
536 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

Fuzzy-XCS: A Michigan Genetic Fuzzy System
Jorge Casillas, Brian Carse, Member, IEEE, and Larry Bull

Abstract—The issue of finding fuzzy models with an inter-
pretability as good as possible without decreasing the accuracy is
one of the main research topics on genetic fuzzy systems. When
they are used to perform online reinforcement learning by means
of Michigan-style fuzzy rule systems, this issue becomes even more
difficult. Indeed, rule generalization (description of state-action
relationships with rules as compact as possible) has received a
great attention in the nonfuzzy evolutionary learning field (e.g.,
XCS is the subject of extensive ongoing research). However, the
same issue does not appear to have received a similar level of
attention in the case of Michigan-style fuzzy rule systems. This
may be due to the difficulty in extending the discrete-valued
system operation to the continuous case. The intention of this
contribution is to propose an approach to properly develop a fuzzy
XCS system for single-step reinforcement problems.

Index Terms—Continuous action, genetic fuzzy systems,
Michigan-style learning classifier systems, reinforcement learning.

I. INTRODUCTION

THE Michigan-style genetic fuzzy rule-based system [1] is
a machine learning system which employs linguistic rules

and fuzzy sets in its representation and an evolutionary algo-
rithm (EA) for rule discovery. It therefore combines an easily
understood representation (as opposed to, for example, neural
network approaches) with a general purpose search method.
These systems are very useful for performing online learning,
i.e., to automatically learn fuzzy rules and act on the environ-
ment at the same time that data or stimulus (or reward or payoff)
are received. This fact makes Michigan-style genetic fuzzy sys-
tems ideal for reinforcement learning, adaptive systems, control,
simulation of animal behavior and, in addition, data mining and
knowledge discovery applications.

In order to exploit the fuzzy representation to the full, i.e.,
to achieve high interpretability, the ability to learn generaliza-
tion is of great importance. With generalization,1 we understand
in this paper capability to express the state-action (antecedent-

Manuscript received November 1, 2005; revised May 29, 2006 and March
13, 2007. This work was supported in part by the Spanish Ministry of Science
and Technology under Grant TIN2005-08386-C05-01 and by the European Re-
gional Development Fund.

J. Casillas is with the Department Computer Science and Artificial
Intelligence, University of Granada, Granada E-18071, Spain (e-mail:
casillas@decsai.ugr.es).

B. Carse and L. Bull are with the Faculty Computing, Engineering and Math-
ematical Sciences, University of the West of England, Bristol BS16 1QY, U.K.
(e-mail: brian.carse@uwe.ac.uk; larry.bull@uwe.ac.uk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TFUZZ.2007.900904

1Do not mistake it with the generalization concept used in classification
or system identification in general, i.e., the capability to successfully predict
the correct answer on unknown patters that were not used during the learning
process.

consequent) relationships as compact as possible. Generalized
rules allow more compact rule bases, scalability to higher di-
mensional spaces, faster inference, and better linguistic inter-
pretability. The issue of rule generalization, and the interplay
between general and specific rules in the same evolving popula-
tion, has received a great attention in the evolutionary learning
research community (e.g., [2]).

Traditional (nonfuzzy) evolutionary learning algorithms
for reinforcement learning have been “strength-based” in the
sense that a rule (classifier) accrues strength during interaction
with the environment (through rewards and/or penalties). This
strength can then be used for two purposes: resolving con-
flicts between simultaneously matched rules during learning
episodes; and as the basis of fitness for the EA. A completely
different approach can be taken in which a rule’s fitness, from
the point of view of the EA, is based on its “accuracy,” i.e.,
how well a rule predicts payoff whenever it fires. Note that the
concept of accuracy used here is different from the traditionally
used in fuzzy modeling (i.e., capability of the fuzzy model to
faithfully represent the modeled system). Broadly speaking,
and with the aim of explaining better the difference between
the two measures, we could say that the strength value is the
mean of the obtained payoffs while the accuracy value is the
corresponding standard deviation.

This accuracy-based approach offers a number of advantages
such as avoiding overgeneral rules, obtaining optimally gen-
eral rules, and learning of a complete “covering map.” The first
accuracy-based evolutionary algorithm, called XCS, was pro-
posed in [2] and it is currently of major interest to the research
community in this field. However, no successful accuracy-based
approaches have been proposed in the case of Michigan-style
fuzzy rule-based systems [3]–[11]. On the contrary, all of them
are strength-based.

This work aims at proposing a new approach to achieve
accuracy-based Michigan-style genetic fuzzy rule-based sys-
tems. The proposal, Fuzzy-XCS, is based on XCS but properly
adapted to fuzzy systems. The proposed system interacts with
the environment by means of continuous actions, a point of great
interest in reinforcement learning. That aspect, together with
the fact of using a highly interpretable compact representation
of the state-action policy that maximizes the payoff, provides
our system with some competitive advantages compared with
other reinforcement learning methods. An accuracy-based
fuzzy rule-based system is proposed in [12]. However, it
presents a number of important limitations (mainly the lack
of the generalization capability and the use of integer-valued
output) that are faced by our method. Furthermore, we can
not forget those non-evolutionary algorithms based on fuzzy
Q-learning [13], [14], which combine Q-learning (a popular re-
inforcement learning technique) and fuzzy rule-based systems
to partition the Q-function (that estimates the future rewards of

1063-6706/$25.00 © 2007 IEEE

CASILLAS et al.: FUZZY-XCS: A MICHIGAN GENETIC FUZZY SYSTEM 537

taking an action in a specific state) with fuzzy sets. However,
fuzzy Q-learning still considers a tabular form that lacks of
generality and compact knowledge representation and, in most
cases, discrete action is considered.

The paper is organized as follows. Section II reflects about
Michigan and Pittsburgh styles, introduces XCS, reviews
Michigan-style fuzzy rule-based systems, and outlines some
advantages and difficulties of an accuracy-based approach.
Section III introduces the proposed Fuzzy-XCS algorithm.
Section IV shows some experimental results. Finally, Section V
concludes.

II. BACKGROUND

A. Michigan or Pittsburgh Style in Evolutionary Learning

In this section, we summarize and discuss two alternative
ways in which the EA may be applied to learn rules. These
two methods, Michigan and Pittsburgh approaches, were first
described as long ago as 1978 and 1980, respectively. It should
be stated that both approaches are the subject of ongoing re-
search and many significant extensions have been devised and
used as the basis for successful learning systems. We begin our
discussion by outlining the Michigan approach, since this was
employed in the first published report of evolutionary learning
system.

1) The Michigan Approach: The first Michigan-style evo-
lutionary learning system was Cognitive System One (CS-1)
devised by Holland and Reitman [15]. CS-1 maintains a pop-
ulation of rules with genetic operations and credit assignment
applied at the level of the individual rule. Each rule in the pop-
ulation has an associated strength, which is used to store an ac-
cumulation of credit. The original CS-1 credit apportionment
algorithm is epoch-based, where rules activated since the last
payoff event share the reward collected from the environment at
the next.

Since CS-1, a large number of alternative credit assignment
schemes have been proposed, most notably the bucket-brigade
[16] and Q-learning [17]–[19] for dealing with environments
where reward may be infrequent and/or delayed. These pro-
posed credit assignment schemes have achieved a great deal of
success, although many problems regarding their use remain the
focus of research.

The EA in a Michigan-style evolutionary learning system
operates at the level of the individual rule with selection of
parent rules for mating based on strengths (and in some cases
other parameters such as rule age or relevance). In addition,
rule strengths in discrete Michigan-style systems are commonly
used in controlling the dynamic behavior of the rule system by
forming the basis for conflict resolution between simultaneously
matched rules. In the fuzzy case, some practitioners use rule
strengths as weights which influence the level of contribution of
rule consequents.

2) The Pittsburgh Approach: In 1980, Smith [20] published
results of an alternative evolutionary learning system, LS-1, in
which the unit of genetic manipulation is a suitably encoded
genotype representing a complete set of rules. Credit is assigned
to complete sets of rules via interaction with the environment.
This typifies so-called “Pittsburgh”-style evolutionary learning

systems. Since the complete rule set is the basis of credit
apportionment, Pittsburgh-style evolutionary learning systems
sidestep completely the potentially knotty problem of sharing
out credit to individual rules. The EA in LS-1 operates at dif-
ferent levels: at the highest level, complete rule-sets are selected
as the basis for reproduction to generate new rule-sets; at the
lowest level individual rules are chosen by the EA to generate
new rules. For the purposes of this discussion we are primarily
concerned with the highest of these levels of reproduction.
LS-1 uses variable length rule sets, and employs modified ge-
netic operators for dealing with these variable-length, position
independent (as far as phenotypic expression is concerned)
genomes.

3) Differences Between Both Approaches: Clearly the role
of the EA in Pittsburgh and Michigan approaches is rather dif-
ferent, and the distinction arises from the difference in level at
which the EA is applied. Both approaches, at least in their sim-
plest forms, suffer from distinct, known problems which arise
from the different way in which the EA is applied.

The major problem in the Michigan approach is that of re-
solving the conflict between the individual and collective in-
terests of single rules within the system. The ultimate aim of
a evolutionary learning system is to evolve a set of co-adapted
rules which act together in solving some problem. In a Michigan
style system, with selection and replacement at the level of the
individual rule, rules which cooperate to effect good actions and
receive payoff also compete with each other under the action of
the EA. Such a conflict between individual and collective in-
terests of individual rules does not arise with Pittsburgh-style
evolutionary learning systems, since reproductive competition
occurs between complete rule-sets rather than individual rules.

However, maintenance and evaluation of a population of
complete rule-sets in Pittsburgh-style systems can often lead
to a much greater computational burden (in terms of both
memory and processing time). Wilson and Goldberg [21]
propose an evolutionary learning system which clusters rules
into “corporations.” Rules belonging to the same corporation
do not compete with each other under the action of the EA and
corporations form and break up under the action of a modified
crossover operator. A number of successful implementations of
this approach were demonstrated by Tomlinson and Bull (e.g.,
[22]) wherein rules which match on consecutive states can link
genetically via a mutation-like operator. Such corporations
also have the potential to solve sensory ambiguities within
a problem, i.e., act as a form of memory for non-Markov
environments [23]. Such approaches represent a middle ground
between Michigan-style and Pittsburgh-style evolutionary
learning systems.

Problems with the Pittsburgh approach have proved to be at
least equally as challenging. Although the approach avoids the
problem of explicit competition between rules, large amounts
of computing resources are required to evaluate a complete
population of rule-sets. A further problem with the approach
is the small bandwidth of reinforcement information, usually
a single scalar fitness value for each complete rule-set. If
information about the performance of individual rules happens
to be derivable from the pattern of environmental payoffs using
some credit apportionment method, this information is not

538 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

explicitly exploited in the Pittsburgh approach. The disruptive
threat to good collections of cooperating rules comes from
a different source in Pittsburgh-style systems compared to
Michigan-style systems. In the latter, competition at the level
of selection and replacement of individual rules can destroy
good rule associations. In a Pittsburgh-style system, although
selection and replacement will automatically favor co-adapted
rule-sets, crossover can be a major cause of disruption of
cooperating collections of rules since the operator is blind to
such associations between rules.

An elegant solution to both the problems of coarse-grained
credit assignment and the disruptive effects of crossover in Pitts-
burgh systems is proposed by Grefenstette [24] using hierar-
chical credit assignment. With this method, credit is assigned
to individual rules as well as to complete rule-sets. Prior to
crossover, the genome encoding the rule-set is ordered so that
high strength rules occupy neighboring loci on the genome. If
the underlying assumption that co-adapted rules accrue similar
strengths is valid, then crossover is less likely to disrupt these
rule associations than if an unordered genome is employed.

B. XCS: An Accuracy-Based Michigan-Style Algorithm

Most current Michigan-style research has made a shift away
from strength (payoff), after Wilson introduced XCS [2]. XCS
is a Michigan-style system which uses the accuracy of rules pre-
dictions of expected payoff as their fitness. In this way a full map
of the problem space is created, rather than the traditional search
for only high payoff rules, with (potentially) maximally accurate
generalizations over the state-action space. That is, XCS uses a
genetic algorithm (GA) [25] to evolve generalizations over the
space of possible state-action pairs with the aim of easing the
use of such approaches in large problems through a triggered
niche mechanism.

The general technique was introduced by Booker [26],
who based the trigger on a number of factors including the
payoff prediction “consistency” of the rules in a given niche,
to improve the performance of Michigan-style systems. The
scheme was motivated by observation of the disruptive effects
of breeding dissimilar rules [27], i.e., the recombination of
rules which match very different parts of the input space can
cause the loss of useful generalizations. XCS uses a time-based
mechanism under which each rule maintains a time-stamp of
the last system cycle upon which it was part of a GA. The GA
is applied within the current niche when the average number of
system cycles since the last GA in the set is over a threshold

. If this condition is met, the GA time-stamp of each rule
in the niche is set to the current system time, two parents are
chosen according to their fitness using standard roulette-wheel
selection, their offspring are potentially crossed and mutated,
before being inserted into the rule-base.

When introducing XCS, Wilson [2] highlighted how the trig-
gered niche GA leads to a tendency for accurate rules which
participate in more niches than other similarly accurate rules to
takeover. That is, if two rules are of equal accuracy and one is
more general than the other, the more general rule will partici-
pate in more niches and therefore have more chances of repro-
duction—the generalization hypothesis. Wilson has described

the niche GA of XCS as searching along a line in the space
of possible generalizations, from completely specific to com-
pletely general, for each action “driven by a fitness measure,
accuracy, that is strongly correlated with specificity” [28].

XCS can also avoid problematic overgeneral rules which re-
ceive a high optimal payoff for some inputs but are suboptimal
for other, lower payoff, inputs. Since their average payoff is
higher than that for the optimal rules in the latter case the over-
generals tend to displace them, leaving the system suboptimal.
However, the payoffs received by overgeneral rules typically
have high variance (they are inaccurate predictors) and so have
low fitness in XCS. Versions of Holland’s system were shown
to suffer due to such rules emerging.

More recently, XCS has been shown to perform well in a
number of real-world domains [29] and more formal under-
standing of its workings are beginning to emerge [30].

C. Related Work: Strength-Based Michigan-Style Genetic
Fuzzy Systems

The first description of a Michigan-style genetic fuzzy system
is given in [3]. Closely modeled on the discrete-valued Hol-
land-style classifier system this system contains a fixed size
rule-base of fuzzy rules and a fuzzy message list. Inference is
carried out using a concept of “minimal messages.” The system
is applied to a function learning task, and credit is allocated to
individual rules according to how closely each rule predicts the
correct output. The payoff distribution scheme is therefore, as
the author states, not pure reinforcement learning. True rein-
forcement learning is introduced to the system by the same au-
thor in [8].

Parodi and Bonelli [4] present a genetic fuzzy system which
automatically learns fuzzy relations, fuzzy membership func-
tions, and rule weights. The rule population consists of a fixed
size list of rules. Each rule has associated with it an “output
weight” which is set equal to the strength (fitness) of that rule.
The rule strength therefore performs a dual function: first, it
forms the basis of selection and replacement for the EA and
second, it allows stronger rules to take a bigger part in decision
making than weaker ones. In this system, “don’t care” symbols
are not allowed and the capabilities for generalization of the rule
system are via learning appropriate widths of triangular mem-
bership functions.

Furuhashi et al. [5] propose a method using multiple stim-
ulus-response fuzzy rules operating in tandem. Message passing
between rule systems is via “crisp” values in order to control
excess fuzziness, which, the authors argue, can degrade system
performance. The system is applied to a simulated ship which
is to reach a given target while avoiding moving obstacles. The
controller is implemented as three separate, communicating rule
systems, each operating at a different level of a controller hi-
erarchy. In Nakaoka et al. [6], the same ship steering problem
is attempted with a single rule list. This work describes prob-
lems in coverage in moving to high dimensional spaces. This is
overcome by using a dual fitness—one based on environmental
payoff, the other based on the accumulation of the level of ac-
tivation during a simulation; this ensures selection pressure to-
wards both high-reward rules and well-matched rules.

CASILLAS et al.: FUZZY-XCS: A MICHIGAN GENETIC FUZZY SYSTEM 539

Velasco [9] describes a Michigan-style genetic fuzzy system
designed specifically for online learning for fuzzy process con-
trol. This work introduces the concept of “limbo”—a special
workspace where newly generated rules are evaluated prior to
them being used to control the real process plant. The purpose
of “limbo” is to test rules before insertion into the working rule
list, to avoid the use of bad, newly-generated rules on the actual
control system.

Ishibuchi et al. [10] apply a Michigan-style genetic fuzzy
system to the problem of pattern classification. A fixed sized rule
population is used. “Don’t care” symbols are used for general-
ized fuzzy rules. The rule consequents are an output class (for
the classification problem considered) and a certainty factor.
These latter are derived using a heuristic procedure prior to
fitness evaluation, and the EA operates on the rule antecedent
only. Credit assignment methods are incorporated which ex-
plicitly address the classification problem. Recently, some of
these authors [31] have also proposed a hybridation of both
Michigan and Pittsburgh approaches by applying with a pre-
defined probability a single iteration (rule generation and re-
placement) of a Michigan-style algorithm to each individual of
a Pittsburgh-style algorithm (i.e., a fuzzy rule set).

The classic “competition versus cooperation” problem is
directly addressed in the case of genetic fuzzy systems in
Bonarini’s works [7], [11] which propose ways to deal with the
problem in a Michigan-style algorithm called ELF. In ELF, the
EA operates on subpopulations of fuzzy rules with the same
antecedent but different consequent. Bonarini’s genetic fuzzy
system has been applied to a wide range of learning tasks,
with extensive evaluation of different reinforcement learning
algorithms. Instability of generalized rules during the learning
process is controlled by distributing to each rule a reinforce-
ment normalized on the difference between the maximum
and minimum reinforcement obtained by the subpopulation(s)
which that rule is part of.

D. Advantages and Difficulties in “Accuracy-Based” Fuzzy
Rule-Based Systems

All Michigan-style genetic fuzzy systems described previ-
ously are based on the strength. As mentioned in Section I,
a completely different approach based on accuracy can be
taken. Such an accuracy-based approach offers a number of
advantages:

• First, it can distinguish between accurate and overgeneral
rules: an overgeneral rule will have relatively low accuracy
since payoff will vary according to the input states covered
by the rule.

• Indeed, it has been shown (in the discrete-valued case) that
the accuracy-based approach can lead to evolution of opti-
mally general rules.

• Additionally it can maintain both consistently correct and
consistently incorrect rules which allows learning of a
complete “covering map.”

The reason why accuracy-based genetic fuzzy systems has
not successfully been proposed yet mainly resides in the great
difficulty of doing that:

• First, in a traditional fuzzy rule-based system several rules
fire in parallel (this is how the system achieves interpola-

tion); credit assignment is much more difficult in the fuzzy
case and it may well be that apportioning credit in propor-
tion to a fuzzy rule’s activation level is not appropriate.

• A further difficulty is measuring the accuracy of a rule’s
predicted payoff since (particularly early in the search) a
fuzzy rule will fire with many different other fuzzy rules at
different time-steps, giving very different payoffs.

• Yet another difficulty is that the payoff a fuzzy rule re-
ceives depends on the input vector—an active fuzzy rule
will receive different payoffs for different inputs. This fur-
ther complicates payoff predictions used as the basis for
accuracy-based fitness.

III. FUZZY-XCS

This section describes the proposed accuracy-based Michigan
algorithm, called Fuzzy-XCS. Fig. 1 shows a scheme of the al-
gorithm. Basically, the online behavior consists of two cycles:
action and learning.

• The action cycle is as follows. When a new state is re-
ceived from the environment, the following sequence is
performed: to generate the match set, to obtain candidate
subsets, to choose the action set and, finally, to infer the
output and act on the environment.

• The learning cycle starts when a reward is received from
the environment. The process is done on the action set that
performed the action from which this reward has been ob-
tained. The process involves to obtain the payoff, to do
the credit distribution, to update the values of error, pre-
diction, fitness and experience, and to apply the discovery
component (covering, selection, crossover and mutation)
in order to generate new fuzzy rules to be included in the
population.

The following subsections explain in detail the components
of the algoritm.

A. Generalization Representation

First of all, a representation of fuzzy rules to allow proper
generalization must be done. We propose the use of disjunctive
normal form (DNF) fuzzy rules with the following structure:

where each input variable takes as a value a set of linguistic
terms , whose members are joined
by a disjunctive (T-conorm) operator, whilst the output variable
remains a usual linguistic variable with a single label associated.

This structure uses a more compact description that allows
rules with different generalization degrees. Moreover, the
structure naturally supports the absence of some input variables
in each rule (simply making be the whole set of linguistic
terms).

In order to use this representation in Fuzzy-XCS, we propose
a binary coding scheme for the antecedent of the fuzzy rule with
size equal to the sum of the number of linguistic terms used in
each input variable. The allele ‘1’ means that the corresponding
linguistic term is used in the corresponding variable. For the
consequent of the rule, an integer coding scheme is used where
each gene contains the index of the linguistic term used for the
corresponding output variable. For example, assuming we have

540 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

Fig. 1. Fuzzy-XCS scheme.

three linguistic terms (S [small], M [medium], and L [large])
for each input/output variable, the fuzzy rule [IF is S and

is {M or L} THEN is M and is L] is encoded as
.

B. Performance Component

In XCS [2], the performance component consists of three
modules: match set construction, prediction array computation,
and action set selection. This process has the final objective of
inferring a specific action from the set of rules that matches the
current state. In Fuzzy-XCS the process is different, as described
as follows:

• Match set construction ([M]): The match set is build with
all the fuzzy rules with a matching degree greater that zero
for the given state.

• Computation of candidate subsets ([CS]): This stage
might be considered as equivalent to the prediction array
computation. XCS partitions [M] into a number of mu-
tually exclusive sets according to the action of each rule.
However, in real-valued output systems like Fuzzy-XCS,
several “linguistic actions” (consequents) could/should
be considered together. Thus, Fuzzy-XCS redefines the
concept of prediction array computation.
We can assume that what should not be accepted in our
case is to have an action set with inconsistent or redundant
rules, i.e. rules with equal or subsumed antecedent and dif-
ferent consequent (inconsistency), or rules with subsumed
antecedent and equal consequent (redundancy). Note that
identical rules are allowed to belong to the action set since
we consider macroclassifiers [2] where the numerosity of a
rule is keep instead several “physical” copies of it. There-
fore, when a rule is selected, all the copies of this indi-
vidual are automatically considered and used in the dif-
ferent calculations done in the performance and discovery
components.
Different groups of consistent and non-redundant fuzzy
rules with the maximum number of rules in each group

are formed. To do that we consider a simple greedy algo-
rithm (though an implicit enumeration algorithm could be
used) as follows:

Let R = fRi=Ri 2 [M]g

Shuffle R {to avoid order-biasing}

for i = 1 to jRj do

Si fRig

for j = 1 to jRj (j 6= i) do

if (Si [fRjg is consistent and
nonredundant) then

Si Si [fRjg

end if

end for

end for

Remove repeated Si

We perform an exploration/exploitation scheme with
probability 0.5. On each exploitation step, only those
fuzzy rules sufficiently experienced (they have been ad-
justed—see Section III-C2—in a degree greater or equal
to) are considered. The most experienced rule is con-
sidered when any one holds this condition. On exploration
step, the whole match set is considered.
Using only experienced rules during exploitation steps al-
lows the system to give the best action according to the
available knowledge, while on exploration steps the system
is able to learn or corroborate rules. Note that though this
is a new interpretation of Wilson’s XCS scheme, we are
addressing the fuzzy context where we should not decide
between one action or another—all fuzzy rules should act
together in order to give a sound real-valued output. So, in
Fuzzy-XCS the exploration/exploitation concept is moved
from the action selection framework to the rule selection
one.

CASILLAS et al.: FUZZY-XCS: A MICHIGAN GENETIC FUZZY SYSTEM 541

• Action set selection ([A]): The action set selection chooses
the consistent and non-redundant rule subset with the
highest mean prediction (considering the numerosity of
each rule when computing the mean).

• Action generation: The action taken to interact with the en-
vironment is directly inferred from the action set. When
using DNF-type fuzzy rules, special care must be taken on
the inference engine. Indeed, for a proper behavior of the
algorithm, it is mandatory to ensure that given two linguis-
tically equivalent fuzzy rule sets, they are also numerically
equivalent. In order to do so, we consider FATI (first aggre-
gate, then inference) approach, the Max-Min scheme (i.e.,
T-conorm of maximum as aggregation and T-norm of min-
imum as implication operator), and the T-conorm of max-
imum as disjunction. Apart from that, T-norm of minimum
as conjunction and center-of-gravity as defuzzification are
used. These two latter operators could be changed without
incurring in a linguistic-numeric discrepancy.

C. Reinforcement Component

The (prediction), (prediction error), and (fitness)
values are adjusted by the reinforcement learning standard tech-
nique Widrow-Hoff used in XCS for each fuzzy rule . (Since
we only explore single-step problems, no form of temporal dif-
ference learning is required here.)

However, an important difference is considered in Fuzzy-
XCS: the credit distribution among the rules must be made pro-
portionally to the degree of contribution of each rule to the
obtained output. The reinforcement distribution in Fuzzy-XCS
acts on the action set [A] when an exploration step is performed.
The following subsections detail the reinforcement distribution
process and the adjustment of the parameters.

1) Credit Distribution: The credit distribution among the
rules of the action set [A] is made by analyzing the contribu-
tion of each rule to generate the aggregated output. To do so,
first the difference between the output of the individual rule and
the aggregated one is computed

(1)

with being the number of output variables, and
the extremes of the universe of discourse of the th output vari-
able, the mean of the core of the fuzzy set corresponding to
the th output variable of the th fuzzy rule, and the defuzzi-
fied aggregated output of the whole action set.

Then, a weight is assigned to each fuzzy rule of the action
set as follows:

(2)

In some cases, this distribution could be equivalent to do it
proportionally to the matching degree of each fuzzy rule di-
vided by the sum of the matching degrees, but with the proposed
process we avoid some inference bias that could appear with this
latter approach.

2) Parameter Updates: To adjust the parameters of each rule,
firstly the P (payoff) value is computed. In the case of single-step
tasks, , with being the external reward.

Then, the following adjustment process is performed for each
fuzzy rule belonging to the action set:

1) Increase its experience according to its contribution degree
in this action set, .

2) Adjust the error values using the standard Widrow–Hoff
delta rule with learning rate parameter
toward considering the weights computed in
(2) to distribute the adjustment, i.e.

(3)

The MAM (moyenne adaptive modifee) technique is used
by adjusting to the weighted average of the previously
computed values for this rule, instead of the above
equation, when the corresponding rule has not been suffi-
ciently adjusted, i.e., if . The previous weights

computed for this rule are stored and used for calcu-
lating the weighted average.

3) Then, adjust prediction values

(4)

Again, weights are considered to distribute the reinforce-
ment. MAM technique is also used here as described above
during the first adjustments. Therefore, weighted average
of the previous values is computed.

4) Then, recalculate the fitness values from the updated
values of , i.e.

(5)

with

if
otherwise (6)

where is a constant controlling the tolerance for predic-
tion error, a constant controlling the tol-
erance for prediction error, and another con-
stant controlling the rate of decline in accuracy when is
exceeded.
No weights are considered to update the fitness since
it depends on the prediction error instead of the received
payoff. Due to the same reason, MAM technique is not
used.

5) Finally, the mean size of the action sets where the rule has
been involved is adjusted as follows:

as as (7)

Neither weights nor MAM technique are used for this
parameter.

D. Discovery Component

The EA for Fuzzy-XCS acts only on the action set [A] when
an exploration step is performed. Note that this fact involves

542 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

niche search since only fuzzy rules fired together are evolved. In
order to apply an EA, the average time period since the last EA
application in the action set must be greater than the threshold

. When applied, it selects two rules by roulette-wheel selec-
tion based on fitness, applies crossover and mutation operators
with probabilities and (per chromosome), respectively,
and inserts the offspring in the population. If the population con-
tains the maximum number of fuzzy rules allowed, two individ-
uals are deleted to make room. They are randomly selected pro-
portionally to the prediction error weighted by the mean action
set sizes where each fuzzy rule was involved as follows:

prob
as

as otherwise (8)

The threshold ensures that the error estimation is reliable
since the rule has been sufficiently updated. The reason of con-
sidering is mainly to induce niches in the different state
spaces.

A simple two-point crossover operator that only acts on the
antecedent part of the chromosomes (binary coding scheme) is
considered. In case that all the genes of a variable take the al-
lele ‘0’ after applying crossover, a gene set to ‘1’ in the parents
is randomly selected and it is set to ‘1’ in the son. Prediction,
prediction error, and fitness values of offspring are initialized to
the mean values of the parents.

The mutation randomly selects an input/output variable of the
rule. If an input variable is selected, one of the three following
possibilities is applied: expansion, which flips to ‘1’ a gene of
the selected variable; contraction, which flips to ‘0’ a gene of the
selected variable; or shift, which flips to ‘0’ a gene of the vari-
able and flips to ‘1’ the gene immediately before or after it. The
selection of one of these mechanisms is made randomly among
the available choices (e.g., contraction can not be applied if only
a gene of the selected variable has the allele ‘1’). If an output
variable is selected, the mutation operator simply increases or
decreases the integer value. Prediction, prediction error, and fit-
ness values of mutated rules are set to the mean values of the
population.

An EA subsumption is performed. Thus, if the offspring is
logically contained by either of its parents and this parent is suf-
ficiently adjusted (its experience is), the offspring
is not added to the pool but the parent’s numerosity (i.e., the
number of copies of the rule) is incremented.

When no fuzzy rules cover the state with the highest matching
degree, a covering mechanism is used to include a fuzzy rule
with the input linguistic term set that best matches the state and a
random action. Its parameters are set as follows: , ,

, , and . This covering mechanism will
mainly act during the early iterations (when the population starts
empty) or when a new state–space is explored.

IV. EXPERIMENTAL RESULTS

Some experiments have been performed to test the behavior
of Fuzzy-XCS. We have developed three different experiments.
A first laboratory problem to test the effectiveness of the
method, some function approximation problems, and a more
complex real robot simulated problem. The former problem is

TABLE I
RULE BASE USED TO GENERATE THE DATA SET

only included to analyze if the algorithm is able to find, not
only rules with a high payoff (low approximation error) but also
as general as possible to describe the relation between state and
action. Although fuzzy model with a low-approximation error
can be successfully obtained in this problem by supervised
learning, to do moreover the fuzzy model as compact as pos-
sible (maximal generality) is by far more difficult. The robot
problem allows us to verify that the proposed algorithm can be
applied to complex reinforcement problems with real-valued
states and actions. The following subsections show the obtained
results.

A. A Laboratory Problem With Generalization

1) Problem Specification: We have developed a laboratory
problem for function approximation where the optimal fuzzy
rule set is known. This allows us to analyze if Fuzzy-XCS is
able to obtain it. Thus, we have generated an example data set
from a previously defined fuzzy rule base with different degrees
of generalization. Two input variables and one output variable
are considered. A total of 576 examples uniformly distributed
in the input space () were generated. Five linguistic
terms are considered for each variable. Uniformly distributed
triangular-shaped membership functions are used. The same in-
ference engine used by our algorithm is considered to generate
the data set, i.e., FATI approach with minimum as conjunction
and implication, maximum as disjunction and aggregation, and
center-of-gravity as defuzzification. The fuzzy rule base consid-
ered to generate the data set is shown in Table I. The surface of
the function to be approximated that results of this data set con-
struction is depicted in Fig. 2.

The reward depends inversely on the difference between the
inferred and the desired output in a nonlinear way, i.e.

(9)

with , being the output obtained by the fuzzy rule-
based system, and the expected output according to the data
set for the current state. The objective is to obtain the set of rules
that best approximate the data with the highest degree of gener-
alization, i.e., a rule base as accurate and compact as possible.

2) Obtained Results: The used parameter values are the fol-
lowing: maximum number of rules , , ,

, , , , and
. Note that standard parameter values are used. In order to

properly check the covering mechanism behavior, the popula-
tion is left empty at the beginning of the algorithm.

CASILLAS et al.: FUZZY-XCS: A MICHIGAN GENETIC FUZZY SYSTEM 543

Fig. 2. Surface generated by the fuzzy rule set of Table I.

Fig. 3. Results of Fuzzy-XCS in the laboratory problem.

Fig. 3 shows the average behavior of 10 runs of Fuzzy-XCS
during 50 000 trials (of which 25 000 are explore trials and
25 000 are exploit ones). The upper figure depicts the rela-
tive numerosity (number of copies of the rule divided by the
population size) of the five optimal fuzzy rules. It shows the
capability of the algorithm to find and keep the optimal solution
with maximal generality. The bottom figure depicts the mean
approximation error of the last 50 exploit steps. It
shows the capability of the algorithm to provide the appropriate
action (output) to the corresponding state (input). Note that,
according to this figure, the algorithm shows a very good
performance in terms of generality and approximation error.

3) Comparison With Other Michigan-Style Algorithms: We
have also analyzed the result obtained by two well-known
Michigan-style genetic fuzzy systems, those proposed by
Valenzuela-Rendón [8] and by Bonarini [7]. In this latter case,
we have adapted the original proposal (designed for don’t-care
fuzzy rules) to DNF-type fuzzy rules. Figs. 4 and 5 shows the
average results of 10 runs obtained by these two methods. It is
important to remark that we have allowed these algorithms to
perform 60 000 explore trials (instead 25 000 as our algorithm

Fig. 4. Results of the Valenzuela-Rendón’s algorithm [8].

Fig. 5. Results of the Bonarini’s algorithm [7].

does) because they do not follow an exploration/exploitation
scheme.

We can observe from these results that the Valenzuela-
Rendon’s algorithm is not able to reduce the error, i.e., to
maximize the received payoff. This behavior would be related
with the fact that this algorithm does not consider any selection
among the matched rules to infer the action and therefore,
rules with the same antecedent but different consequent will
act together. Since the credit distribution is only based on
the matching degree, the algorithm is not able to properly
discriminate between good and bad actions for a specific state.
The algorithm also presents a serious problem of overgeneral-
ization since rules that match more frequently will accumulate
more payoff and no mechanisms to avoid that is considered.
Furthermore, from the upper part of Fig. 4 we can observe that
the Valenzuela-Rendon’s algorithm has also difficulties to find
and keep rules with optimal generalization.

As regards the Bonarini’s algorithm, we can observe that
it obtains lower approximation errors than the Valenzuela-
Rendon’s one. However, its performance is still far from the
one developed by our proposal. Its is curious to verify that the
response of the method in each trial during the reinforcement
learning process is very variant. It may be related with the fact
that the algorithm chooses a rule for each subpopulation at

544 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

TABLE II
RESULTS OBTAINED BY THE ANALYZED METHODS IN THE FUNCTION APPROXIMATION PROBLEM

random for each trial. (In [11], the authors try to address it by
keeping the same rules during the whole episode in multistep
tasks with delayed reward.) With regard to the five optimal
rules, the algorithm was not able to find anyone of them during
the system learning in any of the 10 runs. Nevertheless, it
is important to keep in mind that these results refers to our
adaptation of the original don’t-care Bonarini’s proposal to
DNF-type fuzzy rules.

4) Comparison With a Pittsburgh-Style Algorithm: We
were also curious as to compare the performance of our online
(reinforcement) learning process by a Michigan-style approach
versus an off-line (supervised) learning using a simple Pitts-
burgh-style genetic fuzzy system. The Appendix includes a
brief description of this algorithm.

In order to do this comparison, in Michigan-style algorithms
it is necessary to previously filter the population because of it
was used during the process for learning and acting, so there
would be some bad rules that were included to learn. These rules
use to have a low experience degree since bad rules should not
survive for a long time. We have applied the following process
to obtain a final fuzzy rule set in our Fuzzy-XCS and in the
Valenzuela-Rendons’s algorihtm (the original proposal does not
mention anything about that). Firstly, such rules that have not
been sufficiently tested (i.e., with experience lower than 30,

) are removed. Next, a iterative process is pre-
formed until the population is empty. In each iteration, the rule
with the highest prediction value of the remaining population is
included in the final fuzzy rule set and removed from the pop-
ulation. All the rules contained in such a rule (those with sub-
sumed antecedent and same consequent) are removed from the
population. In the Bonarini’s algorithm, the filter method orig-
inally proposed by him is preserved, which involves selecting
the best fuzzy rule (according to the accumulated reward, i.e.,
strength) of each subpopulation. In the Pittsburgh-style genetic
fuzzy system, the returned fuzzy rule set is the one with the best
fitness in the last population that, due to the considered elitism,
coincides with the best solution found during all the process.

Table II summarizes the results obtained by the analyzed
methods. It shows the mean number of times (over the 10 runs
performed for each algorithm) that each of the five optimal
rules (according to Table I) appears in the returned fuzzy rule
set. Therefore, a value of 1.0 means that the corresponding
optimal rule has been obtained in all the runs. The table also
shows the mean number of other suboptimal rules (i.e., those

whose antecedent is subsumed by and the consequent is equal
to an optimal rule) and erroneous rules included in the returned
fuzzy rule set. We have also included the averaged mean square
error (MSE) [see (19)] values of the fuzzy rule sets returned by
the analyzed algorithms.

From that table, we can see that our Fuzzy-XCS algorithm
find the five optimal rules frequently (always excepting three
runs for and , two runs for , and one run for). More-
over, the algorithm only returns one suboptimal rule (i.e., pre-
cise but not as general as possible) in the ten runs.

With respect to the two compared algorithms, they both are
not able to find the optimal rules. In the case of the Valenzuela-
Rendon’s algorithm, it is due to the fact it has a clear tendency
to overgeneralization, so the algorithm returns a fuzzy rule that
outshines the rest of them. (The results without filtering the final
population were also very poor: , , ,

, , suboptimal , erroneous ,
MSE .) The Bonarini’s algorithm at least returns
some suboptimal rules that make it obtain a MSE better than
Valenzuela-Rendon’s, although it is worse than the one obtained
by our proposal.

Finally, regarding the Pittsburgh-style genetic fuzzy system,
it has serious difficulties to find optimal solutions, although it is
able to obtain a low MSE (almost as good as the one obtained
by our algorithm) by generating suboptimal rules. That behavior
was unexpected since the problem seems to be better addressed
by a supervised learning algorithm. However, we realized that
when the objective is not only finding a DNF-type fuzzy rule set
with low error approximation but also as compact as possible,
the problem becomes more difficult since this kind of fuzzy rule
has a high risk of inconsistencies and redundancies when the
whole rule set is coded in an individual. Of course, better re-
sults can probably be obtained with a more sophisticated Pitts-
burgh-style algorithm, but this experiment shows at least that
the design of this kind of algorithm is not trivial.

Furthermore, the knowledge resource (respecting the number
of analyzed examples) used by the Pittsburgh-style approach to
obtain these results is tremendously higher than the Michigan-
style ones. In this respect, it is interesting to highlight that the
proposed Fuzzy-XCS finds a very good solution after analyzing
only 12 500 examples (as shown in Fig. 3), which is equivalent
to only 22 times the data set size, i.e, only a 44% of the number
of examples needed to evaluate the initial population (with 50
individuals) of the Pittsburgh-style genetic fuzzy system.

CASILLAS et al.: FUZZY-XCS: A MICHIGAN GENETIC FUZZY SYSTEM 545

Fig. 6. Results of Fuzzy-XCS approximating the Valenzuela-Rendón’s line
function.

B. Function Approximation Problems

In that section, we experiment with the proposed Fuzzy-XCS
algorithm when solving some function approximation prob-
lems. In all these experiments, the same parameter values than
the ones used in the previous section are considered with the
exception of the maximum number of rules, that will be 100,
and the tolerance for prediction error, that will be .
Seven linguistic terms are used for both input and output
variables. Again, ten runs are performed and average results
reported.

We have considered the four following functions:
• Valenzuela-Rendón’s line function [3], [8]

(10)

• Valenzuela-Rendón’s parabola function [3], [8]

(11)

• Wilson’s parabola function [32]

(12)

• Wilson’s sinusoidal function [32]

(13)

In the experiments, a dataset is generated for each function by
sampling 1000 random values. At each experiment trial, a pair

Fig. 7. Results of Fuzzy-XCS approximating the Valenzuela-Rendón’s
parabola function.

is picked up at random, the value is presented as state to
the Fuzzy-XCS algorithm, and the corresponding value used
to calculate the reward [see (9)]. It is repeated 50 000 times in
a exploration/explotation regime. Once the experiment has fin-
ished, the whole dataset is tested again as exploit trials (there-
fore, the population and the rule parameters are keep invariable)
and the resulting system predictions are recorded.

Figs. 6, 7, 8, and 9 show the results obtained for each func-
tion. In each case, the upper figure shows the averaged system
errors and population size during the learning process, while the
bottom figure plots the system prediction values obtained at the
mentioned last exploit process.

As it can be observed, the algorithm shows a good behavior
approximating these functions. The error obtained in each func-
tion are related to the limits of the fuzzy inference capability
since a relatively simple system is considered where only seven
linguistic terms are used in each variable. More accurate results
could be obtained by increasing the granularity of each vari-
able (in fact, fuzzy systems are universal approximators [33]),
but the legibility of the system would be lost and the use of
fuzzy logic would not make sense. In that respect, the fuzzy ap-
proach (at least with a grid-partitioning of the input space as
in Fuzzy-XCS) can not compete in prediction error terms (i.e.,
function approximation degree) with a real-valued learning clas-
sifier system (e.g., XCSF [32]). On the contrary, Fuzzy-XCS
generates rules with a higher description capability and com-
pactness, and needs lower population sizes than XCSF. Because
of that, Fuzzy-XCS also seems to scale up better than XCSF to
high-dimensional problems.

546 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

Fig. 8. Results of Fuzzy-XCS approximating the Wilson’s parabola function.

Fig. 9. Results of Fuzzy-XCS approximating the Wilson’s sinusoidal function.

C. Realistic Mobile Robot Problem

This latter problem is by far more difficult to solve than the
previous ones since it is a real online learning process. The
problem involves giving a robot the capability to learn a set of

fuzzy rules to implement the wall-following behavior. This be-
havior is usually implemented when the robot is exploring an
unknown area, or when it is moving between two points in a
map, generally in indoor environments. A good wall-following
controller is characterized by three features: to maintain a suit-
able distance from the wall that is being followed, to move at
a high velocity whenever possible, and finally to avoid sharp
movements, making smooth and progressive turns and changes
in velocity.

The behavior is not specially difficult and has been success-
fully addressed by some supervised-learning-based methods
(e.g., [34]). What really makes this problem difficult is to per-
form online learning. That is, when the controller is designed at
the same time the robot interacts with the environment. To do
that, we will consider a reward that the robot will receive every
time it performs an action. The reward is calculated from the
sensorial information, thus making the problem more realistic.
However, it makes the problem more difficult since it adds
uncertainty, noise, and sensor reading errors. Of course, the
problem is faced with real-valued states and actions.

Because of the online character of the problem, the sequence
of states can not be previously defined since it depends on the
actions performed during the process. This means that the robot
will not be able to explore the whole input space in a reason-
able time, even never if the actions do not allow it. This makes
more difficult to generate a complete map and provokes a high
risk of getting stuck in loops. Moreover, the robot is not reset
on an original position when a number of steps is reached but
it is continuously interacting with the environment. An addi-
tional difficulty is the fact that applying the same action in the
same state can drive the robot to different new states. It involves
the robot could receive different values of reward for the same
state/action combination. Finally, the best reward that can be
obtained in a specific state may be significantly lower than the
maximum if any possible action drive the robot to an optimal
situation (exact right distance, maximum velocity, and parallel
orientation) in the next control cycle.

1) Input and Output Variables: We have employed the
Nomad 200 software to simulate the behavior of the robot. This
robot is provided by a ring of 16 ultrasound sensors. The four
considered input variables are calculated from this information
as follows [34]. Two of the input variables are the relative
right-hand distance and the distance quotient ,
which are calculated as

RD
right-hand distance

(14)

DQ
left-hand distance

right-hand distance
(15)

DQ shows the relative position of the robot inside a corridor,
which provides with information that is more relevant to the
problem than simply using the left-hand distance. A high value
for DQ means that the robot is closer to the right-hand wall,
while a low-value indicates that the closer wall is the left-hand
one. In this case the robot should approach to the right-hand
wall, although the right-hand wall is closer than the reference

CASILLAS et al.: FUZZY-XCS: A MICHIGAN GENETIC FUZZY SYSTEM 547

Fig. 10. Path sequence (from top to bottom, from left to right) followed by the robot during the online learning performed by the Fuzzy-XCS algorithm.

distance. The other input variables are the relative linear velocity
of the robot (RLV)

RLV (16)

where is the real linear velocity of the robot; and the orienta-
tion of the robot with respect to the wall it is following .
A positive value of the orientation indicates that the robot is ap-
proaching to the wall, whilst a negative value means the robot is

548 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

moving away from the wall. The output variables are the linear
velocity (LV) and the angular velocity (AV).

All the information used to calculate distances and orienta-
tions is obtained from the ultrasound sensors of the robot. Data
are processed using the distributed perception [35], and for this
reason the sensors are grouped in different sets. Distances are
measured as the minimum distance of a set of sensors (obvi-
ously, the set of sensors is different for RD and DQ). will
be a weighted sum of the orientation of each sensor in the set,
giving more weight to those sensors that detect closer obstacles:

(17)

where is the number of sensors in the set, angle is the angle
of sensor , the measured distance of this sensor, and
is the maximum distance an ultrasound sensor can measure.

The universe of discourse is, for some variables (RD, DQ,
and), a reduced version of the real universe of discourse
that contains those values of the variable that are meaningful
for learning. For example, high values of distance are not useful
during learning, because for all of them the robot will execute
the same action. Therefore, it is enough to include only a few
high values in the universe of discourse. The following universes
of discourse are considered: RD , DQ ,

, RLV , LV , and AV
.

2) Reward: The reward is computed as follows:

RD,LV,
RD

LV

(18)
The weights , , and (with) are
set as follows: , , and . These
weights indicate how much important the deviation in the value
of a variable is with respect to the deviation of other variables.
The highest weight has been assigned to the distance, as small
variations of RD with respect to the reference distance should
be highly penalized. An intermediate weight is associated to
velocity and, finally, the least important contribution is for the
orientation of the robot.

3) “Inborn” Knowledge: For a better behavior of the robot,
a simple knowledge has been previously provided. We could
say that it will be its inborn knowledge. When the reading of
the ultrasound sensors get a very low value (25.4 cm), i.e., the
robot is very near to an obstacle, its velocity is automatically de-
creased in order to avoid the impact, or to reduce its damage if
it is done. Furthermore, if the robot is physically in contact with
an obstacle (it is detected from the bumper senors), it automati-
cally turns to the nearest free angle (detected by the ultrasound
sensors). This is the only knowledge we provide to the robot be-
fore starting the learning.

4) Obtained Results: In this experiment, the maximum
number of rules is set to 1000. The rest of parameter values are
equal to the ones used in the previous problems, with .
The population is randomly initialized at the beginning of the
algorithm.

Fig. 11. Results of Fuzzy-XCS in the robot problem.

We have applied the algorithm in a specific wall configura-
tion. It includes different situations that the robot usually faces
during navigation: straight walls of different lengths, followed
and/or preceded by a number of concave and convex corners,
etc. Fig. 10 depicts the path followed by the robot during the
online learning process for 25 000 control cycles. It has been
divided in different pictures (each one containing 1,250 control
steps) to properly represent the temporal sequence. The set of
figures must be read from top to bottom and from left to right.
Therefore, the first row represents the first 5000 control cycles,
the second row the control cycles between 5001 and 10 000, and
so on. The robot trajectory is represented by circular marks. A
higher concentration of marks indicates lower velocity.

According to this figure, we can observe how the robot is able
to face the problem implementing a right-hand wall-following
behavior. Note also the real-valued action performed by it. Due
to the exploration feature of some actions inferred by the al-
gorithm, the robot is sometimes guided to a bad behavior that,
nevertheless, is able to solve after several iterations.

Furthermore, Fig. 11 shows the obtained results of perfor-
mance and numerosity by the Fuzzy-XCS algorithm for 25 000
steps. The solid line represents the number of different fuzzy
rules of the population divided by the population size. The
dashed line represents the average reward received by the robot
in the last 50 steps.

As we can observe, the robot gets a proper reward degree. It
is important to remark that in this problem we do not know the
maximum attainable reward from a specific state (usually less
than 1) and that different parts of the environment (e.g., corners)
are more difficult to be solved. It makes the plot of the average
reward to be far from 1. For example, the low reward degree ob-
tained around trial 19 500 corresponds to the change of the robot
between following the central wall to follow the perimeter wall
(see row 4, column 4, in Fig. 10). With respect to the number of
different fuzzy rules contained in the population, it is observed a
gradual decreasing that shows the convergence of the algorithm
by reducing the number of fuzzy rules improving their general-
ization capability (compactness) without lack of performance.
Although the robot is far from behaving optimally, the results
obtained in this difficult problem show promising possibilities
of the proposed algorithm.

CASILLAS et al.: FUZZY-XCS: A MICHIGAN GENETIC FUZZY SYSTEM 549

V. CONCLUDING REMARKS

This paper has presented a proposal to properly develop an ac-
curacy-based Michigan-style fuzzy rule-based system for con-
tinuous state and action. Its main advantages are, compared with
the most of genetic fuzzy systems, its capability to perform on-
line learning and, compared with other Michigan-style genetic
fuzzy systems, its capability to obtain maximal generalization,
i.e., representation of the fuzzy rule set as compact as possible.

The algorithm design is inspired with the well-know XCS
algorithm for non-fuzzy rules. The fitness function is based on
the estimation of the performance prediction error in order to
look for robust (in the sense of the received reward) fuzzy rules.
Niche search is also considered.

Promising results of the proposal have been obtained in some
function approximation problems and a realistic robot simula-
tion online learning. Future work involves investigating the be-
havior of the proposal in other reinforcement problems with
continuous actions and multi-step tasks with immediate reward.

APPENDIX

PITTSBURGH-STYLE GENETIC FUZZY SYSTEM

USED IN THE EXPERIMENTS

The Pittsburgh-style genetic fuzzy system used for compar-
ison in the experiments of Section IV-A consists of the following
components. A generational approach with direct replacement
(offspring replaces the corresponding parents) is considered. An
elitism component that ensures the best chromosome survival of
the previous generation is applied. The fitness is the MSE

(19)

with being the evaluated fuzzy system, the data set size,
and the th input-output pair of the data set. We have
to say that we also tested with other version were the fitness
is a tradeoff between MSE and the number of rules in order to
penalize fuzzy rule set with low generalization. However this
version tended to obtain overgeneral fuzzy rule sets with a lower
performance and the results were discarded in this paper.

The same coding scheme than the proposed Fuzzy-XCS
(Section III-A) for each fuzzy rule is used, but taking into
account that now a chromosome is composed of a set of rules.
Variable-length chromosome size is considered. The population
is randomly initialized. Binary tournament selection is used.

The crossover operator randomly chooses a cross point be-
tween two fuzzy rules at each chromosome, and exchanges the
right string of them. Therefore, the crossover only exchanges
complete rules, but it does not create new ones since it respects
rule boundaries on chromosomes representing the individual
rule base. In the case that inconsistent rules appear after
crossover, the ones whose antecedent is logically subsumed by
the antecedent of a more general rule are removed. Redundant
rules are also removed.

The mutation operator works in a similar way to the one pro-
posed for our Fuzzy-XCS algorithm in Section III-D. In the
same way, specific rules appeared after mutation are subsumed
by the most general ones and redundant rules are removed. Note
that, although the fitness is guided only by approximation error,

the fact of subsuming rules in crossover and mutation provides
the system with a generalization orientation.

The parameter values used in the experiments and
shown in Table II were as follows: population size ,
number of generations , crossover probability ,
and mutation probability (per chromosome) . The same
inference engine used in the rest of experiments of this paper
(i.e., FATI approach, Max-Min scheme, and center-of-gravity
as defuzzification) is considered.

REFERENCES

[1] O. Cordón, F. Herrera, F. Hoffmann, and L. Magdalena, Genetic Fuzzy
Systems: Evolutionary Tuning and Learning of Fuzzy Knowledge
Bases. Singapore: World Scientific, 2001.

[2] S. Wilson, “Classifier fitness based on accuracy,” Evol. Comput., vol.
3, no. 2, pp. 149–175, 1995.

[3] M. Valenzuela-Rendón, “The fuzzy classifier system: A classifier
system for continuously varying variables,” in Proc. 4th Int. Conf.
Genetic Algorithms, San Mateo, CA, 1991, pp. 346–353.

[4] A. Parodi and P. Bonelli, “A new approach to fuzzy classifier systems,”
in Proc. 5th Int. Conf. Genetic Algorithms, San Mateo, CA, 1993, pp.
223–230.

[5] T. Furuhashi, K. Nakaoka, and Y. Uchikawa, “Suppression of excess
fuzziness using multiple fuzzy classifier systems,” in Proc. 3rd IEEE
Int. Conf. Fuzzy Syst., Piscataway, NJ, 1994, pp. 411–414.

[6] K. Nakaoka, T. Furuhashi, and T. Uchikawa, “A study on apportion-
ment of credits of fuzzy classifier systemfor knowledge acquisition in
large scale systems,” in Proc. 3rd IEEE Int. Conf. Fuzzy Syst., Piscat-
away, NJ, 1994, pp. 1797–1800.

[7] A. Bonarini, “Evolutionary learning of fuzzy rules: Competition
and cooperation,” in Fuzzy Modelling: Paradigms and Practice, W.
Pedrycz, Ed. Norwell, MA: Kluwer Academic, 1996, pp. 265–284.

[8] M. Valenzuela-Rendón, “Reinforcement learning in the fuzzy classifier
system,” Expert Systems With Applications, vol. 14, pp. 237–247, 1998.

[9] J. Velasco, “Genetic-based on-line learning for fuzzy process control,”
Int. J. Intell. Syst., vol. 13, pp. 891–903, 1998.

[10] H. Ishibuchi, T. Nakashima, and T. Murata, “Performance evaluation
of fuzzy classifier systems for multidimensional pattern classification
problems,” IEEE Trans. Syst., Man, Cybern.—Part B: Cybern., vol. 29,
pp. 601–608, 1999.

[11] A. Bonarini and V. Trianni, “Learning fuzzy classifier systems for
multi-agent coordination,” Inf. Sci., vol. 136, pp. 215–239, 2001.

[12] D. Gu and H. Hu, “Accuracy based fuzzy Q-learning for robot
behaviours,” in Proc. 12th IEEE Int. Conf. Fuzzy Syst., 2004, pp.
1126–1131.

[13] P. Glorennec, “Fuzzy Q-learning and dynamical fuzzy Q-learning,” in
Proc. 3rd IEEE Int. Conf. Fuzzy Syst., Orlando, FL, 1994, pp. 474–479.

[14] P. Glorennec and L. Jouffe, “Fuzzy Q-learning,” in Proc. 6th IEEE Int.
Conf. Fuzzy Syst., Barcelona, Spain, 1997, pp. 659–662.

[15] J. Holland and J. Reitman, “Cognitive systems based on adaptive al-
gorithms,” in Pattern-Directed Inference Systems, D. Waterman and F.
Hayes-Roth, Eds. San Diego, CA: Academic, 1978, pp. 313–329.

[16] J. Holland, “Properties of the bucket brigade algorithm,” in Proc. First
Int. Conf. Genetic Algorithms and Their Applications, Hillsdale, NJ,
1985, pp. 1–7, Lawrence Erlbaum Associates.

[17] G. Roberts, “Dynamic planning for classifier systems,” in Proc. Fifth
Int. Conf. Genetic Algorithms, B. Forrest, Ed., 1989, pp. 244–255.

[18] R. Sutton, “Reinforcement Learning Architecture for Animats,” in
From Animals to Animats: Proceedings of the First International
Conference on Simulation of Adaptive Behaviour. Cambridge, MA:
MIT Press, 1991, pp. 188–296.

[19] S. Wilson, “ZCS: A zeroth level classifier system,” Evol. Comput., vol.
2, no. 1, pp. 1–18, 1994.

[20] S. Smith, “A Learning System Based on Genetic Adaptive Algo-
rithms,” Ph.D. dissertation, University of Pittsburgh, Pittsburgh, PA,
1980.

[21] S. Wilson and D. Goldberg, “A critical review of classifier systems,” in
Proc. Third Int. Conf. Genetic Algorithms, D. Schaffer, Ed., 1989, pp.
244–255.

[22] A. Tomlinson and L. Bull, “Symbiogenesis in learning classifier sys-
tems,” Artif. Life, vol. 7, no. 1, pp. 33–62, 2001.

[23] A. Tomlinson and L. Bull, “An accuracy-based corporate classifier
system,” Soft Computing, vol. 6, no. 3–4, pp. 200–215, 2002.

550 IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 15, NO. 4, AUGUST 2007

[24] J. Grefenstette, “Multilevel Credit Assignment in a Genetic Learning
System,” in Genetic Algorithms and Their Applications: Proceedings
of the Second International Conference on Genetic Algorithms. Pis-
cataway, NJ: Lawrence Erlbaum Associates, 1987, pp. 202–209.

[25] J. Holland, Adaptation in Natural and Artificial Systems. Ann arbor,
MI: The University of Michigan Press, 1975.

[26] L. Booker, “Triggered rule discovery in classifier systems,” in Proc.
Third Int. Conf. Genetic Algorithms and Their Applications, J. Schaffer,
Ed., 1989, pp. 265–274, Morgan Kaufmann.

[27] L. Booker, “Improving the performance of genetic algorithms in clas-
sifier systems,” in Proceedings of the First International Conference
on Genetic Algorithms and Their Applications, 1985, pp. 80–92,
Lawrence Erlbaum Associates.

[28] S. Wilson, “State of XCS classifier system research,” in Learning Clas-
sifier Systems: From Foundations to Applications, P. Lanzi, W. Stolz-
mann, and S. Wilson, Eds. New York: Springer, 2000, pp. 63–81.

[29] L. Bull, Ed., Applications of Learning Classifier Systems. New York:
Springer, 2004.

[30] L. Bull and T. Kovacs, Eds., Foundations of Learning Classifier Sys-
tems. New York: Springer, 2005.

[31] H. Ishibuchi, T. Yamamoto, and T. Murata, “Hybridization of fuzzy
GBML approaches for pattern classification problems,” IEEE Trans.
Syst., Man, and Cybern.—Part B: Cybern., vol. 35, no. 2, pp. 359–365,
2005.

[32] S. Wilson, “Classifiers that approximate functions,” Natural Com-
puting, vol. 1, no. 2–3, pp. 211–233, 2002.

[33] J. Castro, “Fuzzy logic controllers are universal approximators,” IEEE
Trans. Syst., Man, and Cybern., vol. 25, no. 4, pp. 629–635, 1995.

[34] M. Mucientes and J. Casillas, “Quick design of fuzzy controllers with
good interpretability in mobile robotics,” IEEE Trans. Fuzzy Syst.,
2007, to be published.

[35] J. Urzelai, J. Uribe, and M. Ezkerra, “Fuzzy controller for wall-fol-
lowing with a non-holonomous mobile robot,” in Proc. 6th IEEE Int.
Conf. Fuzzy Syst., Barcelona, Spain, 1997, pp. 1361–1368.

Jorge Casillas received the B.Sc., M.Sc., and Ph.D.
graduate degrees in computer science from the Uni-
versity of Granada, Spain, in 1996, 1998, and 2001,
respectively.

He is an Associate Professor with the Department
of Computer Science and Artificial Intelligence,
University of Granada, where he is a member of the
Soft Computing and Intelligent Information Systems
research group. He has worked in several research
projects supported by the Spanish Government and
the European Union. He has co-edited two books,

co-edited two journal special issues, and organized four special sessions in
international conferences on the topics “interpretability-accuracy tradeoff in
fuzzy modeling,” “genetic fuzzy systems,” and “intelligent robotics.” He serves
on the Editorial Board of the Evolutionary Intelligence journal of Springer. He
is coauthor of about 17 journal papers, eight book chapters, and 35 conference
papers. His research interests include fuzzy modeling, intelligent robotics,
knowledge discovery, and metaheuristics.

Brian Carse (M’86) was born in Durham, U.K., in
1960. He received the B.A. (Hons.) degree and the
M.A. degree in natural sciences (physics with theo-
retical physics) from the University of Cambridge,
U.K., in 1981 and 1984, respectively, and the Ph.D.
degree in computer science from the University of the
West of England in 1997.

He is Senior Lecturer in the Department of
Computing, Engineering and Mathematical Sciences
at the University of the West of England, and is a
member of the recently formed Bristol Robotics

Laboratory (formerly the Intelligent Autonomous Systems Laboratory). His
main research interests include fuzzy systems, neural networks and evolu-
tionary computing. He has been active in research on genetic fuzzy systems for
over 13 years and has published over 80 international journal and conference
papers, as well as several book chapters.

Dr. Carse is a member of the IET.

Larry Bull received the B.Sc. (Hons.) degree in com-
puting for real-time systems in 1992 and the Ph.D. de-
gree in 1995 from University of the West of England
(UWE).

He is Professor of Artificial Intelligence within the
Faculty of Computing, Engineering and Mathemat-
ical Sciences (CEMS) at UWE. His research inter-
ests include evolutionary computing, reinforcement
learning, neural computing, and biology-inspired ar-
tificial systems in general.

