rule ri subsumes a rule r j , the numerosity of ri is increased and r j , 
the subsumed one, is removed from the population.

3.5. Discovery component

As we have mentioned before, Fuzzy-CSar uses a steady-state, niche-based, incremental genetic algorithm to discover new 
rules. This genetic algorithm is applied to the selected [A]. In the previous version of Fuzzy-CSar, there were three different 
types of mutation: (1) mutation of the antecedent variables, which randomly decides if a new antecedent variable has to be 
added to the rule or one of the antecedent variables has to be removed from it; (2) mutation of the consequent variable, 
which selects one of the variables that appears in the antecedent and exchanges it with the variable of the consequent; and 
(3) mutation of the linguistic terms of the variables, which selects one of the variables of the rule and mutates its value in 
one of three possible modes: shift, contraction, or expansion.

In Fuzzy-CSar-AFP we incorporate a fourth type of mutation, mutation of the granularity of the variables, which selects 
one of the variables of the rule and changes the number of fuzzy partitions. The linguistic terms of the variable and its 
granularity determine the possible options for the new granularity value and which are going to be the new linguistic terms 
of the variables. In general terms, mutating the granularity of the variable to the next value up or down is allowed but if the 
cores of all the linguistic terms of the variables match with values of cores on two granularity levels up or down, mutation 
to this level will be also allowed. When mutating from n to n + 1 partitions, the new label of the variable is expected 
to be more specific than the original one so it is allowed to move only to a fuzzy set whose support is contained by the 
support of the original fuzzy set (the closest one, which can be more than one if they are equally distant). If the mutation 
occurs from n to n − 1 partitions, the new label of the variable is expected to be more general than the original one so 
the operator move to a fuzzy set whose support contains the original one (the closest to it). Taking into account these 
guidelines, Fuzzy-CSar-AFP considers an adjacency matrix indicating the possible mutations to be made. In Table 1 we can 
observe the content of the adjacency matrix used in the experiments discussed in this paper (possible granularities from 2 
to 5) indicating with 1 which mutations are possible and with 0 which ones are not, considering rows as original linguistic 
terms and columns as mutated ones. This matrix contains only one exception to the specified guidelines: we do not allow 
to mutate from M3 to S2 or L2 because we consider M3 is very different to S2 and L2 despite having the same support. 
Using this matrix, a new granularity is randomly selected to apply mutation to the variable and the original linguistic terms 
of the variable are transform to their corresponding ones in the new fuzzy partition. In Fig. 3 we represent three mutation 
situations, two of them ((a), (b)) are permitted mutations and the other one (c) is not.
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Table 1
Adjacency matrix used in granularity mutation (rows as original linguistic terms and columns as mutated 
ones).

S2 L2 S3 M3 L3 VS4 S4 L4 VL4 VS5 S5 M5 L5 VL5

S2 0 0 1 0 0 0 0 0 0 0 0 0 0 0
L2 0 0 0 0 1 0 0 0 0 0 0 0 0 0
S3 1 0 0 0 0 1 0 0 0 0 0 0 0 0

M3 0 0 0 0 0 0 1 1 0 0 0 1 0 0
L3 0 1 0 0 0 0 0 0 1 0 0 0 0 0

VS4 0 0 1 0 0 0 0 0 0 1 0 0 0 0
S4 0 0 0 1 0 0 0 0 0 0 1 0 0 0
L4 0 0 0 1 0 0 0 0 0 0 0 0 1 0

VL4 0 0 0 0 1 0 0 0 0 0 0 0 0 1
VS5 0 0 0 0 0 1 0 0 0 0 0 0 0 0

S5 0 0 0 0 0 0 1 0 0 0 0 0 0 0
M5 0 0 0 1 0 0 0 0 0 0 0 0 0 0
L5 0 0 0 0 0 0 0 1 0 0 0 0 0 0

VL5 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Fig. 3. Three different examples of granularity mutation, two allowed ((a) and (b)) and one not allowed ((c)), following the mutation conditions described 
in this paper according to starting linguistic terms and granularity.

3.6. Attribute domain update

The aim of this mechanism is to update online the minimum and maximum values of each attribute so it is not necessary 
to know these values a priori. Each time a new datum is received, the minimum and maximum values of each attribute 
are recalculated. To do so, a mean (μ) and a standard deviation (σ ) incremental computation is considered [37] as starting 
point. We have redesigned this computation so the latest data values have a higher influence and the domain fits better to 
the real values evolution. By this mechanism, the minimum and maximum values might be updated every time a sample is 
received, and thus having the advantage of not needing to store any sliding window from the data stream.

For each attribute, the minimum and maximum values at a certain time stamp are figured as described in Algorithm 2, 
where β is a parameter to control the percentage of samples covered by the range and α to control the influence of the 
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oldest values compared to the most recent ones. To maintain the online character of Fuzzy-CSar-AFP the algorithm employed 
to update the minimum and maximum values of the attributes must inspect each input data only once. For such an online 
algorithm, a recurrence relation is required between quantities from which the required statistics can be calculated in a 
numerically stable fashion. There are several formulas that can be used to update μ and σ for a new element. However, 
many of these formulas suffer from numerical instability. In addition to the necessity of update minimum and maximum 
values inspecting each input value only once, we also want to get that these minimum and maximum values evolve quickly 
enough to adapt them to the changing nature of the input data stream. To achieve this goal, we modify the original mean 
and variance incremental algorithm [37] (modifying the computation of temp and M2 in Algorithm 2 including α in them) 
to increase the influence of the most recent input values, decreasing the influence of the oldest ones. A traditional weighted 
approach was not the best option since a priori there are not examples with different weights, instead the weight of the 
examples decreases as they are getting older. For this aim, it is employed a decay factor, α, which penalizes the oldest 
examples. If α = 1 there is no penalization. The lower α is, the higher the relevance of the most recent data until reaching 
the case of α = 0 when μ matches the last value received and σ is always zero. In our experimentation, we use β = 2.5 so 
about 98% of the samples are included in the range, and α = 10log10(0.5)/(sps·s) being sps = 256 (samples per second, i.e., Hz) 
and s = 40 (i.e., after 40 seconds the decay factor α will be faded out to 0.5).

Algorithm 2: A description of the incremental algorithm used to calculate minimum and maximum values of a certain 
variable.
procedure Streaming-Mean-Variance( sum at time t, μ at time t, M2 at time t, n at time t, α, β, x )
Data: n is the number of samples processed at time t
x is the value of a new data for a certain attribute
μ and σ are the stream mean and standard deviation
sum, M2, α and β are real values
Result: min and max at time t + 1

begin
temp ← sum · α + 1
diff ← x − μ
R ← diff / temp
μ ← μ + R
M2 ← M2 · α + (sum · α · diff · R)
sum ← temp

σ 2 ← (M2 · n) / (sum · (n − 1))
(min, max) ← (μ − β · σ 2, μ + β · σ 2)

end

4. Some background on the problem of exploring networks instead of single physiological signals

The physiological adaptation to an ever-changing internal and external environment is the result of a complex interaction 
between physiological systems who have shown to exhibit non-stationary, intermittent, scale-invariant and nonlinear be-
haviors. Moreover, physiological dynamics are in constant flux, responding to changes in the underlying control mechanisms 
caused by different physiological states or pathologic conditions. Here we employ the novel methodology of association 
stream mining in order to dynamically obtain association rules that explain in an online fashion the relationships between 
signals derived from the recording of electrophysiological brain activity at distinct electrode sites.

4.1. Method

4.1.1. Participants
The database consists of physiological recordings from 50 young adult participants, divided into two groups of 25 partic-

ipants per group based on fitness level. Since the consequences of a sedentary lifestyle reach far beyond the development of 
chronic diseases as they also directly influence brain plasticity and function [38]. Numerous studies have repeatedly shown 
that exercise improves learning and memory, counteracts the mental decline that comes with age, and facilitates functional 
recovery from brain injury, disease, and depression [39]. The average age of the high-fit (trained – TRA) group was 22 years 
(age range: 21–24 years old) and of the low-fit (sedentary – SED) group 23 years (age range: 22–24 years old). The two 
subjects compared here were randomly selected as representative from their corresponding groups.

4.1.2. EEG recordings
Continuous EEG data were recorded using a BioSemi Active Two system (Biosemi, Amsterdam, Netherlands) and were 

digitized at a sample rate of 1024 Hz with 24-bit A/D conversion and subsequently resampled at 256 Hz. The 64 active 
scalp Ag/AgCl electrodes were arranged according to the international standard 1020 system for electrode placement using 
a nylon head cap.
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4.1.3. Behavioral task
The behavioral task was designed to measure vigilance by recording participants’ reaction times (RT) to visual stimuli in 

a computer screen. Participants were instructed to respond as fast as they could once they had detected the presentation of 
the stimuli. They had to respond with their dominant hand by pressing the space bar on the keyboard. The task comprised 
a single block of 60 minutes of total duration.

4.2. What makes this problem challenging in data stream mining

The explained problem on EEG analysis has some properties that makes it an ideal benchmark for association stream 
mining by Fuzzy-CSar-AFP: (1) the variables (electrode signals) are continuous (which justifies the use of fuzzy logic) and 
the variation interval unknown (so the proposed attribute domain update mechanism makes sense here); (2) the problem 
does not have any dependent or output variable, so it needs to be addressed by unsupervised learning; (3) the rate of 
incoming data is very high (256 per second), which justifies the need of processing data on-the-fly instead of storing them 
or using sliding window; and (4) there is interest from experts regarding the analysis of relationships among variables as a 
complementary study to their conventional time series approach.

5. Experimental methodology

5.1. Addressing the difficulty of evaluating association stream

Unlike other types of problems such as supervised learning problems where there are standard measures and mecha-
nisms to evaluate the goodness of the results of algorithms and to establish comparisons between them; in the association 
rules field there is no standard way to fairly establish comparisons between algorithms. Association rules discovery is an 
unsupervised learning problem so we do not know what the perfect association rules might be. There are several param-
eters for individual association rule evaluation like support, confidence, lift, etc., but even with them it is hard to reliably 
compare different rules sets resulting from two different algorithms or experiments. These issues increase when we talk 
about association streams, we have to deal with the additional difficulty of evaluating the ability of the algorithm to adapt 
to concept drifts. Again unlike in supervised and clustering stream fields, for association stream mining, there is no formal 
way to quantitatively evaluate what happens with the learned model when a concept drift occurs. To evaluate and better 
understand the results we have designed a set of original graphs and visualizations which would help interpret the results 
in two different ways: (1) comparison between the performance of Fuzzy-CSar-AFP, Fuzzy-CSar and Fuzzy-Apriori; and (2) 
visual tools to represent the associations discovered by Fuzzy-CSar-AFP in the data. This set of graphics and visualizations 
are detailed in the following.

5.1.1. Attribute domain evolution
For each attribute we represent a plot with three functions: (1) the evolution of the maintained minimum value of the 

attribute (represented in red), (2) the evolution of the real values of this attribute in all the data that have been processed 
(represented in blue), and (3) the evolution of the maintained maximum value of the attribute (represented in red). With 
these plots we get a clearer picture of the data stream received and check how well the domains maintained by the 
algorithm fit to the real data. This type of plot is shown in Section 6.1.

5.1.2. Number of rules: minimum confidence vs. minimum support
Given a minimum confidence value c, the amount of fuzzy association rules with support equal to or higher than the one 

corresponding to abscissa value is counted. Several curves corresponding to several confidence thresholds and algorithms 
are plotted. These graphs are traditionally used to analyze the results of association rules algorithms as they represent the 
quality of the rules obtained. The correspondent figures are shown in further sections.

5.1.3. Evolution of the amount of good rules
It is an analysis of the amount of fuzzy association rules from each algorithm which pass certain minimum support and 

confidence values at each moment of the experiment along with the total amount of rules (unfiltered rules). Several curves 
are plotted for the compared algorithms. This graph complements the one explained in the previous section by showing the 
dynamical behavior in the data stream and we can find it in Section 6.1.

5.1.4. Multidimensional Scaling to analyze dispersion of association rules
We consider the previous plots concerning the amount of rules obtained according to different quality criteria are not 

enough for a real comparison between two approaches as an algorithm can find many rules which are very similar to 
each other (e.g., with slight differences on the variables used in the antecedent), which in practice is not so useful for 
expert decision making. On the contrary, an algorithm that generates association rules with more diversity is preferable. 
However, this has not been thoroughly analyzed in the specialized literature until now although some visualizations have 
been proposed [40,41].
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Fig. 4. Three examples of variables representation used to calculate distances between rules where (a) shows the representation used when the variable is 
not used in the rule; (b) is an example of the representation used when the variable is used in the rule with granularity 2, and (c) is an example of the 
representation used when the variable is used in the rule with granularity 3.

Here we have proposed a new method with the aim of finding a way to represent how diverse the rules obtained by the 
algorithm are. If the rules are represented as points in a two-dimensional coordinate system, then we could easily represent 
three groups of points (each group with a different color) representing the rules obtained by three different algorithms, and 
so it would be pretty simple to visually compare which rules group spreads their points more evenly and which has the 
majority of its points (association rules) concentrated in certain small zones of the plot.

In order to represent these plots it is necessary to carry out a preprocessing phase that can be summed up in four steps: 
(1) we filter the rules using minimum thresholds of support and confidence (0.02 and 0.75, respectively, in our experiment); 
(2) we group all the obtained association rules from the three algorithms which have overcome the mentioned thresholds 
into a single set; (3) a distance matrix containing the distances between every pair of association rules is calculated; 
(4) MultiDimensional Scaling (MDS) [42] is applied to such distance matrix obtaining as output 2D points that represent the 
original association rules, which are shown in a scatter plot. So that the interpretation might be clearer, we have separated 
the rules according to the variable used as consequent and we have generated a plot for each case.

In order to use MDS, we need to define a distance function between fuzzy association rules as follows. Each fuzzy 
set is considered trapezoidal-shaped and represented by four values A, B, C and D. In the antecedent section we check 
which attributes appear in the rule and which do not. The attributes that do not appear in the antecedent of the rule are 
represented as in Fig. 4 (a), where A = B = minimum value of the attribute and C = D = maximum value of the attribute. If 
the attribute is present in the antecedent of the rule it will be associated with a granularity value and a linguistic term 
so it would be represented similarly to the examples of Fig. 4 (b) and Fig. 4 (c). We repeat the same operation for the 
consequent of the rule. Once this is finished, the distance between the fuzzy sets used in variable v in two different rules 
ri and r j is:
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This distance for variable v in two different rules is normalized by the maximum possible distance between two rules for 
such variable, i.e., in the case of a maximum granularity of five fuzzy sets the distance between VS5 and VL5:
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Therefore, if we have n attributes v1, v2, ..., vn (in both antecedent and consequent parts), the distance between two rules 
ri and r j is:

d(ri, r j) =
√√√√ n∑

k=1
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Finally, we build the entire distance matrix needed in MDS by computing the distance for every pair of fuzzy association 
rules in the set. The corresponding figures are shown in Section 6.1.

In addition to this graphic representation we have also designed a quantitative measure to numerically assess how sparse 
each group of rules is and quantify the difference between groups. To calculate this measure of diversity in association rules 
set, denoted as δmds , we start from the set of 2D points obtained as MDS output (each point represents an original fuzzy 
association rule) and complete a three-step process: (1) we separate the 2D points according to the source algorithm into 
three groups; (2) we calculate the Euclidean distance between every pair of points; and, finally, (3) obtain δmds as the mean 
of all these Euclidean distances in each group.

5.1.5. Streamgraphs
The streamgraph represents, for association rules with a specific variable in their consequent, how important each of the 

other variables are as antecedents of these rules at the very moment of the data stream.
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To construct this graph we have a counter for each variable which is different from the one which has been selected to 
be in the consequent and for each time in which we are going to read the rules population. Then, for each of these times, 
we take all the rules whose consequents have the specified attribute and count the number of variables in the antecedent n. 
We add 1/n to each antecedent variable counter. For example, if a rule has three variables as antecedent, the area of each 
one of these variables is increased by 0.3333. If the rule has only one variable as antecedent, its area is increased by 1. Once 
this phase is completed, the graph is generated.

In the graph we can distinguish a color strip for each one of the antecedent variables and the width of each one is going 
to be proportional to the importance of this variable in the antecedent of the rules in a certain time. The sum of width from 
all the color strips is equal to the number of rules with the selected attribute in the consequent. The graph is displaced 
around a central axis to give an impression of fluidity. The correspondent figures are shown in Section 6.2.

5.1.6. Dependency wheels
The objective of this last visualization is to help understand in a certain moment how the associations between variables 

are distributed by showing which variables it seems to depend or which it seems to influence. To construct this graph we 
use the same width procedure as for streamgraph: the relevance of a variable that appears as antecedent is conditioned to 
the number of antecedents present in this same rule.

While the outer ring represents the different variables of the problem, the inner ring distinguishes when the variable 
appears as antecedent (dashed sectors) or consequent (dotted sectors). Therefore, the arcs always connect antecedent and 
consequent sectors. The width of these sectors for each variable is proportional to the number of rules in which this variable 
appears. Likewise, the width of the arcs represent the importance of these connections. The color of each arc corresponds 
to the one assigned to the antecedent variable of such link. In Section 6.2 dependency wheels obtained from the results of 
Fuzzy-CSar-AFP are shown.

5.2. Experimental setup

As it is described in [13], Fuzzy-CSar has several configuration parameters which enable it to adjust the behavior of 
the system and get models of maximal quality. In our experiments we respect almost all the configuration parameters 
used in [13] which were obtained experimentally following the recommendations found in [29]. However, in this paper we 
propose a challenging real-world data stream problem where 256 samples are analyzed every second during 60 minutes 
per subject (i.e., about a million of samples are processed in each experiment). Therefore, to deal with this high rate of 
in-coming data, the values of some configuration parameters have been changed. The configuration parameters which are 
different in our experiments are those related to experience thresholds: θexp = 10000 (a rule that has been updated for 
about 40 seconds is experimented enough as to consider the performance estimation reliable), θdel = θsub = 4000 (after 
about 15 seconds the rules can be deleted or subsumed), and the population size was set to 5000 individuals. The allowed 
fuzzy partition granularity is set to five fuzzy sets in Fuzzy-CSar, and between two and five in Fuzzy-CSar-AFP. The same 
algorithm configuration is applied to all the experiments.

As we have pointed before, Fuzzy-CSar-AFP is also analyzed in comparison with Fuzzy-Apriori [14], which integrates the 
Apriori algorithm and fuzzy sets concepts to discover interesting fuzzy association rules among quantitative values. Because 
Fuzzy-Apriori is not a data stream algorithm the dataset is partitioned into 30 subsets, each one containing 30720 samples 
(data registered during two minutes of experiment) and Fuzzy-Apriori is applied on each subset. So we can obtain results 
from Fuzzy-Apriori for different stretches from the original dataset, and not only at the end. The same analysis is performed 
for two different options with aim of better analysis the impact of adaptive fuzzy partitions regardless of whether the 
attribute’s domains evolve or not: (1) one in which the minimum and maximum values used by the algorithms for each 
one of the input attributes evolve as described in Section 3.6, and (2) another one in which the three algorithms use the 
absolute domains of each input attribute. All results shown in Section 6 have been obtained following this procedure.

6. Results

The data streams described in Section 4 are used in several experiments in order to corroborate our hypothesis consider-
ing Fuzzy-CSar-AFP better able to adapt to the peculiarities of each variable, and so obtaining better and more heterogeneous
rules that could help discover useful associations between the forming features of the data. In this paper we widely compare 
Fuzzy-CSar-AFP with Fuzzy-Apriori [14] and Fuzzy-CSar. For a further analysis of the performance of Fuzz-CSar’s architecture 
to deal with concept drift and a comparative in static data we refer the interested reader to [13]. For this comparison we 
employ two different versions of the mentioned data streams. The full data streams with their 64 variables are used to 
assess the time-performing of the algorithms. However, to analyze and compare the sets of rules obtained by the different 
algorithms we select EEG data from six scalp locations [43] in order to enable a more conscious analysis. These six selected 
scalp locations are: frontal left (Fp1), frontal right (Fp2), occipital left (O1), occipital right (O2), central left (C3) and central 
right (C4).

As we have mentioned above, the experiments performed can be grouped into two groups depending on whether the 
algorithms (Fuzzy-Apriori, Fuzzy-CSar and Fuzzy-CSar-AFP) employ the absolute domain of each attribute or the evolving 
ones (Section 3.6). The comparisons are performed separately in these two groups of experiments due to the difficulty to 
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Fig. 5. Evolution of real value (blue), algorithm maximum value (red) and algorithm minimum value (red) for each input attribute as data of trained 
subject (TRA) are processed. Because of the high sampling rate and to reduce the weight of the images, only 1 in 20 data is represented in these plots. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

carry out a fair comparison (specially in terms of dispersion) between algorithms which use different attribute’s domains. 
In any case, we must remember that the principal aim of updating attribute’s domains is to make the algorithm useful in 
real-world problems where it is very common not to know the range of values of the attributes.

6.1. Analysis of Fuzzy-CSar-AFP performance and comparative results

6.1.1. Domains update
In Section 3.6 we have explained how each time a new datum is processed by the algorithm, the range of each variable 

(defined by its minimum and maximum values) is updated including the value of the variable in the new datum (if it 
is present). In Fig. 5 and Fig. 6 we can see the evolution of the minimum and maximum values during the algorithm 
application for every attribute for two different subjects. It is possible to observe how both minimum and maximum values 
are updated no matter if it is because of a value bigger or lower than the majority of the data. In the mentioned figures we 
can see how, even when the fitting is not completely perfect, it is pretty good and in any case much better than the option 
of having to process the data and using the absolute domains of the attributes. The figures also show the advantage of the 
proposed domain updating mechanism to filter noise and peaks, i.e., using the absolute maximum and minimum value to 
limit the domain of the attributes there are several fuzzy partitions (labels) which are not going to be used hardly ever. For 
example, we can analyze the case of C4 for TRA where if the algorithm takes the absolute limits some fuzzy partitions cover 
values that only appear in one particular point of the process, irrelevant compared with the full dataset.
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Fig. 6. Evolution of real value (blue), algorithm maximum value (red) and algorithm minimum value (red) for each input attribute as data of not trained 
subject (SED) are processed. Because of the high sampling rate and to reduce the weight of the images, only 1 in 20 data is represented in these plots. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 2
Number of rules (#R) obtained by Fuzzy-Apriori for the different confidence thresholds and the lowest minimum 
support values represented in Fig. 7 for both trained (TRA) and sedentary (SED) subjects when evolving domains.

min. supp. 
min. conf.

0 0.01 0.02

0.75 0.8 0.85 0.75 0.8 0.85 0.75 0.8 0.85
TRA #R 317514 274020 212082 2608 794 30 846 42 0
SED #R 156852 135884 104812 1282 334 17 395 23 1

6.1.2. Number of rules with minimum confidence vs. minimum support
In Fig. 7 it is possible to observe the number of rules with certain confidence thresholds and different minimum support 

values (from 0.0 to 1.0). Note that the graphs shown in Fig. 7 do not show the number of rules generated by Fuzzy-Apriori 
for minimum support values lower than 0.02 because it is too high and would avoid to correctly appreciate the whole plot. 
In any case, this number falls quickly as the support rises slightly, as shown in Table 2.

As the minimum support value increases slightly the number of rules from Fuzzy-Apriori decreases dramatically and gets 
lower than the number of rules from Fuzzy-CSar-AFP in both TRA and SED data flows, and in both absolute and evolving 
attribute’s domains (Fig. 7). In the case of evolving domains, this phenomenon is much more noticeable. In this case, if we 
focus on support values between 0.0 and 0.1 our attention is drawn to the fact that the number of Fuzzy-Apriori’s rules starts 
descending quickly, then seems to stabilize for a moment and finally descends sharply again. Before the minimum support 
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Fig. 7. Amount of rules from Fuzzy-CSar-AFP (blue) and Fuzzy-Apriori (green) which get over three different confidence thresholds (conf ≥ 0.75, conf ≥ 0.8
and conf ≥ 0.85) and minimum support thresholds from 0.0 to 1.0. The results are shown for both the experiments with absolute domains (left) and 
evolving attribute’s domains (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

reaches 0.1 the number of rules from Fuzzy-Apriori falls to zero for both subjects and for the three possible confidence 
thresholds. This evolution in the amount of rules discovered by Fuzzy-Apriori is overriding to the choice of rules quality 
thresholds for other comparatives and analysis shown in this paper. Unlike Fuzzy-Apriori, Fuzzy-CSar-AFP draws a smoother 
curve and continues generating rules even for quite high support minimum values, also in the case of absolute attribute’s 
domains.

6.1.3. Evolution of the amount of good rules
In Fig. 8 we can observe the number of rules which beat minimum support and confidence values as the number of 

samples processed by the algorithms increases. Each algorithm is identified by a different color. It is important to remember 
that Fuzzy-Apriori is not a data stream algorithm and due to that it has been executed on data windows. Each window 
represents data recording for two minutes (30 720 samples).

With basis on Fig. 7 we have selected minimum support thresholds for which the number of filtered rules from Fuzzy-
Apriori and Fuzzy-CSar-AFP tends to be similar and not too low. The minimum supports are 0.02 for evolving domains, 
0.25 for absolute domains in trained subject (TRA) and 0.10 for absolute domains in sedentary subject (SED). These are the 
support filters applied to obtain the plots shown in Fig. 8 combined with two different confidence thresholds (0.75 and 
0.85).

In Fig. 8 we can observe how for 0.75 as minimum confidence threshold and the selected minimum support the number 
of filtered rules generated by Fuzzy-Apriori and by Fuzzy-CSar-AFP maintain similar values for the whole experiment. If 
we focus on the comparative between Fuzzy-CSar and Fuzzy-CSar-AFP, we appreciate how when the number of processed 
samples starts to increase the amount of different rules obtained by Fuzzy-CSar-AFP is always higher.

Since Fuzzy-Apriori is not an incremental algorithm the trend of the evolution on the number of different rules is not the 
same as for Fuzzy-CSar and Fuzzy-CSar-AFP, and there are noticeable differences among the four graphics. First, in the case 
of absolute domains, we find some differences between trained and sedentary subject. For the trained subject the number 
of filtered rules of Fuzzy-Apriori is always higher than the number of filter rules of Fuzzy-CSar-AFP for both 0.75 and 0.85 
confidence thresholds. However, for the sedentary subject when the minimum confidence increases to 0.85 the number of 
rules from Fuzzy-Apriori descends a lot getting lower than the number of rules generated by Fuzzy-CSar-AFP. In the case 
of evolving domains, we also find some differences between both subjects. For the trained subject and 0.75 as confidence 
threshold the amount of filtered rules from Fuzzy-Apriori is always bigger than the number from Fuzzy-CSar-AFP. However, 
if we raise the confidence threshold up to 0.85, Fuzzy-Apriori only beats Fuzzy-CSar-AFP in a few cases. For the sedentary 
subject the results are quite different. When we choose 0.75 as minimum confidence and the amount of processed samples 
is enough, the number of filtered rules from Fuzzy-Apriori and Fuzzy-CSar-AFP keep quite close. But when the minimum 
confidence comes to 0.85 the number of filtered rules from Fuzzy-Apriori falls significantly to be bellow both Fuzzy-CSar-AFP 
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Fig. 8. Representation of how the amount of different rules evolves as the data are processed in both subject cases. Normal lines represent number of rules 
generated by the algorithms whose confidence is equal or greater than 0.75 while dotted lines represent rules which get over a confidence threshold of 
0.85. The results are shown for both the experiments with absolute domains (left) and evolving domains (right). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

and Fuzzy-CSar throughout the experiment. In summary, we can say that the number of rules from Fuzzy-CSar-AFP gets 
over the number of rules from Fuzzy-CSar. However, the relationship between the number of different rules obtained by 
Fuzzy-CSar-AFP and Fuzzy-Apriori is not so clear even though we can observe that in most cases the difference between the 
confidence thresholds (0.75 and 0.85) is most strongly seen in Fuzzy-Apriori. Anyway, this analysis is going to be expanded 
throughout this section.

6.1.4. Multidimensional Scaling to analyze dispersion of association rules
As we could ascertain in Section 6.1.2, the number of rules discovered by Fuzzy-Apriori decreases very rapidly as the 

minimum support value moves away from zero, describing a different evolution from that of the rules discovered by Fuzzy-
CSar-AFP, giving up generating rules for supports lower than 0.1 in the case of evolving domains of attributes. To allow a 
more fair comparison in terms of dispersion between these two algorithms we decided to choose minimum support and 
confidence thresholds for which both algorithms obtain a very close number of rules. Therefore, all the figures, tables and 
results commented in this section refer to rules filtered according to a support threshold of 0.02 in experiments correspond-
ing to evolving domains, meanwhile a support threshold of 0.10 is used in case of absolute domains and sedentary subject, 
and a support threshold of 0.25 in case of absolute domains and trained subject. Confidence threshold of 0.75 is used in all 
the cases.

Figs. 9 and 10 contain a scatter plot for each possible attribute in the consequent in which each point matches to an 
original association rule (as explained in Section 5.1.4) discovered by Fuzzy-Apriori (green), Fuzzy-CSar (red) or Fuzzy-CSar-
AFP (blue) at the end of the experiment, i.e., when 60 minutes of data have been processed (921 600 samples). Tables 3 and 
4 contain δmds values and number of rules computed for the same cases.

In Tables 3 and 4 along with Figs. 9 and 10 we can quantitatively and visually analyze how sparse the rules of each 
algorithm are distributed. Visually, we can observe that for both trained (Fig. 9) and sedentary (Fig. 10) subjects the rules 
obtained by Fuzzy-CSar-AFP (blue points) use to be more distanced from each other and quite sparse, covering a wide area 
and having rules for each possible attribute in the consequent. If we check Tables 3 and 4, δmds values confirm that in most 
of the analyzed cases Fuzzy-CSar-AFP is the algorithm whose rules are distributed more widely, with a higher mean distance 
between each other.
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Table 3
Comparison between the number (#R) and dispersion (δmds) of the rules obtained by Fuzzy-Apriori, Fuzzy-CSar and Fuzzy-CSar-AFP 
for the TRA dataset. The rules included in this table have overcome support and confidence thresholds (conf ≥ 0.75 and different 
minimum supports). The results are shown for both the experiments with both absolute and evolving domains.

Fp2 C4 O2 O1 C3 Fp1

δmds #R δmds #R δmds #R δmds #R δmds #R δmds #R

Absolute F-Apriori 0.144 35 0.0 0 0.152 36 0.0 0 0.148 37 0.0 0
FCSar 0.161 7 0.0 0 0.156 8 0.0 0 0.162 9 0.0 0
FCSar-AFP 0.095 4 0.132 19 0.107 8 0.124 16 0.106 12 0.134 27

Evolving F-Apriori 0.180 64 0.184 75 0.182 71 0.186 62 0.183 58 0.175 62
FCSar 0.163 12 0.155 10 0.150 9 0.079 2 0.170 12 0.153 6
FCSar-AFP 0.183 62 0.183 60 0.190 53 0.174 54 0.190 56 0.207 38

Table 4
Comparison between the number (#R) and dispersion (δmds) of the rules obtained by Fuzzy-Apriori, Fuzzy-CSar and Fuzzy-CSar-AFP 
for the SED dataset. The rules included in this table have overcome support and confidence thresholds (conf ≥ 0.75 and different 
minimum supports). The results are shown for both the experiments with both absolute and evolving domains.

Fp2 C4 O2 O1 C3 Fp1

δmds #R δmds #R δmds #R δmds #R δmds #R δmds #R

Absolute F-Apriori 0.147 28 0.150 74 0.137 40 0.144 7 0.0 0 0.153 22
FCSar 0.122 7 0.0 0 0.137 4 0.160 11 0.179 15 0.156 12
FCSar-AFP 0.159 19 0.151 23 0.159 15 0.187 8 0.126 16 0.162 20

Evolving F-Apriori 0.171 45 0.187 68 0.171 76 0.168 67 0.194 54 0.193 59
FCSar 0.089 10 0.240 6 0.126 6 0.135 11 0.137 19 0.140 13
FCSar-AFP 0.179 80 0.165 54 0.203 53 0.203 64 0.181 52 0.178 52

It is specially worth highlighting those cases in which Fuzzy-Apriori obtains more rules but, however, Fuzzy-CSar-AFP gets 
a higher δmds value, such as O2 for the four cases. In these examples, Fuzzy-Apriori obtains more rules than Fuzzy-CSar-AFP 
but δmds is clearly greater for Fuzzy-CSar-AFP, i.e., Fuzzy-CSar-AFP manages to discover with less association rules a more 
diverse and widespread knowledge. An extremely low number of rules is neither desirable even if δmds is higher. The aim is 
to find a balance between the number of quality rules and how sparse they are.

This analysis is focused only in a specific moment of the process, the final one, when all the samples have been pro-
cessed. In order to have a more global vision of the evolution of δmds throughout the full process, in Fig. 11 we represent 
δmds at 30 different points of the experiment. δmds value for each algorithm’s rules is computed everytime two new minutes 
of data (30720 new samples) have been processed by the algorithms. The association rules are filtered by the same quality 
parameters as in the previous figures and tables (conf ≥ 0.75 and supp ≥ 0.02).

In the plots contained in Fig. 11 we can appreciate that Fuzzy-CSar-AFP obtains very good results of δmds for hardly the 
entire duration of the experiments in all cases. If we focus on the comparative between Fuzzy-CSar-AFP and Fuzzy-Apriori, 
Fuzzy-CSar-AFP equals or improves Fuzzy-Apriori in all experiments (both subjects and both domains). The improvement of 
Fuzzy-CSar-AFP over Fuzzy-Apriori is more noticeable in the case of absolute domains. But even in the case of evolving do-
mains Fuzzy-CSar-AFP beats Fuzzy-Apriori in most of the occasions. Furthermore, it is important to recall that Fuzzy-Apriori 
is not really an incremental online algorithm but we apply it on different windows of data. If we would need to get a real 
time update of the state of the population of rules each time a new data is received, this would be possible with Fuzzy-CSar 
or Fuzzy-CSar-AFP but not with Fuzzy-Apriori. When comparing Fuzzy-CSar with Fuzzy-CSar-AFP we can clearly notice that 
Fuzzy-CSar-AFP gets better results for three out of four experiments, and with a smaller difference also gets better results 
in the remaining one. Furthermore, if we also check Fig. 8, 0.75 as confidence thresholds we observe that the number of 
Fuzzy-CSar’s rules after applying the filters is lower. So we can conclude that Fuzzy-CSar-AFP tends to extract a sufficiently 
high number of quality rules that are less similar to each other during the whole experiment than the ones obtained by 
other algorithms in most cases, i.e., these rules represent different knowledge rather than a lot of rules expressing the same 
information. As we have explained before, an algorithm that generates rules with more diversity is preferable.

6.1.5. Analysis of efficiency
In order to check and compare the efficiency of the algorithms, two different types of experiments have been performed. 

Firstly, the computation time spent by each algorithm in processing every two new minutes of data (30 720 sampling) 
is registered. Since the minimum support value specified as input argument of Fuzzy-Apriori determines its number of 
frequent itemsets and, therefore, influences its execution time, we carry out several tests varying the support threshold. 
Fuzzy-CSar and Fuzzy-CSar-AFP do not need minimum support as input parameter. The results of these tests are shown in 
Fig. 12. The experiments are performed in a Intel® Core™ i7-4790 3.60 GHz, RAM 16 GB DDR3 (1600 MHz) computer.

In both figures, we can observe how the support threshold is a key factor in the execution time of Fuzzy-Apriori. Relating 
these results with Fig. 7, as the number of rules obtained by Fuzzy-Apriori quickly decreases if the minimum support value 
increases a little, its execution time follows the same trend. Comparing the performances of Fuzzy-CSar-AFP and Fuzzy-CSar, 
the latter gets better efficiency because of it maintains a significantly lower number of rules (see Fig. 8). In other words, in 
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Fig. 9. Two-dimensional representations of how the rules are distributed in Fuzzy-CSar-AFP (blue points), Fuzzy-CSar (red) and Fuzzy-Apriori (green) for 
trained subject (TRA) data. The results are shown for both the experiments with absolute domains (up) and evolving domains (down). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

exchange for getting many more quality rules, Fuzzy-CSar-AFP needs to evolve a wider pool of rules that increases processing 
time. In addition, we can observe how in the first subsets both Fuzzy-CSar and Fuzzy-CSar-AFP register lower time values 
due to the incremental and online character of these algorithms. Initially, the population of association rules maintained 
by these algorithms during the whole process is empty, then it begins to grow up and, finally, to stabilize, as well as the 
execution time of the algorithm.

Another key factor in the time efficiency of these algorithms is the number of attributes forming the input data. In order 
to test the influence of this factor on these three algorithms, we test them on the full original EEG dataset (before feature 
selection) including its 64 attributes. The average execution times per sample registered along with those recorded using 
the 6-attribute dataset are shown in Table 5. The values shown in this table are the average results after three runs. In 
this table we can appreciate how Fuzzy-CSar-AFP scales much better than Fuzzy-Apriori. With the 6-attribute dataset, both 
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Fig. 10. Two-dimensional representations of how the rules are distributed in Fuzzy-CSar-AFP (blue points), Fuzzy-CSar (red) and Fuzzy-Apriori (green) for 
sedentary subject (SED) data. The results are shown for both the experiments with absolute domains (up) and evolving domains (down). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fuzzy-CSar-AFP and Fuzzy-Apriori can manage a sampling frequency of 1000 Hz. However, with the 64-attribute dataset, 
Fuzzy-CSar-AFP can manage 200 Hz while Fuzzy-Apriori needs about a second and a half to process each sample. That is, 
for a sampling frequency of 200 Hz, Fuzzy-Apriori may spend more than 44 hours to process the data recorded during 
10 minutes of experiment, which is completely unfeasible in a real-world data stream problem. Fuzzy-CSar-AFP, on the 
contrary, is able to process the data on-the-fly.

In Table 5 we can also discover another interesting fact: the time registered by Fuzzy-CSar is lower than the time 
registered by Fuzzy-CSar-AFP for the case of the 6-attribute dataset but higher for the 64-attribute dataset. This happens 
because Fuzzy-CSar obtains a lower amount of different rules than Fuzzy-CSar-AFP for the 6-attribute dataset (as we showed
above) but gets more different rules than Fuzzy-CSar-AFP for the 64-attribute dataset (1919 vs. 1547). However, these higher 
number of rules does not imply more quality. Indeed, Fuzzy-CSar-AFP obtains more high-quality rules (with minimum 
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Fig. 11. Comparison between the evolution of δmds for the association rules (filtered according to conf ≥ 0.75 and different support thresholds) obtained by 
Fuzzy-CSar-AFP (blue), Fuzzy-CSar (red) and Fuzzy-Apriori (green) for trained TRA (up) and sedentary SED (down) subjects. The results are shown for both 
absolute domains (left) and evolving domains (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

Table 5
Average execution time (in seconds) per sample of Fuzzy-Apriori, Fuzzy-CSar and Fuzzy-CSar-AFP applied on 
6-electrodes and 64-electrodes dataset.

6-attribute dataset 64-attribute dataset

TRA SED TRA SED

Fuzzy-Apriori 0.000022 0.000018 1.337197 1.265868
Fuzzy-CSar 0.000203 0.000166 0.007194 0.007203
Fuzzy-CSar-AFP 0.001092 0.001057 0.004616 0.005056

confidence of 0.85) than Fuzzy-CSar. The 64-attribute dataset is a very sparse problem so Fuzzy-CSar does not enhance 
quality properly, thus generating a high number of different rules but with poorer quality.

6.2. Interpretation of obtained results in psychophysiology

The association streams in both subjects (Figs. 14 and 13) revealed a stable increase in the number of association rules 
throughout the experimental session. This is an expected behavior for biological signals that fluctuate in response to varia-
tions in common underlying physiological sources. The result confirms the sensitivity of the method when detecting natural 
associations between signals from electrodes at distinct scalp locations. In addition, the method shows robust to mild phys-
iological changes induced by mental fatigue during a behavioral task with low cognitive demands. This robustness of the 
algorithm to the factor of time and to modest cognitive effort is important for further experimentation with more de-
manding conditions marked by pronounced physiological changes (e.g. sleep vs. awake and distinct sleep stages, tasks with 
significant cognitive load, etc.).

Although the algorithm proved robust to changes induced by the length and the particular behavioral demands of the 
task, it also proved capable of tracking the evolution of specific association rules throughout the experimental session. 
Differences in the dynamical pattern of concrete association rules between subjects seem like a promising methodological 
tool for detecting minute which would be impossible to assess with current averaging or pair-wise correlation techniques.
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Fig. 12. Execution times spent by Fuzzy-CSar-AFP (dotted blue bars), Fuzzy-CSar (red bars) and Fuzzy-Apriori (dashed green bars) to process each new 
subset (30720 sampling, 2 minutes of data recording) varying the minimum support value used by Fuzzy-Apriori. A minimum confidence value of 0.75 is 
used by Fuzzy-Apriori. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. Stream graphs for SED (sedentary subject) supp ≥ 0.02 and conf ≥ 0.8.
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Fig. 14. Stream graphs for TRA (trained subject) supp ≥ 0.02 and conf ≥ 0.8.
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Fig. 15. Dependency wheels for (a) TRA and (b) SED subjects at the end of the sampling with supp ≥ 0.05 and conf ≥ 0.85.

Fig. 15 shows the dependency wheels of very good fuzzy association rules (supp ≥ 0.05 and conf ≥ 0.85) obtained 
for both TRA and SED subjects at the end of the experiment (921 600 sampling, i.e., after 60 minutes). At this level of 
performance, we can observe differences between the fuzzy association rules in these two cases. We can perform a zone 
analysis of these two graphics and highlight certain contrasts between them. Looking at the frontal electrodes (Fp1 and 
Fp2) in TRA is Fp1 the frontal electrode with greater presence as consequent (dotted sectors) and Fp2 appears mainly as 
antecedent (dashed sectors). This behavior is completely reversed in SED. On the one hand, Fp2 has a much larger total 
occurrence in SED and most of it as consequent. On the other hand, Fp1 loses relevance, chiefly, its consequent sector. In 
the central electrodes (C3 and C4) there are not so significant differences between subjects, even though the relevance of 
C3 as consequent (dotted sectors) is clearly bigger in TRA. Finally, looking at the last electrodes (O1 and O2) we appreciate 
again significant variances between subjects, specially in O1 that has a pretty important consequent sector in TRA while in 
SED its consequent sector almost does not exist. Instead of focusing on each individual electrode, we also can pay attention 
to the relationships and dependencies established between them. Many of these relations also change depending on the 
subject but we can also distinguish certain associations which seem steady and more independent to subject change such 
as those built between Fp1 and Fp2, or Fp2 and C4.

7. Conclusion

In this paper we go into the problem of knowledge discovery from streams of unlabeled data formed by continuous 
attributes in real-world environments to monitor the system using online maintenance and updating a population of as-
sociation rules, which is commonly known as association stream mining. The association stream mining field presents the 
following main features: (1) the data arrives as a continuous high-rate information flow; (2) each data is processed only 
once: the data is received, processed and forgotten; (3) the concept to be learnt may change or drift over time and the 
algorithm should adapt; (4) no a priori structure or distribution is assumed; and (5) there are restrictions in memory usage.

This paper provides novelty in multiple ways: (1) new mechanisms which adapt membership functions and fuzzy parti-
tions are proposed so that the algorithm might be endowed with more flexibility to fit the features of each variable; (2) a 
new methodology to evaluate and compare results from association stream mining algorithms and to analyze data stream 
is used; (3) a new problem in association stream mining with real application by helping psychophysiologists in knowledge 
discovery is addressed; and (4) complex real-world data streams are tackled.

Furthermore, the better behavior and performance of Fuzzy-CSar-AFP as compared with Fuzzy-CSar and Fuzzy-Apriori 
are evidenced in Section 6. In this section we show how the quality rules generated by Fuzzy-CSar-AFP are distributed in 
a more spacious way. This more spaced distribution means that the rules are more relevant as they represent different 
knowledge.

As further work, we continue working on future advanced versions of Fuzzy-CSar-AFP; e.g. reducing the number of 
configuration parameters by making them self-adaptive or improving its time efficiency even more. We plan to work with 
different real-world applications and other electroencephalogram problems.
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