
Building multi-way decision trees with numerical

attributes

Fernando Berzal ∗

berzal@acm.org

Juan-Carlos Cubero ∗

JC.Cubero@decsai.ugr.es

Nicolás Maŕın
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Abstract

Decision trees are probably the most popular and commonly-used classifi-
cation model. They are recursively built following a top-down approach (from
general concepts to particular examples) by repeated splits of the training
dataset. When this dataset contains numerical attributes, binary splits are
usually performed by choosing the threshold value which minimizes the im-
purity measure used as splitting criterion (e.g. C4.5 gain ratio criterion or
CART Gini’s index). In this paper we propose the use of multi-way splits for
continuous attributes in order to reduce the tree complexity without decreas-
ing classification accuracy. This can be done by intertwining a hierarchical
clustering algorithm with the usual greedy decision tree learning.
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1 Introduction

It is well-known [10] [23] that decision trees are probably the most popular classification

model. Commonly-used decision trees are usually built following a top-down approach,

from general concepts to particular examples. That is the reason why the acronym TDIDT,

which stands for Top-Down Induction of Decision Trees, is used to refer to this kind of

algorithms.

The final aim of the decision tree learning process is to build a decision tree which

conveys interesting information in order to make predictions and classify previously unseen

data.

TDIDT algorithms usually assume the absence of noise in input data and they try to

obtain a perfect description of data. This is usually counterproductive in real problems,

where management of noisy data and uncertainty is required. Pruning techniques (such

as those used in ASSISTANT and C4.5) have proved to be really useful in order to avoid

overfitting. Those branches with lower predictive power are usually pruned once the whole

decision tree has been built.

The TDIDT algorithm family includes classical algorithms, such as CLS (Concept

Learning System), ID3 [22], C4.5 [24] and CART (Classification And Regression Trees)

[4], as well as more recent ones, such as SLIQ [21], SPRINT [28], QUEST [18], PUBLIC

[27], RainForest [11], BOAT [9], and ART [2].

Some of the above algorithms build binary trees, while others induce multi-way decision

trees. However, when working with numerical attributes, most TDIDT algorithms choose
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a threshold value in order to perform binary tests. The particular tests which are used to

branch the tree depend on the heuristics used to decide which ones will potentially yield

better results.

The rest of our paper is organized as follows. Section 2 discusses the heuristics men-

tioned in the previous paragraph. Section 3 introduces the binary splits which are usually

employed to branch decision trees when continuous attributes are present. Section 4 de-

scribes how to build multi-way decision trees using a hierarchical clustering algorithm. In

Section 5, we present some empirical results we have obtained by applying our alternative

approach to build decision trees. Finally, some conclusions and pointers to future work

are given in Section 6. There is an appendix available upon request where we describe

alternative similarity measures which can be used in our hierarchical clustering algorithm.

2 Splitting criteria

Every possible test which splits the training dataset into several subsets will eventually lead

to the construction of a complete decision tree, provided that at least two of the generated

subsets are not empty.

Each possible test must be evaluated using heuristics and, as most TDIDT algorithms

perform a one-ply lookahead heuristic search without backtracking (i.e. they are greedy),

the selected heuristics plays an essential role during the learning process. For instance, most

TDIDT algorithms decide how to branch the tree using some measure of node impurity.

Such heuristics, splitting rules henceforth, are devised to try to obtain the “best” decision
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tree according to some criterion. The objective is usually to minimize the classification

error, as well as the resulting tree complexity (following Occam’s Economy Principle).

Several splitting rules have been proposed in the literature. CART [4] uses Gini index to

measure the class diversity in the nodes of a decision tree. ID3 [22] attempts to maximize

the information gain achieved through the use of a given attribute to branch the tree.

C4.5 [24] normalizes this information gain criterion in order to reduce the tree branching

factor and [25] adjusts C4.5 criterion to improve its performance with continuous attributes.

Lopez de Mantaras [19] proposed an alternative normalization based on a distance metrics.

Taylor and Silverman [30] proposed the mean posterior improvement (MPI) criterion as

an alternative to the Gini rule for binary trees. Berzal et al. [1] introduce two alternative

splitting criteria which are dependent only on the most common class in each node and,

although simpler to formulate, are as powerful as previous proposals.

All the above-mentioned criteria are impurity-based functions, although there are mea-

sures which fall into other categories: some of them measure the difference among the split

subsets using distances or angles, emphasizing the disparity of the subsets (on binary trees,

typically), while others are statistical measures of independence (a χ2 test, for example)

between the class proportions and the split subsets, emphasizing the reliability of class

predictions. Further information about splitting criteria can be found in the references,

such as Martin’s extensive survey [20] and Shih’s study focused on binary decision trees

[29].

4



3 Binary splits for numerical attributes

The splitting criteria reviewed in the previous section provide a mechanism for ranking

alternative divisions of the training set when building decision trees. Obviously, there

must be some way of generating possible divisions of the training set. In other words, the

alternative tests which lead to different decision trees must be enumerated in order to be

ranked.

Most TDIDT algorithms define a template of possible tests so that it is possible to

examine all the tests which match with the template. Those tests usually involve a single

attribute because it makes the trees easier to understand and sidesteps the combinatorial

explosion that results if multiple attributes can appear in a single test [24].

C4.5-like algorithms, which build multi-way decision trees for discrete attributes, check

the value of such categorical attributes and build a branch for each value of the selected

attribute. More complex tests are also allowed, by grouping values of the attribute in order

to reduce the tree branching factor. In the extreme case, all attribute values are clustered

into two groups in order to build binary trees (as in CART). However, we feel that this

strategy makes the trees more complex to understand for human experts.

When an attribute A is continuous, i.e. it has numerical values, a binary test is usually

performed. This test compares the value of A against a threshold t: A ≤ t.

In spite of their apparent complexity, those tests are easy to formulate since you can

sort the training cases on the values of A in order to obtain a finite set of values {v1, v2..vn}.

Any threshold between vi and vi+1 will have the same effect when dividing the training set,

5



so that you just have to check n − 1 possible thresholds for each numerical attribute A.

It might seem computationally expensive to examine so many thresholds, although, when

the cases have been sorted, this can be performed in one sequential scan of the training

set.

It should be noted that TDIDT performance can also be improved by AVC-sets [11] or

any other scalability-oriented implementation technique, such as the middleware described

in [5].

Once you can determine that the best possible threshold is between vi and vi+1, you

must choose an accurate value for the threshold to be used in the decision tree. Most

algorithms choose the midpoint of the interval [vi, vi+1] as the actual threshold, that is

ti =
vi + vi+1

2

C4.5, for instance, chooses the largest value of A in the entire training set that does

not exceed the above interval midpoint:

ti = max

{

v | v ≤ vi + vi+1

2

}

This approach ensures that any threshold value used in the decision tree actually ap-

pears in the data, although it could be misleading if the value sample in the training dataset

is not representative.

Here we propose a slightly different approach which consists of choosing a threshold

between vi and vi+1 depending on the number of training instances below and above the

threshold. If there are L instances with v ≤ vi, and R examples v ≥ vi+1, then the

threshold ti is
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ti =
R ∗ vi + L ∗ vi+1

L + R

Let us emphasize that the number of instances whose value of A is greater than the

threshold (R) multiplies to the threshold lower bound vi while the upper bound vi+1 is

multiplied by the number of examples below the threshold (L).

This way, the threshold will be nearer to vi than to vi+1 if there are less training

instances falling in the left branch of the tree, which is the branch corresponding to the

examples with v ≤ vi. Similarly, the threshold will be nearer to vi+1 if the majority of the

training examples have values of A below or equal to vi.

Although this slight modification to the usual algorithm will usually not yield any

classifier accuracy improvement, we find that the decision trees it produces are more ap-

pealing, specially when the resulting trees are quite unbalanced (which, on the other hand,

is a common situation when continuous attributes are present).

4 Multi-way splits for numerical attributes

If we had only categorical attributes, we could use any C4.5-like algorithm in order to

obtain a multi-way decision tree, although we would usually obtain a binary tree if our

dataset included continuous attributes.

Using binary splits on numerical attributes implies that the attributes involved should

be able to appear several times in the paths from the root of the tree to its leaves. Although

these repetitions can be simplified when converting the decision tree into a set of rules,

they make the constructed tree more leafy, unnecessarily deeper, and harder to understand
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for human experts. As stated in [25], “non-binary splits on continuous attributes make the

trees easier to understand and also seem to lead to more accurate trees in some domains”.

On the other hand, if we use multi-way splits and we are confident enough that the

selected split properly discriminates among the problem classes, then we can leave the at-

tribute out once it has been used and the resulting tree will be smaller, easier to understand,

and faster to build, while its accuracy will not be significantly hurt.

We could sidestep this problem if we group all numeric attribute values before building

the decision tree (a.k.a. global discretization). Those attributes could then be treated as

if they were categorical. However, it would be desirable to find some way to cluster the

numeric values of continuous attributes depending on the particular situation (i.e. local

discretization), since the resulting intervals could widely vary among the different steps in

the decision tree induction process.

Our aim here is to propose an alternative method for handling numeric attributes when

building decision trees which generates suitable intervals for those attributes depending on

the context. As we will see, using multi-way splits will decrease the average tree depth

and, therefore, it will lead to trees which are easier to interpret by humans.

4.1 Classical value clustering

Once our objectives are clear, we face the problem of how to group values in a meaningful

way. This well-known problem, the clustering of patterns according to a similarity metric,

is also known as unsupervised learning, in contrast to the supervised learning that TDIDT
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algorithms perform.

Given a set of points in a high-dimensional space, clustering algorithms try to group

those points into a small number of clusters, each cluster containing similar points in

some sense. In other words, clustering is the non-supervised classification of patterns: the

process of generating classes without any a priori knowledge. Good introductions to this

topic can be found in [12] and [32].

As TDIDT algorithms, most clustering methods are heuristic, in the sense that local

decisions are made which may or may not lead to optimal solutions (i.e. good solutions

are usually achieved although no optimum is guaranteed). In their quest for better results,

researchers have proposed increasingly complex algorithms such as ISODATA [31], which

stands for Iterative Self-Organizing Data Analysis Techniques, with the final A added to

make the name pronounceable. However, the results obtained by most iterative algorithms,

such as the k-Means algorithm and all its variants, depend on the order in which patterns

are presented to the algorithm. Modern search strategies, such as GRASP (Greedy Ran-

domized Adaptive Search Procedure), which can be used in conjunction with the classical

k-Means algorithm, and also graph-based methods have been used to solve this problem.

While the latter are impractical in real-world problems, the former techniques can yield

excellent results when combined with classical methods.

A great number of clustering algorithms have been proposed in the literature, most of

them from the Pattern Recognition research field. In general, we can classify clustering

algorithms into centroid-based methods and hierarchical algorithms.
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• Centroid-based clustering algorithms characterize clusters by central points (a.k.a.

centroids) and assign patterns to the cluster of their nearest centroid. The k-Means

algorithm is the most popular algorithm of this class, and also one of the simplest.

• Hierarchical clustering methods are incremental. Agglomerative (a.k.a. merging or

bottom-up) hierarchical clustering methods begin with a cluster for each pattern and

merge nearby clusters until some stopping criterion is met. Alternatively, divisive

(a.k.a splitting or top-down) hierarchical clustering methods begin with a unique

cluster which is split until the stopping criterion is met. In this paper we propose

a hierarchical algorithm in order to build multi-way decision trees using numeric

attributes, although we use a novel approach to decide how to cluster data.

4.2 Discretization techniques

Splitting a continuous attribute into a set of adjacent intervals, also known as discretization,

is a well-known enabling technique to process numerical attributes in Machine Learning

algorithms [16]. It not only provides more compact and simpler models which are easier to

understand, compare, use, and explain; but also makes learning more accurate and faster

[6]. In other words, discretization extends the borders of many learning algorithms [16].

Discretization methods used as an aid to solve classification tasks are usually univariate

(for the sake of efficiency) and can be categorized according to several dimensions:

• Supervised vs. unsupervised (depending on their use of class information to

cluster data). Supervised methods employ the class information to evaluate and
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choose the cut-points, while unsupervised methods do not.

• Dynamic (local) vs. static (global). In a global method, discretization is per-

formed beforehand. Local methods discretize continuous attributes in a localized

region of the instance space (as in C4.5) and their discretization of a given attribute

may not be unique for the entire instance space.

The simplest discretization methods create a specified number of bins (e.g. equiwidth

and equidepth). Supervised variants of those algorithms include Holte’s One Rule Dis-

cretizer [15].

Information Theory also provides some methods to discretize data (as the entropy and

gain ration splitting criteria used in decision trees). Fayyad and Irani’s multi-interval

discretization based on Rissanen’s Minimum Description Length Principle (MDLP) is a

prominent example [8]. Mantaras Distance can be used as a variation of the original

Fayyad and Irani’s proposal [19] and Van de Merckt’s contrast measure provides another

alternative [33].

Other approaches include Zeta [14], which employs a measure of strength of association

between nominal values: the maximum achievable accuracy when each value of a feature

predicts a different class value. The χ2 statistics has also been used in discretization

algorithms such as ChiMerge, Chi2, and ConMerge. A survey of such methods an a

taxonomy proposed to categorize them can be found in [16]. Dougherty, Kohavi and

Sahami’s paper [6] can also be a good starting point for the interested reader.
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4.3 An alternative approach: Taking context into account

Once we have described how classical clustering algorithms work and some previous work

on discretization algorithms, we will present a different viewpoint in order to formulate

a clustering algorithm which will help us to group numeric values into intervals. Those

intervals will then be used to build multi-way decision trees in classification tasks.

The naive approach to build multi-way decision trees using numerical attributes consists

of using any well-known classical clustering algorithm with the set of one-dimensional

patterns which correspond to the values of the continuous attribute we evaluate. For

example, we could use a graph-based theoretical algorithm which finds a minimum spanning

tree for the training set and removes its longest edges, as described in [3]. Although it is

easy to implement in the one-dimensional case and optimal from a theoretical point of view

(that is, it maximizes inter-cluster distance), this approach is useless for our purposes, since

it does not take into account whether the generated split leads to a better decision tree or

to a worse one. In other words, it does not consider our classification problem context.

The actual value distribution of a continuous attribute we would use in a traditional

unsupervised clustering algorithm is completely meaningless for clustering individual values

into intervals given our classification purposes.

Supervised discretization techniques (see Section 4.2) do take class information into

account, although they usually focus on some kind of purity measure associated to each

interval resulting from the discretization process. Here we prefer to measure the similarity

between adjacent intervals in order to choose the appropriate cut-points which delimit.
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Henceforth, we will consider the class distribution for each value in order to group adjacent

values and build the intervals that lead to the discretization of a continuous attribute.

In order to make our multi-way TDIDT algorithm context-sensitive, we redefine the

notion of pattern used by our clustering algorithms, which will be a standard hierarchical

clustering algorithm.

Clustering algorithms usually compute the distance between patterns using their feature

space. Here we prefer to use the distance between class distributions corresponding to

adjacent values because adjacency relationships are established beforehand by the attribute

values. In fact, any distance metrics could be used between attribute values in order

to determine adjacency relationships. Since adjacent values in the training dataset will

always be the nearest ones in the traditional sense, it is unnecessary to compute these

actual distances. Obviously, such implicit distance measurements are not enough to solve

our problem. We need to introduce a criterion to decide which pair of adjacent values or

intervals to combine (if we follow a bottom-up approach) or where to split a given interval

(if we decide to employ a top-down algorithm). The differences between class distributions

for attribute values in the training set will help us decide how to merge adjacent values

or where to split a given interval. That is, intervals will be merged/split using a classical

hierarchical clustering algorithm.

It should be noted that this technique can be applied to any of the existing TDIDT

algorithms, from C4.5 to RainForest. Our method actually constitutes a general-purpose

supervised discretization technique by itself.

Given a set of adjacent intervals I1, I2.. In for attribute A, we will characterize each
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one of them with the class distribution of the training examples it covers. If there are

J different problem classes, each interval I will have an associated characteristic vector

VI = (p1, p2, .., pJ), where pj is the probability of the jth class in the training examples

which have their A value included in the interval I.

4.3.1 An example

Let us consider a three-class classification problem. Let a be a continuous attribute with

four observed attribute values (namely v1, v2, v3, and v4). In this case, every value vi of

the continuous attribute a is characterized by a 3-dimensional vector Vi which contains the

relative frequency for each class in the instances belonging to the training dataset whose

attribute a takes the value v.

Let us suppose that our characteristic vectors are V1 = (0.3, 0.4, 0.3), V2 = (0.2, 0.6, 0.2),

V3 = (0.8, 0.1, 0.1), and V4 = (0.6, 0.4, 0.0). We evaluate the construction of a 4-way

decision tree using the subsets corresponding to each attribute value and, after that, we

merge the most similar pair of adjacent value distributions. If we use the squared Euclidean

distance d2
2(Vi, Vj) to measure vector dissimilarity, we obtain d2

2(V1, V2) = 0.06, d2
2(V2, V3) =

0.62, and d2
2(V3, V4) = 0.14. Since (V1, V2) is the most similar pair of adjacent vectors, we

merge them and obtain V12 = (0.25, 0.5, 0.25) if both v1 and v2 represent the same number

of training instances. We then evaluate the 3-way decision tree which would result from

using {v1, v2}, {v3}, and {v4}. Again, we compute the distance between adjacent vectors in

order to obtain d2
2(V12, V3) = 0.3475 and d2

2(V3, V4) = 0.14, so we decide to merge v3 and v4.

Our current clusters are, therefore, {v1, v2} and {v3, v4}. We evaluate the corresponding
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Figure 1: Iterative grouping of adjacent intervals.

binary decision tree and terminate the execution of our algorithm, since there is no need

to continue merging adjacent intervals. The whole process is depicted in Figure 1.

It should be noted that only two distances must be recomputed in each iteration of our

algorithm. Once vi is merged with vi+1, the resulting class distribution Vi,i+1 is computed.

We just need to evaluate the similarity between Vi,i+1 and its neighbours (Vi−1 and Vi+2)

because the other class distributions and similarity measurements remain unchanged.

4.3.2 Measuring similarity

Although we have used the Euclidean distance in the example above, others similarity

measures are also feasible.

Any feasible similarity measure should encourage the combination of adjacent intervals

when their most common class is the same, although this naive criterion is useless in

problems where the class populations are quite unbalanced. To state it more clearly, if
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95% of the training examples belong to the same class, such a simple similarity criterion

would eventually merge all attribute values into a single interval in a meaningless way, since

the most common class would probably be the same for all the possible interval partitions.

In order to avoid such a pathological behaviour, we will have to use similarity functions

which take into account the class probability for every problem class, not just the most

common one.

Table 1 summarizes several similarity measures which have been proposed in the litera-

ture and can be used to solve our problem. A more in-depth description of those similarity

measures can be found in an extended version of this paper available upon request.

4.3.3 Interleaving the hierarchical clustering algorithm with the TDIDT eval-

uation process

We have chosen a hierarchical clustering algorithm because it allows us to intertwine its

execution with the evaluation of alternative training set partitions in order to build a

multi-way decision tree. Hierarchical agglomerative clustering methods (HACM) have

been widely used in several fields, including information retrieval and a good survey of

them can be found at [26].

Any hierarchical agglomerative clustering method can be described by the following

general algorithm:

1. Create one cluster per pattern in the training dataset.

2. Identify the two closest clusters and combine them in a cluster.
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Distance-based models

Minkowski r-metric dr(x, y) =
(

∑J

j=1
|xj − yj|r

)
1

r

, r ≥ 1

- Euclidean distance d2(x, y) =
√

∑J

j=1
(xj − yj)2

- Manhattan distance d1(x, y) =
∑J

j=1
|xj − yj|

- Dominance metric d∞(x, y) = maxj=1..J |xj − yj|

Bhattacharyya distance R(x, y) =
√

1 −∑J

j=1

√
xj, yj

Correlation-like similarity measures

Dot-product S·(x, y) = x · y =
∑J

j=1
xjyj

Correlation-like index ρ(x, y) = 1 −
(

4

Nx+Ny

)

d2
2

where Nv =
∑J

j=1
(2vj − 1)2

Set-theoretical approaches
Tversky’s model s(a, b) = θf(A ∩ B) − αf(A − B) − βf(B − A),

where θ, α, β ≥ 0

- Restle’s model −SRestle(A,B) = |A�B|
−S�(A,B) = supx µA�B(x)

- Intersection model SMinSum(A,B) = |A ∩ B|
−SEnta(A,B) = 1 − supx µA∩B(x)

Ratio model s(a, b) =
f(A ∩ B)

f(A ∩ B) + αf(A − B) + βf(B − A)
where α, β ≥ 0

- Gregson’s model SGregson(A,B) =
|A ∩ B|
|A ∪ B|

Notes:
|A| =

∑

x µA(x)
µA∩B(x) = min{µA(x), µB(x)}
µA∪B(x) = max{µA(x), µB(x)}
µA�B(x) = max {min{µA(x), 1 − µB(x)}, min{1 − µA(x), µB(x)}}

Table 1: Some similarity measures
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3. If more than one cluster remains, return to step 2.

Individual HACMs differ in the way in which the most similar pair is defined, and in

the means used to represent a cluster.

In our problem, we start with each separate attribute value as an individual interval

and we merge the two most similar adjacent intervals. If we had N intervals, we are left

with N − 1 intervals. This process is repeated until there are only two intervals left, which

would lead to a binary decision tree if used to branch it.

Each time we merge two adjacent intervals, we can check the impurity measure associ-

ated with the decision tree we would build using the current set of intervals to branch the

tree with the numerical attribute we are analyzing. If that measure improves the best one

obtained so far, we record the current interval set in order to use it to branch the tree if no

better splits are attained in subsequent iterations. Obviously, this technique is orthogonal

to the splitting criterion used to evaluate altenative splits, let it be C4.5 gain ratio, Gini

index of diversity, or whatever.

The resulting algorithm can be expressed as shown in Figure 2 and allows us to build

multi-way decision trees without setting a tree branching factor beforehand. We should,

however, set a maximum branching factor in order to reduce the number of alternative

tree evaluations performed and, therefore, speed up the construction of the decision tree.

This maximum value can be determined by the usual threshold TDIDT algorithms employ

to stop the decision tree learning process as a pre-pruning technique: when the resulting

subsets of the training dataset contain only a few examples, there is no need to branch
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1. Create one interval per pattern in the training dataset.

2. Identify the two closest adjacent intervals and combine them (according to

their class distributions).

3. Evaluate the decision tree which would result from using the current set of

intervals to branch the tree. If it is the best split known so far, remember it.

4. If more than one interval remains, return to step 2.

Figure 2: Context discretization interleaved within the TDIDT process.

the tree further. Analogously, we can use that threshold to avoid checking partitions of

the training dataset during the first stages of the agglomerative clustering algorithm (i.e.

when almost every value constitutes an interval of its own).

For every continuous attribute we would perform the above clustering algorithm in

order to find the most promising split of the decision tree.

Although traditional HACMs can be usually implemented using algorithms that are

O(N 2) in time and O(N) in space, our special-purpose HACM is only O(N log N) in time.

Since interval adjacency is established beforehand and only two similarity measurements

have to be computed in each iteration, a heap-like data structure can be employed to

perform each iteration in O(log N) steps.

Alternatively, we could use a divisive top-down hierarchical clustering algorithm start-

ing from a unique interval covering the whole instance space and splitting it in each iter-

ation. Note that the top-down approach is less sensitive to noise in the training set, since
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the agglomerative bottom-up algorithm starts with the local class distributions for each

value of the continuous feature. The noise effect could also be reduced using a standard

binning discretization algorithm beforehand (such as equidepth) and it could also improve

our method performance since less similarity measures would need to be computed to get

our algorithm started.

In the following section we present the empirical results we have attained using our

algorithm to build multi-way decision trees with numerical attributes and compare them

with the results obtained using binary splits and previous discretization methods for this

kind of attributes.

5 Experimental results

Table 3 summarizes the results we have obtained building decision trees using different

local discretization methods for 16 standard small and medium-sized datasets, most of

them from the UCI Machine Learning Repository. Those datasets can be downloaded

from the following URL:

http://www.ics.uci.edu/∼mlearn/MLRepository.html

All the results reported in this section were obtained using 10-CV (ten-fold cross-

validation), Quinlan’s gain ratio criterion, and pessimistic pruning (with CF = 0.25), as

described in [24].

The standard binary-split C4.5 algorithm is compared with several multi-way tech-

niques: our contextual discretizer, three previous supervised discretizers (Holte’s One Rule,

20



Dataset #Instances #Features #Classes
adult 48842 14 2
australian 690 14 2
breast 699 9 2
bupa 245 7 2
car 1728 6 4
glass 214 10 6
hayesroth 160 4 3
heart 270 13 2
ionosphere 351 34 2
iris 150 4 3
pima 768 8 2
spambase 4601 57 2
thyroid 2800 29 2
waveform 5000 21 3
wine 178 13 3
yeast 1484 8 10

Table 2: Datasets used in our experiments

Fayyad and Irani’s MDLP, and Ho and Scott’s Zeta), and three standard unsupervised dis-

cretization methods (the ubiquitous K-Means and two binning algorithms: Equiwidth and

Equidepth). To improve our algorithm robustness in the presence of noise, we use an

agglomerative clustering algorithm (using the Euclidean distance to measure dissimilarity

between class distributions) preceded by Equidepth binning (using 25 bins as a starting

point for our hierarchical clustering method).
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C4.5 Context OneRule MDLP Zeta KMeans Equiwidth Equidepth

CV Accuracy 82.00% 82.04% 76.90% 81.44% 74.87% 81.53% 81.06% 81.01%

- Measured error 18.00% 17.96% 23.10% 18.56% 25.13% 18.47% 18.94% 18.99%

- Estimated error 12.74% 14.34% 16.88% 16.44% 19.99% 16.36% 17.27% 17.20%

Training time (seconds) 6.93 12.17 7.30 7.92 15.53 20.82 8.61 8.26

Tree size 110.9 83.8 96.1 42.5 116.8 84.3 93.5 89.0

- Internal nodes 49.9 32.1 21.8 15.8 15.3 24.0 29.0 27.0

- Leaves 60.9 51.7 74.3 26.7 101.6 60.3 64.5 62.0

Average tree depth 3.91 3.40 2.37 3.02 1.84 2.80 4.43 2.70

Table 3: Local discretization experiments summary
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Table 3 shows that our method is competitive in terms of classification accuracy and

it tends to build small decision trees. It is remarkable that our discretization technique

outperforms any other discretization method in its estimated error (that is, the estimation

of error used by Quinlan’s pessimistic pruning) although there are no big differences in

the 10-CV measured error. Regarding to the tree size, our method obtains trees which

contain 84% of the nodes required by the corresponding binary tree on average and it is

only outperformed by Fayyad and Irani’s MDLP discretizer.

The 10-CV classifier accuracy results obtained for each dataset and discretization

method are displayed in Table 4. Multi-way decision trees for numerical attributes im-

proved TDIDT accuracy in some experiments. Our method significantly improved binary-

decision tree accuracy in three datasets (Bupa, Pima, and Yeast) and was slightly worse

in only two datasets (Glass and Wine). Other discretization methods obtain similar

results, although our contextual discretization tends to outperform them. Our method did

not always obtain accuracy improvements, although the accuracy loss was not significant

either. It should be noted, however, that the pessimistic pruning might bias the results in

some cases (such as in Bupa when the MDLP criterion is used and the tree is aggresively

pruned).
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Dataset C4.5 Context OneRule MDLP Zeta KMeans Equiwidth Equidepth
adult 82.60% 82.58% 77.10% 85.27% 80.56% 84.73% 82.92% 82.42%
australian 85.65% 84.93% 85.80% 85.07% 84.78% 85.51% 84.64% 85.65%
breast 93.99% 93.84% 94.85% 94.28% 95.57% 95.28% 95.28% 94.27%
bupa 66.10% 67.83% 59.76% 57.71% 57.71% 64.71% 62.96% 66.72%
car 92.88% 92.88% 92.88% 92.88% 92.88% 92.88% 92.88% 92.88%
glass 70.06% 68.77% 59.70% 66.34% 49.46% 70.58% 67.38% 63.46%
hayesroth 73.75% 73.75% 73.75% 73.75% 73.75% 73.75% 73.75% 73.75%
heart 77.04% 76.67% 74.07% 76.67% 73.33% 78.89% 78.52% 79.63%
ionosphere 90.60% 90.32% 87.21% 91.16% 79.76% 88.31% 89.17% 88.60%
iris 94.00% 93.33% 94.00% 93.33% 93.33% 95.33% 94.67% 94.67%
pima 74.85% 76.81% 68.74% 74.72% 58.19% 74.20% 76.03% 72.76%
spambase 90.52% 90.24% 87.09% 92.00% 87.83% 91.68% 82.22% 92.11%
thyroid 96.18% 95.61% 96.46% 97.29% 96.04% 95.32% 96.04% 94.54%
waveform 76.80% 76.50% 58.86% 76.80% 55.36% 74.38% 75.74% 74.58%
wine 92.71% 91.57% 75.07% 90.92% 74.51% 87.09% 92.68% 88.20%
yeast 54.25% 56.94% 45.15% 54.79% 44.81% 51.76% 52.09% 51.89%
Average 82.00% 82.04% 76.90% 81.44% 74.87% 81.53% 81.06% 81.01%
Win-Loss-Tie (1%) 3-2-11 0-10-2 3-3-10 1-10-5 5-5-6 3-7-6 2-7-7

Table 4: Classifier accuracy
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The accuracy results are more relevant when we take into account that the resulting

tree complexity diminishes when multi-way splits are used. The tree size (internal nodes

plus leaves) and the average tree depth are reduced. Although it is commonly assumed

that binary decision trees have less leaves but are deeper than multi-way trees [20], we have

found that this fact does not hold (at least after pruning) since the pruned binary tree can

have more leaves than its multi-way counterpart as Table 3 shows for our discretizer and

MDLP: you can end up with simpler trees if you use multi-way splits even for numerical

attributes.

We have also tested the analyzed discretization methods using global discretization in-

stead of discretizing continuous attributes at each node of the tree. As previous studies

have suggested, global discretization improves TDIDT efficiency, reduces tree complexity,

and maintains classification accuracy. Table 5 summarizes our results using a top-down

contextual discretizer (which is more robust in the presence of noise) and the other dis-

cretization methods described above. Our method also performs well when used as a global

discretization technique.
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C4.5 Context OneRule MDLP Zeta KMeans Equiwidth Equidepth

CV Accuracy 82.00% 81.92% 77.24% 82.40% 74.91% 81.25% 79.24% 81.16%

- Measured error 18.00% 18.08% 22.76% 17.60% 25.09% 18.75% 20.76% 18.84%

- Estimated error 12.74% 16.60% 20.53% 15.94% 22.12% 16.96% 19.47% 17.24%

Training time (seconds) 6.93 1.62 6.30 1.02 10.54 1.03 1.05 1.02

Tree size 110.9 70.7 77.6 62.7 92.1 85.5 75.4 82.4

- Internal nodes 49.9 21.8 10.1 20.8 9.0 24.4 23.2 24.1

- Leaves 60.9 48.9 67.4 41.8 83.0 61.1 52.2 58.2

Average tree depth 3.91 2.76 1.70 3.03 1.55 2.80 4.09 2.60

Table 5: Global discretization experiments summary
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Further experiments whose results are available from the authors upon request have

shown that our method achieves interesting results, regardless of the particular similarity

measure employed to group continuous values into intervals (see Table 1). In general,

distance-based similarity measures tend to obtain uniform results, while correlation-like

measures induce more variability in the experiments outcomes. Among the various set-

theoretical approaches to measure similarities, Enta’s model stands out. However, there are

no significant differences among the similarity measures we have tested in our experiments.

It is important to remark that, in spite of the additional computing resources required

by the interleaved hierarchical clustering method we propose to build multi-way decision

trees, the overall TDIDT asymptotic complexity is preserved and, therefore, our approach

is still applicable to data mining problems where decision trees play an important role

[10]. Moreover, as our technique is orthogonal to the underlying TDIDT algorithm, it

can be appended to efficient implementations of the TDIDT process, such as PUBLIC or

RainForest.

6 Conclusions

It is well-known that no particular splitting rule does significantly increase classification

accuracy for decision tree classifiers in TDIDT algorithms. Similarly, great accuracy im-

provements caused by changes in the tree topology cannot be expected. However, slight

modifications in the way that decision trees are built can lead to quite different classifi-

cation models. Although the classification accuracy obtained will be always similar, the
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complexity of the resulting trees can vary widely.

In this paper we have proposed an alternative way of handling numerical attributes

when building multi-way decision trees so that the resulting trees tend to be smaller and

their accuracy is preserved. In fact, the classifier accuracy is even improved in some cases.

Following Occam’s Economy Principle, it is commonly agreed that finding new ways

to build smaller decision trees is a desirable goal. Our algorithm, like Fayyad and Irani’s

MDLP, is remarkable because it dramatically reduces tree complexity without hurting clas-

sifier accuracy at a reasonable cost. Moreover, knowledge workers (the executives, analysts,

and managers who employ decision support systems) usually feel more comfortable with

multi-way splits than with binary trees, and this is also true for numerical attributes.

It is also worthwhile to mention that the method we have proposed does not signif-

icantly increase TDIDT computational cost and is orthogonal to the particular TDIDT

implementation, so that our algorithm can be easily integrated into the algorithms which

have been recently devised to handle huge amounts of data, such as PUBLIC [27] and

RainForest [11].

Our method can also be used as an alternative discretization technique to be added to

the computer scientist toolkit, since it has proven to be efficient and suitable for both local

and global discretization. We feel that our focus of measuring dissimilarity between class

distributions between adjacent intervals is preferable to previous supervised discretization

methods (such as 1R, MDLP, and Zeta) which use some kind of purity measure to evaluate

a particular interval without taking into account the nature of neighboring intervals.
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