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Oscar Cordón · Francisco Herrera

Hybrid learning models to get the interpretability–accuracy
trade-off in fuzzy modeling

Published online: 12 October 2005
© Springer-Verlag 2005

Abstract One of the problems associated to linguistic fuzzy
modeling is its lack of accuracy when modeling some
complex systems. To overcome this problem, many different
possibilities of improving the accuracy of linguistic fuzzy
modeling have been considered in the specialized literature.
We will call these approaches as basic refinement approaches.
In this work, we present a short study of how these basic
approaches can be combined to obtain new hybrid approaches
presenting a better trade-off between interpretability and accu-
racy. As an example of application of these kinds of systems,
we analyze seven hybrid approaches to develop accurate and
still interpretable fuzzy rule-based systems, which will be
tested considering two real-world problems.

Keywords Linguistic fuzzy modeling · Interpretability-
accuracy trade-off · Rule selection · Weighted linguistic
rules · Tuning of membership functions · Genetic algorithms

1 Introduction

Fuzzy modeling (FM) – system modeling with fuzzy rule-
based systems (FRBSs) – may be considered as an approach
used to model a system making use of a descriptive lan-
guage based on fuzzy logic with fuzzy predicates. In this
framework, one of the most important areas is linguistic FM,
where the interpretability of the obtained model is the main
requirement. This task is usually developed by means of lin-
guistic FRBSs, which use fuzzy rules composed of linguistic
variables [52] taking values in a term set with a real-world
meaning. Thus, the linguistic fuzzy model consists of a set of
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linguistic descriptions regarding the behavior of the system
being modeled [45].

One of the problems associated to linguistic FM is its lack
of accuracy when modeling some complex systems. It is due
to the inflexibility of the concept of linguistic variable, which
imposes hard restrictions to the fuzzy rule structure [6]. This
drawback sometimes leads linguistic FM to move away from
the desired trade-off between interpretability and accuracy,
thus losing the usefulness of the model.

To overcome this problem, many different possibilities of
improving the accuracy of linguistic FM while preserving its
intrinsic interpretability have been considered in the special-
ized literature [10].A great number of these approaches share
the common idea of improving the way in which the linguistic
fuzzy model performs the interpolative reasoning by induc-
ing a better cooperation among the rules composing it. We
will call these approaches as basic refinement approaches.

Recently, a new trend of research for parameter optimi-
zation and rule generation has arisen from this idea. It in-
volves a smart combination of these basic approaches when
they present complementary characteristics [1–5,11,19,21,
29], searching for a better trade-off between interpretabil-
ity and accuracy. The so obtained hybrid approaches usually
present a better accuracy than the involved basic approaches
and an acceptable interpretability very similar to that obtained
by them.

In this paper, we present a short study on how the said
basic refinement approaches can be combined to obtain new
hybrid approaches presenting a better trade-off between inter-
pretability and accuracy. In this way, as an example of appli-
cation of these kinds of systems, we analyze seven hybrid
approaches to develop accurate and still interpretable FRBSs.

Since these kinds of systems usually act on different parts
of the FRBS structure, requiring different representations, the
used learning techniques must be able to work with structures
of different natures. Genetic algorithms (GAs) [34] can rep-
resent any type of fuzzy rules, present flexibility to work with
different FRBS architectures and have a good capability to
include expert knowledge [15]. The learning approaches ana-
lyzed in this work will be based on these kinds of techniques.
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The paper is arranged as follows. First, a brief summary of
different proposals to obtain a good balance between
interpretability and accuracy is presented.Then, Sect. 3 briefly
introduces the considered basic approaches and analyzes the
positive synergy when some of them are combined. Section 4
presents seven different hybrid approaches to improve the
balance between interpretability and accuracy. Experimen-
tal results are shown in Sect. 5 considering two real-world
electrical problems. In Sect. 6, some concluding remarks are
pointed out. Finally, the basic refinement approaches consid-
ered as starting point for the different hybrid approaches are
described in Appendix A.

2 Interpretability–accuracy trade-off

Fuzzy modeling usually comes with two contradictory require-
ments to the obtained model: the interpretability, capability
to express the behavior of the real system in an understand-
able way, and the accuracy, capability to faithfully represent
the real system.

Of course, the ideal thing would be to satisfy both criteria
to a high degree but, since they are contradictory issues, it
is not generally possible. In that case, more priority is given
to one of them (defined by the problem nature), leaving the
other one in the background.

Two FM approaches arise depending on the main objec-
tive to be considered:

– Linguistic FM, mainly developed by means of linguis-
tic (or Mamdani) FRBSs [33], which is focused on the
interpretability.

– Precise FM, mainly developed by means of Takagi-
Sugeno FRBSs [46], which is focused on the accuracy.

Regardless of the approach, a common scheme is fol-
lowed to attain the desired balance between interpretability
and accuracy (Fig. 1 graphically shows this operation mode):

1. Firstly, the main objective (interpretability or accuracy)
is tackled defining a specific model structure to be used,
thus setting the FM approach.

Interpretability
improvement

Linguistic Fuzzy Modeling

Precise Fuzzy Modeling

Accuracy
improvement

(interpretability as main objective)

(accuracy as main objective)

Trade-off

Fig. 1 Improvements of interpretability and accuracy in fuzzy modeling

2. Then, the modeling components (the model structure and/
or the modeling process) are improved by means of differ-
ent mechanisms to compensate for the initial difference
between both requirements. Thus, accuracy improvements
are proposed in linguistic FM whilst interpretability
improvements are proposed in precise FM.

Some examples found in the existing recent literature are
shown as follows:

– Linguistic FM with improved accuracy [10] – This ap-
proach has been performed by learning/tuning the mem-
bership functions by defining their shapes [12,23,29,32,
35], their types (triangular, trapezoidal, etc.) [44], or their
context (defining the whole semantic) [40], learning the
granularity (number of linguistic terms) of the fuzzy par-
titions [19], or extending the model structure by using
linguistic modifiers [17,22], weights (importance factors
for each rule) [18,37], or hierarchical architectures (mix-
ing rules with different granularities) [28], among others.
Additionally, although rule base reduction [26,28] and
input variable selection [25,31] processes improve the
interpretability, they can also be seen as accuracy improve-
ments when redundancy and inconsistency criteria are
considered.

– Precise FM with improved interpretability [9] – This ap-
proach is usually developed by reducing the fuzzy rule
set (usually with orthogonal transformations) [49,50],
reducing the number of fuzzy sets (usually with similar-
ity measures) with the subsequent merging of rules [41,
43], or exploiting the local description of the rules (basi-
cally smoothing the consequent polynomial function of
the Takagi–Sugeno rule or isolating the fuzzy rule ac-
tions) [7,20,51].

It can be seen how this topic, the interpretability–accu-
racy trade-off, is a very important branch of research nowa-
days [9,10]. Our aim in this contribution will be to attain this
desired balance by improving the accuracy in linguistic FM.
To do so, fuzzy rules are generated by means of hybrid tech-
niques combining several of the different approaches usually
considered for linguistic FM with improved accuracy.

3 Hybridization of basic refinement approaches

Basically, two ways of improving the accuracy in linguistic
FM can be considered by performing the improvement in:

– the modeling process, extending the model design to other
components different from the rule base such as the data
base or considering more sophisticated derivations of the
linguistic fuzzy rules, or in

– the model structure, slightly changing the rule structure
to make it more flexible.

The following subsections briefly introduce some of the
improvements existing in the literature for designing the rule
base or the data base with sophisticated methods, and for
extending the model structure. Moreover, the basics to com-
bine them will be introduced.
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Table 1 Classification of the considered basic refinement approaches

Extending the Extending the
model design Rule Structure

Rule selection Weighted rules
Rule base Cooperative Double-consequent

Design rule learning rules

Hierarchical
knowledge bases

Linguistic modifiers

Data base Tuning membership Hierarchical knowledge
design functions bases

3.1 Basic approaches to improve the fuzzy rule-based
system accuracy

The basic refinement approaches considered to be combined
are presented in this subsection. A wide explanation of these
approaches, together with the extended rule structure if it
is modified, is included in Appendix A. Table 1 shows two
possible classifications, depending on the improvement con-
sidered (modeling process or model structure) and depending
on the FRBS part affected (data base, rule base or both). Both
classifications are interesting to determine the existing syn-
ergy among the different approaches. Classifying according
to the FRBS part affected, the following basic refinement ap-
proaches are considered in this contribution:

• Approaches acting on the data base:

– Membership function tuning [12,23,35]: This approach,
usually called data base tuning, involves refining the
membership function shapes from a previous definition
once the remaining FRBS components have been ob-
tained. Another way to define the membership function
shapes is to use more flexible alternative expressions for
the membership functions to vary the compatibility de-
grees to the fuzzy sets [17,32].

• Approaches acting on the rule base:

– Rule selection [12,28,30,48]: It involves obtaining an
optimized subset of rules from a previous rule set by
selecting some of them.

– Rule cooperation [8]: This approach follows the primary
objective of inducing a better cooperation among the lin-
guistic rules. To do so, the rule base learning is guided
by global criteria that jointly consider the action of the
different rules. In [8], the cooperative rules (COR) meth-
odology was proposed to induce a better cooperation
among the fuzzy rules.

– Weighted linguistic rule learning [18,37]: This approach
considers an additional parameter for each rule that indi-
cates its importance in the inference process, instead of
considering all the rules equally important as in the usual
case.

– Double-consequent rule learning [13,36]: This approach
allows the fuzzy rule set to present rules where each

combination of antecedents may have two consequents
associated when it is necessary.

– Linguistic modifier learning [17,22]: A linguistic modi-
fier is an operator that alters the membership functions of
the fuzzy sets associated to the linguistic labels involved
on each rule, giving a more or less precise definition as a
result depending on the case. In this paper, we will con-
sider an approach that fits the rule surface structure by
using linguistic hedges.

• Approaches acting on the whole knowledge base:

– Hierarchical linguistic rule learning [16,28]: This ap-
proach is devoted to produce a more general and well de-
fined structure, the hierarchical knowledge base (HKB).
In this way, to improve the system accuracy, fuzzy rules
consider linguistic terms that are defined in linguistic
fuzzy partitions with different granularity levels.

3.2 Positive synergy between the different approaches

As we can see, the previous approaches are not isolated and
can be combined among them when they have complemen-
tary characteristics, improving even more the performance of
the obtained FRBSs. However, it is important to remark that
these hybridizations must be carefully made because of two
main reasons:

1. Firstly, there is a need that the different approaches to
be combined present complementary characteristics, and
that this hybridization can be performed in an adequate
way since, otherwise, the combination of techniques could
worsen the accuracy of the obtained model instead of
improving it.

2. Secondly, we must take into account that in linguistic
FM the main objective is to improve the linguistic model
accuracy without losing its interpretability to a high de-
gree. Therefore, prior to the combination of different ap-
proaches, the interpretability presented by the final
obtained model must be studied to determine if it will
be adequate to solve the current problem.

Usually, these requirements are easily met when:

– The basic refinement approaches only extend the mode-
l design, maintaining the classical rule structure. There-
fore, techniques as rule selection or rule cooperation
present the ideal framework for hybridization, specially
rule selection since this technique allows us to derive sim-
pler FRBSs.

– They are applied to common parts of the FRBS structure.
This is due to the following reasons:

1. They search for the same objective.
2. They can accomplish a complementary search amo-

ng them, each of them helping the others to improve
even more a part of the FRBS.

3. If they only act on a part of the FRBS structure, the
remaining components are fixed maintaining its orig-
inal interpretability.
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– The model structure extension provides useful, additional
information about the system behavior (rules with more
importance degree, space zones with more complexity,
etc).

– The different approaches can be applied together, within
the same learning process. This is due to the dependency
among the different components of the FRBS and it is
possible when the search space is not too large.

Taking into account the said requirements, we propose
the following hybrid approaches to be analyzed:

– Rule weight learning and rule selection: (rule weights +
rule selection). The FRBS structure is extended to con-
sider the use of weights. This approach only acts on the
rule base.

– The weighted COR methodology: (rule cooperation + rule
weights + rule selection). The FRBS structure is extended
to consider the use of weights. Again, this approach only
acts on the rule base.

– Weighted double-consequent rules: (double-consequents
+ rule weights + rule selection). The FRBS structure is
extended to consider the use of weights and double-con-
sequent rules. This approach only acts on the rule base.

– Weighted hierarchical rules: (hierarchical rules + rule
weights + rule selection). The FRBS structure is extended
to consider the use of weights and hierarchical rules. This
approach acts both on the rule base and the data base.

– Data base tuning and linguistic modifiers: (membership
function tuning + non-linear scaling factors + linguistic
hedges). The FRBS structure is extended to consider the
use of non-linear scaling factors and linguistic hedges.
This approach also acts on the rule base and the data
base.

– Rule selection, data base tuning and linguistic modifiers:
As the previous one but also considering rule selection.

– COR learning, data base tuning and linguistic modifiers:
As the previous one, but also considering rule coopera-
tion.

The following section describes the proposed hybrid ap-
proaches obtained combining the basic ones.

4 Seven different hybrid approaches

In this section, the different hybrid models proposed in the
previous section are briefly presented. First, some common
aspects are described. Then, four models considering the use
of weighted rules are introduced (tuning at rule level). And fi-
nally, three models considering parameter optimization (tun-
ing at data base level) and linguistic modifiers are reviewed.

4.1 Preliminaries: common aspects

All the studied methods can be intended as meta-methods
over any other linguistic rule generation method, developed

to obtain simpler linguistic fuzzy models improving the sys-
tem accuracy. In this way, the corresponding algorithms are
based on the optimization of an initial set of candidate rules
obtained from automatic fuzzy rule learning methods or ob-
tained from experts. In this work, we will consider the Wang
and Mendel’s (WM) method [47] or different extensions of
this method as the initial linguistic rule generation method
(although any other method could be applied). To derive this
set of candidate linguistic rules, we will consider symmetrical
fuzzy partitions of triangular-shaped membership functions
(see Fig. 2).

On the other hand, to evaluate the different linguistic
fuzzy models we will use the well-known mean square error
(MSE):

MSE = 1

2 ·N
N∑

l=1

(F (xl)− yl)2,

with N being the data set size, F(xl) being the output ob-
tained from the FRBS when the lth example is considered,
and yl being the known desired output.

4.2 Rule weight learning and rule selection

This approach was presented in [5].As said, the hybridization
of the rule weight derivation and the rule selection processes
could result in important improvements of the system accu-
racy, obtaining simpler, and thus easily understandable, lin-
guistic fuzzy models by removing unnecessary rules. In this
way, the interpretability is maintained to an acceptable level.
This method will be called as WM+WS in the experiments.

4.2.1 Learning scheme

To generate linguistic models combining both approaches,
we may follow an operation mode composed of two steps:

1. Firstly, a preliminary fuzzy rule set is derived considering
the Wang and Mendel’s algorithm [47].

2. Then, after performing the first step, where an initial set
of promising rules is generated, the two following tasks
must be performed:

– Genetic selection of a subset of rules presenting good
cooperation.

– Genetic derivation of the weights associated to these
rules (see the weighted rule structure inAppendixA.3).

L1 L2 L3 L4 L5 L6 L7

m M

0.5

Fig. 2 Graphical representation of a possible fuzzy partition
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Fig. 3 Genetic representation and operators’ application scope

To select the subset of rules with the best cooperation
and the weights associated to them (second step), we will
consider a GA coding all of them (rules and weights) in a
chromosome. This algorithm is presented in the following
subsection and will be called as WS.

4.2.2 Step 2: Genetic weight derivation and rule selection
process (WS)

The proposed algorithm uses the classical generational
scheme together with the Baker’s stochastic universal sam-
pling procedure and an elitist mechanism (that ensures to
maintain the best individual of the previous generation) [34].
In this way, the convergence speed is significantly increased.

A double coding scheme (C = C1 + C2) for both rule
selection and weight derivation is used:
– For the C1 part, the coding scheme generates binary-

coded strings of length m (number of single fuzzy rules in
the previously derived rule set). Depending on whether a
rule is selected or not, the alleles ‘1’ or ‘0’ will be respec-
tively assigned to the corresponding gene.

– For the C2 part, the coding scheme generates real-coded
strings of length m. The value of each gene indicates the
weight used in the corresponding rule. They may take any
value in the interval [0, 1].
The initial pool is obtained with the first individual having

all genes with value ‘1’ in both parts, and the remaining indi-
viduals generated at random. In this way, the first individual
represents the initial set of candidate rules.

As said, to evaluate the p-th chromosome we will use the
MSE (see Sect. 4.1). In this case, F(xl) will be computed
following the extended fuzzy reasoning method in order to
consider the rule weights influence.

Due to the different nature of the chromosomes involved
in the rule set definition process, different operators working
on each part, C1 and C2, are required. Taking into account
this aspect, the following operators are considered.

The crossover operator will depend on the chromosome
part where it is applied: in the C1 part, the standard two-point
crossover is used, whilst in the C2 part, the max–min-arith-
metical crossover [24] is considered. In this case, eight off-
spring are generated by combining the two ones from the
C1 part (two-point crossover) with the four ones from the
C2 part (max–min-arithmetical crossover [24]). The two best
offspring so obtained replace the two corresponding parents
in the population.

As regards the mutation operator, it flips the gene value
in C1 and takes a value at random within the interval [0, 1]
for the corresponding gene in C2.

Figure 3 shows the application scope of these operators.

4.3 The WCOR methodology

In [3], we present the Weighted COR (WCOR) methodology,
which includes the weight learning within the original COR
methodology. The proposed method automatically learns the
best consequent label, and its associated weight, correspond-
ing to each possible antecedent combination in the problem
space. This method that also performs rule selection will be
called as WCOR in the experiments.

Since the only change in the classical model structure is
the use of weights (see Appendix A.3), being used to improve
the rule cooperation, the final obtained model preserves a
good interpretability and presents a significantly improved
accuracy, thus showing an appropriate trade-off between both
requirements.

To learn the subset of rules with the best cooperation and
the weights associated to them, different search techniques
could be considered [39]. In this contribution, we will con-
sider a GA for this purpose [15].

With this aim, we include the weight derivation within
the original cooperative rule learning process. The follow-
ing subsections present the WCOR methodology to obtain
weighted cooperative rules.

4.3.1 Learning scheme

Since WCOR involves an extension of the original COR
methodology, it consists of the following steps:
1. Generate a candidate linguistic rule set. This set will be

formed by the rule best covering each example contained
in the input–output data set. The structure of each rule,
RCl , is obtained by taking a specific example, el , and set-
ting each one of the rule variables to the linguistic label
associated to the fuzzy set best covering every example
component.

2. Obtain the antecedents Rant
i of the rules composing the

FRBS and a set of candidate consequents CRant
i

asso-
ciated to them. Firstly, the rules are grouped according
to their antecedents, determining each group a different
antecedent Rant

i . Then, for each group, a set of candidate
consequents CRant

i
is composed from the associated con-

sequents, Bki
, of the grouped rules.

3. Perform a combinatorial search among the sets CRant
i

looking for the combination of consequents and weights
with the best cooperation. For each rule Ri we have:
Rant

i , CRant
i

, and wi ∈ [0, 1].
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Since Rant
i is kept fixed, the problem will involve deter-

mining the consequent and the weight associated to each
rule. Two vectors of size m (number of rules finally ob-
tained) are defined to represent this information, C1 and
C2, where,

C1[i] = ki | Bki
∈ CRant

i
, and

C2[i] = wi, ∀i ∈ {1, . . . , m}, (1)

and considering rule simplification, in which Bki
∈ CRant

i
∪

N .
In this way, the C1 part is an integer-valued vector in
which each cell represents the index of the consequent
used to build the corresponding rule. The C2 part is a real-
valued vector in which each cell represents the weight
associated to this rule. Finally, a problem solution is rep-
resented as follows:

C = C1 C2

Therefore, a search will be performed on the compound
solution space to obtain the consequents and weights with
the best cooperation. The main objective will be to mini-
mize the MSE (see Sect. 4.1). To do that, the GA presented
in the following section will be considered.

4.3.2 Genetic algorithm applied to the WCOR methodology

The said GA performs an approximate search among the can-
didate consequents with the main aim of selecting the set of
consequents with the best cooperation and simultaneously
learning the weights associated to the obtained rules. The
main characteristics of the said algorithm are presented as
follows:

– Genetic approach. An elitist generational GA with the
Baker’s stochastic universal sampling procedure.

– Initial pool. The initial pool is obtained by generating a
possible combination at random for the C1 part of each
individual in the population. And for the C2 part, it is ob-
tained with an individual having all the genes with value
‘1’, and the remaining individuals generated at random
in [0, 1].

– Crossover. The standard two-point crossover in the C1
part combined with the max–min-arithmetical crossover
[24] in the C2 part. Again, eight offspring are generated
by combining the two ones from the C1 part (two-point
crossover) with the four ones from the C2 part (max–
min-arithmetical crossover [24]). The two best offspring
so obtained replace the two corresponding parents in the
population.

– Mutation. The operator considered in the C1 part ran-
domly selects a specific fuzzy subspace (i ∈ {1, . . . ,
m}), at least containing two candidate consequents, and
changes at random the current consequent ki by other
consequent ki

′ such that Bki
′ ∈ CRant

i
and ki

′ �= ki . On
the other hand, the selected gene in the C2 part takes a
random value within the interval [0, 1].

4.4 Weighted double-consequent rule learning

In [4], we propose the use of weighted double-consequent
rules to design fuzzy linguistic models by means of a coop-
erative coevolutionary algorithm coevolving two species, the
subset of rules best cooperating and the weights associated
to them. In the experiments, this method will be called as
DC+WSCC .

With this aim, a more flexible linguistic model structure
that combines the use of double-consequent and weighted
rules was presented, thus having rules with the following
structure:

IFX1 is A1 AND · · · AND Xn is An

THEN Y is {B1, B2} with [w1, w2],

with w1 and w2 being the weights associated to the rules
composed using the consequents B1 and B2, respectively.
Hence, a weighted double-consequent rule can be seen as two
weighted single-consequent rules with the same antecedent
and different consequents.

4.4.1 Learning scheme

To generate linguistic models with this new structure, we
may follow an operation mode based on the ALM methodol-
ogy [13], but including the weight learning (in a similar way
to the learning scheme presented in Sect. 4.2.1):

1. Firstly, two rules, the primary and secondary in impor-
tance, are obtained in each fuzzy input subspace consid-
ering an extension of the Wang and Mendel’s algorithm
[13]. When a fuzzy input subspace have two rules asso-
ciated, both consequents are considered to compose a
double-consequent linguistic fuzzy rule.

2. Then, after decomposing each double-consequent rule
into two simple ones (obtaining an initial set of numer-
ous promising rules), the two following tasks must be
performed

– Selection of a subset of cooperative rules.
– Derivation of the weights for these rules.

Since two genes have to be considered in C1 (rule selec-
tion) and C2 (rule weight learning) for each weighted double-
consequent rule, the search space is significantly increased
respect to the original methodology, making the choice of the
search technique considered crucial. To solve this problem,
the search is accomplished considering an advanced optimi-
zation technique, the cooperative coevolution.

4.4.2 The cooperative coevolutionary algorithm

A coevolutionary algorithm [38] involves two or more spe-
cies (populations) that permanently interact among them by a
coupled fitness. Thereby, in spite of each species has its own
coding scheme and reproduction operators, when an individ-
ual must be evaluated, its goodness will be calculated consid-
ering some individuals of the other species. This coevolution
makes easier to find solutions to complex problems.
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As we have seen, the problem that concerns us can be eas-
ily decomposed into two subtasks, the rule selection and the
weight derivation. Therefore, it can be solved by coevolv-
ing two species cooperating to form the complete solution
by learning a set of weighted rules. In the following subsec-
tions, the main characteristics of the proposed cooperative
coevolutionary algorithm are presented.

Interaction scheme between species. The objective will be
to minimize the well known MSE (see Sect. 4.1) considering
that:

MSEij = 1

2 ·N
N∑

l=1

(Fij (x
l)− yl)2 ,

with N being the number of training data, Fij (x
l) being the

output inferred from the model obtained by combining the
individuals i and j of the species 1 and 2 when the input xl

is presented, and yl being the known desired output.
Thus, individuals in the species 1 and 2, are respectively

evaluated with the fitness functions f1 and f2, defined as
follows:

f1(i) = min
j∈R2∪P2

MSEij and f2(j) = min
i∈R1∪P1

MSEij ,

with i and j being individuals of species 1 and 2, respec-
tively, R1 and R2 being the set of the fittest individuals in
the previous generation of the species 1 and 2, respectively,
and P1 and P2 being individual sets selected at random from
the previous generation of the species 1 and 2, respectively.
The combined use of these kinds of sets make the algorithm
have a trade-off between exploitation (R1|2) and exploration
(P1|2). The cardinalities of the sets R1|2 and P1|2 are previ-
ously defined by the designer.

Species 1: Fuzzy rule selection. For the species 1, we will
use the genetic rule selection method considered in [13]. The
coding scheme generates binary-coded strings of length m
(number of single-consequent rules in the previously derived
rule set). Depending on whether a rule is selected or not, the
alleles “1” or “0” will be respectively assigned to the cor-
responding gene. Thus, a chromosome C

p

1 will be a binary
vector representing the subset of rules finally obtained.

The whole initial pool is generated at random but one indi-
vidual, which represents the complete previously obtained
rule set. For this species, the standard two-point crossover
operator is used. As regards the mutation operator, it flips the
value of the gene.

Species 2: Weight derivation. The coding scheme generates
real-coded strings of length m. The value of each gene indi-
cates the weight used in the corresponding rule. They may
take any value in the interval [0, 1]. Now, a chromosome C

p

2
will be a real-valued vector representing the weights associ-
ated to the fuzzy rules considered.

The initial pool for this species is generated with a chro-
mosome having all the genes with the value “1”, and the
remaining individuals taking values randomly generated

within the interval [0, 1]. The max–min-arithmetical cross-
over operator [24] is considered. As regards the mutation
operator, it simply involves changing the value of the selected
gene by other value obtained at random within the interval
[0, 1].

4.5 Weighted hierarchical rule learning

In [2], the hybridization of both hierarchical and weighted lin-
guistic fuzzy rules to derive hierarchical systems of weighted
linguistic rules (HSWLRs) is presented. In this work, the
structure and inference system of the HSWLR, and a GA-
based process to learn these kinds of improved linguistic
models, are proposed. This method that also performs rule
selection will be called HSWLR in the experiments.

4.5.1 Weighted hierarchical knowledge base

An HKB is composed of a set of layers, and each layer is
defined by its components in the following way:

layer(t, n(t)) = DB(t, n(t))+ RB(t, n(t)),

with n(t) being the number of linguistic terms in the fuzzy
partitions of layer t , DB(t, n(t)) being the data base which
contains the linguistic partitions with granularity level n(t) of
layer t (t-linguistic partitions), and RB(t, n(t)) being the rule
base formed by those linguistic rules whose linguistic vari-
ables take values in the former partitions (t-linguistic rules).
For simplicity in the learning methodology, the following
notation equivalences are established: DB(t, n(t)) ≡ DBt

and RB(t, n(t)) ≡ RBt .
The number of linguistic terms in the partitions of layer

t will be defined in the following way (using strong fuzzy
partitions):

n(t) = (n(1)− 1) · 2t−1 + 1

The main purpose of developing an hierarchical rule base
(HRB) is to model the problem space in a more accurate way.
To do so, those linguistic rules from RB(t, n(t)) that model
a subspace with bad performance are expanded into a set of
more specific linguistic rules, which become their image in
RB(t+1, 2 ·n(t)−1). This set of rules models the same sub-
space that the former one and replaces it.As a consequence of
the previous definitions, we could now define the Weighted
HKB (WHKB) as the union of every layer t :

WHKB = ∪t layer(t, n(t))+ ∪tW
t ,

with Wt being the set of weights associated to the rules from
layer t . We should notice that these weights are obtained over
the whole HRB (and not over the isolated layers) since they
must consider the way in which all the rules interact. There-
fore, the fuzzy reasoning must be extended as in the case of
weighted linguistic rules, considering the matching degree
of the rules fired (see Appendix A.3). However, the hybrid-
ization of the said approaches to derive two-layer HSWLRs
maintains a good interpretability level.
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4.5.2 A Two-level HSWLR Learning Algorithm

In this subsection, we present the two-level HSWLR-LM to
generate two-layer WHKBs [16]. To do so, we use Wang and
Mendel’s method —WM— [47] based on the existence of a
set of input-output training data E = {

e1, ..., el, ..., eq
}

with
el = (exl

1, . . . , ex
l
m, eyl), and a previously defined DB1. The

measure of error used in the algorithm is the MSE(E, RB)
(see Sect. 4.1). The algorithm basically consists of the fol-
lowing steps:
1. RB1 generation. Generate the rules from DB1 by means

of the WM method: RB1 =WM(DB1, E).
2. RB2 generation. Generate RB2 from RB1, DB1 and DB2.

(a) Calculate the error of RB1: MSE
(
E, RB1

)
.

(b) Ditto for each 1-linguistic rule: MSE

(
Ei, R

n(1)
i

)
,

with Ei being a set of the examples matching the ith
rule antecedents to degree τ ∈ (0, 1].

(c) Select the 1-linguistic rules with bad performance
which will be expanded:1

IF MSE(Ei, R
n(1)
i ) ≥ α ·MSE(E, RB1)T HEN

R
n(1)
i ∈ RB1

bad

ELSE

R
n(1)
i ∈ RB1

good .

(d) Create2 DB2: DB2
xj

and DB2
y .

(e) Select the 2-linguistic partition terms from DB2 that
δ-intersect the ones of the bad performance 1-linguis-
tic rules: I (R

n(1)
i ), ∀ R

n(1)
i ∈ RB1

bad, where δ ∈
[0, 1] is a cross level of “significant intersection”.

(f) Extract a candidate set of L 2-linguistic rules:
CLR(R

n(1)
i ) = WM(I (R

n(1)
i ), Ei)

=
{
R

2·n(1)−1
i1

, ..., R
2·n(1)−1
iL

}
.

3. Summarization. Obtain a joined set of candidate linguis-
tic rules (JCLR), performing the union of the group of
the new generated 2-linguistic rules and the former good
performance 1-linguistic rules:

JCLR = RB1
good ∪ (∪iCLR(R

n(1)
i )), R

n(1)
i ∈ RB1

bad.

More than one copy of a rule in the same layer can be pro-
duced as a consequence of the generation process (Steps
1, 2 and 3). This fact can be interpreted as a weight on
that rule by using the extended fuzzy reasoning model
presented in Appendix A.3 with wi being the number of
times that the ith rule is repeated. In this work, we will
consider this approach (which theoretically should obtain
equivalent models with the same accuracy level). To do
so, repeated rules are excluded of the HKB by obtaining
an equivalent HSWLR without them:
WHRB = (Extract repeated(JCLR)+Weights).

1 The expansion factor α may be adapted in order to have more or
less expanded rules.

2 DBt is referred to as DBt
xj

(j = 1, ..., m), meaning that it contains
the t-linguistic partition where the input variable xj takes values, and
as DBt

y for the output variable y.

To obtain an equivalent system without repeated rules,
we maintain a single instance for each rule, with wi be-
ing the sum of the weights of the corresponding repeated
rules. Other equivalent HSWLR could be found with
wi ∈ [0, 1] by means of a normalization process over
the weights.

4. Genetic weight derivation and rule selection process.
Simplify the WHRB by removing the unnecessary rules
from it and learning the weights associated to those rules
to obtain a WHRB with good cooperation. To do so, the
algorithm presented in Sect. 4.2.2 is used considering the
inclusion of the initial weights in the first individual and
considering the following fitness function (penalizing an
excessive number of rules):

F(Cj ) = w1 ·MSE(Cj )+ w2 ·Nj

rules

with N
j

rules being the number of rules of that WHRB,
and with w1 and w2 being weighting coefficients defining
the relative importance of each objective. In the present
experiments, these coefficients are initialized as follows:

w1 = 1.0; w2 = 0.1 · MSEinitial

Ninitial rules

4.6 Data base tuning and linguistic modifiers learning

A tuning process based on GAs was introduced in [11] to
jointly fitting the membership functions by changing their
basic and additional parameters and fitting the rule surface
structure using linguistic hedges. The tuning involves starting
from a previous knowledge base (rule base + data base) de-
rived by the Wang and Mendel’s algorithm [47]. This method
will be called as WM+PAL in the experiments.

The following sections introduce the genetic process and
its components.

4.6.1 Genetic process

This proposal of FRBS genetic tuning is characterized as fol-
lows:

1. The objective (fitness function) will be to minimize the
well-known MSE (see Sect. 4.1).

2. A threefold coding scheme (CP + CA + CL) is used.
CP will encode the basic membership function parame-
ters, CA the α membership function parameters (i.e., the
non-linear scaling factors), and CL the linguistic hedges
included in the different rules. Therefore, CP and CA are
used to tune the semantics of the deep structures and CL

to adjust the surface structures. Fig. 4 graphically shows
such a scheme.

– For the CP part, a 3-tuple of real values for each tri-
angular membership function is used, thus being the
data base encoded into a real-coded chromosome built
by joining the membership functions involved in each
variable fuzzy partition. A variation interval is defined
for each membership function basic parameter. It will
be discussed in next subsection.
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Fig. 4 Coding scheme for tuning Fuzzy rule-based systems (FRBSs) with n being the number of input variables, Tij being the j th linguistic term
of the ith variable (with n + 1 being the output variable), ti the number of linguistic terms of the ith variable, and m the number of linguistic
fuzzy rules

– For the CA part, a real-coded chromosome that en-
codes the value of the additional parameter α for each
membership function is used. Each gene can take any
value in the interval [−1, 1] with the following map-
ping between alleles and actual value:

cA
ij ∈ [−1, 0]←→ α ∈ [0, 1],

cA
ij ∈ [0, 1]←→ α ∈ [1, 5],

with cA
ij being the gene associated to the membership

function for the j th linguistic term of the ith variable.
– For the CL part, the coding scheme generates inte-

ger-coded strings of length m · (n+ 1) (with m being
the number of rules and n being the number of in-
put variables). Each gene can take any value in the set
{0, 1, 2} with the following correspondece to the lin-
guistic hedge used:

cL
ij = 0 ←→ the “very” linguistic hedge,

cL
ij = 1 ←→ no linguistic hedge,

cL
ij = 2 ←→ the “more-or-less” linguistic hedge,

with cL
ij being the gene associated to the linguistic term

used in the j th variable of the ith rule.

4.6.2 Genetic components

The genetic tuning method has the following components:

– When generating the initial population, some of the orig-
inal information in the initial knowledge base will be
mixed up with random values.
To include the original values in the CP part, the actual
values will be directly included.
For the CA part, the original values will depend on whether
these parameters were used in the initial knowledge base
or not. If so, the α parameters will be encoded following
the said scheme; if not, the allele 0 (which means α = 1)
will be used.
For the CL part, the modifiers used in the initial knowl-
edge base are encoded with the said scheme. If no lin-
guistic hedges were previously considered, alleles 1 will
be used.
The following four steps are considered to initialize the
population:

1. A chromosome that represents the initial data base
and rule set is included. Therefore, genes in CP , CA,
and CL parts will directly encode the values corre-
sponding to the original knowledge base.

2. A third of the population is generated with the CP

part at random (within the variation interval for each
gene) whilst the alleles in CA and CL will encode the
original values.

3. Another third of the population is generated with orig-
inal values in the CP , alleles at random (within the
interval [−1, 1]) in the CA, and original values in the
CL part.

4. The remaining chromosomes are generated with the
original values of the data base in the CP and CA parts,
and alleles at random (within the set {0, 1, 2}) in the
CL part.

The crossover operator will depend on the chromosome
part where it is applied:

– In CP and CA parts, the max-min-arithmetical cross-
over is considered [24].

– In the CL part, the standard two-point crossover is
used.

After recombining each part, the two best chromosomes
among the eight (four different CP and CA parts com-
bined with two different CL parts) descendants obtained
will be selected to replace their parents.

The mutation operator will also depend on the chro-
mosome part where it is applied:

– In CP and CA parts, the Michalewicz’s non-uniform
mutation operator within the interval allowed for each
gene is considered.

– In the CL part, the mutation operator changes the gene
to the allele 1 when a gene with alleles 0 or 2 must
be mutated, and randomly to 0 or 2 when a gene with
allele 1 must be mutated.

A generational GA with the Baker’s stochastic universal
sampling procedure together with elitism is considered.

4.7 Rule selection, data base tuning and linguistic modifiers

An extension of the previous approach is also presented in [11].
In this case, the previous hybrid approach is combined with
a rule selection by allowing an additional binary vector CS

that determines when a rule is selected or not (alleles ‘1’
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and ‘0’, respectively). The remaining components are con-
sidered as in the previous case. This method will be called as
WM+PALS in the experiments.

4.8 COR learning, data base tuning and linguistic modifiers

In [1], three different mechanisms to improve the accuracy of
linguistic FM are jointly considered: COR (linguistic rule set
learning with COR), PA (learning the membership function
parameters and non-linear scaling factors), and L (learning
the linguistic hedges used for each linguistic variable in each
linguistic rule) improvements. This method will be called as
CORPAL in the experiments (and also performs rule selec-
tion).

To develop these hybridizations, two main mechanisms
are considered. On the one hand, we may distinguish between
sequential or simultaneous learning. When several compo-
nents of the FRBS are designed, we may opt to make a
sequential learning by dividing it into two or more stages,
each of them performing a partial or complete derivation of
the linguistic models. Other possibility is to consider a simul-
taneous learning that directly obtain the whole model.

Different combinations are regarded by differentiating
between sequential or simultaneous learning and between ba-
sic GAs or cooperative coevolution. Among all the possible
combinations we will exclusively consider the simultaneous
learning with simple GAs. It involves a process to learn both
fuzzy rules and membership functions by including the three
improvement mechanisms in a single chromosome.

As in the previous subsection, this approach can be con-
sidered as an extension of that presented in Sect. 4.6, by
allowing an additional integer vector CC that represents the
index of the consequent used to build the corresponding rule
(C1 part of the algorithm presented in Sect. 4.3.1 considering
the same operators).

5 Experiments and analysis of results

To evaluate the goodness of the proposed techniques, sev-
eral experiments have been carried out considering two real-
world problems [14]. The first of them presents strong non-
linearities and the second considers four input variables, and
therefore a large search space. In order to see the advantages
of the combined action of the studied basic approaches, two
different studies have been performed: only considering the
basic approaches to improve the system accuracy and consid-
ering the different hybrid approaches to combine them (the
approaches reviewed in this work). Table 2 shows a short
description of the methods considered for this study.

From now on, any reference to an application of these
methods is represented by the following expression:

method(r[, q])

with r (and q in the case of the hierarchy-based methods) be-
ing the granularity level of the linguistic partitions used in the

method. At this point we should remark that, the main aim of
this paper is to analyze the good cooperation of the basic im-
proved approaches when they are combined, and not to estab-
lish a competitive analysis of the said hybrid approaches.
Therefore, although the granularity considered for the stud-
ied approaches is the same in practically all of them, two of
them (WM+WS and DC+WSCC) consider a higher granular-
ity to solve the first problem since the obtained improvements
are better in that case.

With respect to the fuzzy reasoning method used, we have
selected the minimum t-norm playing the role of the impli-
cation and conjunctive operators, and the center of gravity
weighted by the matching strategy acting as the defuzzifica-
tion operator.

Finally, the following values have been considered for the
parameters of each method:3

– Genetic approaches: 61 individuals, 2,000 generations,
0.6 as crossover probability, 0.2 as mutation probability
per chromosome, and 0.35 for the a factor in the max–
min-arithmetical crossover.

– Hierarchical Generation: 0.1 as δ − (2 · n − 1)-linguistic
partition terms selector, 0.5 as τ : used to calculate Ei , and
1.1 as α: used to decide the expansion of a rule.

5.1 Description of the problems considered

As said, two different real-world problems [14] are solved
considering the proposed hybrid approaches. Both problems
will be introduced in the following.

5.1.1 PROBLEM I: Estimating the length of low voltage
lines

For an electric company, it may be of interest to measure the
maintenance costs of its own electricity lines. These estima-
tions could be useful to allow them to justify their expenses.
However, in some cases these costs cannot be directly calcu-
lated. The problem comes when trying to compute the main-
tenance costs of low voltage lines and it is due to the fol-
lowing reasons. Although maintenance costs depend on the
total length of the electrical line, the length of low voltage
lines would be very difficult and expensive to be measured
since they are contained in little villages and rural nuclei. The
installation of these kinds of lines is often very intricate and,
in some cases, one company can serve to more than 10,000
rural nuclei.

Due to this reason, the length of low voltage lines can-
not be directly computed. Therefore, it must be estimated
by means of indirect models. The problem involves relat-
ing the length of low voltage line of a certain village with

3 With these values we have tried to ease the comparisons selecting
standard common parameters that work well in most cases instead of
searching very specific values for each method. Moreover, we have set a
large number of generations in order to allow the compared algorithms
to achieve an appropriate convergence. No significant changes were
achieved by increasing that number of generations.
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Table 2 Methods considered for comparison

Method Ref. Sect. Description

Classical Simple Approach
WM [47] — A well-known ad hoc data-driven method to obtain classical rules

Basic Refinement Approaches
WM+S [5] — (Rule selection) WM+WS C1 part
WM+W [5] — (Rule weight learning) WM+WS C1 part
COR [8] — (Rule cooperation + rule selection) WCOR C1 part
DC+S, ALM [13] — (double-consequents + rule selection) ALM algorithm
HSLR [16] — (hierarchical rules + rule selection) HSLR algorithm
WM+P [11] — (MF tuning) WM+PAL CP part
WM+AL [11] — (NL scaling factors + linguistic hedges) WM+PAL CA and CL parts

Hybrid Improved Approaches
WM+WS [5] 4.2 (Rule weights + rule selection)
WCOR [3] 4.3 (Rule cooperation + rule weights + rule selection)
DC+WSCC [4] 4.4 (Double-consequents + rule weights + rule selection)
HSWLR [2] 4.5 (Hierarchical rules + rule weights + rule selection)
WM+PAL [11] 4.6 (MF tuning + NL scaling factors + linguistic hedges)
WM+PALS [11] 4.7 (MF tuning + NL scaling factors + linguistic hedges + rule selection)
CORPAL [1] 4.8 (MF tuning + NL scaling factors + linguistic hedges + rule cooperation + rule selection)

MF Membership functions; NL Non-linear
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Fig. 5 a (X1, Y ) and (X2, Y ) dependency in the training data. b (X1, Y ) and (X2, Y ) dependency in the test data

the following two variables: the radius of the village and the
number of users in the village [14]. We were provided with
the measured line length, the number of inhabitants and the
mean distance from the center of the town to the three farthest
clients in a sample of 495 rural nuclei.

In order to evaluate the models obtained from the different
methods considered in this paper, this sample has been ran-

domly divided into two subsets, the training set with 396 ele-
ments and the test set with 99 elements, 80 and 20%, respec-
tively. The existing dependency of the two input variables
with the output variable in the training and test data sets is
shown in Fig. 5 (notice that they present strong non-linear-
ities). Both data sets considered are available at http://
decsai.ugr.es/∼casillas/fmlib/.
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5.1.2 PROBLEM II: Estimating the maintenance costs of
medium voltage lines

Estimating the maintenance costs of the optimal installation
of medium voltage electrical network in a town [14] is an-
other interesting electrical problem. Clearly, it is impossi-
ble to obtain this value by directly measuring it, since the
medium voltage lines existing in a town have been installed
incrementally, according to its own electrical needs in each
moment. In this case, the consideration of models becomes
the only possible solution. Moreover, the model must be able
to explain how a specific value is computed for a certain
town. These estimations allow electrical companies to jus-
tify their expenses. Our objective will be to relate the main-
tenance costs of medium voltage line with the following four
variables: sum of the lengths of all streets in the town, to-
tal area of the town, area that is occupied by buildings, and
energy supply to the town. We will deal with estimations
of minimum maintenance costs based on a model of the
optimal electrical network for a town in a sample of 1,059
towns.

To develop the different experiments in this contribu-
tion, the sample has been randomly divided into two subsets,
the training and test ones, with an 80%-20% of the origi-
nal size respectively. Thus, the training set contains 847 ele-
ments, whilst the test one is composed of 212 elements. These
data sets used are available athttp://decsai.ugr.es/
∼casillas/fmlib/.

5.2 Results and analysis

The results obtained by the methods analyzed are shown in
Table 3 for both problems, where #R stands for the number of
rules, and MSEtra and MSEtst for the error obtained over the
training and test data, respectively. The best results are shown
in boldface for each problem. These results were obtained
for an AMD K7 (Athlon) with clock rate of 1500 MHz and
256 MB of main memory. The run times for the different
algorithms in the first problem do not exceeded 20 min and,
in the second problem, they never exceed 60 min.

In the following paragraphs we perform an analysis of
the results from the accuracy and simplicity point of view.
This analysis will be made for each approach respect to its
related basic approaches. In this way, Table 4 presents the
improvement rates obtained by the studied hybrid methods
respect to their related basic ones in the said problems. This
information will help us to analyze the behavior of the pro-
posed approaches, showing how they get the desired trade-off
between interpretability (simplicity) and accuracy (inexis-
tence of error).

Taking into account the information presented in Tables 3
and 4, it seems that those hybrid approaches based on tuning
at rule level (weights combined with rule selection) learns
the simplest models in both problems, specially in problem
II which presents a higher dimensionality. Furthermore, these
approaches show an appropriate balance between approxima-

tion and generalization. Methods performing tuning at rule
level are:

(a) WM-WS:This method presents interesting improvements
in both precision and simplicity respect to the basic WM.
It shows a similar precision to WM-W but a similar sim-
plicity to WM-S, inheriting the best characteristics of
both approaches (obtaining accurate but simpler mod-
els).

(b) WCOR: The results obtained significantly improve those
from WM, WM+W and COR, even reducing the number
of rules respect to them. It is due to the use of weights that
indicates the appropriate interaction level among rules,
provoking slight changes in the consequents respect to
the original COR methodology and improving the coop-
eration among the rules so obtained.

(c) DC+WSCC : In this case, the results obtained are better
for the second problem, overfitting the model obtained
for the first problem. However, also in this case (prob-
lem I), the model obtained improves those obtained from
WM and WM+W, reducing the number of rules in these
models. Respect to DC+S, similar results are presented
in the first problem (with only one more rule) but signifi-
cant improvements are obtained in the case of the second
problem. Notice that, the obtained FRBS only contains
four and five double-consequent weighted rules (prob-
lems I and II), maintaining the desired interpretability.

(d) HSWLR: In the first problem, this approach presents
the best trade-off between accuracy and interpretabil-
ity, obtaining only nine rules and presenting the most
accurate results. In the second problem, without con-
sidering those approaches performing tuning of the data
base (WM+PAL, WM+PALS and CORPAL), the best
results are obtained by HSWLR, which would present
the best trade-off between interpretability (with only 47
rules) and accuracy (about a 30% better than WM-W and
similar results to HSLR).

A graphical representation of the decision table of the FRBS
obtained by HSWLR is presented in Fig. 6. Each cell of the
table represents a fuzzy subspace and contains its associated
output consequent(s), i.e., the correspondent label(s) together
with its(their) respective rounded rule weight(s). The abso-
lute importance weight for each fuzzy rule has been graph-
ically showed by means of the grey color scale, from black
(1.0) to white (0.0). In this way, we can easily see the impor-
tance of a rule with respect to their neighbor ones which could
help the system experts to identify important rules.

On the other hand, those approaches based on the data
base tuning get the fittest models in terms of approximation
but, in some cases, the obtained models are overfitted (as in
the case of the first problem) obtaining poor results. How-
ever, even in these cases, they still improve the behavior of
their related basic approaches and present the best results in
the second problem. Methods performing data base tuning
are:

(a) WM+PAL: This method gets very good results respect to
WM and its related basic approachesWM+P andWM+AL
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Table 3 Results obtained in the electrical estimation problems

Problem I: low voltage lines Problem II: medium voltage lines

Method #R← (S+DC) MSEtra MSEtst Method #R ← (S+DC) MSEtra MSEtst

WM(5) 13 298450 282029 WM(5) 66 71294 80934
WM(7) 24 222654 239962
WM+S(7) 17 214177 265179 WM+S(5) 43 57025 59942
WM+W(5) 13 242680 252483 WM+W(5) 66 33639 33319
WM+W(7) 24 191577 221583
COR(5) 13 221569 196808 COR(5) 66 67237 69457
DC+S(7), ALM 17 (14+ 3) 155898 178534 DC+S(5) 47 (44+ 3) 51714 58806
HSLR(3,5) 11 (10+ 1) 180057 168211 HSLR(3,5) 131 (64+1+66R) 23525 22328
WM+P(5) 13 179126 203429 WM+P(5) 66 23440 31988
WM+AL(5) 13 230794 251068 WM+AL(5) 66 19665 23425

WM+WS(7) 20 191565 219370 WM+WS(5) 43 32476 32638
WCOR(5) 12 161414 161511 WCOR(5) 43 29417 31019
DC+WSCC(7) 18 (14+ 4) 144290 176057 DC+WSCC(5) 54 (49+ 5) 24961 28225
HSWLR(3,5) 9 163406 156434 HSWLR(3,5) 47 (45+ 2) 20425 22873
WM+PAL(5) 13 157264 171825 WM+PAL(5) 66 11464 20724
WM+PALS(5) 10 156943 197999 WM+PALS(5) 64 9896 13617
CORPAL(5) 16 138935 188797 CORPAL(5) 50 4751 8422

S Simple rules; DC Double Consequent rules; R Repeated rules

Table 4 Improvement percentages respect to the related basic approaches in Problems I and II

Methods Problem WM WM+S WM+W COR DC+S HSLR WM+P WM+AL

WM+WS P I 17,14,9 −18,11,17 17,0,1 — — — — —
P II 35,54,60 0,43,46 35,3,2 — — — — —

WCOR P I 8,46,43 — 8,33,36 8,27,18 — — — —
P II 35,59,62 — 35,13,7 35,56,55 — — — —

DC+WSCC P I 25,35,27 — 25,25,21 — −5,7,1 — — —
P II 18,65,65 — 18,26,15 — −14,52,52 — — —

HSWLR P I 31,45,45 — 31,33,38 — — 18,9,7 — —
P II 29,71,72 — 29,39,31 — — 64,13,-2 — —

WM+PAL P I 0,47,39 — — — — — 0,12,16 0,32,32
P II 0,84,74 — — — — — 0,51,35 0,42,12

WM+PALS P I 23,47,30 — — — — — 23,12,3 23,32,21
P II 3,86,83 — — — — — 3,58,57 3,50,42

CORPAL P I −23,53,33 — — −23,37,4 — — −23,22,7 −23,40,25
P II 24,93,90 — — 24,93,88 — — 24,80,74 24,76,64

Each cell in the table represents the improvement percentages (with format: % #R, % MSEtra, % MSEtst) of the proposed hybrid approaches
respect to their related basic ones in problems I and II. These percentages are rounded due to space restrictions (see the first column–row
where values are: around a 17% of reduction in the number of rules and around a 14 and 9% of improvement in training and test respect to
the values obtained by WM in problem I).

in both problems. However, it overfits the models ob-
tained and maintains the same number of rules of the
classical approach (13 and 66 rules in problems I and II,
respectively). In any case, the generalization error of the
model obtained for the second problem is very good re-
lated to those approaches only considering tuning at rule
level.
Figure 7 graphically depicts the tuned data base and rule
base obtained by the WM+PAL for a specific data set par-
tition of the electrical problem. In this figure we can see
how the combined use of basic and additional member-
ship functions parameters does not disturb the legibility
of the data base finally obtained.

(b) WM+PALS: This approach shows a similar behavior to
WM+PAL with two main differences. By allowing rule

selection the models obtained are simpler than those ob-
tained by WM+PAL which, in the case of the second
problem (medium complexity) avoids the overfitting and
produces significant improvements respect to its related
basic models.

(c) CORPAL:Again, this method presents better results than
those obtained by WM, COR, WM+P and WM+AL. In
the case of the first problem, the model obtained is over-
fitted, presenting even more rules that in the classical
approach. However, CORPAL presents the best results
of problem II, removing ten rules respect to the classical
approach and, therefore, presenting the best trade-off be-
tween accuracy and interpretability. In this problem, this
approach obtains improvements over the 85% in train-
ing and test respect to the original COR methodology



730 R. Alcalá et al.

MSE-tra : 163406

#R: 9

MSE-tst : 156434 HSWLR

l2 - 0.3

l3 - 0.4

l2 - 0.9

l2 - 0.2

l3 - 0.6

l5 - 0.5

L1 - 0.8

L3 - 0.9

L3 - 0.0

x2

L1

L3

L5

L1 L3 L5

x1

#R l1 l2 l3 l4 l5x2#R
x1

3 6

l1

l4

l3

l5

l2

Fig. 6 Decision table of the FRBS obtained from HSWLR(3,5)

and over the 64% in training and test respect to WM+P
and WM+AL.

To summarize, we can say that all the hybrid approaches
show more accurate results respect to its related basic ap-
proaches, obtaining FRBS with an acceptable interpretability
and, in several cases, even simpler than the ones obtained by
the basic approaches. Moreover, notice that:

– Those approaches only performing tuning at rule level
(approaches considering weights in combination with rule
selection) seems to present a better behavior in these kinds
of problems presenting strong non-linearities (as in the
case of the problem I). Moreover, they usually get the
simpler models in terms of number of rules.

– Those approaches based on the data base tuning have pre-
sented the better results in the second problem (problem
II), showing the good behavior of these kinds of tech-
niques in problems of medium complexity (having not so
strong non-linearities) with large search spaces. In any
case, notice that the consideration of techniques acting
on the RB, such as the rule selection (PALS) and the
rule cooperation methodology (CORPAL), shows a bet-
ter behavior, specially in generalization, than the one only
considering tuning of the parameters, scaling factors and
linguistic edges (PAL).

6 Concluding remarks

In this work, we present a short study of how some basic
refinement approaches can be combined to obtain new hybrid
improved approaches presenting a better trade-off between
interpretability and accuracy. We propose the use of seven
hybrid approaches to develop accurate FRBSs, which have
been tested considering two real-world problems.All the con-
sidered hybrid approaches have shown more accurate results
respect to its related basic approaches, obtaining FRBS with

an acceptable interpretability and, in many cases, even sim-
pler than the ones obtained by the basic approaches.

In view of the obtained results, the proposed approaches
seems to inherit the accuracy and interpretability characteris-
tics of their involved basic approaches, obtaining simple but
powerful fuzzy linguistic models. This is due to the following
reasons:

– A smart hybridization has been performed selecting differ-
ent basic approaches which present complementary char-
acteristics. In this way, we have made use of the ability of
these approaches to induce a better cooperation among
the different rules in an adequate way and, therefore, the
accuracy of the obtained FRBSs has been improved.

– Before combining the different approaches, there is a
need to take into account the interpretability presented
by the final obtained model. Following this premise, the
interpretability has been maintained to a good level.

A Basic refinement approaches

A.1 Rule selection

Rule selection involves obtaining an optimized subset of rules
from a previous rule set by selecting some of them. We may
find several methods to do so with different search algorithms
in the specialized literature [12,13,28].

In [30], an interesting heuristic rule selection procedure
is proposed where, by means of statistical measures, a rele-
vance factor is computed for each fuzzy rule composing the
linguistic FRBSs to subsequently select the most relevant
ones. The philosophy of ordering the rules with respect to
an importance criterion and selecting a subset of them seems
similar to the orthogonal transformation-methods used for
TSK-type FRBSs [49,50]. Another heuristic rule selection
procedure is proposed in [48].
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Fig. 7 Knowledge base generated by the WM+PAL method for the electrical problem. Sst Smallest; S Small; M Medium; L Large; Lst Largest;
m-l for more-or-less
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A.2 Sophisticated rule base learning methods: COR

In this case, the improvements arise as an effort to exploit the
accuracy ability of linguistic FRBSs by exclusively focus-
ing on the rule base design. In this case, the data base and
the model structure keep invariable, thus resulting in the
highest interpretability. Usually, all these improvements have
the final goal of enhancing the interpolative reasoning the
FRBS develops. This is one of the most interesting features
of FRBSs and plays a key role in their high performance, be-
ing a consequence of the cooperative action of the linguistic
fuzzy rules.

The original COR method proposed in [8] follows the
primary objective of inducing a better cooperation among
the linguistic rules. To do that, the rule base design is made
using global criteria that consider the action of the different
rules jointly. It is attained by means of a strong, smart reduc-
tion of the search space. The main advantages of the COR
methodology are its capability to include heuristic informa-
tion, its flexibility to be used with different metaheuristics,
and its easy integration within other derivation processes.

A.3 Weighted rules

This approach involves using an additional parameter for
each rule that indicates its importance degree in the inference
process, instead of considering all rules equally important as
in the usual case. Thus, the FRBS presents more flexibility to
improve the interpolative reasoning and, therefore, the model
performance [18,37]. The rule structure will be the following
one:

IF X1 is A1 AND · · · AND Xn is An

THEN Y is B with [w] ,

with w being the real-valued rule weight. Following this ap-
proach, some changes must be made to the classical inference
system must be made to consider the weighted action of each
rule.

The operator with, which attaches a weight to a rule, may
be defined in different ways. One of the most usual options is
to multiply the matching degree of the antecedent by the cor-
responding weight before applying the implication operator,
which relates antecedent and consequent. Another possibil-
ity is to change the conclusion derived from the implication
operator according to the corresponding weight (e.g., chang-
ing the support of the obtained fuzzy set).

These weights are usually considered to handle inconsis-
tencies [18]. Moreover, some proposals make use of them
to improve the model accuracy with an automatic learning
of weights using different techniques such as heuristic meth-
ods [27,42], gradient descent processes [37], or evolutionary
algorithms [4].

A.4 Double-consequent rules

This approach involves allowing the rule base to present rules
where each combination of antecedents may have two conse-
quents associated when it is necessary to improve the model
accuracy [13,19,36]. It is clear that this will improve the
capability of the model to perform the interpolative reasoning
and, thus, its performance. The rule structure obtained will
be as follows:

IF X1 is A1 AND · · · AND Xn is An

THEN Y is {B1,B2}.
Since each double-consequent fuzzy rule can be decom-

posed into two different rules with a single consequent, the
usual plain fuzzy inference system can be applied. The only
restriction imposed is that the defuzzification method must
consider the matching degree of the rules fired. For exam-
ple, the center of gravity weighted by the matching degree
defuzzification strategy may be used.

When using two consequents per rule, the interpretation
of the action performed by every rule may be confusing to
some extent. However, we should note this fact does not con-
stitute an inconsistency from the linguistic FM point of view
but only a shift of the main labels making the final output
of the rule lie in an intermediate zone between both conse-
quents. Indeed, let us suppose that a specific combination of
antecedents, “X1 is A1 AND · · · AND Xn is An,” has two
different consequents associated, B1 and B2. The resulting
double-consequent rule may be interpreted as follows [13]:

IF X1 is A1 AND . . . AND Xn is An

THEN Y is between B1 and B2 .

A.5 Hierarchical knowledge bases

A deeper change in the model structure involves considering
HKBs. In this case, the HKB is composed of a set of lay-
ers where each one contains linguistic partitions with differ-
ent granularity levels (a layer of the hierarchical data base)
and linguistic rules whose linguistic variables take values in
these partitions (a layer of the HRB) [16]. Different learning
methods have been proposed to design this extended model
structure.

The method proposed in [28] obtains a HKB by creating
several hierarchical linguistic partitions with different gran-
ularity levels, generating the complete set of linguistic rules
in each of these partitions, taking the union of all of these
sets, and finally performing a genetic rule selection process
on the whole rule set.

The method introduced in [16] uses an inductive linguistic
rule generation method to progressively refine the controver-
sial regions (those covered by linguistic fuzzy rules with a
bad performance) by defining new rules in a deeper layer.
The obtained HRB is compacted by a subsequent selection
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process. Therefore, this latter method follows a descending
approach refining the regions by increasing the granularity.

A.6 Learning of membership functions

Basic linguistic FM methods are exclusively focused on deter-
mining the set of fuzzy rules composing the rule base of the
model. In these cases, the membership functions are usu-
ally obtained from expert information (if available) or by a
normalization process and it remains fixed during the rule set
derivation process.

However, the automatic design of the membership func-
tions has shown to be a very suitable mechanism to increase
the approximation capability of the linguistic models. Gen-
erally speaking, the procedure involves either defining the
most appropriate shapes for the membership functions that
give meaning to the fuzzy sets associated to the considered
linguistic terms or determining the optimum number of lin-
guistic terms used in the variable fuzzy partitions, i.e., the
granularity.

In this contribution, we will focus on learning the mem-
bership functions by defining their parameters and using non-
linear scaling factors to vary their shapes (these shapes will
have a high influence in the FRBS performance):
– Learning/tuning the membership function parameters The

most common way to derive the membership functions is
to change their definition parameters [12,23]. For exam-
ple, if the following triangular-shape membership func-
tion is considered:

µ(x) =






x−a
b−a

, if a ≤ x < b,
c−x
c−b

, if b ≤ x ≤ c,

0, otherwise.

changing the basic parameters (a, b, and c) will vary the
shape of the fuzzy set associated to the membership func-
tion, thus influencing the FRBS performance. The same
yields for other shapes of membership functions (trape-
zoidal, gaussian, sigmoid, etc.).

– Using non-linear scaling factors — Another way to de-
fine the membership function shapes is to use more flexi-
ble alternative expressions for the membership functions
to vary the compatibility degrees to the fuzzy sets [17,
32]. For example, a new membership function can be ob-
tained raising the membership value to the power of α,
i.e.,
µ′(x) = µ(x)α, 0 < α.

By changing the α value we may define different mem-
bership function shapes.

A.7 Fuzzy rules with linguistic hedges

A third possibility to increase the accuracy in linguistic FM is
to relax the rule structure by including certain operators that

slightly change the meaning of the linguistic labels involved
in the system when necessary [17,22]. A way to do so with-
out losing the description to a high degree is to use linguistic
hedges.

A linguistic hedge is an operator that alters the mem-
bership functions for the fuzzy sets associated to the lin-
guistic labels, giving a more or less precise definition as
a result depending on the case. For example, the linguis-
tic hedges ‘very’ and ‘more-or-less’ performs as follows:
µvery(x) = µ(x)2 and µmore−or−less(x) = √µ(x). An exam-
ple of a rule with this structure is the following:

IF X1 is very high and X2 is low
THEN Y is more-or-less large.

Actually, the consideration of linguistic modifiers does
not define a new meaning to the so-called primary terms —
high, low, and large in our example — but they are used
as generators whose meaning is defined in the context. Cer-
tainly, the fact of using fuzzy rules with linguistic hedges will
have a significative influence in the behavior of the linguistic
FRBS because the matching degree of the rule antecedent
as well as the output fuzzy set obtained when applied the
implication operator in the inference process are changed.
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3. Alcalá R, Casillas J, Cordón O, Herrera F (2003) Applying rule
weight derivation to obtain cooperative rules. In: Benı́tez JM,
Cordón O, Hoffmann F, Roy R (eds) Advances in soft computing
– engineering, design and manufacturing, Springer, Berlin Heidel-
berg New York, pp 139–147
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