Relational Decomposition through Partial Functional Dependencies

F. Berzal J.C. Cubero! * F. Cuenca?
berzal@decsai.ugr.es J.C.Cubero@decsai.ugr.es Fernando.Cuenca@xfera.com
J.M. Medina®

medina@decsai.ugr.es

! Department of Computer Science and Artificial Intelligence. University of Granada.
Spain.
2 Xfera. Spain.

Abstract

This paper introduces a new approach to database design theory. It presents the concept
of partial functional dependency in the relational database framework. This new kind of de-
pendency is an extension to the classical definition of functional dependency. The extension is
accomplished following two basic ideas. First, the new dependency works over relations (not
over schemes). And, second, a relation can almost verify a classical dependency in the sense
that only some tuples, called exceptions, break the dependency. Throughout this work, we use
that dependency to decompose relations through a more flexible and general decomposition pro-
cess, and by iterating this process, we find a mechanism to extract knowledge from the original
relation. Finally, we shall introduce algorithms to implement usual operations and relational
system maintenance.

Keywords: Partial Functional Dependencies, Exceptions Treatment, Flexible Decomposi-

tion, Functional Dependencies.

1 Introduction

1.1 Presentation

Humans’ natural way of thinking is to consider the usual form of a situation, and the problems
derived from this assumption are solved ad hoc. People have a great capacity to abstract, and our
suppositions are very useful to face up with daily life, even when they are false. For example, if
somebody says: ”Birds fly” nobody will raise doubts about it, though this assertion is false in the
real world because penguins are birds but they do not fly. We deal with such problem saying that

penguins are the exceptions which prove the rule.

*Contact Author. Work partially supported by the Spanish R&D project TIC99-0558

1 INTRODUCTION 2

Such intuitive default reasoning is impossible to be represented in classical databases. So, this
kind of knowledge cannot be incorporated in a classical relational database system directly, and
the usual solution is to simplify the reality in an attempt to store it in the database. Following
the preceding example, penguins will not be stored in our system. Or, on the contrary, if penguins
must be represented in the database, then we must explicitly store that all birds fly, except the
penguins. The main objective of this paper is to include this knowledge, based on general rules

and particular exceptions to the rules, in classical databases.

The paper is structured in four sections. In section 1 we introduce the objective of our work
and review previous approaches, including a general idea of the classical relational database model.
Section 2 presents and discusses the formal definition of partial functional dependency. We then
provide a decomposition procedure from the partial functional dependency perspective. The main-
tenance of such decomposition is also theoretically stated in section 3. Finally, in section 4, we
discuss the design and maintenance process for a database decomposed through partial functional
dependencies, from a practical point of view, and we provide precise algorithms that are necessary

to implement the decomposition in a real database management system.

1.2 Background
1.2.1 Relational database model

We assume that the reader has a background in classical relational database theory, including
normalization theory, so we are just going to describe the notation used through the paper (a good

treatment is given in [14]).

We shall use the capital letters at the beginning of the alphabet to denote single attributes
(A,B...), and Dom(A) will be the domain of the attribute A. For sets of attributes we shall use
the letters at the end of the alphabet (X,Y ...), and Dom(X) will be the cartesian product of all
the attribute domains A € X. R, S ... will denote relational schemes (sets of attributes). Relations,
i.e, instances of relational schemes, will be denoted by small letters such as r,s... and tuples by
t,u... To emphasize that the attribute A belongs to the relation r, we shall use the notation r.A.
The value of an attribute A in a tuple ¢, will be represented by ¢[A]. The symbol x stands for the
usual cartesian product, and [[,(r) denotes the projection operator over Z applied to the relation

r.

It is obvious that several relations will coexist in a database. But such relations are not completely
independent, so we need to merge the information stored in several relations cohesively. In classical
relational database theory, the join operator is applied to two relations, r and s, with schemes R

and S, in the following way:

1 INTRODUCTION 3

rNg s = H(og(r X 8))

RUS

Where og is the selection operator which selects those tuples in r x s satisfying the condition
given by ©. The result of this operator is a new relation with scheme R U S. On the other hand,

if » and s have X as common attributes, then the natural join of r and s is given by:

rXs= H (U,«_X:S_X(’l“ X 8)) = H (Ur.X:s.X(T X 3))

RU(5—5.X) (R—r.X)US
1.2.2 Functional dependency and decomposition

In the previous section we have revised the classical operators to manage relations. It is important
to remember that the schemes of such relations have been previously established by the database
guru: this phase is the database design. The main idea behind it, is to detect semantic restrictions

among the attributes and to impose its fulfillment.

The study of restrictions in databases was initiated by Codd [7], when he introduced the concept
of functional dependency. In the following fifteen years, different types of dependencies were stud-
ied, such as multivalued dependencies [9], join dependencies [13], inclusion dependencies [4] and
partition dependencies [8]. These works have notably contributed to database theory, but none of
them has tackled the problem of exceptions. In section 1.2.3 we will revise the works that have
been devoted to studying almost verified restrictions, but first, we briefly remember the concept of

functional dependency (see [11] for instance).

Definition 1 A relational scheme R satisfies a functional dependency (f.d from now on) de-
noted by X — Y with X,Y C R, if and only if every instance r of R satisfies the following

condition.:
Vi, to €r if t1[X] =t2[X] then 1[Y] = t2[Y] must hold (1)

X contains the antecedent attributes and Y the consequent ones. It should be emphasized that
functional dependencies are statements about all the possible relations that could be instances of a
relational scheme R, and about all the tuples belonging to each possible instance r of R. Therefore,
we cannot look at a particular relation 7 with scheme R and deduce what functional dependencies
are verified in R, i.e., the concept of functional dependency is a semantic issue, which must be given

by an expert (the database designer, usually).

1 INTRODUCTION 4

It is well known that, when a relational scheme satisfies a non trivial functional dependency,
there are several problems concerning updates, insertion, deletion. .. (see Ullman [14]). Therefore,
we cannot allow a relation r to satisfy an arbitrary fd X — Y. If such a relation exists in our
database (with relation scheme R), it should be decomposed into two new relations with relational
schemes given by XY and R — Y. Such relations will be called subrelations from now on. The
projection operator is used in order to merge the XY values of those tuples with equal antecedent
values (and therefore, by applying definition 1, equal consequent values), then obtaining a relation
called 79 = []yy (r) with fewer tuples than r. It can be proven that this relation satisfies the f.d,
and, for new entries in the database, we can test the dependency just by looking at the tuples in

[y (r). Furthermore, if we decompose the relation into:

rlzﬂ(r) , r2:H(r)

R-Y XY

It can be proven (see [14]) that the natural join of both projections will exactly recover the

original relation r itself, i.e, it is a loss less decomposition:

r=ry Xry

The statement above is the most important decomposition property, because it assures that the
initial information can be recovered after the decomposition. That allows the designer to decompose
a relation verifying a f.d with confidence, because there will be no loss of information. This is the
idea behind the process of normalization in relational databases (see [5, 6, 14]), and the purpose of

this paper is to extend it to work with exceptions.

1.2.3 Horizontal decompositions

Decomposition theory has been traditionally focused on the vertical relation decomposition. By
vertical decompositions are meant the decompositions based on the projection operator. The key
point to accomplish such decompositions is the existence of a semantic restriction, so that such
restriction is maintained in the system. But our approach in this paper is to accomplish both
vertical and horizontal decompositions. An horizontal decomposition is a decomposition that uses
the selection operator, instead of the projection one. In general, a horizontal decomposition through
a f.d is accomplished using the concept of exception. The usual way to do this is relaxing the f.d
in order to obtain a subrelation verifying the dependency, and isolating the exceptions to that

dependency in a different relation.

Exceptions and dependencies based on exceptions have been studied, from a logical perspective,
by non-classical logics (see [12]). But, from the point of view of database design, it is difficult to

find works dealing with such problem. A. Borgida dealt with the problem of managing exceptions

2 PARTIAL FUNCTIONAL DEPENDENCIES)

in object-oriented databases in [1]. He provided a new kind of integrity restriction imposed over
the scheme, as well as some additional semantic integrity restrictions, but his main contribution

(related to exceptions) was to allow exceptions to such restrictions.

The main contributions to this field were nevertheless developed during the eighties. P. De Bra
and J. Paredaens dealt with the exceptions problem, and a comprehensive treatment of them can
be found in [2, 3]. In their works, different decompositions were defined to avoid almost verified
functional dependencies in a relational scheme. The authors defined a set of exceptions with respect

to a functional dependency as follows:

Definition 2 Let r be an instance of the relational scheme R and X,Y C R two sets of attributes.

The relation of antecedent exceptions with respect to X — Y in r is:
ree={ter | Fer HX]=V[X]AY]#]Y]}

The semantics of this kind of exceptions is strongly attached to the antecedent values of the
tuples. If a tuple is an exception, then all the tuples in the relation with the same antecedent value
will be exceptions. So, we can say that the exception itself is the antecedent value. This approach
is useful when there are many antecedent values verifying the dependency, and only a few ones
breaking it. For example, let us consider a staff database where many employees belong to only
one department, and a little set of employees belong to two or more departments. In this case, it
is interesting to use this type of exceptions to isolate the employees who belong to more than one

department, from the larger part that belong to only one department.

De Bra and Paredaens also introduced a normalization theory, based on goals and different kinds

of functional dependencies. In our paper we work with exceptions from a different point of view.

2 Partial Functional Dependencies

2.1 Instance Functional Dependency

Definition 1 states that a functional dependency is defined over a relational scheme, i.e., the
dependency must be exactly satisfied by all the relations of the scheme. In practice, it means that
every possible relation must satisfy the f.d, that is, if a tuple does not satisfy the f.d, then it is
assumed that it is a false tuple and can not be inserted into the relation, because, in the contrary

case, we would have a relation not satisfying the f.d.

Consider, as example, a relation storing information about persons (Identification Card, Name,

Age, Sex). The insertion of a new person with the same identification card than another one stored

2 PARTIAL FUNCTIONAL DEPENDENCIES 6

in the database (a rare but possible case), is simply not allowed. What commonsense says is that
almost every person should be consider as normal and those with an identification card equal to
some other, should be consider as an ezxception. Formers, should be managed as indicated by the
classical relational database theory, while the exceptions should be stored and treated in a different

way.

It is obvious that if we want to relax the definition of f.d in order to consider exceptions, we
will have to work with particular relations (not schemes) and study the tuples belonging to each

relation.

Definition 3 A relation instance r of a relational scheme R wverifies an instance functional
dependency of instance (i.f.d from now on) denoted by X — Y with X,Y C R, if and only if r

satisfies the condition given on equation 1.

If we consider definition 1, it is obvious that:

A relational scheme R verifies a f.d X — Y with X,Y C R, if and only if every instance r of R
verifies a i.f.d X — Y.

Definitions 1 and 3 are closely related to each other. In fact, the unique difference is that the
universal quantifier (related to the relations) has been eliminated from the definition of i.f.d. This
is exactly the above-mentioned idea. From now on, we will not be interested in finding semantic
restrictions imposed by the designer, which must be satisfied by all the possible relations in the
real world. On the contrary, the restrictions we will focus on will be data driven. To state it more
precisely, the restrictions will be stated in terms of the data contained in the relation. Such idea is

the main contribution of the i.f.d.

2.2 Exceptions

Informally, an exception with respect to a functional dependency in a relational database can be
defined as a tuple which breaks the functional dependency. There are two possible ways to define
the concept of exception. The first approach was introduced by P. De Bra et al. [2, 3], whose idea
has been presented in section 1.2 and will be studied more thoroughly in this section. Moreover, a
comparison between the previous approach and our exception definition is also introduced in this

section.

From our point of view, each individual tuple is an exception as a whole. Therefore, the minimum
number of exceptions is always obtained. This is a key point, because, as we shall prove, it is not

true that the De Bra exceptions set is minimum in order to obtain a relation verifying a f.d. It

2 PARTIAL FUNCTIONAL DEPENDENCIES 7

is important to note that this new point of view does not pretend to solve the same problems as
De Bra’s approach; ours is a solution to a different problem. Thus, both works cannot be directly

compared. Our definition of exception is stated as follows:

Definition 4 Let r be an instance of the relational scheme R and X,Y C R two sets of attributes.
We say that r. C r is a relation of tuple exceptions (or simply a exception relation) with respect
to X — Y inr if and only if:

i) (r—re) verifies X — Y.
i) Yt € re, (r —1e) U{t} does not satisfy X — Y.
iii) A rl Cr verifying i) and) such that #(rl) < #(re)

Remark. #(r) stands for the cardinality of r, i.e, the number of tuples which are actually stored in
relation r.
Remark. If we consider that exzception is a synonymous of what is not common, then, we want that

re stores as less tuples as possible. This is the motivation of restriction 4ii).

Roughly speaking, a set of exceptions is the minimum set of tuples that we must remove from a
relation to obtain a new relation satisfying an i.f.d. If the set of exceptions were deleted from the

database, then the resulting relation would satisfy a f.d and would allow us to decompose it.

Example 1 Let us consider a relation r storing information about students in a primary school.
The attributes in this relation might be: ID (ID card number), Year (birth Year) and Course. We
are interested in studying the dependency between the students’ birth Year and the Course that
the student is enrolled in (Year — Course). Clearly, the relation r never verifies a f.d between Year
and Course, due to some students (usually few) who have repeated one or more courses. If the
relation 7 in Figure 1 is considered, one can observe that students 6 and 7 have repeated once, and
8 twice. More tuples representing more students should appear in relation 7, in particular other
students with different ages, but they have been omitted for the purpose of focusing the reader on

the interesting side of the example.

Now we compute the exceptions to the i.f.d Year — Course in r. The relations in Figure 2 are

the relation of antecedent exceptions (74¢) and the relation of tuple exceptions (r.).

It is interesting to study the semantics of this two different relations of exceptions generated
from the same Year — Course i.f.d. In r there is just one antecedent exception: the Year 1990;
thus all the tuples corresponding to the Year 1990 are the exceptions following De Bra’s approach
and they are isolated in r,.. But in r there are three tuple exceptions, because the pair of values
(1990, 4) is considered the usual case and therefore the tuples with ID values 6, 7 and 8 go to 7.
It is obvious that the tuple exceptions approach is the most suitable for this example. O

2 PARTIAL FUNCTIONAL DEPENDENCIES 8

S

Year | Course
1991 3

1990
1990
1990
1990
1990
1990
1990

O J & Ot =W N
N W W s s e

Figure 1: Students relation.

ID | Year | Course

2 11990 4

3 11990 4 ID | Year | Course

4 11990 4 1990 3
s 0| 4 | 1990 | 3

6 | 1990 3 1990 2

7 11990 3

8 | 1990 2

Figure 2: Relations of exceptions.

It seems to be clear that the number of tuple exceptions is always lower than the number of
antecedent exceptions, except for the instance relations which verify an i.f.d. In that case both 7,

and 7. are empty.

Proposition 1 Let r be an instance of the relational scheme R; X, Y C R two sets of attributes,
and re,rqe C 1 two relations of tuple and antecedent exceptions, respectively, with respect to X — Y

in r. Then:

if verifies X — Y then #(re) = #(rae) =0
if r does not verify X — Y then #(re) < #(Tqe)

Proof:

When r verifies X +— Y it is evident that r. = () and r4. = (. Thus #(r.) = #(r.) = 0.

When 7 does not verify X — Y, a non empty relation 7/ can be built from r,. finding the largest
set of tuples with equal consequents for each value in the antecedent. Then, it is easy to check that

Te = Tqe - v’ verifies i), 4i) and 4ii) in definition 4. As r' is not empty, then #(r.) < #(7qe) |

2 PARTIAL FUNCTIONAL DEPENDENCIES 9

Due to definition 4, the set of exceptions may not be unique, so a theoretical formulation of all

the possible sets of exceptions is needed. This is accomplished through the following definition:

Definition 5 Let r be an instance of the relational scheme R = (A;),—q _,,, I an i.f.d X — Y with
X,Y C R, and Dom((4;)) the domains of (A;)

(called exceptions of r with respect to 1) as follows:

i=1..m i—1. n- Then we can define the operator &p

Er: P(x_;Dom(A;)) — P(P(xI_,Dom(4;)))

EI(T) = {Tela Te2 * - Tek}

Where {re1,re2 - - Ter } is the set of all the possible relations of exceptions with respect to I in r.

The exception relation is clearly not unique, and, apparently, this is a problem. But given the
next proposition, we obtain an interesting property, which is very useful for our empirical point of
view. Proposition 2 states that, even though the set of exceptions may not be unique, all the sets

returned by the operator of exceptions have the same number of tuples.

Proposition 2 Let r be a relation and I an i.f.d. Then, the next property is satisfied:
Vri,r; € E(r) #(ri) = #(r;)

Proof: Let us assume r;,7; € Er(r) and #(r;) # #(r;) then #(r;) < #(rj) or #(r;) < #(r;)

which is in contradiction with condition #i7) of definition 4. [

Example 2 Let r be the instance relation of Figure 1. Then, the set of all the relations of

exceptions with respect to Year — Course in v’ = r U {9,1991,2} is:

{(1,1991, 3), (6, 1990, 3), (7, 1990, 3), (8, 1990, 2)},
}

£ r') =
Yean Coursel"") { {(6,1990, 3), (7,1990, 3), (8,1990, 2), (9,1991, 2)

The only purpose of the operator £;(r) is to formalize the definition of partial functional depen-
dency from a theoretical perspective. In practice, we shall be interested in any relation r. € £7(r),
because our main goal is to minimize #(r.), which is unique thanks to proposition 2. On the other
hand, although it is possible that #(&;(r)) # 1, as we have shown in example 2, this is not the
typical case. Due to the exception semantics, in a real database there will be many tuples verifying
the dependency for each antecedent value, and only a few tuples will be exceptions. Therefore,
in practice, if the designer chooses a good i.f.d., then #(&;(r)) will be usually 1. Otherwise the
semantics of the selected i.f.d in that relation may not match with the semantics of the exceptions
introduced in this work. Therefore, our solution might not be applicable to that case. This topic

is thoroughly discussed in section 4.3.2.

2 PARTIAL FUNCTIONAL DEPENDENCIES 10

2.3 Partial Functional Dependencies

In the previous section, the notion of relation of exceptions has been introduced. But, if we want
to study the exceptions in a database relation in order to decompose such relation, a definition
of partial functional dependency must be introduced. This new dependency will give significant
information to the designer in order to decide which dependencies are suitable for the decomposition

process.

Definition 6 Let r be an instance of the relational scheme R, X, Y C R two sets of attributes and
re € Exsy (r). Then r satisfies an a-partial functional dependency X 2y (p.f.d from now

on), and the « value is:

1 if #(r)=0
TV -2 stherw
70y Otherwise
Example 3 Following example 1, we can say that the relation r verifies a p.f.d: Year e Course
because:
#(re) 3
a=1-— =1-—-==0.625
#(r) 8

d

In definition 6, « indicates the degree of fulfillment of the dependency between X and Y. The
lower the number of exceptions r has, the greater « is. The maximum value for « is 1. In that

case, both i.f.d and p.f.d definitions become equivalent:
Proposition 3 A relation r verifies a p.f.d X L Y if and only if r verifies the i.f.d X — Y.

Proof: r verifies X — Y <= Ex,y(r) = {0} <= Vr. € Exv(r) #(re) =0 <= a=1 |

Let us remark that any relation satisfies an « p.f.d. In the worst case, « is close to 0. But it
is obvious that we will be interested in p.f.d with a high value (near to 1). Partial dependencies
are not restrictions in the usual sense (such as functional dependencies) but they will be useful for
deriving a better database design, because when « is close to 1, we shall be able to decompose the
original relation (see section 3)

On the other hand, it should be emphasized that the parameter « in definition 6 is not
a measure of information loss. As we shall prove, a decomposition through a p.f.d never loses
information from the original relation (as in the classical case). « is just a measure of the verification
level of the i.f.d in the relation, and it reports useful information to the database designer, in order
to decide whether it is interesting to decompose the relation by using such dependency.

An alternative and useful way of constructing « is given by the following result:

3 DECOMPOSITION THROUGH PARTIAL FUNCTIONAL DEPENDENCIES 11

Proposition 4 Let r be an instance of the relational scheme R, X, Y C R two sets of attributes
and X - Y an a-partial functional dependency. Then the a value is:
ZzeDom(x) maXycpom(v) #1t € 7 [H{X] = 2 At[Y] =y}

‘= #(r) @)

Proof:
It is easy to demonstrate, due to definition 4, that the exception relation cardinal is the number of

tuples of the relation minus the number of tuples verifying the dependence:

#(re) =#(r)— Y max Hier X =z niY] =y} (3)

z€Dom(X) yEDom(Y

Then, applying definition 6 and equation 3:

#(r) - Zngom(X) maXyeDom(Y) #{t er | t[X] =z A t[Y] = y}
#(r)

From the above equation, it easily follows that:

ZzeDom(X) mMaxXyec Dom(Y) #{t er | t[X] =z N t[Y] = y}
#(r)

o =

3 Decomposition through Partial Functional Dependencies

3.1 Decomposition

Once we have seen the notion of p.f.d, we proceed to introduce a more flexible decomposition
method than the classical one. The main difference is that our decomposition is not only accom-
plished by the projection operator but the selection operator is also used.

The set of exceptions is first isolated in a different relation (r.). This relation is obtained by
applying a selection operator, so this step corresponds to the horizontal decomposition. Second,
the rest of the tuples (r —r.) satisfies an usual f.d and, thus, we can apply a vertical decomposition

in the usual way.

Definition 7 Let r be a relation with scheme R, X 25 Y p.f.d, and ry, r9, re three relations
with schemes R —Y, XY and R, respectively. r1, ro and r. are a partial decomposition of r
with respect to the p.f.d X Ly if and only if:

Te € Exsy (1), 7"1:H(r—re) and rzzﬂ(r—re) (4)

R-Y XY

3 DECOMPOSITION THROUGH PARTIAL FUNCTIONAL DEPENDENCIES 12

The choice of r, is arbitrary, but this is not a problem for our purposes, because, as we have
said before, in a good decomposition (one with a high value of a) the set of exceptions should be
unique. And, even in the case that the set of exceptions were not unique, we are only interested in
any 7. € Exy(r) and, in practice, the most efficiently-computed relation would be chosen (as we

shall show in section 4.3).

From now on, the relation ro will be called the rule relation, and tuples t € ro will be the rules
of the X -5 Y dependency. This is because the decomposition process can be considered as an
association rule mining process. The extracted rules will be x — y, being z and y the values of the
attributes X and Y. The objects in relation r; will be the objects verifying the rules, while the

tuples in 7. will be the exceptions.

Example 4 Following with example 1, we can obtain the decomposition shown in figure 3 (due to

equation 4). Note that the exception relation is unique in this example.

ID | Year

1 {1991 ID | Year | Course
Year | Course

2 11990 6 | 1990 3

T = r9 =] 1991 3 Te =

3 11990 7 11990 3
1990 4

4 11990 8 |1990 2

5 11990

Figure 3: Decomposition through a p.f.d.

3.2 MNE Integrity Restriction

In this subsection we present the basis of the decomposition process from a theoretical point of

view. That topic will be deeply treated in Chapter 4, from an empirical point of view.

Having decomposed a relation, we cannot assume that the subrelations will remain unchanged.
They will be updated after the decomposition, since it will be necessary to perform insertions,

deletions and even updates.

A p.f.d is not an integrity restriction itself. However, the decomposition process through a p.f.d
and the subsequent maintenance raise in a natural way the idea that the exception relation must be
minimal. Hence, when update operations are performed over the subrelations, it can be obtained

a decomposition which does not verify the conditions stated in equation 4. In order to guarantee

3 DECOMPOSITION THROUGH PARTIAL FUNCTIONAL DEPENDENCIES 13

that the exception set will be minimal, we define the MNFE restriction. This restriction guarantees

that the exception relation (r.) belongs to the set £7(r).

Definition 8 Let 1, ro and r. be three relations with schemes R—Y , XY and R. Then r1, r9 and
re verify the minimum-number-of-exceptions integrity restriction (MNE from now on), if

and only if:
(00, x=ta] (1)) = #(0r, Xy =tfayi (re) VEE [](re) (5)
XY

It is important to remark that, when a relation with data is decomposed, the MNFE restriction
is verified. In this way, it can be assured that the restriction is verified before the maintenance
process begins. So, if the update operations are defined in such a way that they maintain the MNE

restriction, then, the decomposition will always verify such restriction.
Proposition 5 A partial decomposition, obtained by equation 4, verifies the MNE restriction.

Proof: From equation 4, let us assume that 3t € [[y,(r.) which does not verify
#(0r, x=ta](11)) > #(0r, xv=t[zy](Te))- Then, we can construct three relations 7y, r5 and r,

in the following way:

—_

.ri =1, rh=r9 and rl, = 7r,.
2. Move all the tuples 0,, x—(r1 X 72) into 7.
3. Move all the tuples [], (0. xv=xv[ay](Te)) into 7.

4. Insert the tuple ¢[zy] into 7.

Thus, all the conditions stated in definition 4 are verified except condition 4ii) because #(r.) <

#(re). Thereby, re & Exyy(r), which is in contradiction with the initial assumption.]

The preceding proof, besides proving proposition 5, shows the way to enforce the MNFE restriction
in a partial decomposition. The Local_Redistribution algorithm introduced in section 4, performs

these steps.

3.3 Partial Natural Join

A procedure to accomplish the partial decomposition has been presented in the previous sub-
section. From a theoretical point of view, the MNFE restriction guarantees the semantic restriction
imposed by a p.f.d during the maintenance phase. As in the classical case, it is also necessary to

combine the information contained in the subrelations into one relation. We introduce the partial

3 DECOMPOSITION THROUGH PARTIAL FUNCTIONAL DEPENDENCIES 14

natural join operator in order to accomplish this task. As the partial decomposition is both hori-
zontal and vertical, it is obvious that two operations are needed. The classical natural join will be

used for the vertical component, and the classical union operator for the horizontal one.

Definition 9 Let r be a relation with scheme R,and let r, ro and r¢ be the relations obtained by
equation 4. The partial natural join of r1, ro and r. denoted by J(r1,72,7¢) is a relation with a

scheme R, and it is obtained in the following way:
J(r1,r2,me) = (11 Mra) Ure

The partial natural join operator can recover the same relation we had before the decomposition.
Recovering the information we had at the beginning of this process is an issue as important as
decomposing a relation and obtaining various relations with interesting properties. This is the
most important property of the classical decomposition, and it is said that the decomposition is

loss less. We prove now that the partial decomposition is also loss-less.

Theorem 1 Let us assume the same conditions as in definition 9. Then r = J(r1,79,7¢), i.c., the

decomposition of v through rq, r9 and 7. is loss less.

Proof: Let us assume r satisfying a p.f.d X %5 Y with an arbitrary «. We can write r =
re U{r —re}. Now, (r — r.) satisfies an i.f.d X — Y, as equation 1 holds. Thus, by Heath’s

theorem [10], the decomposition of r — r in [[vy (r —re) and [[_y (7 — re) is loss-less, that is:

r—re=Tle—rgm [[r—r) = (H(r—nw H@“—Te))we:r
XY R-Y

XY R-Y

Let us emphasize that theorem 1 states that the a degree of a dependency does not imply a loss
of information because we can recover exactly the same information we originally had in relation

.

3.4 Successive decompositions

When a p.f.d is used to decompose a relation, three new relations are obtained. If those relations
do not satisfy any dependency, then the decomposition process has finished. Otherwise, they could
be properly decomposed depending on the kind of dependency they satisfy (functional, partial,
etc). Partial decomposition should not be seen as an independent process unrelated to classical
normalization. The following example shows how to combine decompositions through f.d, p.f.d,

and others in order to obtain a good final scheme.

3 DECOMPOSITION THROUGH PARTIAL FUNCTIONAL DEPENDENCIES 15

Example 5 In a ship booking database, we want to manage the reservation of passengers’ pets
(dogs and cats, mainly). The system stores for each pet: its ID (the number in the ID card),
its Size (three-valued: Big, Medium or Small), its Cage type (type A or B only) and Fare. The

following rules must be considered in order to guarantee that the animals are well accommodated:

1. Each cage type has an specific size: type A is for Small and Medium-sized animals, while type
B is for the Big ones.

2. The cage fare is: 50$ (type A) or 708 (type B).

3. An animal might be moved from an A cage to a B cage if the pet owner demands it or even
if special characteristics of the animal require it (if it is very nervous for example). In this

case, the owner should pay the type B fare.

4. If an animal had to be fitted in a cage of type A but there were not any free cages of this type,
then the animal would be assigned to a cage of type B still paying the fare corresponding to

the type A.

ID | Size Cage | Fare
1 | Small A |50.00%
2 | Big B | 70.00$
_| 3 | Medium | A | 50.008
"7 4 | Smat | A 50008
5 | Medium | B | 50.00$
6 | Medium | B |70.00$
7 | Big B | 70.008

Figure 4: Reservation database.

Let us assume the relation r shown in Figure 4. That relation does not verify any f.d, and
5

therefore we cannot normalize it. But if the p.f.d Size -5 (Cage, Fare) is considered, the relation
can be decomposed with a high level of dependency verification, as shown in Figure 5. Now there
are no exceptions left in ro, and thus a classical f.d Cage — Fare is satisfied. Therefore, it can be
further decomposed in the classical way, constructing the relations 791 = [Size.Ca ge(rg) and 799 =
HCage, Fare(r2). Finally the original relation can be recovered by computing J(r1, 721 X 722, 7¢),

as indicated in Figure 6.

In the final scheme, the information is distributed as follows:

3 DECOMPOSITION THROUGH PARTIAL FUNCTIONAL DEPENDENCIES 16

ID | Size
1 | Small Size Cage | Fare
2 | Big Small A | 50.00$
r = To =
3 | Medium Medium | A | 50.00$
4 | Small Big B | 70.00$
7 | Big
1D | Size Cage | Fure
Te =| 5 | Medium | B | 50.00$
6 | Medium | B | 70.00$
Figure 5: First decomposition: 71,79, 7
(r21)
: (ra2)
Size Cage
Cage | Fare
r=r3 X Small A X Ure
A | 50.00$
Medium | A
. B | 70.00%
Big B

Figure 6: Final decomposition: 1,721,729, 7¢

e 7y stores usual reservations.
e 791 contains which kind of cage is suitable for each size.
e 799 includes the cage fares.

e 7. includes the special reservations (the exceptional cases).

3.5 Iterated decompositions

The importance of applying successive decompositions has been introduced in the previous sub-
section, but this process will be even more interesting if an exception relation is decomposed with
respect to the same p.f.d which generated it (using a different parameter «). This yields an iterated
decomposition process where a new decomposition level is generated in each step.

Briefly speaking, we first consider a p.f.d X %5 Y over a relation r, the corresponding exception

relation 7, and the relations 1 and r9 derived by decomposition. This would be the first level. Now,

3 DECOMPOSITION THROUGH PARTIAL FUNCTIONAL DEPENDENCIES 17

we can apply again the same p.f.d to r, (with a different value of). Thus, by decomposing r, we
obtain a second set of relations, i.e, the second level. This will be called the several level approach.
The process continues until no exceptions are found in a level or a stop condition (imposed by
the expert) is met. One example of such condition is setting a maximum level (see example 6, for

instance).

We can choose an alternative representation for the levels generated in the previous process.
A new attribute can be added to the initial scheme, which will be called Level, and will store
the level the tuple belongs to. Therefore, the original relation can be decomposed using the f.d
(Level, X) — Y. This new representation for the subrelations only changes the way the data is
stored, but it does not change the global amount of information. The main virtue of this new
representation is that we obtain two subrelations where we had 2 - N before (being N the number

of levels). This is the level attribute approach.

The whole process will be clarified in the next example:

Example 6 Given the relation » shown in Figure 1, with the same conditions as in Example 1, let
us first consider the several level approach. If r is decomposed through the p.f.d Year —5@) Course, an
exception relation r, = {(6, 1990, 3), (7,1990, 3), (8,1990,2)} will be obtained, as stated in Figure 3.
Relation r. refers to those students who have repeated some courses. Now 7. can be further
decomposed into three new relations using the p.f.d Year —2—/3 Course again. This process can be
iterated as many times as we want. But if we suppose that a student is not allowed to repeat more
than two courses in the same school, the exception relation for the second decomposition verifies a
p.f.d Year L Course (and due to proposition 3, it also verifies an i.f.d Year — Course), so that

the exception relation can be eliminated as shown in the left side of Figure 7.

A three-level decomposition is obtained when the previous process is over. Each level corresponds
to a set of students sharing one characteristic: they have repeated the same number of courses. It is
important to note that this information is not present at the original relation, but it has appeared
during the decomposition process through the p.f.d, that is, we have discovered hidden information.

Let us now consider the level attribute approach. We add a new attribute (called Level) to
the original relation r, obtaining a relation called /. This attribute stores the tuple level, i.e, the
number of courses the student has repeated. Now, r’ can be decomposed through a classical f.d
(Year, Level) — Course, as can be seen in Figure 8. Note that the Level attribute is automatically

computed by the system, it is not new information the user needs to introduce.
]

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 18

ID | Year
1 |1991
Year | Course
2 11990
X1 1991 3
3 11990
1990 4
4 11990
5 11990
T = U
ID | Year
Year | Course
1990 |X
1990 3
7 11990
U
ID | Year " Year | Course
[| 8 | 1990 1990 2]

Figure 7: Iterated decompositions.

ID | Year | Level

1]1991 0

2 11990 0 Year | Level | Course

3 1990 0 1991 0 3
r'=]411990| 0 [X|1990| 0 4

5 11990 0 1990 1 3

6 | 1990 1 1990 2 2

7 11990 1

8 | 1990 2

Figure 8: Decomposed ' relation.

4 Partial Functional Dependencies: Implementation

In the previous sections we have introduced the notion of p.f.d from a theoretical point of view.
Now, we face the problem of implementing the decomposition process in a relational database
management system (RDBMS from now on). We shall define the usual operations performed on a
relation and we shall treat the problem of maintaining the integrity in relations decomposed by a

p-f.d.

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 19

4.1 P.f.d. Decomposition process

The usual way to accomplish the design process is the following: first, the designer proposes
a scheme and establishes the dependencies which should be verified, and then, with the help of
the normalization theory, he(she) appropriately decomposes such scheme. This is an a priori
approach, in the sense that there are no tuples in the relations. Functional dependencies are
restrictions imposed in the database by the designer and must agree with the reality he wants to
model. Alternatively, we can follow an a posteriori approach and proceed to decompose a relation
which already exists in our database. So, attending to the moment when the decomposition takes

place, we distinguish the following situations:

1. A priori decomposition: This is the counterpart of the classical design process. The designer
decides if it is interesting to use a p.f.d to decompose a relation before introducing data.
This decision is based on the knowledge he has about the world. At this step, there is not a
concrete value of a but, according to the designer criteria, it will be close to 1 after sufficient

data has been introduced.

2. A posteriori decomposition: This is a completely different approach. Now, the scheme has
been a priori fixed by the designer, and we are faced with relations containing data. Partial
dependencies are now obtained by a discovery process working on the existing tuples. Defini-
tion 6 is used to compute the « level of verification of the dependency, and then the designer

chooses to decompose a relation or not according to the value of «.

The a priori decomposition may be used when the designer is completely sure that there exists
almost a functional dependency among several attributes, i.e, there are not too many exceptions,
and so a partial funcional dependency applies. On the other hand, the a posteriori decomposition
provides more reliability about the quality of the decomposed scheme. If we have a relation with
enough data, in the sense that they are a good representation of the reality, then we can assure a

good behaviour of the decomposition.

4.2 Accessing to decomposed relations

Once the designer decomposes a relation (through an a priori study or via an a posteriori
approach) he must cope with three new relations which replace the old one. Then, he must settle
the update operations on these relations. In the classical case, the modifications are easy to perform
because each relation is independent of the other ones, i.e, updates on one relation do not affect
the others. The same does not apply when working with decompositions stemming from a p.f.d.

There are two approaches:

1. Direct update: In this case, the user has direct access to each relation and can update

them. In most cases, the database administrator should establish a particular update policy

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 20

because a modification in one relation could force modifications to other relations. Let us

give an example to clarify this idea.

Example 7 Let us consider example 4 again. If we update the tuple (7,1990,3) in 7., and
set it to (7,1990,4), then we have a student who has passed his exams and, thus, he is not
an exception. So we have to delete (7,1990, 3) from r. and insert (7,1990) into r1; r9 is not
modified.

On the other hand, let us suppose we want to change the tuple (1990,4) in r9 to (1990,5).
What do we have to do? The answer is simple: it depends on the semantics of this modi-
fication. For instance, it could mean that these students are automatically passing to the
next course. Or it could mean that there has been an important change in the education
authorities policy, and now all the students begin their school days one year younger: in this
case, the p.f.d changes because we now have students following the old syllabus and other

students with the new one in the same school.

In any case, one thing is clear: updates to ry are not straightforward, and non-expert users
should be forbidden to update it by the database administrator. O

2. Update through an universal relation: In this case, all the updates are defined through
a fictitious relation which is called the universal relation. A thorough study of this concept
can be found in the Ullman’s textbook [15]. This virtual relation is a view built from the
relations obtained after the decomposition, through the partial natural join operator (see
Figure 9). The user interacts with this relation as he would do with the original one, and the

system is in charge of the corresponding modifications.

Al A,

Al A,

Figure 9: Universal relation.

As we have mentioned, the concept of universal relation can be implemented in a RDBMS
through a view. If, in addition, the RDBMS allows views on views, then we can construct

the universal relation related to an iterated decomposition.

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 21

The main objective of our work is to cope with the second approach (through the universal
relation) because the first one is completely problem-oriented. So, if we are going to use the three
relations (r1,79,7¢) as if they were one, what is the advantage offered by the decomposition? These

are some possible answers:

o Flexible restrictions: In a classical database, the only way to decompose is imposing a restric-
tion as strict as a f.d. If the database administrator does not want to decompose a scheme,
then he is forced to manually implement any kind of restriction he wants to impose (using

stored procedures, for instance).

If we use partial dependencies we allow the definition of flexible restrictions, i.e, restrictions
which do not affect all the tuples. An apparently drawback of this approach is that any tuple
which breaks the p.f.d is an exception and can be accepted and stored in 7. by the system.
But, as we shall see in Section 4.5, we can use several mechanisms to control the quality of
such exceptions. In other words, some exceptions could be rejected as valid tuples and would

not be stored.

e Default information: When we decompose r into ri,7r9 and r. through a p.f.d X -2 Y,
relation r9 stores the rules corresponding to the i.f.d X — Y existing in r—7.. Such knowledge
may be used to provide a friendly interface to the user by automatically filling the consequent
values with the default ones (those appearing in the rule). The user could change those values

when an exception comes into the system.

Example 8 Let us consider example 5. If we want to construct a data entry interface we
can use a master/detail form, with r; as the master relation and rg9, ro9 as details. When
the user inputs the animal size, the system would automatically fill the values for Cage and
Fare according to the rules in 7. If an exception comes into the system, the user only has
to change these values by the right ones. Then, the system would transfer this tuple to the
exception relation 7. O

e Database compression: It is obvious that the scheme derived from a partial decomposition

needs less storage space than the original one, and this is always a worthy achievement.

e Better understanding of the database: The new scheme is an abstraction of the stored data,
and it will be easier to understand because it works with smaller relations which have a more

precise semantics.

e Direct access: The usual way to access the decomposed subrelations is through an universal
relation, but direct access to them should be allowed to the database administrator. This
direct access increases efficiency and simplicity when manipulating those relations. This
improvement applies to ro in particular, which has a primary key upon which we can create

an index.

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 22

The only disadvantage of this approach is that the access to the exceptions is somewhat
slower now, but, as they are sparse, this is not a problem if we compare it with the benefits

obtained with r; and rs.

4.3 Update Operations

We proceed now to introduce specific algorithms to perform the usual update operations when
working with the universal relation, no matter the schema semantics (world modelling) is. In
the case of direct access to the decomposed relations, the update operations are done as always,

although they are restricted by the database administrator according to the problem semantics.

When a relation has been iteratively decomposed, the update operations are recursively per-
formed with the same algorithms. For instance, during a tuple insertion process into the universal
relation r, we could have to perform an insertion into ry. If this relation had been decomposed by
a p.f.d, then we should have applied the same insertion algorithm recursively for partial decompo-

sitions.

The algorithms we are going to introduce are described in a pseudo programming language based
on Oracle PL/SQL and Pascal, but they are not restricted to working with a given RDBMS at all.

The RDBMS should meet some minimum requirements however:

e Stored procedures: The RDBMS should allow programming functional procedures. They are
usually stored in the database itself, they have direct access to the relations and they are

usually optimized for usual data management operations (OLTP processing).

e Exception manager: An exception manager executes a special-purpose pcode fragment when
an abnormal situation occurs while trying to execute a procedure. This is usually an error or

an attempt to violate the database integrity.

The reader should note that this programming technique has nothing in common with the
concept of exception we are treating in this work. The context will be enough to distinguish

between both concepts.

From now on, we assume that we are working with the relations ri, 7o and r., which have
been derived by applying a partial decomposition to r, with scheme R = ZXY, through a p.f.d.
X -5 Y. As ro verifies the i.f.d. X — Y, then we can impose the primary key restriction to the

set X in r9 .

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 23

4.3.1 Insertion

In the following sections we present the algorithms needed to maintain the partial decomposition.
The first one is the insertion algorithm. We shall introduce a first version now and we shall give the
definitive one later. The preliminary version of the insertion algorithm is presented in Figure 10.
This algorithm is executed when a new tuple £ is inserted into the universal relation r: it tries to
ingert ¢ into r1 (the XY-values) and ry (the ZX-values); if ¢ is an exception, then the primary key

restriction over ro would be violated and, thus, the tuple would be inserted into r,.

try
insert {[{XY] into ry
insert ¢{[ZX] into 7

catch exception over unique key on 79
insert ¢ into 7.

end try

Figure 10: First version of the insertion algorithm.

The execution of the try-catch block is as follows: the RDBMS tries to execute those sentences
between the reserved words try and catch. If an exception occurs during the execution, then there is
a jump (thus, the ¢ry block finishes at this point), and the system executes those sentences between
catch and end-try. There could be several types of exceptions (several catch blocks), but the unique
key exception, which is thrown when the primary key restriction imposed on 79 is violated, is the

only one we need for our purposes.

Let us now see what the problem with the algorithm given in Figure 10 is. The natural join of
r1 and 7o satisfies the i.f.d. X — Y, but r. could violate the MNF restriction. The number of
exceptions generated by this algorithm depends on the tuple insertion order, as can be seen in the

following example.

Example 9 Let r be a relation with no tuples and scheme (A, B, C), and let us consider the next
sequence of database insertions: (a1, b1, c3), (az,ba,¢2), (a3, b1,¢1)y (aq,b1,c1). Let us now consider
the p.f.d. B N C, and the corresponding decomposition. Then, the insertion algorithm obtains
the relations in Figure 11. But it is easy to see that the right decomposition in order to maintain

the MNE restriction, would be the one shown in Figure 12.
g

This example shows that it is necessary to check the MNF restriction after each insertion, so that

the algorithm properly modifies the relations rq, r9 and r. when that restriction is not verified. We

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 24

A|B B | C A|B|C

™ =|a |0 9 =1|b1 | c3 Te =|az | b1 |

az | by by | c2 as | by | c

Figure 11: Erroneous insertion obtained with the first version of the algorithm

A|B
b B¢ A|B|C
a
’]‘1: 2 2 ’r2: bl Cl ’re:
as | b b | e ap | by | c3
a bl 2 2

Figure 12: Right insertion

present the correct version of the insertion algorithm in the next section.

4.3.2 Redistribution

The operation in charge of transforming the relations which stem from the decomposition, so
that the MNE restriction holds, is called redistribution. Each time a new tuple is appended to
the universal relation, it is classified as normal if it goes to r1 and 79, or as an exception if it is sent
to re. When this classification is not correct because the MNE restriction is not verified, then it is
necessary to redistribute the normal and the exceptional tuples. The algorithm given in Figure 13
(called Local_Redistribution) performs this task, maintaining the MNE restriction and, thus, solving

the problem we found in the first version of the insertion algorithm.

The algorithm described in Figure 13 does not check the MNE restriction for all the tuples (and
that is the reason why it is called local). It only tests if the tuples ¢ with ¢[X] = = are correctly
distributed. This verification is enough for our purposes because the insertion of a tuple ¢ cannot

alter the classification of those tuples with a different X-value.

Now, we can update the insertion algorithm given in Figure 10 so that it maintains the MNE

restriction, just by calling Local_Redistribution as shown in Figure 14.

A main drawback of this second version is that maintaining consistency (MNE restriction) by
reconstructing the universal relation view at update time may reduce performance dramatically,
specially when there are too many redistributions. So, it could be interesting to allow r. not to
verify the restriction, at least for short periods of time. We are going to consider several ways to

cope with the problem of maintaining the MNFE restriction, grouped in three categories:

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 25

algorithm Local_Redistribution (
T1, T2, Te: relations stemming from a p.f.d. decomposition (X N Y)
zy: a pair of XY values)
begin
ny1 = #(0p. x=2(71))
Nre = #(0re. XY =2y (Te))
if (ny1 < nrc) then /* Redistribution */
insert g,, x—(r1 X r2) into ¢
delete from 1 where . X =z
delete from 7o where ro. X =z
insert [, x (0r.. xy=2y(re)) into 71
insert (zy) into rs
end if

end algorithm

Figure 13: Local_Redistribution Algorithm

algorithm Insertion (
71, T2, Te: relations stemming from a p.f.d. decomposition (X N Y)
t: tuple to be inserted)
begin
try
insert {[{XY] into 7o
insert ¢{[ZX] into 71
catch exception over unique key on 73
insert ¢ into 7.
Local _Redistribution (ri,r2,7¢,t[XY])
end try

end algorithm

Figure 14: Second version for the insertion algorithm.

e Dynamic Mode

— Maintaining the MNE restriction always: As in Figure 14, Local_Redistribution is called

after each update operation.

— Enforcing the MNE restriction periodically: As we have mentioned, the previous ap-
proach could be inefficient, especially at the beginning of the data insertion, when there
are only a few tuples and it is not clear which ones the exceptions are, so there will be
redistributions frequently. One possible solution is not to maintain the MNF restriction
all the time. When a given criterion is met (number of tuples, time elapsed from the
last insertion, etc), a local redistribution will be applied to all the zy values in .. This

task is performed by the Global_Redistribution algorithm described in Figure 15.

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 26

algorithm Global_Redistribution (
T1, T2, Te: relations stemming from a p.f.d. decomposition (X N Y)
begin
for each tuple t in] (re) do
Local_Redistribution (r1,712,7e,t)

end algorithm

Figure 15: Global_Redistribution algorithm.

e Static Mode

In this mode, we consider that the rules in ro are valid and cannot be automatically modified
by the system, i.e, insertions of new tuples into the universal relation cannot modify the
existing tuples in 9. So, a redistribution never will be applied in this mode, and, thus, the

MNE restriction could be violated.

Where do the rules come from in the static mode? Obviously, the database designer is the

person who has to provide them. There are two possible sources:

— The tuples in r9 can be established by the expert attending to the domain knowledge
he has about the world which is been modelling. The database designer could change
these tuples whenever he wanted, and no automatic redistribution would be performed.

A normal user should not have permission to modify this relation.

— Another scenario takes place when we have a non-decomposed relation with enough data.
Then, if the database designer agrees, it can be decomposed through a p.f.d. The tuples
in 79 are the induced rules which can be discovered from the current data, which might

be manually altered by an human expert.

e Hybrid Mode

The previous two modes can be combined into a more flexible one, guided by the database
designer. At the beginning of the tuple insertion into in the universal relation, dynamic
mode should be used, so that the rules in 79 would be tuned by the redistribution algorithm.
Once there are enough tuples in the database, the system turns into static (safe) mode, so
that the previously generated rules are kept with no modification. Whenever the database
designer wants it, the system can turn again into dynamic mode (if he considers that the

rules governing the world he is modelling have changed, for instance).

Taking into account all the possible modes, we can give the general redistribution algorithm

in Figure 16, and the definitive insertion algorithm shown in Figure 17. We suppose there are

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 27

two global variables, mode and MNEcriterion, which are changed by the designer and control the

redistribution mode.

algorithm Redistribution (
71, T2, Te: relations stemming from a p.f.d. decomposition (X N Y)
zy: a pair of XY values)
begin
case mode of
Static: /* Do nothing */
Dynamic: /* Redistribution if necessary */
case M NEcriterion of
Always:
Local_Redistribution (r1, 12, Tey TY)
Periodically:
if Global_Criterion() then
Global_Redistribution (ri, ra, re)
end if
end case
end case

end algorithm

Figure 16: Redistribution algorithm

algorithm Insertion (
71, T2, Te: relations stemming from a p.f.d. decomposition (X -5 Y)
t: tuple to be inserted)
begin
try
insert {[{XY] into 7o
insert {[ZX] into 71
catch exception over unique key on 72
insert ¢ into 7.
Redistribution (r1,72,7¢,t{XY])
end try

end algorithm

Figure 17: Final version of the insertion algorithm.

4.3.3 Deletion

When deleting tuples, happened during insertion, it may be necessary to perform a redistribution.
The algorithm shown in Figure 18 deletes a tuple from the universal relation, and then calls to

Redistribution. The most important remark about the algorithm in Figure 18 is that a deletion of

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 28

a non-exception tuple is accomplished by just deleting the tuple ¢{{ZX] in r;. A rule ¢{[XY] in r9
will only be deleted when there is no tuple ¢ in 1 with ¢'[X] = t[X].

algorithm Deletion (
T1, T2, Te: relations stemming from the decomposition with a p.f.d. X Sy
t: tuple to be deleted)
begin
if t € r. then
delete t from re
else
delete t[ZX] from r;
if (#(0x]=r,.2(r1)) == 0) then
delete t[XY] from ro
end if
Redistribution (r1,72,7¢,t{XY])
end if

end algorithm

Figure 18: Deletion algorithm

4.4 Efficiency

We have shown the benefits the partial decomposition provides in the design of a scheme satisfying
a functional dependency with exceptions. However, it would be of no interest if an inefficient access
to the relations were the price to pay. When the user is accessing directly to the decomposed
relations, the improvement is obvious because there are fewer tuples, and, besides, we can define
an index over ry. So, we will focus on the universal relation approach. Let us consider the worst

case, which happens when the dynamic mode strictly maintains the MNFE restriction.

All the simple operations appearing in the algorithms (such as select, #, delete and insert) can be
performed by any RDBMS through the typical SQL statements and operators SELECT, COUNT,
DELETE and INSERT, which are highly optimized, usually O(log #(r¢))).

On the other hand, the unique key restriction check is automatically performed by the RDBMS
system, so that it maintains the database integrity. If we do not take into account the calls to
Local_Redistribution and Global_Redistribution, then the insertion and deletion algorithms perfor-
mance is not affected. So the crucial issue is to study the redistribution algorithms performance.
The idea is that there will be a lower number of exceptions in 7, than the number of tuples in rq,
so the redistribution will be fast.

The worst case appears when we insert pairs of tuples (t;,%;1+1) with the same X-value but

4 PARTIAL FUNCTIONAL DEPENDENCIES: IMPLEMENTATION 29

different Y-value, i.e:
BIX] = tia[X] £ 4(X) G > i+1) 5 Y] # tialY]

In this case, the redistribution algorithms have O(#(r.)). If we take into account the insertion
and deletion tasks, the redistribution algorithms have O(#(r¢)log #(re)). Anyway, considering
the worst case is not realistic because when the database is big enough, there will be almost no
redistributions, because the exceptions will be clearly identified. Moreover, redistributions are
usually performed at the beginning of the database life, and in such situation, there are only a few
tuples (resulting a small value for O(#(r.) log #(rc))). Therefore, we can conclude that efficiency

is not affected, specially when the database is not too young.

4.5 Integrity and Security

In this section we are going to mention some important aspects the database administrator should
take into account when working with relations derived from a partial decomposition.

The algorithms presented in the previous sections have the objective to manage all the updates
performed over the partial decomposition. But they cannot guarantee that the semantics of the
reality being modelled is going to be preserved.

The reason behind decomposing a given relation through a p.f.d is that such a relation almost
satisfies a functional dependency: the system should be able to accept exceptions, but they should
be treated in a special way. In fact, a major problem appears when an erroneous tuple is inserted
into the database. Such a tuple would be accepted and stored into the exception relation. This
is the price we have to pay for softening the restriction imposed by a functional dependency. The
only way to solve this problem is to have a good enough problem domain knowledge and exploit
it by using the RDBMS capabilities. For example, using attribute value restrictions, or controlling
somehow the exceptions by the definition of triggers which will be fired when an update is performed
on re.

Regarding the security issue, this can help to the database administrator to enforce the se-
mantics of the p.f.d. Let us use an example to illustrate it. Let us consider a car dealership where
the car price depends on the car model and its extras. We opt for a p.f.d instead of a f.d because
some privileged clients (not too many) could obtain better prices than standard ones. It makes
sense thinking that such discounts cannot be applied by all the sellers, only by some employees with
special privileges such as the dealership director. In other words, these people should be granted by
the database administrator to be able to update the exception relation, while the rest of the sellers
should not have that privilege. It is worth mentioning that the director could insert an erroneous
tuple into 7., and, in this case, previous paragraph discussion applies. So, it is clear that we can
establish a soft restriction and prevent from errors updating r. through appropriately establishing

the access permissions.

5 CONCLUSIONS 30

5 Conclusions

In this work we have introduced a mechanism to decompose a relation which almost verifies a
functional dependency. We have also established the MNE restriction which assures the decompo-
sition integrity when updates are performed over the decomposed scheme, and we have introduced
several algorithms for managing these updates. It is not necessary to have a RDBMS supporting
partial dependencies specifically. The RDBMS should incorporate stored procedures and exception
management (in the programming sense), however. Our goal is achievable due to the universal
relation concept which hides the internal decomposition to the user.

Some problems remain unsolved and will be treated in future works, such as studying the
discovery of good partial dependencies in relations with actual data, raising the translation of p.f.d
to data warehousing systems, deepening in the security and integrity issues, as well as establishing

a general database normalization process for p.f.d.

References

[1] A. Borgida. Language features for flexible handling of exceptions in information systems. ACM
Transactions on Database Systems, 10(4):565-603, December 1985.

[2] P. De Bra. Horizontal Decompositions in the Relational Database Model. PhD thesis, Antwer-
pen University, 1987.

[3] P. De Bra and J. Paredaens. Horizontal decompositions for handling exceptions to functional
dependencies. Advances in Database Theory, 11:123-144, 1983.

[4] M.A. Casanova, R. Fagin, and C.H. Papadimitriou. Inclusion dependencies and their interac-

tion with functional dependencies. Journal of Computer and System Sciences, 28:1:., .

[5] E.F. Codd. Normalized data base structure: A brief tutorial. In Proceedings of ACM SIG-
FIDET Workshop on Data Description, Access, and Control, San Diego, 1971.

[6] E.F. Codd. Further normalization of the data base relational model. In Courant Computer

Science Symposia, volume 6 of Englewood Cliffs. Prentice Hall, N.J, 1972.

[7] E.F. Codd. Recent investigations in relational database systems. In IFIP 7; Conf., pages
1017-1021. North Holland, 1974.

[8] S.S. Cosmadakis, P.C. Kanellakis, and N. Spyratos. Partition semantics for relations. In Proc.
Of the 4" Symposium on Principles of Database Systems, pages 261-275. ACM, 1985.

[9] R. Fagin. Multivaluated dependencies and a new normal form for relational databases. ACM
TODS, 2:3:262-278, September 1977.

REFERENCES 31

[10] I.J. Heath. Unacceptable file operations in a relational database. In ACM SIGFIDET Work-
shop on Data Description, Access, and Control, San Diego, 1971.

[11] D. Maierl. The Theory Of Relational Databases. Computer Science Press, 1803, Research
Blvd. Rockville, Maryland 20850, 1983.

[12] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1-2):81-132, 1980.
[13] J. Rissanen. Independent components of relations. ACM TODS, 2:3:317-325, December 1977.

[14] J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume I. Computer
Science Press, 1988.

[15] J.D. Ullman. Principles of Database and Knowledge-Base Systems, volume II: The new tech-
nologies, chapter The Universal Relation as a User Interface, pages 1026-1069. Computer
Science Press, 1988.

