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Abstract

Genetic fuzzy systems (GFS) are based on the use of genetic algorithms for designing fuzzy systems, and for providing them
with learning and adaptation capabilities. In this context, fuzzy sets represent linguistic granules of information, contained in the
antecedents and consequents of the rules, whereas the data used in the genetic learning is assumed to be crisp. GFS seldom deal
with fuzzy-valued data.
In this paper we address this problem, and propose a set of techniques that can be incorporated to different GFS in order to learn

a knowledge base (KB) from interval and fuzzy data for regression problems. Details will be given about the representation of
non-standard data with fuzzy sets, about the needed changes in the reasoning method of the fuzzy rule-based system, and also about
a new generalization of the mean squared error to vague data. In addition, we will show that the learning process requires a genetic
algorithm that must be capable of optimizing a multicriteria fitness function, containing both crisp and interval-valued criteria.
Lastly, we benchmark our procedures with some machine learning related datasets and a real-world problem of marketing, and

the techniques proposed here are shown to improve the generalization properties of other KBs obtained from crisp training data.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

In most real-world problems, data have a certain degree of imprecision. Sometimes, this imprecision is small enough
so that it can be safely ignored. On other occasions, the uncertainty of the data can be modeled by a probability
distribution (e.g., additive random noise). Lastly, there is a third kind of problems where the imprecision is significant,
and a probability distribution is not a naturalmodel. For example, in [23], up to eight sources of information appropriately
characterized by intervalswere studied: plus-or-minus reports, significant digits, intermittentmeasurement, non-detects,
censoring, data binning, missing data and gross ignorance. As a further matter, there are ongoing researches about the
use of fuzzy models for modeling the interaction between variability and imprecision [4,16].
In spite of this widespread use of interval and fuzzy data, the common practice in Genetic fuzzy systems (GFS) [29],

is to associate fuzzy sets to words and use them to model vague linguistic assertions, but let the models that depend on
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these words to input crisp data, and output crisp results. In previous works [49–51] we have advocated the use of fuzzy
data to learn and evaluate GFS, and raised the use of specific reasoning methods and fuzzy-valued fitness functions to
formulate that kind of problems. In this work we give a comprehensive foundation of the changes that must be effected
on GFSs in order to learn a Knowledge Base (KB) from imprecise data. The description includes some issues about
the representation of low quality data with fuzzy sets, reasoning methods suitable for using vague data, bounds of the
accuracy of a KB on vague data, and multicriteria genetic algorithms capable of optimizing a mix of crisp and fuzzy
objectives.
This work is organized as follows: in Section 2we give a theoretical foundation of the use of vague data in ourmodels.

In Section 3 we will detail the reasoning method we need to apply in order to obtain an output which is coherent with
our interpretation of a fuzzy set. In Section 4 we define how to obtain bounds of the mean squared error from vague
data. In Section 5 we describe in detail how to use a GA to optimize the accuracy (known through the bounds defined
in the preceding section) in combination with a crisp measure of complexity. Lastly, in Section 6 we will show how
to integrate the new concepts in a GFS, whose behavior is studied through some benchmarks and a practical example
related to marketing. Section 7 concludes the paper.

2. Preliminary concepts and theoretical background

Fuzzy KBs contain “IF–THEN” rules, whose antecedents and consequents are composed of fuzzy logic statements.
Fuzzy rule-based systems (FRBS) contain a KB and an inference engine module that, in turn, contains an inference
system, fuzzification and defuzzification interfaces [10]. For the most part, these systems are designed to process
crisp information. In this sense, it has been shown that FRBS can approximate any real-valued function with arbitrary
accuracy [9]. Compared to other universal approximators, FRBS have an additional value because they balance accuracy
and linguistic interpretability [6], exploiting the potential of fuzzy logic as a representation scheme and calculus for
uncertain or vague notions.

2.1. Low quality data

Complementing fuzzy logic, fuzzy statistics are intended to process vague or low quality data, or data where not
all the attributes are precisely known. In this context, fuzzy memberships are understood as degrees of similarity,
preference or uncertainty [21].
In this paper we will adopt the interpretation that was introduced first in [27,28]: a fuzzy set can be identified with

the family of all random sets with the same one-point coverage function as the membership of the former. Furthermore,
if we restrict ourselves to the class of all consonant random sets associated to certain one-point coverage function, the
membership of the corresponding fuzzy set represents a degree of uncertainty: the membership of an element x to a
fuzzy set Ã means the degree of possibility that an imprecisely known parameter x0 has value x, when the available
information about x0 is that “x0 is Ã”, as proposed by Zadeh [58]. Therefore, any normal possibility measure �
can be represented by a normalized fuzzy set Ã. The key result, that makes this interpretation interesting for us, was
demonstrated in [15] and, independently, in [3]. In these papers it was shown that the fuzzy set Ã carries the same
information about the unknown parameter x0 than a family of nested sets A1 ⊇ · · · ⊇ An for which the probability that
the unknown parameter x0 belongs to Ai is greater or equal than 1−�i , where the strong �-cuts Ã� are the most precise
sets that satisfy the inequalities P( Ã�)�1 − �, P��. The main practical consequence of this is that we can obtain
fuzzy memberships from crisp data. We will provide a real-world example of this in Section 6.3, where we compress
multi-item data into fuzzy elements.
In short, given a sample of imprecise observations of an unknown parameter x0, we can infer a fuzzy membership

Ã that describes our incomplete information about this parameter. Interestingly enough, the algorithm that arises was
proposed before this last result has been proved (see [41]). These techniques have a great potential in practical situations,
because this estimation can be done with samples of very small size, as shown in [40]. Such numerical procedures are
illustrated in the example that follows.

Example 2.1. Let us suppose that a parameter x0 is described by the following set of observations:

X = {2, 1, 3, 3, 2, 2, 4}. (1)
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Fig. 1. Membership function of the set X̃ that represents the sample X in Section 2. The left one was obtained under normality assumptions, and the
right one is a basic bootstrap estimation.

We will assume that X is a simple random sample of a population whose mean is the unknown value x0. Let Ã be the
membership function of the fuzzy set that describes our knowledge about x0. Then, the family of its cuts { Ã�} is a
nested family of confidence intervals such that P(x0 ∈ A�) = P(A�)�1 − �.

If we assume that the sample was drawn from a normal population, we obtain the membership function of X̃ which is
shown in Fig. 1. Observe that we can approximate it by a triangular membership function without incurring large errors
[41]. Note that other different techniques for estimating the needed confidence intervals would also be possible. For
instance, building the membership function from the quantiles of the bootstrap distribution of the sample mean or the
median is a sensible choice. In the right part of Fig. 1 we have plotted a bootstrap-based estimation of the membership
function associated to the same data.

3. Combining fuzzy inference and low quality data

FRBSs, as we have mentioned, input a list of crisp numbers and generate an intermediate fuzzy set, which is in turn
defuzzified to a crisp output. In this section we discuss how to extend this definition to the case where the input is an
interval or a fuzzy set.

3.1. An extension principle-based reasoning method

Let X be the input space and Y the output space, and let { Ãi → B̃i }i=1,. . .,M be a set ofM fuzzy rules. Given an input
x ∈ X , the most common reasoning method for computing the output of an FRBS takes two stages [10]:

(1) An intermediate fuzzy set is composed:

õut(x)(y) = max
i=1,. . .,M

min{ Ãi (x), B̃i (y)}. (2)

(2) This intermediate fuzzy set is transformed into a crisp value defuz(õut(x)) ∈ Y , where defuz : F(R) → R is the
function that assigns to each fuzzy number its center of gravity,

defuz(B̃) =
∫

R y B̃(y) dy∫
R B̃(y) dy

. (3)
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Therefore, the value defuz(õut(x)) ∈ Y is computed as follows:

defuz(õut(x)) =
∫

R y õut(x)(y) dy∫
R õut(x)(y) dy

. (4)

Given a set-valued input A ⊆ X (that, in our context, means “all we know about the input is that it is in the set A”) we
propose to operate as follows:

(1) We determine a family of intermediate fuzzy sets in the universe F(Y ), õut(A) ∈ ℘(F(Y )), defined as

õut(A) = {õut(x) s. t. x ∈ A}. (5)

(2) An element of ℘(Y ) (that is to say, a set of crisp outputs defuz(õut(A)) ∈ ℘(Y )) is obtained, according to the
following definition:

defuz(õut(A)) = {defuz(õut(x)) s.t. x ∈ A}. (6)

Lastly, given a fuzzy input Ã ∈ F(X ), we will assign it, according to the extension principle (which is compatible with
the possibilistic interpretation of fuzzy sets) a fuzzy set computed as follows:

(1) We determine an intermediate fuzzy set on the universe F(Y ), õut( Ã) ∈ F(F(Y )), defined as

õut( Ã)(B̃) = sup{ Ã(x) s.t. õut(x) = B̃}, ∀B̃ ∈ F(Y ). (7)

(2) An element of F(Y ) (that is to say, a fuzzy output) defuz(õut( Ã)) ∈ F(Y ) is obtained as follows:

defuz(õut( Ã))(y) = sup{ Ã(x) s.t. defuz(õut(x)) = y}, ∀y ∈ Y. (8)

Observe that the fuzzy set defuz(õut( Ã)) is associated to the nested family of sets {defuz(õut( Ã�))}�∈[0,1], and that
explains the possibilistic interpretation of this procedure.
The numerical aspects of this definition will be explained with the help of an example.

Example 3.1. Let us study the following knowledge base:

if X is small then Y is large

if X is large then Y is small

where the membership functions of the linguistic values are small(t) = 1 − t and large(t) = t for t ∈ [0, 1].
Let us recall first that the prevalent fuzzy logic-based reasoning method is not coherent with our possibilistic

interpretation of a fuzzy set. This method consists in the intersection of the cylindric extension of the input with the
fuzzy graph of the model, followed by a projection on the output space. The fuzzy graph of this system is

õut(x)(y) = max{min{x, 1 − y},min{1 − x, y}}. (9)

Therefore, given a fuzzy input X̃ , we would obtain a fuzzy set

˜out∗( Ã)(y) = sup
x

min{õut(x)(y), Ã(x)}, (10)

which does not encode a possibility distribution (it is not normal). To make our point clearer, in the left part of Fig. 2
we have plotted the membership function of the set defined in Eq. (2), for an arbitrary crisp input x0 = 0.25. In the
right part of the same figure we have plotted the defuzzified output of the FRBS (Eq. (4)) for all values of x0 between 0
and 1. Lastly, in the left part of Fig. 3, the inferred output of the knowledge base, when the input is the triangular fuzzy
number (0.15; 0.25; 0.35), has been computed with Eq. (10).

In the right part of Fig. 3, we have computed defuz(õut( Ã)) according to our own definition in Eq. (8). Observe that
the �-cuts of defuz(õut( Ã)) are the sets {defuz(õut(x)) | Ã(x)��}. The modal point of this last set is also the output of
the knowledge base for the modal point of the fuzzy input Ã.
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Fig. 2. Left: fuzzy output of the knowledge base in the example when the input is the crisp number 0.25. Right: defuzzified output of the same base,
for crisp inputs ranging between 0 and 1.
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Fig. 3. Left: output of the knowledge base in the example, by means of Eq. (10), when the input is the triangular fuzzy number (0.15; 0.25; 0.35).
The gray areas are the difference between this output and that shown in the left part of Fig. 2, when the input was the crisp number 0.25. Right:
fuzzy output of the same base when the inference is based on Eq. (8).

The computation of the membership of defuz(õut( Ã)) can be numerically solved with the fuzzy profile method [19].
In our experimentation, we have approximated all the fuzzy sets by means of piecewise linear continuous membership
functions, assuming that the supports of the input data are small enough so that our model is locally monotonic with
regard to each argument, thus we only need to evaluate it in the vertices of the membership functions.
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4. Bounding the accuracy of an FRBS on vague data

In this section we will study how to evaluate the accuracy of an FRBS on vague data. We will generalize the mean
squared error of a model f on a sample of N input–output pairs (xi , yi ), that is to say:

MSE = 1

N

N∑
i=1

( f (xi ) − yi )
2. (11)

If some (of all) of the elements of the sample are imprecisely observed, the preceding expression must be extended.
Roughly speaking, if we are given a sample of fuzzy pairs (X̃i , Ỹi ), we can think of two different extensions of
Eq. (11): distance-based and fuzzy arithmetic-based. A distance-based generalization would be as follows:

FMSEd = 1

N

N∑
i=1

d( f (X̃i ), Ỹi )
2, (12)

where d is a suitable distance between fuzzy sets. Or else, a fuzzy arithmetic-based extension, which would have an
expression similar to

FMSEa = 1

N

N⊕
i=1

( f (X̃i )�Ỹi )
2. (13)

Arguably, the distance-based extension will produce a crisp value, while the fuzzy arithmetic-based expression is a
fuzzy set. We will discuss both in the remainder of this section.
Furthermore, we have decided to derive our definition of MSE in the context of fuzzy random variables (FRV). This

makes sense for us, because the concept of variance of an FRV has been studied before [13,14,20,35], and the definition
of the MSE of a regression model is similar to that of the variance, thus there is no need to introduce a new definition.
Therefore, in the following parts of this section we will review some different interpretations of fuzzy random variable,
along with their associated definitions of variance, and choose the most adequate for our purposes.

4.1. Fuzzy random variables

An FRV is a function X̃ : � → F(R) that maps each outcome � of a random experiment to a fuzzy subset X̃ (�)
of the real line. In our context, we will assume that both the input and the output data are instances of two random
variables X̃ and Ỹ , thus (X̃i , Ỹi ) = (X̃ (�i ), Ỹ (�i )), and these two FRV model our imprecise knowledge about the true
features of the object.
There are many different definitions of FRV, that differ in the measurability conditions imposed on the random

variables [18,31,32,34,46], but in this work we are not interested in the formal aspects of these definitions, but in the
different meanings that can be assigned to the concept of probability measure induced by the FRV. In the context of
imprecise probabilities, and following [16], one can think of three different interpretations of the mapping X̃ :

(1) Some authors [46] consider that an FRV is a measurable function, in the classical sense, between certain �-algebra
of events in the original space and a �-algebra defined over a class of fuzzy subsets of R. Each fuzzy set X̃ (�) can
be assigned a linguistic label, and therefore probability values can be assigned to these labels. For example, the
result is “large” with a probability of 0.5, “medium” with a probability of 0.25 and “small” with a probability of
0.25, where “large”, “medium” and “small” are linguistic labels associated to fuzzy subsets of R.

(2) A second interpretation, which is based in [33], states that an FRV represents imprecise or vague knowledge about
an unknown random variable, which is called “original random variable.” Therefore, the membership degree of a
point x to the fuzzy set X̃ (�) will represent the possibility degree of the assertion “the image of � is x.” For each
random variable, X : � → R, they define their “acceptability degree” as the value: acc (X ) = inf�∈� X̃ (�)(X (�)).
The acceptability acc(X ) represents the possibility degree of X being the true random variable that models the
studied experiment. Therefore, the information provided by the FRV about the probability of a (crisp) outcome is
defined by a fuzzy set in [0, 1].
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(3) A third interpretation is based on two different sub-experiments, whose sample spaces are � and R [2,42]. We
assume that the probability distribution that models the first sub-experiment is completely determined, and we
consider a family of conditional possibility measures {�(· | �)}�∈�, each one of them determined by the fuzzy
set X̃ (�). The fuzzy set X̃ (�) is a fuzzy restriction of the possible outcomes of the second experiment, given that
the outcome of the first experiment has been �. The combination, using natural extension techniques [56], of both
sources of information, allows us to describe the available information about the probability distribution that rules
the second sub-experiment by means of an upper probability. The information provided by the FRV about the
probability of a (crisp) outcome is defined by a crisp subset of [0, 1].

These three interpretations are illustrated in the example that follows:

Example 4.1. Let the sample space be � = {�1, �2, �3}, and p(�1) = p(�2) = p(�3) = 1
3 . The random variable

Y : � → {0, 1}, defined by

Y (�1) = 0, Y (�2) = 1, Y (�3) = 1 (14)

measures certain feature of an object. The induced probability on the output space is, therefore,

PY ({0}) = 1
3 , PY ({1}) = 2

3 . (15)

Let us assume that we have incomplete information about Y, and this information is given by the FRV X̃ (see Fig. 4),
defined as follows:

X̃ (�1) = {1/0 + 0.1/1}, X̃ (�2) = {1}, X̃ (�3) = {1}. (16)

Wewant to compute the induced probabilities of the sets {0} and {1} for this FRV, under the three different interpretations
mentioned before, and compare this probabilities with those induced by Y.

(1) Since {0} is not an image of X̃ , it is immediate that

PX̃ ({0}) = 0, PX̃ ({1}) = 2
3 . (17)

(2) Eight different crisp random variables X1, . . . , X8 can be defined between � and {0, 1}. These variables and their
acceptabilities are shown in the table that follows:

Images of the crisp random variables

X1 X2 X3 X4 X5 X6 X7 X8

�1 0 1 0 1 0 1 0 1
�2 0 0 1 1 0 0 1 1
�3 0 0 0 0 1 1 1 1
Acceptability 0 0 0 0 0 0 1 0.1

The probabilities induced by the variables with non-null acceptability are PX7 ({0}) = 1
3 , PX7 ({1}) = 2

3 ,
PX8 ({0}) = 0, PX8 ({1}) = 1. Therefore,

PX̃ ({0}) = {0.1/0 + 1/ 1
3 }, PX̃ ({1}) = {1/ 2

3 + 0.1/1}. (18)

Observe that both probabilities are fuzzy subsets of [0, 1], imprecise descriptions of the values PY ({0}) = 1
3 and

PY ({1}) = 2
3 .

(3) Let ��(x) = �({x} | �). If the result of the first sub-experiment is{
�1 then ��1 (0) = 1, ��1 (1) = 0.1,

�2, �3 then ��2 (0) = ��3 (0) = 0, ��2 (1) = ��3 (1) = 1
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and

P({0})� 1
3��1 (0) + 1

3��2 (0) + 1
3��3 (0) = 1

3 ,

P({1})� 1
3��1 (1) + 1

3��2 (1) + 1
3��3 (1) = 21

30 (19)

therefore

9
30 � P({0})� 1

3 ,
2
3 � P({1})� 21

30 . (20)

Observe that both probabilities are intervals of [0, 1], that contain the values PY ({0}) = 1
3 and PY ({1}) = 2

3 .

4.2. Proposed definition of fuzzy mean squared error (FMSE)

In this section we will formalize the estimation of the accuracy of an FRBS on a vague sample of data. We will
assume that the residual of the model (that is to say, the difference between the desired output of the model and the
actual output) is an FRV, whose second moment about the origin we will call fuzzy mean squared error. To the best of
our knowledge, there are not previous works about the definition of the MSE of an FRV, but the variance of an FRV
(the second moment about the mean) has been previously studied in the context of the three interpretations seen before:
the variance of the FRV has been defined as a crisp number [35], a fuzzy number [13,14,33] or an interval [14].
We can understand the word “difference” in the definition of residual as “distance” between the fuzzy desired output

and the actual output of the model, or else as a fuzzy restriction on the values on the unknown, actual error. Let us clarify
this with an example: imagine that one point in the training sample comprises two intervals ([1, 2], [2, 4]), and we want
to evaluate in this point the residual of the model y = x2, whose output is f ([1, 2]) = {x2 | x ∈ [1, 2]} = [2, 4]. We
can think of two different interpretations:

(1) d([2, 4], [2, 4]) = 0, because the actual output and the desired output are the same.
(2) [2, 4]�[2, 4] = [−2, 2] because the actual output is some unknown value in [2, 4], the desired output is other,

possibly different, point in [2, 4] and the most we can say about its difference is that it is in [−2, 2].

Arguably, the first interpretation not compatible with the possibilistic interpretation of a fuzzy set (but, conversely, that
would have been our choice if our fuzzy sets represented degrees of compatibility between numerical and linguistic
values). This prevents the use of the definition proposed in [35]. Furthermore, from a purely computational point
of view, the third definition is advantageous, because the accuracy of a regression model can be measured with one
interval, which can be represented with less parameters than the membership of a fuzzy set and therefore allows for
faster calculations. For that reason, we will use this last definition in the remaining of the paper.
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4.2.1. Theoretical definition
Let D̃(�) = Ỹ (�)� f̃ (X̃ (�)) be the residual of f in the object �. We want to define the second moment of D̃ about

the origin, according to the third interpretation seen before.
On the one hand, the probability measure P models the first sub-experiment (that is, obtaining an instance � of the

train set). On the other hand, the fuzzy sets D̃(�) represent conditional possibility measures �(·|�). The residual of
the FRBS in the object � is in a subset of the output space A ∈ �R with probability

P(A | �)��(A | �) = �D̃(�)(A) = sup
x∈A

D̃(�)(x), ∀ A ∈ �R, ∀ �. (21)

All we know about the probability distribution that models this second experiment is that it is in the set:

{Q2 | Q2 marginal of P and Q(·|·), Q(·|·) ∈ C}
where C = {Q(·|·) transition prob. | Q(A|�)��(A|�)

∀A ∈ �R, � ∈ �}. (22)

Therefore, in the proposed imprecise probabilities model, all we know about the second moment about the origin of
the residual, or fuzzy mean squared error, is that it is in the interval:

FMSE(D̃) =
{ ∫

R
x2 dQ2 | Q2 marginal of P and Q(·|·), Q(·|·) ∈ C

}
(23)

or, alternatively [14]:

FMSE(D̃) =
{∫

R
d2 dQ | Q(A)� P D̃(A), ∀A ∈ �R

}
, (24)

where P D̃ is the sub-additive set-valued function given by

P D̃(A) =
∫ 1

0
P∗
D̃�
(A) d�, ∀A ∈ �R (25)

and, for every � ∈ (0, 1], P∗
D̃�

is Dempster’s upper probability of the random set D̃�.

In the next section we will detail how to numerically approximate the FMSE of an FRBS from a sample of fuzzy
residuals.

4.2.2. Computer algorithm for approximating the FMSE
We will use the procedure described in [20] to approximate the FMSE of an FRV:

(1) For each of the membership functions D̃i = Ỹi� f (X̃i ), we have to compute the fuzzy set D̃2
i , whose �-cuts are

D̃2
� = {x2 | x ∈ D̃�}.

Since the function x2 is not locally monotonic, to compute this cuts we must divide the area under the membership
functions in zones separated by the changes in the slope of this function. This is graphically illustrated in Fig. 5. If
the membership of D̃ does not cut the line x = 0, the number of vertices is preserved. Otherwise, the left part of
the profile is replaced by a vertical segment, and the new right profile is the maximum of the squares of the former
left and right parts.

(2) We compute the FMSE of each D̃2(xi ). Let M
−
i be the left profile of D̃2(xi ), and M+

i the right one. Then,

FMSEi =
[∫ 1

0
M−

i d�,
∫ 1

0
M+

i d�

]
. (26)

(3) The FMSE of the whole model is contained in the interval

FMSE = 1

n
(FMSE1 ⊕ · · · ⊕ FMSEn) . (27)
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Fig. 5. The same extension to non-monotonic functions of the profile method that is used to compute the sample variance of an FRV can be applied
to obtain its FMSE.

5. Using a GA for learning a fuzzy KB from vague data

In this section, the NSGA-II algorithm [17] will be extended so that it can find a set of non-dominated solutions for a
two-objectives problem: (1) the mean squared error of the FRBS, as defined in the last section, and (2) the complexity
of the KB. The first objective is an interval, and the second one is crisp.
For the most part, there are two modules in the NSGA-II algorithm where the fitness function is assumed to be a

vector of crisp numbers: the precedence (dominance) operator and the crowding distance. Therefore, our extension
consists in alternate definitions for these modules.

5.1. Precedence in imprecise fitness-based genetic algorithms

Let 	1, 	2 be the fitnesses of two KBs (i.e., the MSEs of these two KBs on the training set). In this section, we will
assume that 	1 and 	2 are unknown, but we know two intervals FMSE1 and FMSE2, computed as explained in the
preceding section, that contain them. We want to determine whether one individual precedes the other, thus we need a
procedure that estimates whether the probability of 	1 < 	2 is greater than that of 	1�	2 (thus FMSE1 ≺ FMSE2) or
not. We also want to find those cases where there is no statistical evidence in FMSE1 and FMSE2 that makes us prefer
one of them (thus FMSEx1 ‖ FMSEx2 ). Our approach can be regarded as a PQI interval order [37], where there is a
zone of hesitation between strict difference and strict similarity.

5.1.1. Strong dominance
Without further assumptions, when FMSE1 and FMSE2 are non-disjoint intervals, we do not have evidence to prefer

one of them. Otherwise, the decision is trivial. This criterion has been called strong dominance in [36].

5.1.2. Probabilistic prior
The inability to distinguish between intervals with a non-empty intersection is a major problem. We can improve

the situation by introducing prior knowledge about the probability distribution of the fitness. If a joint probability
P(	1, 	2) was known, comparing two individuals would be a statistical decision problem. For instance, we can decide
that FMSE1 ≺ FMSE2 when

P({(	1, 	2) : 	1 < 	2}
P({(	1, 	2) : 	1�	2} > 1. (28)

For instance, in [55] it was assumed that P(	1, 	2) was uniform. This use of a uniform prior will be made clear in the
examples below.

Example 5.1. Let FMSE1 = [1, 3] and FMSE2 = [2, 4] two non-disjoint intervals. If we assume that P(	1, 	2) is
uniform in [1, 3] × [2, 4] (see Fig. 6) we obtain

P({(	1, 	2) : 	1 < 	2}
P({(	1, 	2) : 	1�	2} = 3.5/4

0.5/4
> 1 (29)

thus we can state that FMSE1 ≺ FMSE2.



2534 L. Sánchez et al. / Fuzzy Sets and Systems 160 (2009) 2524–2552

1 3 5

2

4

5

1

2

1> 2

1< 2

S=0.5

S=3.5

Fig. 6. Graphical representation of Example 5.1.

Example 5.2. Let FMSE1 = [1, 5] and FMSE2 = [1.9, 4] two non-disjoint intervals. The application of the same
principle produces

P({(	1, 	2) : 	1 < 	2}
P({(	1, 	2) : 	1�	2} = 4.095

4.305
< 1 (30)

therefore FMSE2 ≺ FMSE1.

The uniform prior defines a total order in the population, since every pair of intervals is comparable. We may
question the consistency of this order, though. In the last example, there might be situations where a fitness [1, 5] could
be preferred to [1.9, 4], and it is also reasonable to state that these two intervals cannot be compared.

5.1.3. Imprecise probabilities-based prior
Assuming a probabilistic prior is numerically the same as normalizing the fuzzy output of the model (so that the

sum of all the memberships is (1) and then assume that these normalized memberships are the unknown probabilities
of the different observations of the output. Therefore, we propose to assume a less strong prior knowledge, something
intermediate between the strong dominance and the uniform prior, that allow us to compare some non-disjoint intervals
but that also detects that some intervals are almost the same. In this section, we will combine an upper bound of the
posterior probability with an imprecisely known prior.
Let us assume for the time being that we do not know P(	1, 	2) but a pair of lower–upper probabilities

P∗(	1, 	2)� P(	1, 	2)� P∗(	1, 	2) (31)

thus FMSE1 ≺ FMSE2 when

P∗({(	1, 	2) : 	1 < 	2})
P∗({(	1, 	2) : 	1�	2}) > 1. (32)

It is remarked that Eq. (32) makes it possible that FMSE1�FMSE2 and, at the same time, FMSE2�FMSE1. In this
case, we will state that FMSE1 ‖ FMSE2. Also observe that, since P∗(A) = 1 − P∗(Ac), Eq. (32) reduces to

P∗({(	1, 	2) : 	1�	2})�1/2. (33)

The set of priors defined by the bounds P∗ and P∗ can range from the completely uninformative P∗(	1, 	2) = 1 and
P∗(	1, 	2) = 0 (and then this criterion reduces to the strong dominance) to a family where P∗ = P∗, which contains
only one probability distribution (and then it reduces to the probabilistic prior of the preceding section). We want to use
a family of priors that is restrictive enough so we can assign precedences to intervals with a non-empty intersection, but
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Fig. 7. Prior family of Example 5.3.

not so restrictive as the uniform prior. Many different families can be defined, depending on the practical problem in
hand and the interest of the researcher. In the following, we will use the family of priors that is defined in the example
that follows:

Example 5.3. Let us assume that the MSE is between 0 and 5, and let FMSE1 = [1, 3] and FMSE2 = [2, 4] two
non-disjoint intervals. We want to decide whether FMSE1 ≺ FMSE2, assuming the family P of priors that includes all
the probability distributions whose density is

f (x) = 
 + 1

m
− 2


m
x (34)

for 
 ∈ [0, 1/m], wherem is an upper bound of the fitness of an individual (5, in this example). A graphical representation
of this family is shown in Fig. 7. This family models our incomplete knowledge about the density of individuals in the
genetic population. It states that the probability of an individual having a low fitness is higher than the opposite, but
we do not know how much higher, thus any distribution between the uniform (
 = 0) and the linear density with the
maximum slope (
 = 1/m) is reasonable.
The calculations are as follows:

P∗({(	1, 	2) : 	1 < 	2})= 1 − P∗({(	1, 	2) : 	1�	2})

= 1 − sup
P∈P

∫
	1 �	2

I[1,3](	1)I[2,4](	2) dP(	1, 	2)∫
I[1,3](	1)I[2,4](	2) dP(	1, 	2)

= 1 − sup

∈[0,0.2]

∫ 3
2

∫ x
2

(
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5
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5
x

) (
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5
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y

)
dx dy

∫ 3
1

∫ 4
2

(
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5
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5
x

)(

 + 1

5
− 2


5
y

)
dx dy

= 0.869 (35)

and P∗({(	1, 	2) : 	1�	2}) = 0.125, therefore we state that FMSE1 ≺ FMSE2.

Example 5.4. Let FMSE1 = [1, 5] and FMSE2 = [1.9, 4]. We want to decide whether FMSE1 ≺ FMSE2, assuming
that the family of priors of the preceding example is used.
In this case, the calculations produce the values

P∗({(	1, 	2) : 	1 < 	2}) = 0.332, (36)

P∗({(	1, 	2) : 	1�	2}) = 0.488 (37)

thus FMSE1 ‖ FMSE2.
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Fig. 8. Minimum and maximum crowding distances between interval-valued fitness functions. The maximum distance is the volume of the smallest
interval that contains the fitness of three individuals, while the minimum distance is the volume of the interval that has non-null intersection with
three individuals.

5.2. Crowding distance

The last module that needs to be extended is the crowding distance. The crowding distance is aimed to uniformly
sample the front, making the individuals in the most dense areas less likely to be selected. In the crisp case, if the s
individuals in the population are sorted such that 	i < 	i+1, thus the local density at the i-th individual is approximately

�i = 3

s · (	i+1 − 	i−1)
(38)

because the number of points lying in the volume [	i−1, 	i+1] is three. In other words, the crowding distance is inversely
proportional to the density of individuals in the fitness space, based on a 2-neighbors criterion:

di = 3

s�i
, (39)

where �i is the local density at the i-th individual. To extend this definition to the interval case, let us suppose the s
individuals in the population have a fitness 	i ∈ Ii . The local density is bounded by

�i ∈
[

3

sVmax
i

,
3

sVmin
i

]
, (40)

where Vmax
i is the smallest interval that completely contains the fitness of Ii and two other individuals,

Ii ⊆ Vmax
i , #{ j : I j ⊆ Vmax

i } = 3 (41)

and Vmin
i is the smallest individual that has a non-empty intersection with the fitness of three individuals, I1 being one

of them,

Ii ∩ Vmax
i � ∅, #{ j : I j ∩ Vmax

i � ∅} = 3. (42)

Therefore, the crowding distance associated to the i-th individual is (see Fig. 8)

di ∈ [‖Vmin
i ‖, ‖Vmax

i ‖]. (43)

Unfortunately, this generalization does not produce good results, because the upper bound of the crowding depends
too much on the uncertainty of the fitness being compared. An individual surrounded by two identical copies of itself
can be assigned a high upper crowding distance if these individuals are uncertain.
Therefore, we have decided to use a crisp metric between the imprecise values of the fitness. Many different metrics

between intervals can be chosen: Euclidean, like Bertoluzza’s, L2 or Wasserstein, or non-Euclidean, like Hausdorff,
L1, L∞ (see, for instance, the survey in [30]). Possibly, the most common are [5]:

(1) The Hausdorff distance that for two intervals A = [a1, a2] and B = [b1, b2] is defined as

dH (A, B) = max{|a1 − b1|, |a2 − b2|}. (44)
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(2) A combination of the two differences |a1 − b1| and |a2 − b2|. For instance,

d∗
1 (A, B) = 1

2 [|a1 − b1| + |a2 − b2|] (45)

or the class of distances introduced in [5]:

d2(A, B) =
∫ 1

0
[t · |a1 − b1| + (1 − t)|a2 − b2|]2 dg(t), (46)

where g is a probability measure.

We wish the crowding distance between two intervals x ± 
 and y ± 
 to lay between the bounds mentioned before,
not to depend on 
, and also to be compatible with the crisp definition, i.e., d(x ± 
, y ± 
) = |y − x |. In other words,
we want a metric between imprecise values of fitness that is not influenced by the non-specificity of the measures. We
have decided to use the Hausdorff metric, which fulfills all the needed properties, but many other distances could serve
as well [25,47].
The Hausdorff distance produces a selection probability inversely proportional to a local density of individuals

defined by

�i = 3

VH (Ii )
, (47)

where VH (Ii ) is the volume of a sphere that contains the fitness of Ii and with the lowest radius needed to also contain
the fitness of two other individuals in the population. The crowding distance is therefore defined as the distance between
the nearest (as defined by the Hausdorff metric) individual preceding Ii and the nearest individual following Ii . The
first and the last individuals are assigned a high crowding distance. The meaning of “precede”, “follow”, “first” and
“last” is given by an ordering depending on the precedence operation.

5.3. Precedence between fitness values comprising both an interval objective and a crisp objective

In Section 5.1.3 we have explained how to implement the precedence between interval-valued fitness functions.
Heterogeneous pairs, comprising an interval and an integer value, must be compared eventually. The precedence
between these pairs is as follows: for any two compound fitness values (n1, FMSE1) and (n2, FMSE2), we say that

(n1, FMSE1)�(n2, FMSE2) if

{
n1 < n2 and FMSE1�FMSE2,

n1�n2 and FMSE1 ≺ FMSE2,
(48)

where FMSE1�FMSE2 is defined as (FMSE1 ≺ FMSE2) ∨ (FMSE1 ‖ FMSE2).

6. Experimental results

In this section we detail how to combine all the concepts introduced in this paper and build a GFS able to learn a
KB from vague data. In the first place, we will integrate the new representation, inference and interval-valued fitness
function into a new proposal of GFS. Next, we benchmark the new algorithmwith some common datasets, and also with
some synthetic datasets of our own, where the stochastic uncertainty and the imprecision in the observation are mixed
in different proportions. Lastly, a second GFS is applied to a practical problem of linguistic modeling in marketing,
and the results compared to previous works in the same subject.

6.1. Proposed genetic fuzzy system

Apart from the inference operators and the fitness that have been discussed in Sections 3 and 4, the definition of
a GFS also includes the fuzzy rule structure, the coding scheme, the evolutionary scheme and the genetic operators.
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The only changewith respect to an standardGFS is in the evolutionary scheme, which has to optimize an interval-valued
fitness function or a combination of an interval and a real number.

6.1.1. Fuzzy rule structure
We have used a compact description based on the disjunctive normal form (DNF) [26]. This kind of fuzzy rule

structure has the following form:

IF X1 is Ã1 and · · · and Xn is Ãn THEN Y is B

where each input variable Xi takes as a value a set of linguistic terms Ãi = {Ai1 ∨ · · · ∨ Aili }, whose members are
joined by a disjunctive (T-conorm) operator, whilst the output variable remains as usual linguistic variable with a single
label associated. We use the bounded sum (min{1, a + b}) as T-conorm. The structure is a natural support to allow the
absence of some input variables in each rule (simply making Ãi be the whole set of linguistic terms available).

6.1.2. Coding scheme
Each individual of the population represents a set of fuzzy rules (i.e., Pittsburgh style). Each chromosome consists

of the concatenation of a number of rules. Each rule (part of the chromosome) is encoded by a binary string for the
antecedent part and an integer coding scheme for the consequent part. The antecedent part has a size equal to the sum
of the number of linguistic terms used in each input variable. The allele “1” means that the corresponding linguistic
term is used in the corresponding variable. The consequent part has a size equal to the number of output variables. In
that part, each gene contains the index of the linguistic term used for the corresponding output variable.
For example, assuming we have three linguistic terms (S, M, and L) for each input/output variable, the fuzzy rule

[IF X1 is S and X2 is {M or L} THEN Y is M] is encoded as [100|011‖2]. Therefore, a chromosome would be the
concatenation of a number of these fuzzy rules, e.g., [100|011‖2 010|111‖1 001|101‖3] for a set of three rules.

6.1.3. Evolutionary scheme
Agenerational approachwith themultiobjectiveNSGA-II replacement strategy [17] is considered.Crowding distance

in the objective function space is used; in each front, this measure is normalized by the minimum and maximum values
for each objective in that front. Binary tournament selection based on the non-domination rank (or the crowding distance
when both solutions belong to the same front) is applied.
Non-standard extensions of the NSGA-II algorithms were used, as explained in Section 5, for implementing the

non-dominated sorting and the crowding distance. The three types of precedence introduced in that section (strong
dominance, probabilistic prior and imprecise prior) were compared, as we will show in the numerical results.

6.1.4. Genetic operators
The crossover operator randomly chooses a cross point between two fuzzy rules at each chromosome and exchanges

the right string of them. Therefore, the crossover only exchanges complete rules, but it does not create new ones since
it respects rule boundaries on chromosomes representing the individual rule base. In the case that inconsistent rules
appear after crossover, the ones whose antecedent is logically subsumed by the antecedent of a more general rule are
removed. Redundant rules are also removed.
The mutation operator randomly selects an input or output variable of a specific rule. If an input variable is selected,

one of the three following possibilities is applied: expansion, which flips to “1” a gene of the selected variable;
contraction, which flips to “0” a gene of the selected variable; or shift, which flips to “0” a gene of the variable and
flips to “1” the gene immediately before or after it. The selection of one of these mechanisms is made randomly among
the available choices (e.g., contraction cannot be applied if only a gene of the selected variable has the allele “1”).
If an output variable is selected, the mutation operator is different between descriptive and scatter knowledge bases

[10]. For descriptive rules, the mutation operator simply increases or decreases the integer value. In the same way,
specific rules which appear after mutation are subsumed by the most general ones and redundant rules are removed.
For scatter rules, the consequent is a real number, which is determined by applying the SVD selection described in [53]
to the rules codified in the chromosome.
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Table 1
Properties of the datasets used in the numerical analysis.

Name Inputs Examples

f1 2 675
f1 − 10 2 675
f1 − 20 2 675
f1 − 50 2 675
f2 2 675
f2 − 10 2 675
f2 − 20 2 675
f2 − 50 2 675
elec 2 490
Friedman 5 1200
machine-CPU 6 209
daily-elec 6 365
building 14 4208

f1, f2 and Friedman are synthetic datasets. f1 − ∗ and f2 − ∗ contain different amounts of stochastic noise. The remaining problems contain
real-world data.

Table 2
Comparison of crisp and fuzzy GFSs in datasets with 1%, 5% and 10% of interval-valued imprecision in the outputs.

1% 1% 5% 5% 10% 10%
MSE FMSE MSE FMSE MSE FMSE

f1 0.87 0.37 6.99 6.34 25.92 25.02
f1 − 10 2.14 1.78 8.55 8.10 29.56 28.56
f2 0.32 0.26 0.56 0.52 1.29 1.28
f2 − 10 0.47 0.40 0.79 0.78 1.89 1.86
elec/100 4.58 4.36 6.04 5.76 10.60 10.27

The columns labeled “FMSE” show the average test MSE of FRBSs obtained with the method in this paper and the augmented interval-valued dataset
explained in the text. The columns labeled “MSE” display the average test error of an FRBS that minimizes the train MSE on the non-augmented
crisp dataset. The FMSE-based FRBS scored better in all the tests (the lowest MSE is displayed with bold values). This shows that there exist
problems where the observation error is not best processed assuming a zero mean probability distribution of the noise.

6.2. Numerical results

In this section we will benchmark the results of the proposed GFS in three different scenarios:

(1) Combination of stochastic noise and imprecision.
(2) Synthetic datasets with stochastic noise.
(3) Machine learning benchmarks.

The first type of problems is intended to show the advantages of the use of the interval-valued fitness function (from
now on, we will use the acronym IVFF for naming the GFS proposed in this paper) in problems where the amount
of stochastic noise and the imprecision in the observation are known. The second category shows the behavior of the
algorithm in datasets for which the theoretical error is known, and the third family of problems are used to compare
this and other statistical and artificial intelligence algorithms over datasets in the public domain.
Nine laboratory problems and four real-world problems have been used to benchmark the algorithms proposed in

this paper (see Table 1). The laboratory problems are:

• f1: high slope function f1(x, y) = x2 + y2, no noise added [48]. f1 − 10, f1 − 20, f1 − 50 are the same function,
with 10%, 20% and 50% of gaussian noise.

• f2: low slope function f2(x, y) = 10(x − xy)/(x − 2xy + y), no noise added [48]. f2 − 10, f2 − 20, f2 − 50 are
the same function, with 10%, 20% and 50% of gaussian noise.
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Fig. 9. Statistical relevance of the differences between IVFF and IRL, in the datasets f1 and f2. The boxplots show the dispersion of the results in
Table 2. Left: no stochastic noise added. Right: 10% of stochastic noise. The labels of the boxplots show the amount of imprecision in the observation
of the output variable.
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Table 3
Median of the test error of IVFF and a selection of algorithms for the synthetic datasets f1 and f2, after 10 repetitions.

WM1 WM2 WM3 CH1 CH2 CH3 NIT LIN QUA NEU TSK IRL NMIC IVFF

f1 5.56 5.80 5.43 5.70 8.27 7.1 5.53 132.1 0.00 0.03 0.10 0.32 0.14 0.13
f1–10 6.92 7.34 6.72 7.02 10.30 8.18 6.67 135.37 1.41 1.77 1.66 1.88 1.56 1.55
f1–20 10.72 10.86 10.86 10.83 13.72 11.91 10.50 134.04 5.28 6.29 5.91 6.13 5.92 5.98
f1–50 52.63 46.27 48.08 52.96 48.77 49.09 40.09 167.98 33.39 39.89 36.69 38.94 39.26 39.14
f2 0.40 0.45 0.44 0.39 0.56 0.47 0.43 1.55 1.67 0.27 0.14 0.24 0.22 0.21
f2–10 0.61 0.68 0.63 0.55 0.73 0.58 0.57 1.74 1.78 0.46 0.28 0.38 0.36 0.37
f2–20 1.34 1.21 1.19 1.31 1.21 1.19 0.98 2.03 2.18 0.86 0.73 0.85 0.86 0.84
f2–50 4.26 3.98 3.91 4.46 3.86 4.02 3.58 4.60 4.73 3.68 3.62 3.68 3.77 3.75

The algorithms include: heuristics (WM, CH), statistical regression (LIN, QUA), neural networks (NEU), rules with a real-valued consequent (NIT),
TSK rules (TSK), iterative rule learning (IRL) and other vague data-based GFS (NMIC). IRL, NMIC and IVFF runs were limited to 25 fuzzy rules.
The best of WM, CH, NIT, IRL, NMIC and IVFF, plus the best overall model, were highlighted for every dataset.

• Friedman: Synthetic benchmark dataset proposed in [24] f (x, y, z, t, u) = 10 sin(�xy)+ 20(z − 0.5)2 + 10t + 5u,
with added gaussian noise.

The real-world problems are:

• elec: Relationship between the population and the radius of a village and the length of its electrical line [12].
• Machine-CPU: Relative performance of CPUs based on other computer characteristics [22].
• daily-elec: Daily price of electrical energy in Spain, in 2003, as a function of the technology mix [1,39].
• building: Problem taken from the benchmark [45], with eight binary and six continuous input variables.

In all experiments, 50% of the points were used to train the models, which were tested against the remaining 50%.
The roles of training and test sets were interchanged and the process repeated, and this was replicated 5 times for
different permutations of the dataset, which gives 10 repetitions of the learning algorithm for each dataset. The results
shown are the mean test values of 10 repetitions of the experiments.

6.2.1. Performance in imprecise datasets
In this section we compare the algorithm IVFF and a state-of-the-art crisp GFS (an iterative rule learning algorithm

[52]) in imprecisely observed data, crafted by us to show a case when the observation error has a high influence in the
performance of the FRBS. The datasets have been constructed from the functions f1 and f2.
We have assumed that our perception of the data is biased: the output variable was added a fixed amount of 1%,

5% and 10% of the range of the variable. We have also added, in the rows marked with “−10”, random noise with
Gaussian distribution, null mean and variance equal to 10% of that of the variable. The crisp GFS has been trained with
this contaminated data, and IVFF was trained with intervals, centered in the contaminated data, and the same width as
the imprecision in the observation; that is to say, intervals that always contain the sum of the original variable and the
stochastic noise. For instance, if the true value of the variable is 1 and the imprecision in the observation is ±0.1, the
crisp GFS is trained with the value 1.1 and IVFF is trained with the interval [1.0, 1.2]. Notice that we have only used
datasets for which the stochastic error is lower than the observation error.
The test results on the original data are shown in Table 2. As expected, IVFF improved the results in all the tests,

but the statistical significance is lower if the imprecision error is not the main source of uncertainty. The boxplots in
Fig. 9 show the statistical relevance of the differences expressed in Table 2. These results show that there exist problems
where the observation error is not best processed assuming a zero mean probability distribution of the noise.

6.2.2. Performance in synthetic datasets with stochastic noise
The second benchmark compares IVFF with other approaches in synthetic datasets, whose degree of contamination

with stochastic noise is known. The algorithms to which we compare are: linear regression (LIN), quadratic regres-
sion (QUA) a conjugate-gradient trained multilayer perceptron (NEU), and the fuzzy rule learning algorithms that
follow: Wang and Mendel [57] with importance degrees “maximum”, “mean” and “product of maximum and mean”
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Fig. 10. Statistical relevance of the differences between IVFF and the selection of statistical and fuzzy rule-based regression algorithms mentioned
in the text, in the datasets f1 and f2. The performance of the heuristic algorithms is worse than that of the GFS. In turn, there are not, in general,
significant differences in accuracy between GFS, statistical nonlinear regression and neural networks.



L. Sánchez et al. / Fuzzy Sets and Systems 160 (2009) 2524–2552 2543

Table 4
Performance (MSE of test error) of a selection of statistical models, heuristic rule learning and GFS in some benchmarks.

Statistical TSK rules Fuzzy rule learning

LIN NEU WLS WM IRL NMIC IVFF

elec ×10−3 431 477 400 789 385 381 383
machine-CPU 5057 5963 6196 15619 9748 8408 3226
daily-elec 0.171 0.180 0.183 0.302 0.281 0.182 0.182
Friedman 7.33 1.19 1.76 7.50 2.32 1.55 1.41
building ×103 4.77 2.75 2.67 4.48 3.06 2.99 2.81

The two last algorithms, NMIC and IVFF, have been trained with fuzzy datasets. These have been obtained by augmenting the crisp output variable
into a triangular fuzzy set, with small support, centered in the desired output value.

Table 5
IVFF obtains similar accuracy than state-of-the-art GFSs, and at the same time allows using a smaller knowledge base.

Labels TSK rules Fuzzy rule learning

WLS WM IRL IVFF

elec 3 8 7 10 4
machine-CPU 3 91 20 25 4
daily-elec 3 427 64 25 5
Friedman 3 242 192 25 10
building 3/2a 896a 789 30 20

The table displays the number of rules that different algorithms produced, for the problems shown in the first column and the number of linguistic
labels by variable shown in the second. In particular, IVFF improves grid-based learning algorithms by one order of magnitude in the number of
parameters. We have used three linguistic labels in all the continuous variables.
a In the dataset “building”, the grid-based algorithm depends on partitions of size 2. Otherwise, the number of rules is too high for practical purposes.

(WM1, WM2 and WM3, respectively) and the same three versions of Cordón and Herrera’s method [11] (CH1, CH2,
CH3). Nozaki, Ishibuchi and Tanaka’s fuzzy rule learning [44] (NIT), TSK rules [54] optimized with weighted least
squares, and iterative rule learning [52]. A second GFS based on vague data, NMIC [53] has also been included in the
comparison.
The best overall result and the most accurate fuzzy rule base are boldfaced in Table 3, which contains the median

of the test error. We have also included a selection of boxplots in Fig. 10. These provide a graphical insight of the
relevance of the differences. Observe that the performances of the heuristic algorithms are always worse than those of
the GFS.
These results show that there are not, in general, significant differences in accuracy betweenGFS, statistical nonlinear

regression and neural networks. IVFF is not worse than standard GFSs in crisp data but, in contrast with the results of
the preceding section, the advantages over IRL are not statistically sound (95% level).

6.2.3. Performance in machine learning datasets
The fourth benchmark uses standard machine learning benchmarks to assess the accuracy but also the compactness

of the IVFF algorithm, in problems with different sizes and number of inputs. In order to keep the discussion simple,
we have chosen a selection of the algorithms in the preceding section. CH1, CH2 and CH3 were discarded because
they produced a much higher number of rules than WM, without a noticeable increment of the accuracy. Also, since
we are measuring the linguistic quality by the number of rules, without taking into account the complexities of the
consequent part of the rules, we discard NIT, because it is less accurate than weighted linear squares-based TSK, for
the same number of fuzzy rules. The quadratic regression is also removed, because most of the times the corresponding
polynomial has more terms than the multilayer perceptron needed for obtaining an equivalent accuracy.
Summarizing, linear regression and the neural network are left for reference purposes. Other than this, we have com-

pared: one example-guided heuristic method (Wang and Mendel algorithm), one TSK grid-based algorithm (weighted
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Fig. 11. Compared accuracy (dispersion of test MSE) between linear regression, neural networks, Wang and Mendel, TSK rules, iterative rule
learning, NMIC and IVFF. The use of a fuzzy, augmented dataset, makes the accuracy of IVFF to be better, in general, than that of IRL.

least squares fitting of a plane to each set of elements covered by one cell of the fuzzy grid; the weights are the mem-
berships of the elements to the cell), an IRL method (genetic backfitting), and two vague data-based GFSs, NMIC and
IVFF. The crisp output variables in the training sets of these two last algorithms were transformed into triangular fuzzy
sets, centered in the crisp value, and with a support of 1% of the range of the corresponding feature. The results are
given in Tables 4, 5, and Fig. 11.
As expected, the example-guided heuristic uses a moderately high number of rules, and it is not very precise

(equivalent or worse than linear regression). The weighted linear squares obtention of TSK rules is the most precise
method, similar to that of the neural network. Backfitting and IVFF both perform well and offer a good compromise
between compactness and accuracy. IVFF was significantly better than backfitting in four of five tests, where the fuzzy
knowledge bases it generated were both more compact and more precise.

6.3. Practical application: causal modeling in marketing

In this section we will apply all the concepts defined in the preceding sections of the paper to a practical problem
of causal modeling in marketing. In this problem, both input and output variables are composed of sets of parameters
(items). Each item provides only partial information to describe the variable. The information provided by different
items may be in conflict.
The conversion of a set of items into a compound value that can be fed to the model has been solved in different

ways. The classical solution [7] consists in preprocessing these sets of values, then replacing each one of them by a
characteristic value. This solution might not be the most suitable, because the model should know not only about the
characteristic values of the variable, but also about the degree of imprecision with which these values are known. In
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Fig. 12. Example of a simple measurement (structural) model (extracted from [38]).

the next section we will show how to model each set of items by means of a fuzzy number, both for the input and the
output variables.
The learning problem that arises involves optimizing a combination of fuzzy and crisp functions, as mentioned in

Section 5. The accuracy of themodel is measured by the FMSE between the fuzzy representation of the output variables,
and the images of the input values provided by the candidate model, which are also fuzzy [49]. Its complexity depends,
as we will show, on the number of rules, and the number of linguistic terms each rule uses. As done in previous works,
we will jointly optimize the precision of the model and its complexity, by means of multicriteria genetic algorithms.
The purpose of the learning is to find a model both accurate and linguistically understandable.

6.3.1. Representing multi-item data
Data were obtained by means of a questionnaire. We have considered the measurement model depicted in Fig. 12,

where the latent variables are depicted by circles. Since these latent variables are unmeasurable, we indirectly measure
them by means of observable variables (items), depicted by rectangles in the figure.
Likewise, with regard to the measurement scales, the constructs have been measured by means of several nine-points

Likert scales ranging from 1: strongly disagree to 9: strongly agree. Specifically, in Table 6 we show a hypothetical
example of the set of items that could have been used for measuring each one, while Table 7 shows an example of data
available for this problem. It can be seen that the input and output data comprises multi-item values.
In previous works, different aggregation functions were proposed [8]. These functions ultimately lead to the assign-

ment of a certain truth value to the assertion “the value of the variable is V” for certain label V of a suitable linguistic
variable. Here we will be taking a different path. We assume that there exists a true value for the multi-item variable, but
also that this value is unknown and we can know, at best, a set that contains it. Then, as we have explained in Section 2,
we will find a fuzzy set such that their �-cuts are confidence intervals with degree 1 − � of the expected value of the
observation error. Each list of items will be replaced by its corresponding fuzzy set. This interpretation allows us to
aggregate data, losing less information than central tendency measures.
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Table 6
Questionnaire associated to the measurement model shown in Fig. 12 (extracted from [45]).

Interactivity (speed)
i1 : When I use the Web there is very little waiting time between my actions and

the computer’s response.
i2 : Interacting with the Web is slow and tedious. (R)
i3 : Pages on the Web sites I visit usually load quickly.

Telepresence
t1 : Using the Web often makes me forget where I am.
t2 : After using the Web, I feel like I come back to the “real world” after a journey.
t3 : Using the Web creates a new world for me, and this world suddenly disappears

when I stop browsing.
t4 : When I use the Web, I feel I am in a world created by the Web sites I visit.
t5 : When I use the Web, my body is in the room, but my mind is inside the world created

by the Web sites I visit.
t6 : When I use the Web, the world generated by the sites I visit is more real for me

than the “real world.”

Arousal
a1 : stimulated/relaxed
a2 : calm/excited (R)
a3 : frenzied/sluggish
a4 : unaroused/aroused (R)

Skill
s1 : I am extremely skilled at using the Web.
s2 : I consider myself knowledgeable about good search techniques on the Web.
s3 : I know somewhat less about using the Web than most users. (R)
s4 : I know how to find what I am looking for on the Web.

Flow
f1 : Do you think you have ever experienced “flow” on the Web?
f2 : In general, how frequently would you say you have experienced “flow” when you use the Web?
f3 : Most of the time I use the Web I feel that I am in “flow.”

In a real questionnaire, the names of the latent variables are hidden to the consumer and the order of the questions is usually changed. The text (R),
which indicates the item was reverse-scaled, is also omitted.

Table 7
Example of the obtained dataset that contains five consumers’ responses about the items shown in Table 6.

Interactivity Telepresence Arousal Skill Flow
(speed)

2 3 3 7 7 9 7 2 3 3 3 3 2 2 3 2 1 7 6 3
8 4 3 8 8 8 8 7 6 5 5 3 4 2 2 3 2 5 5 5
4 6 6 5 5 5 7 6 5 6 6 7 6 7 6 6 4 6 6 5
4 6 7 7 3 7 5 5 3 5 2 2 3 1 2 2 3 3 2 2
5 5 5 5 5 5 5 2 2 5 5 5 5 5 5 5 5 5 5 5

The values of the reverse-scaled items are already reversed.

6.3.2. Fitness function
We have used a fitness function with two components: the FMSE and a measure of the complexity of the knowledge

base. This second objective intends to assess the linguistic complexity of the generated fuzzy rule set. Firstly, it is clear
that the higher number of rules, the higher the complexity. Therefore, we measure the number of rules of the FRBS as
C1(F). However, since each DNF-type fuzzy rule also has a degree of complexity itself, we should also consider this
aspect. Then, let C2(F) = ∑

Rr∈F
∏n

i=1 lri be the complexity of the FRBS, with lri being the number of linguistic
terms used in the ith input variable of the rth DNF-type fuzzy rule. The total number of available linguistic terms is



L. Sánchez et al. / Fuzzy Sets and Systems 160 (2009) 2524–2552 2547

Fig. 13. Combined Pareto fronts in 10 repetitions of the GFS proposed in this paper and that proposed in [8]. Three different precedence operators
have been evaluated in combination with our own definitions of non-dominated sorting and crowding distances: the strong dominance [36], the
probabilistic prior [55] and the imprecise prior defined in this paper.

computed when an input variable is not considered (i.e., “don’t care”). We have decided that the joint objective is the
product of both complexities.

6.3.3. Experiments
Data have been obtained from the survey used in [43] to test a conceptual model previously presented by the same

authors. We have adapted the original structural model by removing the least significant latent variable in each second-
order variable. According to the partition performed by the authors, training data are composed of 1154 examples
(consumers’ responses) and test data of 500 examples. As an example, we focus the analysis on a specific relationship
among the six relationships with a total of 12 variables available in the dataset. Four constructs were used as input
variables of the systems.
We have evaluated three configurations of the fuzzy fitness-based genetic fuzzy system, that have been validated

over the data used to learn the model in [8]. This last model does not transform the multi-item data into a fuzzy set, but
it takes into account the uncertainty in the data by means of an extension of the membership degree computation, the
called multi-item fuzzification, which is based on a union of the partial information provided by each item.
Each configuration has been run 10 times. The resulting joint Pareto-fronts of the models are shown in Fig. 13. Three

types of precedence operators have been evaluated along with our own definitions of dominated sorting and crowding
distances: the strong dominance [36], the uniform prior [55] and the imprecise prior defined in this paper. The fuzzy
fitness-based algorithms have been trained over fuzzy data obtained with the bootstrap approximation mentioned in
Section 6.3.1.
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Fig. 14. FMSE and validation errors of the crisp and fuzzy models (precedence based on the imprecise prior).

Fig. 15. Average train and test errors of the individuals in the population during the learning phase. Upper part, left: crisp fitness. Right: fuzzy fitness,
strong dominance. Lower part, left: fuzzy fitness, probabilistic prior. Right: fuzzy fitness, imprecise prior. The differences between the crisp and the
fuzzy versions are significant. The differences between the different precedences in the fuzzy fitness are less relevant. Best results were obtained
with the imprecise prior.
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Fig. 16. Left: best, worst and mean differences between the output of both crisp and fuzzy models, and all the items in every output variable. Right:
boxplot showing the differences between the item-wise errors of the crisp and fuzzy models after 400 generations and 10 runs of the experiments.

The fuzzy data-based algorithm produced better results for all the configurations. In particular, the use of a precedence
based on an imprecise prior produces a better balance between complexity and precision, with a higher density of
solutions in the center of the Pareto front. In Fig. 14 a detail of the Pareto fronts of both the crisp and the imprecise
prior-based approach, where it is clear that most of the rule bases found by the standard method are being dominated
by this. In this figure the FMSE is also shown for the fuzzy model.
Average train and test errors of the individuals in the population during the learning phase are shown in Fig. 15.

Observe that, as expected, the use of fuzzy data improves the generalization error. The difference between the validation
error in the train and test datasets is smaller, beginning in the initial generations. It is remarked that there is an overhead
associated to the use of the reasoning method defined in Section 3, and the calculus of the FMSE. The algorithm [8] is
between 4 and 10 times faster than this.
In Fig. 16, the average of the differences between the output of these models and all the items in every output variable

is computed, and the best, worst and mean test error in the 10 repetitions are plotted for every generation. Observe that
the maximum value of test error in the fuzzy fitness is always better than the minimum value of the scalar fitness. The
boxplot in Fig. 16 also illustrates the dispersion of the test error in the 10 repetitions.
In Fig. 17, the comparison focuses on the three types of precedence operators evaluated in this paper. The differences

between them emerge in the latter generations, where the inability of the strong dominance to distinguish between
overlapping FMSEs blocks further convergence after the 250th generation. The use of the uniform prior produced
better average results in the first 200 generations, however, the imprecise prior allows the evolution to continue past
that 250th generation. Observe that, contrasting with the behavior of the uniform prior, the use of an imprecise prior
causes that very similar FMSEs are indistinguishable. This reduces the overfitting, as was shown in the Pareto fronts
in Fig. 13.

7. Concluding remarks

In this paper we have given a comprehensive description of the use of certain kinds of ill-defined data in genetic
fuzzy systems. A new model of FRV has been used to justify our representation of vague data in terms of fuzzy sets.
The definition of variance of an FRV, according to this model, has been adapted, so we could bound the mean squared
error of a rule base on a fuzzy dataset. Lastly, different precedence operators between values of the fitness function
have been defined. All of these elements have been combined in an extension of the NSGA-II algorithm, that is able to
optimize a combination of crisp and interval-valued objectives, and hence to learn fuzzy rules with balanced accuracy
and complexity.
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Fig. 17. Comparison between the three type of precedence operators evaluated in this paper. The differences between them appear in the latter
generations.

To assess our algorithm, we have benchmarked it with crisp, interval and fuzzy data, and also solved a marketing
problem where the input data comprised multi-item examples. These multi-item examples were promoted to fuzzy sets
by means of the mentioned interpretation of the membership function as a nested family of confidence intervals. We
have shown, with the help of the experimentation, that the models obtained by minimizing the FMSE are more robust
than standard genetic fuzzy models, and are able to capture the dependence between imprecise data without the need
of aggregating them or removing their fuzziness.
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