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Abstract The extraction of models from data streams has

become a hot topic in data mining due to the proliferation

of problems in which data are made available online. This

has led to the design of several systems that create data

models online. A novel approach to online learning of data

streams can be found in Fuzzy-UCS, a young Michigan-

style fuzzy-classifier system that has recently demonstrated

to be highly competitive in extracting classification models

from complex domains. Despite the promising results

reported for Fuzzy-UCS, there still remain some hot issues

that need to be analyzed in detail. This paper carefully

studies two key aspects in Fuzzy-UCS: the ability of the

system to learn models from data streams where concepts

change over time and the behavior of different fuzzy

representations. Four fuzzy representations that move

through the dimensions of flexibility and interpretability

are included in the system. The behavior of the different

representations on a problem with concept changes is

studied and compared to other machine learning techniques

prepared to deal with these types of problems. Thereafter,

the comparison is extended to a large collection of real-

world problems, and a close examination of which problem

characteristics benefit or affect the different representations

is conducted. The overall results show that Fuzzy-UCS can

effectively deal with problems with concept changes and

lead to different interesting conclusions on the particular

behavior of each representation.
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1 Introduction

In the last few years, the need to extract novel information

from data streams has led to the design of different

incremental learning architectures that can create data

models online as new examples are coming to the system

(Aggarwal 2007; del Campo-Ávila et al. 2008; Gama and

Gaber 2007). This type of learning has received especial

attention not only because it enables practitioners to extract

key information from problems in which data are contin-

uously generated and where concepts may change over

time, e.g., stock market and sensor data among others, but

also because it enables them to deal with huge data sets

by making them available as data streams. Two common

approaches have been employed to deal with these types of

problems. On the one hand, several works have proposed

the use of time windows to store part of the—or the

entire—data stream, and then, the application of any batch

learning system to learn from this time window (Maloof

and Michalski 2004; Widmer and Kubat 1996; Gama et al.

2004). The key aspect in these types of systems is to define

the proper size of the time window, which has strong

implications on the runtime and the performance of the

system. That is, larger windows result in longer runtimes to

process all data. Also, enlarging or shrinking the window

controls the capacity of the system to forget past instances;
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this may cause important instances and noisy instances to

be included in or excluded from the learning process, and

thus, choosing a correct size of the window for each par-

ticular problem is the key for success in these approaches.

On the other hand, there have been some proposals of

systems that directly learn from the data stream without

using any instance memory (Angelov et al. 2008; Domingos

and Hulten 2000; Gama et al. 2003; Abbass et al. 2004;

Núñez et al. 2007).

A novel algorithm that falls under the last category is

Fuzzy-UCS (Orriols-Puig et al. 2008, 2009), a Michigan-

style learning fuzzy-classifier system (LFCS) that uses

genetic algorithms (GAs) (Holland 1975; Goldberg 1989)

to evolve independent-fuzzy-rule sets online from data

streams. The robustness and competitiveness of the system

was experimentally demonstrated over different real-

world problems where concepts did not vary over time

(Orriols-Puig et al. 2009). In addition, the advantages of

the online learning architecture of Fuzzy-UCS were

highlighted by evolving highly accurate models from large

data sets that were processed as data streams. Despite

these promising results, two key challenges that needed to

be addressed in further work were identified. First,

although the system’s architecture was originally designed

to learn from data streams, experiments were performed

on problems that did not present concept changes.

Therefore, further study on how Fuzzy-UCS adapts to

concept changes was pointed out as an interesting future

work line. Second, Fuzzy-UCS was originally designed

with a specific fuzzy knowledge representation that yiel-

ded competitive results. However, a deep analysis on the

type of representation—among the existing ones in fuzzy

rule-based classification systems (FRBCSs)—that could

lead to the best results was not conducted. And especially

in these types of online learners, the representation

selected is very important since it may determine the way

the system can generalize to a highly accurate and general

rule set.

The purpose of this paper is to follow up the work in

Orriols-Puig et al. (2009) by addressing the two afore-

mentioned challenges in Fuzzy-UCS. To achieve this, we

study the different knowledge representations in Fuzzy-

UCS and incorporate four of them—the original and three

new representations—that have provided significant results

in the literature. Then, we first study the behavior of these

representations on problems with concept changes by

comparing them on a widely used benchmark in the field of

learning from data streams; we also include the instance-

based classifier IBk (Aha et al. 1991), adapted to deal with

data streams, and the decision tree OnlineTree2 (Núñez

et al. 2007), one of the most competitive data stream

miners, in the comparison. Thereafter, we extend this

analysis by comparing the four representations with the

instance-based classifier IBk and the decision tree C4.51

(Quinlan 1993) on a large collection of real-world prob-

lems. The complexity and the accuracy of the models

obtained with the four representations are carefully com-

pared using the state-of-the-art statistical procedures for

analysis of results. Besides, to complement the statistical

analysis, we propose the use of complexity measures (Ho

and Basu 2002; Ho et al. 2006) to characterize different

sources of problem complexity, which would serve to

study the problem characteristics to which each repre-

sentation is the best suited. The application of this pro-

cedure leads to interesting conclusions about which

representation is the best adapted to particular problem

characteristics.

The remainder of this paper is organized as follows.

Section 2 briefly reviews the state-of-the-art in the most-

used representations in FRBCSs. Section 3 describes

Fuzzy-UCS in detail, presenting the knowledge repre-

sentation originally designed with the system. Section 4

introduces the remaining three knowledge representa-

tions, indicating the changes introduced to the system to

let it deal with the new representations. Section 5 care-

fully analyzes the performance of the four representations

of Fuzzy-UCS on problems with concept changes and

noise; in addition, IBk, modified to deal with data streams,

and OnlineTree2 are also considered in the analysis.

Section 6 compares the accuracy and complexity of the

models build by Fuzzy-UCS with the different represen-

tations on a collection of 30 real-world problems; C4.5

and IBk are also introduced into the accuracy comparison.

This study is complemented in Sect. 7, where the sweet

spot on the complexity space in which each representation

actually outperforms the others is extracted. Finally,

Sect. 8 summarizes, concludes, and proposes future work

lines.

2 Knowledge representation in fuzzy classification

systems

Among the different fuzzy rule-based classification repre-

sentations, we have selected four approaches that cover a

wide range of the accuracy-interpretability tradeoff by

providing different generality levels and flexibility degrees.

Before presenting them, the well-known weighted fuzzy

classification rule representation, which serves as baseline

to these four extensions, is introduced in the following

section.

1 We selected C4.5 instead of OnlineTree2 in the comparison on real-

world problems with static concepts since C4.5 is specifically

designed to deal with these types of problems and the algorithm

code is available online.
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2.1 Weighted linguistic fuzzy classification rules

One of the most widely used fuzzy knowledge represen-

tations for classification problems is the following:

with Ak
i 2 Ai being a linguistic term of the fuzzy partition

of the ith variable, ck the class label advocated by the kth

rule, and wk a weight (usually in [0,1]) that defines the

importance degree of the rule. The weights are often called

certainty grades/degrees/factors. These weights are used as

the strengths of the rules in the fuzzy reasoning mecha-

nism. This kind of rule is identified as the second type in

Cordón et al. (1999). For an analysis of the influence of

using weights in FRBCS, interested readers are referred to

Ishibuchi and Nakashima (2001).

2.2 DTC: weighted fuzzy classification rules

with don’t cares

The main drawback of the weighted linguistic fuzzy clas-

sification rule structure is its inability to represent different

generality degrees, thus being necessary to use a higher

number of rules and linguistic terms to attain the desired

accuracy, especially when large-scale problems are tackled.

To palliate this deficiency, a common approach involves

avoiding the use of some input variables for some fuzzy

rules. Therefore, as proposed in Ishibuchi et al. (1997,

1999), the structure is similar to the linguistic classification

rule with the exception that a variable can take either (1) a

single linguistic term or (2) a don’t care value (a variable

that is set to don’t care has a membership degree of 1 for

any value of its domain).

2.3 CNF: weighted fuzzy classification rules

with antecedents in conjunctive normal form

Another alternative to provide different generality degrees

is by using the following structure:

where each input variable xi takes as a value a set of

linguistic terms fAk
i ¼ fAk

i1 or . . . or Ak
iqk

i
g; whose members

are joined by a disjunctive (T-conorm) operator, thus

making the antecedent to be in conjunctive normal form

(CNF). For example, the rule ‘‘if the sepal length is large

and the sepal width is medium or large, then the flower is

iris virginica’’ is a CNF-type fuzzy rule.

This structure allows the definition of fuzzy rules with

different generality degrees. It is also a natural support to

allow the absence of some input variables in each rule

(simply by making eAi be the whole set of linguistic terms

available), thus subsuming the DTC representation.

Note that the number of combinations of values for a

variable is mi ¼ 2ni � 1 (with ni ¼ jAij being the number

of linguistic terms available for the ith variable). Thus, 3, 7,

15, or 31 combinations are considered for 2, 3, 4, or 5

linguistic terms, respectively. Thence, the total number of

possible rules will be
Qn

i¼1 mi:

This type of fuzzy rules was firstly used for classification

tasks in González and Pérez (1998), but there are previous

evidences of its use with non-fuzzy rules as in Jong et al.

(1993). In this latter case, the non-fuzzy rules were joined

by disjunction so the authors called them extended dis-

junctive normal from (DNF) since disjunctions were used

both internally—see Michalski (1983)—in the antecedents

of the rules and externally to compose the whole rule set.

This may lead to refer fuzzy rules with antecedents in CNF-

type as DNF-type fuzzy rules, but we prefer to use the

former designation since it is more accurate to describe the

real shape of this kind of fuzzy rules.

2.4 SFP: weighted fuzzy classification rules

with simultaneous fuzzy partitions

A crucial issue of the FRBCS behavior for solving a spe-

cific problem is the proper definition of the fuzzy partitions

which will define the boundaries of each variable.

Although these fuzzy partitions are usually previously

defined and fixed, some authors have studied mechanisms

to adapt them to the context (i.e., the tackled data set), thus

providing a more accurate classification task. This issue has

been widely addressed in regression problems by means of

tuning the membership function parameters (Casillas et al.

2005; Botta et al. 2009; Gacto et al. 2009) or learning the

granularity (number of linguistic terms) per variable (Choi

et al. 2008; Pulkkinen and Koivisto 2010).

A third approach has been proven to be effective in

classification. It was proposed by Ishibuchi et al. (2005)

and implies to simultaneously use fuzzy partitions (SFP) of

different granularity, thus making the knowledge repre-

sentation more flexible. This approach is a generalization

of the distributed fuzzy rule representation previously

introduced by Ishibuchi et al. (1992). Contrary to this latter

one, SFP allows rules with variables at different granularity

levels. Nowadays, SFP is being widely used for classifi-

cation tasks—e.g., see Ishibuchi and Nojima (2007) and

Fernández et al. (2009)—with successful results.

In SFP, each variable can be represented by 1 of the 14

linguistic terms shown in Fig. 1 or by a don’t care (see

Sect. 2.2). Note that the 14 linguistic terms form different
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specificity levels that go from using two linguistic terms (at

the most general level) to using five linguistic terms (at the

most specific level) to cover the variable domain.

Therefore, the fuzzy rule structure is as follows:

with Alk
i 2 A

lk
i being the linguistic term of the fuzzy par-

tition with specificity level lk used in the kth rule for the ith

variable. Note that the total number of combinations of the

antecedent structure (i.e., total number of possible rules) is

15n (with n being the number of input variables).

2.5 NGO: weighted fuzzy classification rules

with non-grid-oriented fuzzy partitions

Non-grid-oriented fuzzy rule-based systems (FRBSs)

(Alcalá et al. 2001) differ from the linguistic ones

(described in Sect. 2.1) in the direct use of fuzzy variables.

Each fuzzy rule thus presents its own semantics, i.e., the

variables take different fuzzy sets as values and not lin-

guistic terms from a global term set. This structure has

been more widely used in regression problems but we were

curious about its behavior in classification tasks, especially

when incremental learning is performed. Therefore, we

have included this FRBCS type in the present work.

The NGO weighted fuzzy classification rule structure is

the following:

with cAk
i being the fuzzy set (not linguistic term) used for

the ith input variable in the kth rule.

Since no global semantic is used in NGO FRBSs, these

fuzzy sets cannot be linguistically interpreted. This struc-

ture allows the model to be more flexible, although the

freedom degrees are higher and then the deriving process is

more complex. Therefore, this additional flexibility does

not necessarily involve the obtainment of more accurate

and compact (regarding the number of rules) results

(Alcalá et al. 2001), but it is expected to do so.

Other names have been proposed by different authors to

designate NGO FRBSs; among others, we may find rule-

based FRBSs (Cooper and Vidal 1994), FRBSs with local

fuzzy sets (Carse et al. 1996), approximate FRBSs (Cordón

and Herrera 1997), or scatter-partitioning FRBSs (Fritzke

1997).

2.6 Readability of the analyzed representations

The simplest knowledge representation is the DTC one,

while the NGO representation allows maximum flexibility

Fuzzy Partition with 2 labels

S
1

L
1

(a)

Fuzzy Partition with 3 labels

S
2

M
2

L
2

(b)

Fuzzy Partition with 4 labels

S
3

SM
3

ML
3

L
3

(c)

Fuzzy Partition with 5 labels

XS
4

S
4

M
4

L
4

XL
4

(d)

Fig. 1 Graphical representation of the four fuzzy partitions employed in the SFP representation. Note that each figure represents a level of

generality, going from a the most general to d the most specific fuzzy partitions
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by permitting tuning each individual fuzzy set of each rule,

thus resulting the most complex among the five analyzed

representations.

CNF and SFP lay on a tradeoff between simplicity

and flexibility. Although it is not clearly established

which of the two approaches generates more readable

fuzzy rules, SFP uses a high number of linguistic terms

with different degrees of generality while CNF builds

new fuzzy sets by disjunctions of linguistic terms, so a

clearer meaning is associated to the resulting fuzzy sets

in this latter case. However, the number of possible

disjunctions in CNF will be higher than the number of

fuzzy sets used in SFP when five or more linguistic

terms are considered in the fuzzy partitions of the

former case.

Regarding the standard weighted linguistic fuzzy clas-

sification rule, it will be, in general, more complex than

DTC, CNF and SFP since the whole set of input variables

is used in each rule. The higher the number of variables and

linguistic terms are, the higher the complexity of this

representation will be.

However, interpretability is a sophisticated, subjective,

and controversial concept that sometimes is not ensured by

just generating simple fuzzy rule sets since the explanation

capability may be degraded in these situations (Ishibuchi

et al. 2009).

3 Description of Fuzzy-UCS

Fuzzy-UCS (Orriols-Puig et al. 2009) is a model-free

Michigan-style LFCSs that combine apportionment of

credit techniques and GAs to evolve a population of fuzzy

rules online. In its original definition, Fuzzy-UCS

employed a CNF representation. In what follows, the

integration of the CNF representation into the system and

the learning organization of Fuzzy-UCS are concisely

described. The next section presents the new representa-

tions designed for Fuzzy-UCS.

3.1 Knowledge representation

Fuzzy-UCS evolves a population [P] of classifiers which

together represent the solution to a problem. Each classifier

consists of a rule that follows a CNF representation (see

Sect. 2.3) and a set of parameters. As already mentioned in

the previous section, it is worth noting that this represen-

tation intrinsically permits generalization since each vari-

able can take an arbitrary number of linguistic terms.

In our experiments, all input variables share the same

semantics, which are defined by means of strong fuzzy

partitions that satisfy the equality

X

ni

j¼1

lAij
ðxÞ ¼ 1; 8xi: ð1Þ

Each partition is a uniformly distributed triangular-shaped

membership function. In our experiments, we used five

linguistic terms.

The matching degree lAkðeÞ of an example e with a

classifier k is computed with the following procedure. For

each variable xi; we compute the membership degree with

each of its linguistic terms, and aggregate them by means

of a T-conorm (disjunction). We enable the system to deal

with missing values by considering that lAkðeiÞ ¼ 1 if the

value ei for the input variable xi is not known. Then, the

matching degree of the rule is determined by the T-norm

(conjunction) of the matching degree of all the input

variables. In our implementation, we used a bounded sum

(minf1; aþ bg) as T-conorm and the product (a � b) as

T-norm. Note that if the fuzzy partition guarantees that the

sum of all membership degrees is greater than or equal to

1—the membership functions employed in our experiments

satisfy this condition—the selected T-norm and T-conorm

allow for a maximum generalization.

Each classifier has four main parameters: (1) the fitness

F, which estimates the accuracy of the rule; (2) the correct

set size ‘cs’, which averages the sizes of the correct sets in

which the classifier has participated (see the next section

for further details on this parameter); (3) the experience

‘exp’, which computes the contributions of the rule to

classify the input instances; and (4) the numerosity ‘num’,

which counts the number of copies of the rule in the

population.

3.2 Organization of the learning process

Fuzzy-UCS repeats the following procedure in order to

evolve a population of maximally general and accurate

rules. At each learning iteration, the system receives an

input example e that belongs to class c. Then, it creates the

match set [M] with all the classifiers in [P] that have a

matching degree lAkðeÞ greater than zero. The following

actions depend on whether the system is in exploitation

(test) mode or exploration (training) mode. In exploitation

mode, the system applies the procedure explained in

Sect. 3.5 to determine the output class; in this case, no

further actions are taken. In exploration mode, the system

takes the following actions in order to improve the pre-

diction of the existing classifiers and to create new prom-

ising ones.

After [M] is constructed, the system builds the correct

set [C] with all the classifiers in [M] that advocate the class

c. If none of the classifiers in [C] match e with the maxi-

mum matching degree, the covering operator is triggered,
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which creates the classifier that maximally matches the

input example. In this case, for each variable of the con-

dition, Fuzzy-UCS aggregates the linguistic term Aij that

maximizes the matching degree with the corresponding

input value ei: If ei is not known, a linguistic term is ran-

domly selected and aggregated to the variable. Moreover,

we introduce generalization by allowing the aggregation of

other linguistic terms with probability P#:

The initial values of the parameters of the new classi-

fiers are initialized according to the information provided

by the current examples. Specifically, the fitness, the

numerosity, and the experience are set to 1. The fitness of a

new rule is set to 1 to give it opportunities to take over.

Nonetheless note that, as the new classifiers participate in

new match sets, their fitness and other parameters are

quickly updated to their average values, and so, the initial

value is not crucial. At the end of the covering process, the

new classifier is inserted in the population, deleting another

one if there is no room for it.

3.3 Parameter update

At the end of each learning iteration, Fuzzy-UCS updates

the parameters of the rules that have participated in [M].

First, the experience of the rule is incremented according to

the current matching degree:

expk
tþ1 ¼ expk

t þ lAkðeÞ ð2Þ

Next, the fitness is updated. For this purpose, each classifier

internally maintains a vector of classes fc1; . . .; cmg; each

of them with an associated weight fvk
1; . . .; vk

mg: Each

weight vk
j indicates the soundness with which rule k pre-

dicts class j for an example that fully matches this rule.

These weights are incrementally updated during learning

by the following procedure.

We first compute these sum of correct matchings cmk

for each class j:

cmk
jtþ1
¼ cmk

jt
þ mðk; jÞ; ð3Þ

where

mðk; jÞ ¼ lAkðeÞ if j ¼ c;
0 otherwise.

�

ð4Þ

Then, cmk
jþ1 is used to compute the weights vk

jþ1 :

8j : vk
jtþ1
¼

cmk
jtþ1

expk
tþ1

: ð5Þ

For example, if a rule k only matches examples of class j,

the weight vk
j will be 1 and the remaining weights 0. Rules

that match instances of both classes will have weights

ranging from 0 to 1. Note that the sum of all the weights

is 1.

The fitness is then computed from the weights with the

aim of favoring classifiers that match examples of a single

class. To carry this out, we use the following formula

(Ishibuchi and Yamamoto 2005):

Fk
tþ1 ¼ vk

maxtþ1
�
X

jjj 6¼max

vk
jtþ1
; ð6Þ

where we subtract the values of the other weights from the

weight with maximum value vk
max: The fitness Fk is the

value used as the weight wk of the rule. Note that this

formula can result in classifiers with zero or negative fit-

ness (e.g., if the number of classes is greater than 2 and the

class weights are equal). Next, the correct set size of all the

classifiers in [C] is calculated as the arithmetic average of

the sizes of all the correct sets in which the classifier has

participated.

Finally, the rule k predicts the class c with the highest

weight associated vk
c: Thus, the class predicted is not fixed

when the rule is created, and it can change as the param-

eters of the rule are updated (especially during the first

parameter updates).

3.4 Discovery component

Fuzzy-UCS uses a steady-state niche-based GA (Goldberg

2002) to discover new promising rules. The GA is applied

to the [C] activated in the current iteration. Thus, the

niching is intrinsically provided since the GA is applied to

rules that match the same input with a degree greater than

zero and advocate the same class.

The GA is triggered when the average time from its last

application upon the classifiers in [C] exceeds the threshold

hGA: It selects two parents p1 and p2 from [C] using tour-

nament selection (Butz et al. 2005). The two parents are

copied into offspring ch1 and ch2; which undergo crossover

and mutation with probabilities v and l; respectively. The

crossover operator crosses the antecedents of the rules by

two points, permitting cross-points within variables

(Fig. 2a shows an example of within-variable crossover).

The mutation operator checks whether each variable has to

be mutated with probability l: If so, three types of muta-

tion can be applied: expansion, contraction, or shift.

Expansion chooses a linguistic term not represented in the

corresponding variable and adds it to this variable; thus, it

can be applied only to variables that do not have all the

linguistic terms. Contraction selects a linguistic term rep-

resented in the variable and removes it; so, it can be applied

only to variables that have more than one linguistic term.

Shift changes a linguistic term for its immediate inferior or
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superior. An example of each type of mutation is illustrated

in Fig. 2b.

The new offspring are introduced into the population.

First, each classifier is checked for subsumption (Wilson

1998) with their parents. That is, if any parent’s condition

subsumes the condition of the offspring (i.e., the parent

has, at least, the same linguistic terms per variable as the

child), and this parent is highly accurate (Fk [ F0) and

sufficiently experienced (expk [ hsub), the offspring is not

inserted and the numerosity of the parent is increased by

one. Note that F0 and hsub are configuration parameters.

Otherwise, we check [C] for the most general rule that can

subsume the offspring. If no subsumer can be found, the

classifier is inserted in the population.

If the population is full, excess classifiers are deleted

from [P] with probability proportional to the correct set

size estimate ‘cs’. Moreover, if the classifier is sufficiently

experienced (expk [ hdel) and the power of its fitness ðFkÞm

is significantly lower than the average fitness of the clas-

sifiers in [P] ððFkÞm\dF½P� where F½P� ¼ 1
N

P

i2½P�ðFiÞmÞ, its

deletion probability is further increased. That is, each

classifier has a deletion probability pk of:

pk ¼
dk

P

8j2½P� dj
; ð7Þ

where

dk ¼
cs�num�F½P�
ðFkÞm if expk [ hdel and ðFkÞm\dF½P�;

cs � num otherwise.

�

ð8Þ

Thus, the deletion algorithm balances the classifier allo-

cation in the different correct sets by pushing toward

deletion of rules belonging to large correct sets. At the

same time, it favors the search toward highly fit classifiers,

since the deletion probability of rules whose fitness is much

smaller than the average fitness is increased.

Parent2Parent1

Child2Child1

Crossover

IF X 1 is THEN A 1 IF X 1 is THEN A   2

IF X 1 is THEN A   2 IF X 1 is THEN A 1

(a)

 noitcartnoCnoisnapxE Shift

Mutation

IF X 1 is THEN A 1

IF X 1 is IF X 1 isTHEN A 1 THEN A 1 THEN A 1IF X 1 is

(b)

Fig. 2 Graphical example of

a crossover and b mutation for

the CNF representation
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3.5 Class inference in test mode

To decide the predicted class given an input instance, all

the experienced rules vote for the class they predict. Each

rule k emits a vote vk for the class it advocates, where

vk ¼ Fk � lAkðeÞ: The votes for each class j are added:

8j : votej ¼
X

N

kjck¼j

vk; ð9Þ

and the most-voted class is returned as the output.

4 New representations for Fuzzy-UCS

This section shows how we have integrated the three rep-

resentations explained in Sect. 2, in addition to the CNF

representation introduced in the last section, to Fuzzy-

UCS. For each representation, we explain how the process

organization of Fuzzy-UCS has been modified to let the

system deal with the new types of rules.

4.1 DTC representation

In the DTC representation (Sect. 2.2), a variable can take

either (1) a single linguistic term or (2) a don’t care value.

To adapt Fuzzy-UCS to this new type of fuzzy rules, we

modified the following operators with the aim of avoiding

the creation of rules that contain variables with more than

one linguistic term.

4.1.1 Covering operator

As in the original CNF approach, when triggered, the

covering operator creates the classifier that best matches

the input example. However, the generalization procedure

is modified. Now, each variable is set to don’t care with

probability P#:

4.1.2 Crossover operator

We apply a two-point crossover operator as in the CNF

approach. However, in this case, we only allow selecting

crossing points between variables to avoid the creation of

children with variables that contain either zero or multiple

linguistic terms.

4.1.3 Mutation operator

Three types of mutation can be applied depending on the

variable selected. If the variable is represented by a don’t

care, a linguistic term is randomly selected and set to the

variable. If the variable is represented by a linguistic term,

mutation either (1) sets the variable to don’t care with

probability Pl# or (2) replaces the linguistic term with its

immediate superior or inferior by applying the shift oper-

ators of Fuzzy-UCS with the CNF representation.

4.2 SFP representation

Similar to the DTC representation, in the SFP representa-

tion, each variable can take a single linguistic term or a

don’t care value. However, the SFP representation pro-

vides the system with a richer set of labels using fuzzy

partitions of different granularities that enable moving

from generality to specificity. The modifications introduced

to deal with this representation are explained as follows.

4.2.1 Covering operator

The same approach used in the DTC representation is

employed here. Therefore, the covering operator creates

the classifier that best matches the input instance; i.e., for

each variable, it selects the linguistic term that maximizes

the matching degree with the corresponding input value.

Besides, each variable is set to don’t care with probability

P#.

4.2.2 Crossover operator

We apply two-point crossover, only allowing cut points

between variables.

4.2.3 Mutation operator

When applied, the mutation operator changes the linguistic

term assigned to the variable so that either (1) a more

general or more specific linguistic term is used or (2) its

level of specificity remains equal but it is replaced with one

of its adjacent linguistic terms. More specifically, the fol-

lowing procedure is applied:

• If the variable is represented by a don’t care, a

linguistic term of any of the four fuzzy partitions is

randomly assigned to the variable.

• If the variable is represented by a linguistic term, we

randomly select whether the linguistic term should (1)

become more general, (2) more specific, or (3) keep the

same degree of generality. In the first two cases, a

linguistic term of the fuzzy partition with one less

number of terms or with one more number of terms is

randomly selected among those that intersect with the

linguistic term currently assigned to the variable. In the

third case, one of the neighbors of the current linguistic

term of the same fuzzy partition is selected and used to

replace the current one.
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4.3 NGO representation

While in the three previous representations the same

semantics was shared among all the variables in the fuzzy

rule base, the NGO representation enables using an inde-

pendent fuzzy set for each variable of each rule. In our

experiments, we used triangular-shaped fuzzy sets. There-

fore, each variable’s rule is represented by three continuous

values ak; bk; and ck; which, respectively, represent the left

vertex, the middle vertex, and the right vertex of the tri-

angular fuzzy set. Then, the evolutionary process is

responsible for tuning the fuzzy sets of each variable’s rule.

The modifications introduced to deal with this representa-

tion are elaborated as follows.

4.3.1 Covering operator

As in the previous representations, the covering operator

creates the classifier that best matches the input example,

allowing a certain amount of generalization. To simulate

the same approach, given the input example e that has

caused covering to trigger, the operator creates an inde-

pendent triangular-shaped fuzzy set for each input variable

with the following supports

rand mini �
maxi �mini

2
; ei

� �

; ei;

�

rand ei;maxi þ
maxi �mini

2

� ��

ð10Þ

where mini and maxi are the minimum and maximum value

that the ith attribute can take, ei is the ith attribute of the

example e for which covering has been fired, and rand

generates a random number between both arguments.

4.3.2 Crossover operator

The crossover operator generates the fuzzy sets for each

variable of the offspring as

bch1
¼ bp1

� aþ bp2
� ð1� aÞ and ð11Þ

bch2
¼ bp1

� ð1� aÞ þ bp2
� a; ð12Þ

where 0� a� 1 is a configuration parameter. As we want

to generate offspring whose middle vertex b is close to the

middle vertex of one of his parents, we set a ¼ 0:005 in our

experiments. Next, for both offspring, the procedure to

cross the most-left and most-right vertices is the following.

First, the two most-left and two most-right vertices are

chosen

minleft ¼ minðap1
; ap2

; bchÞ and ð13Þ

midleft ¼ middleðap1
; ap2

; bchÞ; ð14Þ

midright ¼ middleðcp1
; cp2

; bchÞ and ð15Þ

maxright ¼ maxðcp1
; cp2

; bchÞ: ð16Þ

And then, these two values are used to generate the vertices

a and c.

ach ¼ randðminleft;midleftÞ and ð17Þ
cch ¼ randðmidright;maxrightÞ; ð18Þ

where the functions ‘min’, ‘middle’, and ‘max’ return,

respectively, the minimum, the middle, and the maximum

values among their arguments. Figure 3a shows an exam-

ple of crossover.

4.3.3 Mutation operator

The mutation operator decides randomly if each vertex of a

variable has to be mutated. The central vertex is mutated as

follows:

bk ¼ randðbk � ðbk � akÞ � m0; bk þ ðck � bkÞ � m0Þ ð19Þ

where m0 (0\m0� 1) defines the strength of the mutation.

The left-most vertex is mutated as

ak ¼
rand ak � bk�ak

2
m0; ak

� �

if F [ F0 and no cross.

rand ak � bk�ak

2
m0; ak þ bk�ak

2
m0

� �

otherwise:

�

ð20Þ

And the right-most vertex

ck ¼
rand ck; ck þ ck�bk

2
m0

� �

if F [ F0 and no cross.

rand ck � ck�bk

2
m0; ck þ ck�bk

2
m0

� �

otherwise:

�

ð21Þ

That is, if the rule is accurate enough (F [ F0) and has not

been generated through crossover, mutation forces to

generalize it. Otherwise, it can be either generalized or

specified. In this way, we increase the pressure toward

maximum general and accurate rule sets. Figure 3b shows

an example of mutation.

Thus far, we have explained the learning process of

Fuzzy-UCS with four different types of representations that

move through the dimensions of flexibility and simplicity

(see Sect. 2.6). With these descriptions in mind, we now

are in position to start analyzing how the different repre-

sentations perform in (1) data streams with concept chan-

ges and (2) real-world problems extracted from public

repositories. These analyses are conducted in the sub-

sequent sections.

5 Experiments on problems with concept changes

This section analyzes how Fuzzy-UCS adapts to data

streams where concepts change over time, and compares

the system to some of the most significant methods in the

data stream mining field. For this purpose, we first use the
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SEA problem (Street and Kim 2001), an artificial problem

that presents complex characteristics such as concept drift

(with different speeds) and noise. In addition, we also test

Fuzzy-UCS on two extensions of the SEA problem that

enable us to study the response of the different represen-

tations as the number of input variables increases. In the

following sections, the SEA problem and its extensions are

introduced in detail, the experimental methodology is

explained, and the results are examined.

5.1 Description of the SEA problem

The SEA problem, originally proposed by Street and Kim

(2001), is one of the most representative benchmarks in the

concept drift community. The problem consists of three

continuous variables fx1; x2; x3g ranging in [0,1], from

which only the first two variables are relevant to determine

the class. The training instances are randomly created

online, labeled according to the current concept, and made

available as a data stream. An example is labeled as

positive when x1 þ x2\b and negative otherwise. Thus,

the concept is changed by varying the value of the

parameter b.

The data stream lasts for 50,000 iterations and the

concept is changed every 12,500 iterations by giving

b the following values f0:8; 0:9; 0:7; 0:95g: Training ins-

tances are affected by a 10% of noise; i.e., the label of

each training instance is randomly assigned with 10%

probability.

To evaluate how the models are adapted to the concept

changes, we use the following approach. We generate an

independent set of 10,000 test instances (free of noise) that

are labeled according to the concept to be tested. This test

set is used periodically during training to evaluate the

quality of the data model evolved up to that point.

We extended the SEA problem by adding some input

variables with the aim of studying how the different

knowledge representations adapted to concept changes

when the number of input variables that define the concept

increases. In particular, we considered two artificial prob-

lems: SEA5 and SEA7. SEA5 is defined by five input

variables fx1; x2; x3; x4; x5g, while SEA7 is defined by

seven input variables fx1; x2; x3; x4; x5; x6; x7g: The class of

an input instance is labeled positive when
P4

i¼1 xi\b in

SEA5 and when
P6

i¼1 xi\b in SEA7; otherwise, the

instance is labeled negative. The concept is changed every

12,500 iterations, giving b the values f1:6; 1:8; 1:4; 1:9g
and f3:0; 3:4; 2:8; 3:6g for SEA5 and SEA7, respectively.

5.2 Methodology

We performed two sets of experiments in order to analyze

whether the different representations of Fuzzy-UCS

could effectively adapt to concept changes. In the first

Parent1

Parent2

bch1

bch2

min left max right

mid rightmid left

Child1

Child2

b ch1

b ch2

min left max right

mid rightmid left

Crossover

IF X 1 is THEN A 1 IF X 1 is THEN A  2

IF X 1  is THEN A   2 IF X 1 is THEN A 1

(a)

Mutation
IF X 1 is THEN A 1 IF X 1 is THEN A 1

(b)

Fig. 3 Graphical example of

a crossover and b mutation for

the NGO representation
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experiment, we compared Fuzzy-UCS with the four rule

representations with other competitive learning systems

prepared to deal with data streams on the SEA problem. In

particular, we considered IBk (Aha et al. 1991) with k = 1

and a global window of 12,500, as employed by Núñez

et al. (2007),2 and OnlineTree2 (Núñez et al. 2007), a

decision tree specifically designed to deal with data streams

that have been shown to significantly outperform the state-

of-the-art algorithms in the data stream mining realm. IBk

was run by adapting the implementation provided in Weka

(Witten and Frank 2005). The results of OnlineTree2 were

those presented in Núñez et al. (2007), which were kindly

provided by the authors.

In the second experiment, we analyzed how the increase

in the number of input variables that defined the problem

concept affected the behavior of the different representa-

tions. For this purpose, we ran Fuzzy-UCS with the four

representations on the SEA5 and SEA7 problems. In this

case, only the results obtained with IBk were included,

since results of OnlineTree2 were not available for these

two problems in Núñez et al. (2007).

For all the representations, Fuzzy-UCS was configured

with the following parameters: acc0 ¼ 0:99; m ¼ 5; hGA ¼
25; hdel ¼ 20; hsub ¼ 50; hexploit ¼ 10; d ¼ 0:1; and P# ¼
0:20: The population size was set to 1,000, 2,000, and

4,000 in the SEA, SEA5 and SEA6 problems, respectively.

We used tournament selection with r ¼ 0:4: Crossover and

mutation were applied with probabilities 0.8 and 0:5=‘;

where ‘ is the number of input variables of the problem.

For the DTC representation, Pl# ¼ 0:25: The error of the

model being evolved was evaluated every 500 iterations

with the test set. All the runs for each representation were

repeated with 10 different random seeds, and the results

provided are averages of these runs.

The results were statistically compared following the

recommendations pointed out by Demšar (2006). Thus, in all

the analyses, we used non-parametric statistical tests to

compare the results obtained by the different techniques. We

first applied multiple-comparison statistical procedures to

test the null hypothesis that all the learning algorithms per-

formed equivalently on average. Specifically, we used the

Friedman’s test (Friedman 1937, 1940). If the Friedman’s

test rejected the null hypothesis, we used the non-parametric

Nemenyi’s test (Nemenyi 1963) to compare all learners to

each other. The Nemenyi’s test defines that two methods are

significantly different if the corresponding average rank

differs by at least a critical difference CD computed as

CD ¼ qa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n‘ðn‘ þ 1Þ
6nds

s

; ð22Þ

where n‘ and nds are the number of learners and the number

of performance measurements, and qa is the critical value

based on the Studentized range statistic (Sheskin 2000).

To complement the multi-comparison statistical analy-

sis, we performed pairwise comparisons by means of the

Holm’s step-down procedure and the Shaffer’s test as

recommended by Garcı́a and Herrera (2008). These sta-

tistical procedures consider the interrelation of each pair-

wise comparison that comes from a multiple learner

comparison to adjust the significance level of each pairwise

comparison. To run these tests, we used the open-source

code that can be downloaded from the author’s webpage.3

5.3 Analysis of Fuzzy-UCS on the SEA problem

Figure 4 shows the evolution of the test error obtained

with the four representations of Fuzzy-UCS, IBk, and
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Fig. 4 Comparison of the test error achieved by Fuzzy-UCS, with each rule representation, IBk, and OnlineTree2 on the SEA problem. Every

12,500 iterations, the concept of the problem changes, causing a concept drift

2 Note the size of the window selected permits storing all the

examples sampled for a specific concept; therefore, we would expect

an optimal behavior of IBk after having seen 12,500 examples of the

same concept. 3 http://sci2s.ugr.es/sicidm/multipleTest.zip.
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OnlineTree2. The Friedman’s test rejected the null

hypothesis that the four representations of Fuzzy-UCS,

IBk, and OnlineTree2 performed the same on average with

p value almost equal to zero. Therefore, we applied the

Nemenyi’s test, whose results are summarized in Fig. 5. In

order to provide a detailed analysis, we compared the

performance obtained by the six methods (1) on the whole

run and (2) on each one of the four concepts that are

sampled during a run of the SEA problem. The statistical

analysis is complemented in Table 1, where the results of

the pairwise comparisons following the Holm’s and the

Shaffer’s procedures are illustrated. In this case, note that

we can reject the null hypothesis that two learners per-

formed the same on average when the p value is lower than

the corresponding a value adjusted by the Holm’s and the

Shaffer’s procedure, respectively (two last columns of the

table). Pairwise comparisons for which the null hypothesis

could be rejected are marked in bold. The conclusions and

comments extracted from these results are summarized in

what follows.

The results in Fig. 4 illustrate a common behavior when

the system faces a concept drift: all the error curves sud-

denly rocketed. Obviously, this happened because the data

models had been built from examples that represented the

previous concept. The systems more affected by concept

changes were IBk and OnlineTree2, whose error presented

the highest increases in almost all the concept changes.

The most interesting part though is the shape of the

curves from each concept change, since it shows the

reaction capacity of each method. IBk presented a linear

recovery to the average error rate, which decreased until

approximately 8% of error in all the four concepts. Note

that this error was close to the 10% noise added to the

problem. With no doubt, IBk had the worst reaction

capacity. OnlineTree2 had a much quicker recovery time to

the average error rate, which ended around 2.5% at the end

of each concept. The excellent results obtained by

OnlineTree2 are not surprising, since it has been empirically

demonstrated to be one of the most accurate data stream

miners (Núñez et al. 2007). On the other hand, all the

representations of Fuzzy-UCS presented a quick recovery

to the average error rate, which was similar in shape to that

of OnlineTree2. Fuzzy-UCS reached the end of each con-

cept with errors that ranged between 2.4 and 6% depending

on the representation used and concept learned. Notice two

important issues here. First, the error achieved with the

different representations of Fuzzy-UCS was lower than the

10% error added to the system, which indicates that Fuzzy-

UCS is robust to noise. Second, the reaction capacity of

Fuzzy-UCS was much better than those of IBk and of

OnlineTree2. It is worth noting that the concept changes

affected the different representations of Fuzzy-UCS to a

lower extend than IBk and especially than OnlineTree2.

Consequently, the models of Fuzzy-UCS were more

accurate than those of OnlineTree2 the majority of the

time. If we specifically focus on Fuzzy-UCS with the NGO

representation, we can observe that the models evolved by

Fuzzy-UCS were more accurate than those created by

OnlineTree2 almost all the time and that the error reached

at the end of each concept was approximately the same.

Thus, Fuzzy-UCS—especially the NGO representation—

was more robust to concept changes and had a faster

adaptation to the new concepts than IBk and OnlineTree2.

A closer look to the statistical analysis illustrated in

Fig. 5 enables extending the conclusions about the per-

formance of the different systems. Considering the whole

run (see G row in Fig. 5), we can see that Fuzzy-UCS with

0 2 4 6 8

G
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C4
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   CNF

   DTC

   OnlineTree2
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   OnlineTree2
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   OnlineTree2

   IBk
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   SFP

   CNF

   DTC

   OnlineTree2

   IBk

   NGO

   SFP

   CNF

   DTC

   OnlineTree2

   IBk

Rank

Fig. 5 Statistical comparison of the test error achieved by Fuzzy-

UCS, with each rule representation, IBk, and OnlineTree2 on the SEA

problem. The performance of the systems on each concept of the SEA

problem (i.e., C1, C2, C3, and C4) is compared individually. In

addition, G shows the comparison over the whole problem. Note that

for each one of the comparisons, the bars show the average rank

obtained by each method. Besides, for each method, a line is used to

delimit the region in which there is no significant difference according

to the Nemenyi’s test at a ¼ 0:10
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Table 1 Statistical comparison of the test error achieved by Fuzzy-UCS, with each rule representation, IBk, and OnlineTree2 on the SEA

problem according to the Holm’s and the Shaffer statistical procedures at a ¼ 0:05

i Algorithms z ¼ ðR0 � RiÞ=SE p aHOLM aSHAFFER

General

15 NGO vs. IBk 16.44 9:657� 10�61 0.0033 0.0033

14 OnlineTree2 vs. IBk 12.09 1:124� 10�33 0.0036 0.0050

13 CNF vs. IBk 11.52 9:542� 10�31 0.0038 0.0050

12 NGO vs. DTC 10.31 5:816� 10�25 0.0042 0.0050

11 SFP vs. IBk 8.23 1:727� 10�16 0.0045 0.0050

10 NGO vs. SFP 8.20 2:367� 10�16 0.0050 0.0050

9 DTC vs. IBk 6.12 9:181� 10�10 0.0056 0.0071

8 DTC vs. OnlineTree2 5.97 2:345� 10�9 0.0063 0.0071

7 CNF vs. DTC 5.40 6:484� 10�8 0.0071 0.0071

6 NGO vs. CNF 4.91 8:944� 10�7 0.0083 0.0083

5 NGO vs. OnlineTree2 4.34 1:386� 10�5 0.0100 0.0125

4 SFP vs. OnlineTree2 3.85 1:151� 10�4 0.0125 0.0125

3 SFP vs. CNF 3.28 0.001 0.0167 0.0167

2 SFP vs. DTC 2.11 0.034 0.0250 0.0250

1 CNF vs. OnlineTree2 0.56 0.570 0.0500 0.0500

Concept 1

15 OnlineTree2 vs. IBk 7.63 2:260� 10�14 0.0033 0.0033

14 NGO vs. IBk 6.38 1:685� 10�10 0.0036 0.0050

13 CNF vs. IBk 6.31 2:754� 10�10 0.0038 0.0050

12 SFP vs. OnlineTree2 5.78 7:344� 10�9 0.0042 0.0050

11 NGO vs. SFP 4.53 5:744� 10�6 0.0045 0.0050

10 SFP vs. CNF 4.45 8:196� 10�6 0.0050 0.0050

9 DTC vs. OnlineTree2 4.19 2:723� 10�5 0.0055 0.0071

8 DTC vs. IBk 3.43 5:828� 10�4 0.0063 0.0071

7 NGO vs. DTC 2.94 0.003 0.0071 0.0071

6 CNF vs. DTC 2.87 0.004 0.0083 0.0083

5 SFP vs. IBk 1.85 0.064 0.0100 0.0125

4 SFP vs. DTC 1.58 0.112 0.0125 0.0125

3 CNF vs. OnlineTree2 1.32 0.185 0.0166 0.0167

2 NGO vs. OnlineTree2 1.24 0.212 0.0250 0.0250

1 NGO vs. CNF 0.07 0.939 0.0500 0.0500

Concept 2

15 NGO vs. IBk 8.65 4:912� 10�18 0.0033 0.0033

14 OnlineTree2 vs. IBk 7.59 3:028� 10�14 0.0036 0.0050

13 NGO vs. DTC 5.78 7:344� 10�9 0.0038 0.0050

12 DTC vs. OnlineTree2 4.72 2:306� 10�6 0.0042 0.0050

11 SFP vs. IBk 4.38 1:163� 10�5 0.0045 0.0050

10 CNF vs. IBk 4.38 1:163� 10�5 0.0050 0.0050

9 NGO vs. CNF 4.27 1:945� 10�5 0.0056 0.0071

8 NGO vs. SFP 4.27 1:945� 10�5 0.0063 0.0071

7 CNF vs. OnlineTree2 3.21 0.001 0.0071 0.0071

6 SFP vs. OnlineTree2 3.21 0.001 0.0083 0.0083

5 DTC vs. IBk 2.87 0.004 0.0100 0.0125

4 SFP vs. DTC 1.51 0.130 0.0125 0.0125

3 CNF vs. DTC 1.51 0.130 0.0167 0.0167
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the NGO representation significantly outperformed all the

other methods, including OnlineTree2 and the remaining

representations of Fuzzy-UCS, according to the Nemenyi’s

test at a ¼ 0:10: The next best systems in the comparison

were OnlineTree2 and Fuzzy-UCS with the CNF repre-

sentation, which significantly outperformed the other

two representations of Fuzzy-UCS and IBk. The SFP rep-

resentation obtained significantly better results than the

DTC one and IBk resulted in the poorest results, being

significantly outperformed by all the other systems. These

results were confirmed by the Holm’s and the Shaffer’s

procedures illustrated in Table 1, with the exception that

they did not identify any significant difference between the

DTC and the SFP representations of Fuzzy-UCS.

The ranking of the representations of Fuzzy-UCS was

expected since the significantly best results were obtained

with those representations that are more flexible. That is,

the NGO representation allows the creation of individual

Table 1 continued

i Algorithms z ¼ ðR0 � RiÞ=SE p aHOLM aSHAFFER

2 NGO vs. OnlineTree2 1.05 0.289 0.0250 0.0250

1 SFP vs. CNF 0.00 0.999 0.0500 0.0500

Concept 3

15 NGO vs. IBk 8.54 1:319� 10�17 0.0033 0.0033

14 SFP vs. IBk 6.08 1:163� 10�9 0.0036 0.0050

13 NGO vs. DTC 5.78 7:344� 10�9 0.0038 0.0050

12 CNF vs. IBk 5.40 6:484� 10�8 0.0042 0.0050

11 NGO vs. OnlineTree2 4.34 1:382� 10�5 0.0045 0.0050

10 OnlineTree2 vs. IBk 4.19 2:723� 10�5 0.0050 0.0050

9 SFP vs. DTC 3.32 8:807� 10�4 0.0055 0.0071

8 NGO vs. CNF 3.13 0.001 0.0063 0.0071

7 DTC vs. IBk 2.75 0.005 0.0071 0.0071

6 CNF vs. DTC 2.64 0.008 0.0083 0.0083

5 NGO vs. SFP 2.45 0.014 0.0100 0.0125

4 SFP vs. OnlineTree2 1.88 0.058 0.0125 0.0125

3 DTC vs. OnlineTree2 1.43 0.150 0.0167 0.0167

2 CNF vs. OnlineTree2 1.20 0.226 0.0250 0.0250

1 SFP vs. CNF 0.68 0.496 0.0500 0.0500

Concept 4

15 NGO vs. IBk 9.29 1:432� 10�20 0.0033 0.0033

14 CNF vs. IBk 6.95 3:536� 10�12 0.0036 0.0050

13 NGO vs. DTC 6.12 9:181� 10�10 0.0038 0.0050

12 NGO vs. SFP 5.14 2:742� 10�7 0.0042 0.0050

11 OnlineTree2 vs. IBk 4.76 1:913� 10�6 0.0045 0.0050

10 NGO vs. OnlineTree2 4.53 5:744� 10�6 0.0050 0.0050

9 SFP vs. IBk 4.15 3:215� 10�5 0.0055 0.0071

8 CNF vs. DTC 3.77 1:570� 10�4 0.0063 0.0071

7 DTC vs. IBk 3.17 0.001 0.0071 0.0071

6 SFP vs. CNF 2.79 0.005 0.0083 0.0083

5 NGO vs. CNF 2.34 0.019 0.0100 0.0125

4 CNF vs. OnlineTree2 2.19 0.028 0.0125 0.0125

3 DTC vs. OnlineTree2 1.58 0.112 0.0167 0.0167

2 SFP vs. DTC 0.98 0.325 0.0250 0.0250

1 SFP vs. OnlineTree2 0.60 0.545 0.0500 0.0500

First, the performance of the six methods over the whole run is compared, and then the performance of the systems on each concept of the SEA

problem is compared individually. For each comparison, the columns show the comparison number, the algorithms compared, the test statistics z,

the adjustment of a by Holm’s procedure (aHOLM), and the adjustment of a by Shaffer’s procedure (aSHAFFER). Methods that perform significantly

different according to both the Holm’s and the Shaffer’s test are marked in bold
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triangular-shaped fuzzy sets for each variable, enabling a

high flexibility. Therefore, it was expected that this repre-

sentation permitted fitting the class boundaries more

accurately than the remaining ones. The CNF representa-

tion assigns a disjunction of linguistic terms to each vari-

able; so, although it is not as flexible as the NGO

representation, the aggregation of these terms can result in

fuzzy sets of different shape which may be useful to fit

complex class boundaries. The results confirmed this

hypothesis, illustrating that the CNF representation resulted

in models that were significantly poorer than those

obtained by the NGO representation, but significantly more

accurate than those created with the other two representa-

tions. The last two representations in the statistical analysis

were the SFP and the DTC ones. Both representations

assign a single linguistic term to each variable or a don’t care

symbol. Therefore, these two representations are not as

flexible as the former ones. Note that the SFP representation

led to significantly better results that the DTC one, since

its semantics consists of a higher number of linguistic

terms, organized in a hierarchy that enables moving through

the specificity-generality dimension more quickly.

A closer inspection of the statistical analysis provided in

the rows C1, C2, C3, and C4 of Fig. 5 and in Table 1 lets

us point out more aspects of the performance and reaction

capacity of the different representations of Fuzzy-UCS and

OnlineTree2 on each concept of the SEA problem sepa-

rately. In the following discussion, we put IBk aside, since

it achieved the worst results in all the concepts. The NGO

representation was the best ranked in the concepts C2, C3,

and C4. In the remaining concept, C2, it was the second

best ranked, after OnlineTree2. This indicates that, as

pointed out above, the NGO representation could react

quickly to concept changes. It is worth mentioning that

OnlineTree2 could reach similar errors, and in some cases

even better, to those of the NGO representation; however,

OnlineTree2 was deeply affected by the concept change

and needed much more time to recover. The CNF repre-

sentation was the third best ranked in C1 (obtaining sta-

tistically equivalent results to those of the NGO

representation and OnlineTree2), C2 and C3; and it was the

second best ranked in C4. The SFP representation pre-

sented very different behaviors on the diverse concepts. It

was the second best ranked in C3, the fourth best ranked in

C2 and C4, and the fifth best ranked in C1. Finally, the

DTC representation presented the worst results, being

the poorest ranked in concepts C2, C3, and C4 (i.e., all the

concepts that come after a concept change), and was

ranked fourth in concept C1. The curves in Fig. 4—espe-

cially, the flat decrease shown in concepts C2 and C4—

support the hypothesis that the high generality pressure

supplied by this representation hampers it from fitting the

class boundary more accurately.

5.4 Effect of increasing the number of input variables

Having extensively analyzed the behavior of the four rep-

resentations on the SEA problem, this section analyzes how

the number of input variables affects the performance of

the different representations. Intuitively, on the one hand,

less flexible representations may suffer when approaching

more complex class boundaries. On the other hand, the

reaction time may increase in all the representations, but

especially on those that offer more flexibility. To check

these hypotheses, we ran Fuzzy-UCS on the SEA5 and

SEA7 problems. Figures 6 and 7 show the evolution of the

test error of Fuzzy-UCS and IBk in the two problems.

Figure 8 and Table 2 supply the results of the Nemenyi’s

and the Holm’s and Shaffer’s tests, respectively. In what

follows, we point out two important observations drawn

from these results.

First, the results indicate that Fuzzy-UCS with the four

representations had more difficulties to learn the different

subconcepts of the SEA5 and SEA7 problems than those
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Fig. 6 Comparison of the test error achieved by Fuzzy-UCS, with each rule representation, and IBk on the SEA5 problem. Every 12,500

iterations, the concept of the problem changes, causing a concept drift
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observed in the SEA problem. That is, while Fuzzy-UCS

could achieve errors close to 0.025 in all the subconcepts of

the SEA problem (see Fig. 4), the system resulted in errors

higher that 0.05 in some of the subconcepts of the SEA5

and SEA7 problems. This behavior was expected since

both SEA5 and SEA7 are more complex than the original

SEA problem. That is, SEA5 and SEA7 require that rules

consider four and six input variables to accurately deter-

mine the output, while only two variables have to be

considered in the SEA problem. Besides, the oblique class

boundary of the problems requires a high number of rules

that accurately approximate it. For this reason, a higher test

error concentrated on the class boundary. In particular, the

error presented by the DTC and SFP representations was

specifically high in some specific subconcepts, which

indicates that the lower flexibility provided by these rep-

resentations may not be enough to accurately approximate

the class boundary in complex subconcepts. Nevertheless,

it is worth highlighting that Fuzzy-UCS with any repre-

sentation still significantly outperformed IBk on the SEA7

problem according to the Holm’s and Shaffer’s procedures at

a ¼ 0:05: Fuzzy-UCS with NGO and CNF representation

also significantly outperformed IBk on the SEA5 problem.

Second, Figs. 6 and 7 show that Fuzzy-UCS with the

two most flexible representations—i.e., NGO and CNF—

obtained the best results overall. This aligns with the

observations made in the SEA problem, since the flexibility

of both representations enabled Fuzzy-UCS to quickly

react to concept changes and approximate the new concept

in the SEA5 and SEA7 problems as well. The most inter-

esting results though are reported in Fig. 7. Note that

although NGO was not outperformed by CNF during all the

run, CNF permitted the system to achieve better accuracies

than NGO in three of the four subconcepts. We hypothesize

that this is due to the high flexibility provided by NGO,

which may have hindered the system from fully adapting to

new concepts as the system needed to tune the vertices of

the fuzzy rules for each rule variable, thus resulting in a

huge search space. On the other hand, CNF also provides

good flexibility but resulting in a smaller search spaces,

allowing the system to adapt to changes more quickly.

The overall study conducted in this section has served to

confirm that Fuzzy-UCS is a very robust and competitive

system to deal with data streams that present concept drift,

which was defined as the first objective of this work. The

experimental evidence has highlighted that all the four

representations of Fuzzy-UCS have a high capacity of

reaction to concept changes, especially the NGO and the

CNF representations. Besides, the analytical results have

also emphasized some differences among representations,

showing a clear flexibility-accuracy tradeoff.

6 Experiments on real-world problems

This section extends the study of the behavior of the four

representations of Fuzzy-UCS to a large collection of
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Fig. 7 Comparison of the test error achieved by Fuzzy-UCS, with each rule representation, and IBk on the SEA7 problem. Every 12,500

iterations, the concept of the problem changes, causing a concept drift
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Fig. 8 Statistical comparison of the test error achieved by Fuzzy-

UCS, with each rule representation, and IBk on the SEA5 and the

SEA7 problems. For each method, a line is used to delimit the region

in which there is no significant difference according to the Nemenyi’s

test at a ¼ 0:10
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real-world problems whose concepts do not change over

time. The aim of the analysis is (1) to show that the

accuracy of Fuzzy-UCS models is, at least, as good as the

accuracy of the models created by some of the most sig-

nificant machine learning techniques and (2) to compare

the accuracy and quality of the models evolved with the

four representations. In the following, we first explain the

experimental methodology and then analyze the results.

The next section will extend this analysis by examining the

competitiveness of the different representations depending

on the intrinsic characteristics of the data sets.

6.1 Experimental methodology

We selected 30 real-world data sets with different charac-

teristics, which are summarized in Table 3. All the data

sets were extracted from the UCI repository (Asuncion and

Newman 2007), except for tao, which was selected from a

local repository. All these data sets contain static concepts,

since there is a lack of public data sets which represent

real-world problems with concept changes. To feed Fuzzy-

UCS with these types of problems, we transformed each

data set into a data stream by randomly sampling, with

replacement, an instance of the original data set at each

learning time step.

We ran Fuzzy-UCS with the four representations on the

collection of 30 problems. The four systems were config-

ured with the same parameter settings specified in

Sect. 5.2, with the exception that P# was set to 0.6 in order

to increment the generality pressure in the initial popula-

tion. We employed this configuration in all the problems

instead of tuning the configuration for each particular

domain in order to show the robustness of Fuzzy-UCS to

the configuration parameters. We also compared Fuzzy-

UCS with two of the most significant machine learning

techniques (Wu et al. 2007): the decision tree C4.5

(Quinlan 1993) and the instance-based classifier IBk (Aha

et al. 1991). C4.5 is a decision tree that enhances ID3 by

introducing methods to deal with continuous variables and

missing values. IBk is a nearest neighbor algorithm; it

classifies a test instance with the majority class of its

k nearest neighbors. We used the implementation of these

two methods provided by WEKA (Witten and Frank 2005).

Both methods were configured with the default parameters,

except for IBk, in which we set k = 3.

We compared the performance obtained by the four

representations of Fuzzy-UCS, C4.5, and IBk. In addition,

we also compared the complexity of the models; however,

the complexity comparison is restricted only to Fuzzy-

UCS’s models. We did not consider IBk since it does not

Table 2 Statistical comparison

of the test error achieved by

Fuzzy-UCS, with each rule

representation, and IBk on the

SEA5 and the SEA7 problems

according to the Holm’s and the

Shaffer statistical procedures at

a ¼ 0:05

The columns show the

comparison number, the

algorithms compared, the test

statistics z, the adjustment of a
by Holm’s procedure (aHOLM),

and the adjustment of a by

Shaffer’s procedure (aSHAFFER).

Methods that perform

significantly different according

to both the Holm’s and the

Shaffer’s test are marked in bold

i Algorithms z ¼ ðR0 � RiÞ=SE p aHOLM aSHAFFER

SEA5

10 NGO vs. IBk 7.55 4:098� 10�14 0.0050 0.0050

9 NGO vs. SFP 5.72 1:042� 10�8 0.0055 0.0083

8 NGO vs. DTC 5.40 6:391� 10�8 0.0063 0.0083

7 CNF vs. IBk 4.26 1:962� 10�5 0.0071 0.0083

6 NGO vs. CNF 3.28 0.001 0.0083 0.0083

5 SFP vs. CNF 2.43 0.014 0.0100 0.0125

4 DTC vs. IBk 2.15 0.031 0.0125 0.0125

3 CNF vs. DTC 2.11 0.034 0.0166 0.0167

2 SFP vs. IBk 1.83 0.066 0.0250 0.0250

1 SFP vs. DTC 0.31 0.752 0.0500 0.0500

SEA7

10 CNF vs. IBk 7.72 1:201� 1014 0.0050 0.0050

9 NGO vs. IBk 7.46 8:459� 1014 0.0055 0.0083

8 SFP vs. CNF 5.09 3:557� 107 0.0063 0.0083

7 NGO vs. SFP 4.84 1:310� 106 0.0071 0.0083

6 CNF vs. DTC 4.65 3:343� 106 0.0083 0.0083

5 NGO vs. DTC 4.39 1:105� 105 0.0100 0.0125

4 DTC vs. IBk 3.07 0.002 0.0125 0.0125

3 SFP vs. IBk 2.62 0.009 0.0167 0.0167

2 SFP vs. DTC 0.44 0.658 0.0250 0.0250

1 NGO vs. CNF 0.25 0.800 0.0500 0.0500
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evolve a global model of the data; C4.5 was not considered

due to the complexity of comparing the tree-based repre-

sentation of C4.5 with the fuzzy rule-based representations

of Fuzzy-UCS.

We used the test accuracy—i.e., the proportion of cor-

rect classifications on previously unseen examples—to

measure the performance of the methods. To obtain reli-

able estimates of this indicator, we used a tenfold cross-

validation procedure (Dietterich 1998). All the results

provided in the next section are averages over ten runs of

Fuzzy-UCS.

We used the population size to compare the complexity

of the different representations. This measure denotes (1)

the readability of the final sets and, especially, (2) the

runtime required to evolve the final population. That is, the

larger the number of rules, the less readable the knowledge

and the higher the runtime required to evolve the knowl-

edge. We also qualitatively discussed the readability of the

individual rules.

The results were statistically compared following the

same methodology explained in Sect. 5.2 That is, we used

the multi-comparison Friedman’s test to check the null

hypothesis that all the learning algorithms obtained the

same results on average. If the Friedman’s test rejected the

null hypothesis, we applied the Nemenyi’s test to detect

groups of learners that behaved differently. Finally, we also

performed pairwise comparisons according to the Holm’s

and the Shaffer’s tests.

Table 3 Properties of the data sets

Id. #Inst #Fea #Re #In #No #Cl %MA %IM %MV %maj %min

ann 898 38 6 0 32 5 0.00 0.00 0.00 0.76 0.01

aud 226 69 0 0 69 24 0.10 0.98 0.02 0.25 0.00

aut 205 25 15 0 10 6 0.28 0.22 0.01 0.33 0.02

authors 841 70 0 70 0 4 0.00 0.00 0.00 0.38 0.07

bal 625 4 4 0 0 3 0.00 0.00 0.00 0.46 0.08

bpa 345 6 6 0 0 2 0.00 0.00 0.00 0.58 0.42

cmc 1,473 9 2 0 7 3 0.00 0.00 0.00 0.43 0.23

col 368 22 7 0 15 2 0.96 0.98 0.24 0.63 0.37

fourclass 862 2 2 0 0 2 0.00 0.00 0.00 0.64 0.36

gls 214 9 9 0 0 6 0.00 0.00 0.00 0.36 0.04

hab 306 3 0 3 0 2 0.00 0.00 0.00 0.74 0.27

h-c 303 13 6 0 7 5 0.15 0.02 0.00 0.55 0.00

h-s 270 13 13 0 0 2 0.00 0.00 0.00 0.56 0.44

irs 150 4 4 0 0 3 0.00 0.00 0.00 0.33 0.33

mag 19,020 10 10 0 0 2 0.00 0.00 0.00 0.65 0.35

pbc 5,473 10 4 6 0 5 0.00 0.00 0.00 0.90 0.01

pen 10,992 16 0 16 0 10 0.00 0.00 0.00 0.10 0.10

pim 768 8 8 0 0 2 0.00 0.00 0.00 0.65 0.35

son 208 60 60 0 0 2 0.00 0.00 0.00 0.53 0.47

spa 4,601 57 55 2 0 2 0.00 0.00 0.00 0.61 0.39

tao 1,888 2 2 0 0 2 0.00 0.00 0.00 0.50 0.50

thy 215 5 5 0 0 3 0.00 0.00 0.00 0.70 0.14

veh 846 18 18 0 0 4 0.00 0.00 0.00 0.26 0.24

wav21 5,000 21 21 0 0 3 0.00 0.00 0.00 0.34 0.33

wbcd 699 9 0 9 0 2 0.11 0.02 0.00 0.66 0.35

wdbc 569 30 30 0 0 2 0.00 0.00 0.00 0.63 0.37

wne 178 13 13 0 0 3 0.00 0.00 0.00 0.40 0.27

wpbc 198 33 33 0 0 2 0.03 0.02 0.00 0.76 0.24

yea 1,484 8 8 0 0 10 0.00 0.00 0.00 0.31 0.00

zoo 101 16 0 0 16 7 0.00 0.00 0.00 0.41 0.04

The columns describe: the identifier of the data set (Id.), the number of instances (#Inst), the total number of features (#Fea), the number of

continuous features (#Re), the number of integer features (#In), the number of nominal features (#No), the number of classes (#Cl), the

proportion of attributes with missing values (%MA), the proportion of instances with missing values (%IM), the proportion of missing values

(%MV), the proportion of instances of the majority class (%maj), and the proportion of instances of the minority class (%min)
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6.2 Results

Table 4 shows the test accuracy obtained with each Fuzzy-

UCS, C4.5, and IBk, and the size of the populations

evolved by Fuzzy-UCS for each problem. The last two

rows of the table report the average rank and the absolute

position in the ranking of each method. The multi-com-

parison Friedman’s test could not reject the null hypothesis

that Fuzzy-UCS with the four representations, C4.5, and

IBk performed the same on average, resulting in a p value

of 0.77. Therefore, post hoc tests could not be applied.

Nevertheless, we ranked the test accuracy to show the

general behavior of the different representations and sys-

tems, which is shown in the top of Fig. 9. On the other

hand, the Friedman’s test rejected the hypothesis that the

size of the models evolved with the four representations

was the same, on average, with a p value of 1:70� 10�14:

Thus, we applied the Nemenyi’s test, whose results are

reported in the bottom of Fig. 9. We also performed pair-

wise comparisons according to the Holm’s and Shaffer’s

tests, which rejected the same conclusions rejected by the

Nemenyi’s test (the results are not included for brevity).

Table 4 Test accuracy and population size obtained by Fuzzy-UCS with the four representations

Test accuracy Pop size

NGO SFP DTC CNF C4.5 IBk NGO SFP DTC CNF

ann 96.40 97.87 98.48 98.36 98.90 97.34 1,325 381 453 891

aud 72.89 63.69 64.25 63.07 88.46 65.87 1,226 292 378 588

aut 71.75 70.36 69.18 70.88 80.49 68.65 828 402 393 934

authors 96.43 93.58 72.91 81.95 95.12 99.41 3,765 972 377 552

bal 90.08 86.95 83.04 85.38 77.42 87.06 1,521 1,034 590 1,513

bpa 60.76 59.38 58.19 60.53 62.31 58.90 1,098 857 853 1,918

cmc 49.17 47.16 47.22 50.97 52.62 45.28 978 917 920 1,511

col 84.64 84.16 84.23 83.63 85.32 81.27 1,768 784 931 1,478

fourclass 80.10 81.31 83.29 86.46 98.72 100.00 132 132 32 283

gls 68.87 69.49 70.04 68.17 66.15 67.98 1,034 614 622 1,348

hab 73.50 71.06 71.17 71.66 71.04 70.29 435 491 153 1,648

h-c 84.09 80.03 80.62 81.61 78.45 82.18 1,254 636 602 1,151

h-s 82.19 78.41 79.34 79.19 79.26 77.78 1,542 675 533 1,264

irs 95.60 95.37 94.53 94.47 94.00 95.33 314 297 149 633

mag 76.58 78.84 79.92 78.70 85.23 83.14 2,000 1,553 1,558 3,185

pbc 89.84 91.25 93.78 93.27 96.99 96.16 986 761 884 2,098

pen 84.54 94.70 95.06 95.50 96.72 99.35 2,177 1,333 622 1,375

pim 74.63 74.82 73.29 75.04 74.22 72.80 1,560 1,100 887 1,917

son 80.84 76.72 72.98 73.38 71.07 83.07 2,449 583 349 908

spa 61.65 90.24 90.34 69.04 92.61 89.92 1,170 482 458 1,254

tao 83.71 85.89 82.24 86.31 95.92 96.24 129 124 29 236

thy 86.35 93.52 93.91 94.19 94.91 94.87 492 462 290 1,205

veh 64.33 68.09 64.63 66.67 71.14 68.89 1,364 893 481 1,152

wav21 83.52 83.95 82.83 82.46 76.42 79.96 4,894 2,785 998 1,916

wbcd 96.08 95.88 95.92 95.99 94.99 96.85 1,519 684 642 1,381

wdbc 94.04 94.81 94.56 94.42 94.40 96.66 4,131 991 735 1,562

wne 95.26 94.52 93.95 92.76 93.89 95.10 1,706 676 520 1,125

wpbc 78.62 74.04 68.36 73.58 71.61 74.25 1,910 724 413 1,049

yea 50.48 56.93 56.44 56.45 56.37 53.77 1,005 869 664 1,511

zoo 97.01 95.13 95.64 94.98 92.81 93.64 342 183 241 299

Rank 3.27 3.60 .83 3.70 3.30 3.30 3.48 1.85 1.27 3.40

Pos 1 4 6 5 2.5 2.5 4 2 1 3

We also provide the test accuracy achieved by C4.5 and IBk. The last two rows show the average rank of each learning algorithm (Rank) and its

position in the ranking (Pos) for each comparison
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The conclusions drawn from this analysis, in terms of the

accuracy and the size of the resulting models, are elabo-

rated in what follows.

6.2.1 Comparison of the model accuracy

The aim of these comparison was (1) to identify whether

Fuzzy-UCS could perform at least as well as some of the

state-of-the-art machine learning techniques and (2) to

highlight which representations could yield the most

accurate models.

The statistical comparison indicated that there were no

significant differences among all the methods tested. This

highlighted the robustness and flexibility of the online

learning architecture of Fuzzy-UCS, which, with little

adaptation of the genetic operators to each specific repre-

sentation, could evolve competitive models for very

diverse fuzzy rule-based representations online. It is worth

mentioning that, although no statistical difference was

found, the best results on average were reached by Fuzzy-

UCS with the NGO representation. Therefore, Fuzzy-UCS,

which builds a model only considering a training example

at each learning iteration, could achieve at least as good

results as those obtained with techniques that consider all

the global data set at a time to build the classification

model.

The results also enable us to see which representations

were the best on average. That is, the best ranked repre-

sentation appeared to be the NGO one. This behavior was

expected, since the NGO representation is the most flexible

one in the comparison; therefore, it was expected to be able

to fit complex class boundaries more accurately. The next

representation was the SFP one, closely followed by the

CNF representation. Therefore, results indicate that the

specificity-generality hierarchy provided by the SFP rep-

resentation may slightly benefit Fuzzy-UCS. Finally, the

DTC representation—the less flexible one—presented the

poorest results in terms of model accuracy.

6.2.2 Comparison of the model complexity

Before proceeding to the analysis of the model’s com-

plexity, it is important to review the type of models created

by LFCSs—and by Michigan-style learning classifier sys-

tems (LCSs) in general—and to highlight the importance of

reducing the final population sizes. As these types of sys-

tems evolve rules online, without being able to optimize

the population of rules by considering the entire data set

(actually, the techniques only see a data stream), Michigan-

style LCSs tend to create large rule sets, e.g., see Bacardit

and Butz (2004). Trying to reduce the size of the final

models is important not only for readability purposes but

also for efficiency, since Michigan-style LCSs spend the

majority of their runtime on matching rules (Llorà and

Sastry 2006). In addition, as rules can be considered as

independent classifiers, niches of classifiers can provide

interesting information to experts. In both cases, the fewer

rules, the better. For this purpose, in this section, we take

the following approach. We first compare the complexity

of the final population of Fuzzy-UCS. Thereafter, we apply

the reduction mechanism ‘nfit’ proposed in Orriols-Puig

et al. (2009), which after training the system only keeps in

the final population those rules that maximize the product

F � lAðeÞ � num; that is, the product of fitness, matching

degree with a training example and numerosity. Note that

this approach can only be applied when Fuzzy-UCS is

trained on a static data set.

To start with the analysis, we first consider the size of

the populations evolved with the different representations

without applying the ‘nfit’ reduction mechanism. The

Nemenyi’s test (see the bottom of Fig. 9) identified two

groups of learners that behaved significantly differently.

The DTC and the SFP representations evolved models that

were significantly smaller than those built with the NGO

and the CNF representations.

However, all the representations resulted in large pop-

ulations due to the online learning nature of Fuzzy-UCS.

That is, Fuzzy-UCS learns from specific classifiers and the

genetic pressures drive the population toward the creation

of more general rules. These types of ‘‘bottom-up’’

approaches tend to create a larger number of rules than

‘‘top-down’’ approaches in which the search space is iter-

atively split in order to identify regions of a single class.

With the aim of achieving smaller populations with Fuzzy-

UCS, we applied the ‘nfit’ reduction scheme. Table 5
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Fig. 9 Comparison of the test accuracy (acc) and the population size

(sze) achieved by Fuzzy-UCS with the four representations. In the

comparison of the test accuracy, the results obtained by IBk and C4.5

are also considered. For each comparison, the bars show the average

rank and the lines delimit the region in which there is no significant

difference. Note that in the accuracy comparison, all methods

behaved equivalently on average
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reports the results obtained with these reduced populations,

and Fig. 10 the results of the statistical comparisons

according to the Nemenyi’s test at a ¼ 0:10: The Holm’s

and the Shaffer’s yield the same conclusions (not shown

for brevity). The statistical comparison indicates that, in

terms of accuracy, only Fuzzy-UCS with the NGO repre-

sentation obtained results that were not statistically dif-

ferent than those of C4.5. In all the other cases, Fuzzy-UCS

was outperformed by C4.5 and IBk. However, the final

populations were significantly reduced. Notice that the

most reduced populations were obtained with the NGO

representation, which, at the same time, resulted in the

most accurate results among the four fuzzy representations.

This indicates that NGO enables evolving general rules that

cover large portions of the solution space and that are not

strongly overlapped among them.

In addition to the size itself, we also qualitatively con-

sidered the readability of individual rules to complement

the analysis of model complexity. Going through the

dimension of readability, from more to less complex

knowledge representation, we first identified the DTC

representation. This representation assigns a single lin-

guistic term of a shared semantics—which, in our case,

consisted of five triangular-shaped fuzzy sets—or a don’t

Table 5 Test accuracy and population size obtained by Fuzzy-UCS with the four representations and the nfit reduction approach

Test accuracy Pop size

NGO SFP DTC CNF C4.5 IBk NGO SFP DTC CNF

ann 98.47 97.20 97.19 97.31 98.90 97.34 32 82 91 77

aud 64.58 59.08 57.52 56.32 88.46 65.87 74 106 108 102

aut 68.02 63.75 60.31 65.04 80.49 68.65 79 97 102 84

authors 92.19 89.60 32.38 74.19 95.12 99.41 125 174 348 232

bal 81.64 82.76 69.93 81.24 77.42 87.06 59 154 275 129

bpa 59.64 54.36 56.47 57.10 62.31 58.90 41 56 65 50

cmc 48.22 49.84 49.42 49.70 52.62 45.28 273 263 294 289

col 82.24 80.06 78.61 76.29 85.32 81.27 46 98 107 94

fourclass 85.57 83.38 87.91 87.80 98.72 100.00 12 14 18 14

gls 67.62 67.06 66.82 67.07 66.15 67.98 48 58 65 56

hab 73.18 74.04 72.48 71.45 71.04 70.29 4 23 19 27

h-c 79.67 77.31 73.95 77.70 78.45 82.18 54 92 112 86

h-s 77.56 76.22 71.59 76.30 79.26 77.78 49 78 101 74

irs 95.07 94.50 95.93 94.93 94.00 95.33 6 16 11 11

mag 71.64 73.91 78.28 77.46 85.23 83.14 15 50 94 116

pbc 91.58 91.36 94.00 93.13 96.99 96.16 9 24 55 43

pen 28.48 94.15 93.64 94.14 96.72 99.35 18 417 454 495

pim 74.12 74.52 71.56 73.25 74.22 72.80 27 67 122 103

son 73.96 70.99 30.70 61.98 71.07 83.07 71 85 146 97

spa 64.92 61.63 62.67 62.76 92.61 89.92 11 14 22 23

tao 83.81 83.93 86.69 87.65 95.92 96.24 11 16 13 15

thy 87.86 92.27 95.22 94.22 94.91 94.87 10 19 21 17

veh 64.58 66.41 63.85 64.44 71.14 68.89 78 146 205 170

wav21 78.77 81.58 79.93 79.69 76.42 79.96 124 469 370 531

wbcd 93.70 95.45 94.74 95.43 94.99 96.85 10 44 72 53

wdbc 94.03 94.01 92.63 93.54 94.40 96.66 22 46 95 79

wne 92.53 90.99 87.29 89.97 93.89 95.10 19 36 45 31

wpbc 71.02 71.91 58.29 71.34 71.61 74.25 50 93 109 87

yea 52.90 57.90 55.19 54.76 56.37 53.77 66 112 105 87

zoo 95.66 89.64 90.07 89.66 92.81 93.64 12 23 23 23

ank 3.67 3.87 4.63 4.2 2.43 2.20 1.03 2.68 3.58 2.70

Pos 3 4 6 5 2 1 1 2 4 3

We also provide the test accuracy achieved by C4.5 and IBk. The last two rows show the average rank of each learning algorithm (Rank) and its

position in the ranking (Pos) for each comparison
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care symbol to each variable. Due to (1) the shared

semantics, (2) the low number of fuzzy partitions per

variable, and (3) the fact that each variable is assigned a

single linguistic term, this knowledge representation can be

easily read by human experts. With no doubt, if the ‘nfit’

reduction is not applied, DTC is the most appealing rep-

resentation in terms of complexity. On the other hand,

when ‘nfit’ is applied, DTC is the representation that allows

for a lower reduction of rules.

The CNF and the SFP representations come next in the

readability spectrum. The CNF representation differs from

the DTC one in the fact that it assigns a disjunction of lin-

guistic terms to each variable; the readability of the aggre-

gated fuzzy set, therefore, is more complex. On the other

hand, the SFP representation differs from the DTC one in the

fact that the shared semantics consists of a higher number of

linguistic terms with different widths (i.e., degrees of gen-

erality). Thus, although it is difficult to state in which of the

two representations the individual rules are more interpret-

able, both of them are far from the DTC representation.

Finally, the NGO representation is the less interpretable

one since variables do not share the same semantics any-

more, and so, human experts need to interpret each fuzzy

set separately. However, when applying the ‘nfit’ reduc-

tion, it results in the most reduced and most accurate rule

sets. Therefore, in this case, the NGO representation would

probably be the most appealing one.

The overall analysis conducted in this section has

illustrated that the online learning architecture of Fuzzy-

UCS can evolve very competitive models that use different

knowledge representations, emphasizing the flexibility of

the architecture. We have also shown an accuracy-inter-

pretability tradeoff that can be typically found in FRBCSs.

The results indicated that, if the user searches for the smallest

rule set possible, the best approach is to use the NGO rep-

resentation after applying the ‘nfit’ reduction mechanism.

On the other hand, if the user searches for maximum accu-

racy, the best approach is to use the NGO representation

without applying any type of reduction. In the middle of this

spectrum, we found the SFP representation, which resulted in

the second most accurate and most compact representation

regardless of whether the ‘nfit’ reduction was applied.

7 Learning each representation’s sweet spot

The study performed in the last section has highlighted

many important issues on the average behavior of each

particular representation. While the analysis of the com-

plexity denoted significant differences among the four

representations, the study of the performance could only

provide general comments based on the average behavior

of the four representations. However, looking at the

detailed results presented in Table 4, we can observe that

different representations excelled in distinct problems,

which may have diverse characteristics. Thus, the identi-

fication of which problem characteristics each representa-

tion is the best suited to appears as an appealing exercise.

The purpose of this section is to extend the analysis of the

accuracy of the four representations by characterizing the

complexity of the different problems and comparing the four

representations on the complexity space (Ho and Basu 2002),

with the aim of detecting the sweet spot where a particular

representation outperforms the others. With this idea in

mind, the next subsections first explain the analysis meth-

odology and then present the experimental conclusions.

7.1 Analysis methodology

To study the behavior of the different representations over

the complexity space, we first need to characterize the

problem complexity and then use this characterization in

our analysis. The following explains the method employed

to characterize different sources of problem difficulty.

Then, we use this characterization to define the problem of

automatically learning the characteristics that are the best

suited to each representation.

7.1.1 Problem complexity characterization

The characterization of the problem complexity was done

using the complexity measures designed by Ho and Basu

(2002). The authors defined a set of complexity measures

that extract different indicators of the class boundary

complexity. More specifically, the measures defined aimed

at measuring: (1) the overlaps in feature values from

0 1 2 3 4 5 6

acc

sze

   NGO

   SFP

   DTC

   CNF

   C4.5

   IBk

   NGO

   SFP

   DTC

   CNF

Rank

Fig. 10 Comparison of the test accuracy (acc) and the population

size (sze) achieved by Fuzzy-UCS with the four representations and

the nfit reduction. In the comparison of the test accuracy, the results

obtained by IBk and C4.5 are also considered. For each comparison,

the bars show the average rank and the lines delimit the region in

which there is no significant difference
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different classes, (2) the separability of classes, and (3) the

geometry, topology, and density of manifolds.

In our study, we selected the complexity measures

enumerated in Table 6, which are briefly explained as

follows. F1 is the Fisher’s discriminant ratio; high values of

F1 indicate that classes can be separated more easily. F2 is

the overlap of the per-class bounding boxes; high values of

this measure indicate that classes are highly overlapped,

and so, that it may be difficult to separate these classes. F3

is the maximum feature efficiency, which returns the pro-

portion of instances that a single attribute can discriminate;

thus, higher values denote that the instances of different

classes can be separated by a single attribute. F4 is the

collective feature efficiency4; it acts as F3, but it considers

the discriminative power of all the attributes of the problem.

N1 is the fraction of points on the class boundary, which

denotes the boundary length; high values of this measure are

usually associated to complex problems. N2 is the ratio of

average intra/inter-class nearest neighbor distance, which

compares the within-class spread with the distances to the

nearest neighbors of other classes; high values of N2 indicate

that the examples of the same class are disperse. N3 is the

leave-one-out error rate of the one-nearest neighbor classi-

fier; high values of N3 denote that classes are close in the

feature space. Finally, T1 is the fraction of maximum cov-

ering spheres; high values of this measure indicate that

instances are distributed in small clusters in the feature

space, and thus, that it may be difficult to fit the data accu-

rately. For more information about these measures, the

reader is referred to Ho and Basu (2002) and Ho et al. (2006).

7.1.2 Learning the sweet spot of each representation

We propose to transform the typical manual inspection of

results into a problem of automatically learning the domain

of excellence of each representation, i.e., the sweet spot on

the complexity space where a representation outperforms

the others.

For this purpose, let us define a classification problem

Pi: Each instance of the problem Pi corresponds to one of

the domains in the test bed (see Table 3), which is char-

acterized by the aforementioned complexity measures. The

label of each instance is the name of the representation that

obtained the best results (we consider the results of

Table 4). With this definition, we can use any machine

learning technique to model the domain of excellence of each

Fuzzy-UCS representation. This approach is related to the

work by Luengo and Herrera (2010), in which the authors

analyzed the behavior of a fuzzy system on the complexity

space, identifying regions of good and bad behavior of the

method. The main difference in our proposal is that we aim at

automatically identifying the sweet spot of each learner with

respect to the other methods included in the comparison.

We applied this procedure to the collection of 30 data

sets and used C4.5 (Quinlan 1993) to learn the domain of

excellence of the four representations included in the

comparison. We adopted C4.5 because of its tree repre-

sentation. The next subsection explains the results in detail.

7.2 Results

Figure 11 illustrates the decision tree learned by C4.5,

which explains the problem complexities to which each

representation is the best suited. Note that the tree does not

use the complexity measurements F3, N1 and N2, which

indicates that the remaining ones may suffice to identify the

sweet spot of each representation in this experiment and/or

that the complexity captured by these metrics is somehow

included in the remaining ones. The information provided

by the tree, which presented an accuracy of 86.66%, is

commented in the following.

The first attribute found in the tree traversal is F4, which

captures the collective capacity of problem features to

discriminate instances of different classes. Low values of

F4 are typically hard problems, while high values are easier

Table 6 Complexity measures used in our study

Id Measure High values

F1 Maximum Fisher’s discriminant ratio Classes can be discriminated more easily

F2 Overlap of the per-class bounding boxes Classes are highly overlapped

F3 Maximum (individual) feature efficiency An attribute can discriminate classes

F4 Collective feature efficiency All attributes together can discriminate classes

N1 Fraction of points on the class boundary Many points on the class boundary (complex boundary)

N2 Ratio of average intra/inter class nearest neighbor distance Examples of the same class are disperse

N3 Leave-one-out error rate of the one-nearest neighbor classifier Classes are close in the feature space

T1 Fraction of maximum covering spheres Instances distributed in small clusters of the same class

For each measure, we provide the identifier (Id), the measure name, and what high values of the measure means in terms of complexity

4 F4 is introduced here for the first time, and its design is based

on F3.
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since the attributes themselves may be enough to dis-

criminate instances of different classes. If we consider this

last case (high values of F4), we see that the next condition

of the tree depends on T1, which denotes the ratio of the

number of different clusters required to cover all the data

set to the total number of instances; therefore, the lower

this value is, the easier the problem may be. When T1 is

low—i.e., the problem can be classifier with few clusters—

the DTC representation appears to be the best suited to.

This conclusion was expected, since these types of problems

may allow for a high generalization pressure, which is intro-

duced by the DTC representation. On the other hand, for high

values of F4 and high values of T1—i.e., problems where

attributes can discriminate instances of different classes, but

where several clusters may be needed to cover all instances

accurately—the NGO and the SFP representations appear to

be the best ones. For low values of N3—i.e., for problems

where examples of different classes are not very close in the

feature space—the NGO representation obtains the best

results. For high value of N3, the SFP representation is the best

one, showing the potential of the fuzzy sets hierarchy, which

enables fitting complex class boundaries accurately.

Coming back to the problems with low values of F4, we

can observe the following aspects. The CNF representation

is the best suited to problems with low values of N3. This

indicates that the CNF representation outperforms the

others in tough problems where attributes themselves may

not be enough to discriminate instances of different classes

and where instances of different classes lay not very close

in the feature space.

For problems with higher values of N3, the tree leads to

a new variety of conditions. For low values of F2—i.e.,

problems where attributes are not highly overlapped—the

NGO, and the DTC representation in two specific cases,

obtained the best results. As the problems become harder

(low values of F4 and high values of F2 and N3), the best

representations are the most flexible ones: the NGO and the

CNF representations.

To finish with the experimentation, we tried to use the

model created by C4.5 to predict which learner would yield

the best results given a new training example. For this

purpose, we repeated the same experiments but now using

a leave-one-out methodology to assess the test performance

of the system. The system obtained a 40% test accuracy;

i.e., the system could predict which would be the best

representation for 40% of the unknown data sets. Consid-

ering that the classification model had to distinguish among

four possible representations and that the training data set

was sparse (the system only saw 29 training instances

defined by eight input attributes), the achieved test accu-

racy was quite good. However, this metric does not reflect

the type of error done. In case of error, we would prefer the

system to select the second best ranked method over the

poorest ranked method. To report whether the system

predicted not the best but one of the best ranked methods,

for each test prediction we computed the average distance

to the best ranked method. That is, we considered an error

of 0, 1, 2, and 3 if the system predicted the first, second,

third and fourth ranked method, respectively. This resulted

in an average error of 1.3, which indicates that the system

tends to select one of the best ranked algorithms for new

unseen problems. It is worth highlighting that the aim of

this experiment was not to build a meta-learner, but to

examine the generalization ability in unseen data sets,

acknowledging the limitations of data set scarcity. In any

case, these results hold promise and encourage us to extend

the analysis in further work.

8 Summary, conclusions, and further work

In this paper, we have extended the research on Fuzzy-UCS—

a young Michigan-style LFCSs that have demonstrated to be

highly competitive with respect to some of the most-known

machine learning techniques—by addressing two key chal-

lenges in FRBSs and machine learning in general: learning

from data streams in which concepts vary over time and

finding competitive rule-based representations. For this pur-

pose, we have selected four relevant representations in the

FRBCS field, and we have compared these representations on

a well-known artificial domain that presents concept changes

and on a large collection of real-world classification problems.

The results (1) have evidenced that Fuzzy-UCS is a compet-

itive method to deal with data streams, being able to quickly

adapt to concept changes, and (2) have lead to interesting

conclusions on the behavior of the four representations.

The first part of this paper has empirically shown the

reaction capacity of the four representations of Fuzzy-UCS

in front of concept changes. The four representations

Fig. 11 Tree built by C4.5 for the problem of learning the domain of

excellence of the four Fuzzy-UCS representations
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appeared to be more robust than IBk with a global window

equal to the number of examples sampled per concept, a

system that is usually employed to set a baseline in these

types of analyses. Besides, Fuzzy-UCS with the NGO

representation reported results that were significantly better

than those obtained by one of the most competitive data

stream miners, OnlineTree2, in the SEA problem. We have

also shown that the NGO and CNF representations adapt

well the concept changes even when the number of input

variables that define the concept increase.

Thereafter, the comparison has been extended to a large

collection of real-world problems. We have moved on to

domains in which concepts do not change over time due to

the lack of real-world classification problems with concept

drift. This experimental analysis has yielded two important

conclusions. The first conclusion was that the four repre-

sentations resulted in models whose accuracy (1) was not

significantly different among them and (2) was not sig-

nificantly different from that of the models created by IBk

and C4.5, two of the most-influential machine learning

techniques to process data sets with static concepts. On the

other hand, there were significant differences among the

complexity of the models obtained with the four different

representations of Fuzzy-UCS. The second conclusion was

that, taking the average behavior in account, we could

observe that the most flexible—and so, less readable—

representations resulted in the most accurate results,

drawing an accuracy-interpretability tradeoff that can be

usually found in FRBCS.

Although the typical approach in machine learning

comparisons is to extract conclusions on the average

behavior of learners, here we were also interested in

empowering this analysis by examining which types of

problem characteristics benefited the different representa-

tions. For this purpose, we proposed to move the com-

parison to the complexity space to identify the sweet spot

in which each particular representation excelled. We

employed a set of complexity measures to characterize

different sources of difficulty and fed these indicators as

input values of the problem of learning the domain of

excellence of each representation. This exercise generated

interesting results which explained the different charac-

teristics that were beneficial/detrimental to the different

representations. It was interesting to note that most of these

explanations followed the initial intuition of when a rep-

resentation should be better than the others. In addition, the

prediction capacity of the models built by C4.5 was tested,

resulting in a quite good behavior despite the high scarcity

of the training data set employed.

The analysis on the complexity space opens up future

work lines. In particular, we are interested in extending the

analysis on the complexity space by including a higher

number of real-world problems and the design of new

complexity measures that enable us to capture new sources

of problem complexity. This would serve to create even

more accurate domains of excellence, which could be used

to design meta-classifier mechanisms that decide which

knowledge representation should be evolved depending on

the intrinsic complexities of the each particular problem.
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Alcalá R, Casillas J, Cordón O, Herrera F (2001) Building fuzzy

graphs: features and taxonomy of learning for non-grid-oriented

fuzzy rule-based systems. J Intell Fuzzy Syst 11(3–4):99–119

Angelov P, Lughofer E, Zhou X (2008) Evolving fuzzy classifiers

using different model architectures. Fuzzy Sets Syst 159(23):

3160–3182

Asuncion A, Newman DJ (2007) UCI Machine Learning Reposi-

tory. University of California. http://www.ics.uci.edu/*mlearn/

MLRepository.html

Bacardit J, Butz MV (2004) Data mining in learning classifier

systems: comparing XCS with GAssist. In: Proceedings of the

7th international workshop on learning classifier systems.

Springer

Botta A, Lazzerini B, Marcelloni F, Stefanescu DC (2009) Context

adaptation of fuzzy systems through a multi-objective evolu-

tionary approach based on a novel interpretability index. Soft

Comput 13(5):437–449

Butz MV, Sastry K, Goldberg DE (2005) Strong, stable, and reliable

fitness pressure in XCS due to tournament selection. Genet

Program Evolvable Mach 6(1):53–77

Carse B, Fogarty TC, Munro A (1996) Evolving fuzzy rule based

controllers using genetic algorithms. Fuzzy Sets Syst 80:273–294

Casillas J, Cordón O, del Jesus MJ, Herrera F (2005) Genetic tuning

of fuzzy rule deep structures preserving interpretability and its

interaction with fuzzy rule set reduction. IEEE Trans Fuzzy Syst

13(1):13–29

Choi JN, Oh SK, Pedrycz W (2008) Identification of fuzzy models

using a successive tuning method with a variant identification

ratio. Fuzzy Sets Syst 159(21):2873–2889

Cooper MG, Vidal JJ (1994) Genetic design of fuzzy controllers: the

cart and jointed pole problem. In: Proceedings of the 3rd IEEE

international conference on fuzzy systems, Piscataway, NJ,

USA, pp 1332–1337

Cordón O, Herrera F (1997) A three-stage evolutionary process for

learning descriptive and approximate fuzzy logic controller

knowledge bases from examples. Int J Approx Reason 17(4):

369–407

Data stream processing and knowledge representation comparison in Fuzzy-UCS 2413

123

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ics.uci.edu/~mlearn/MLRepository.html


Cordón O, del Jesus MJ, Herrera F (1999) A proposal on reasoning

methods in fuzzy rule-based classification systems. Int J Approx

Reason 20(1):21–45
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