
ART: A Hybrid Classification Model

Fernando Berzal (fberzal@decsai.ugr.es) ∗

Dept. Computer Science and AI, University of Granada (Spain)

Juan-Carlos Cubero (jc.cubero@decsai.ugr.es) ∗

Dept. Computer Science and AI, University of Granada (Spain).

Daniel Sánchez (daniel@decsai.ugr.es)
Dept. Computer Science and AI, University of Granada (Spain)

José Maŕıa Serrano (jmserrano@decsai.ugr.es)
Dept. Computer Science and AI, University of Granada (Spain)

July 23, 2002

Abstract. This paper presents a new family of decision list induction algorithms
based on ideas borrowed from the association rule mining context. ART, which
stands for ‘Association Rule Tree’, builds decision lists which can be viewed as
degenerate, polythetic decision trees. Our method is a generalized “Separate and
Conquer” algorithm suitable for Data Mining applications because it makes use use
of efficient and scalable association rule mining techniques.

Keywords: supervised learning, classification, decision lists, decision trees, associ-
ation rules, Data Mining

1. Introduction

Classification is a major problem in Artificial Intelligence. The aim of
any classification algorithm is to build a classification model given some
examples of the classes we are trying to model; i.e. given the training
set. The abstract model we obtain can then be used to classify new
examples or simply to achieve a better understanding of the available
data.

In this paper, we present a new algorithm for building classifiers
which can yield excellent results while being suitable to cope with
huge data sets usually found in Data Mining problems. In order to
ensure good scalability properties, we make use of association rules
to efficiently build a decision list, which can be viewed as a degener-
ate, polythetic decision tree, hence its name ART (Association Rule
Tree). As any symbolic classification model, its main strength is that
it provides understanding of and insight into the data.

∗ Contact information: Juan-Carlos Cubero and Fernando Berzal, Departamento
de Ciencias de la Computación e Inteligencia Artificial, ETS Ingenieŕıa Informática,
Universidad de Granada, Granada 18071 SPAIN.

c© 2002 IDBIS, http://frontdb.ugr.es/. Printed in Spain.

2 F. Berzal, J.C. Cubero, D. Sánchez & J.M. Serrano

Our method, as a decision list learner, is a generalized “Separate
and Conquer” algorithm (Pagallo and Haussler, 1995), in contrast to
the standard “Divide and Conquer” algorithms used to build decision
trees. However, our induction process is faster than general decision
list and rule inducers which need to discover rules one at a time. As
decision tree learners, ART is able to build classification models in an
efficient and scalable way. Moreover, our classifiers tend to be smaller
than the decision trees generated by standard TDIDT classifiers.

In the following section we introduce the learning techniques our
method is based on. Afterwards, we present a complete description of
our classification model, whose intuitive parameters can be automat-
ically adjusted. Some experimental results are also reported in this
paper. Finally, we present our conclusions and pointers to future work.

2. Background

2.1. Rule learners and decision lists

There are many algorithms which induce sets of if - then rules directly
from data. Some algorithms perform a beam search through the space
of hypotheses such as INDUCE or AQ (Sestito and Dillon, 1994), as well
as CN2 (Clark and Nibblett, 1989) (Clark and Boswell, 1991) and CWS
(Domingos, 1996). Genetic algorithms, such as REGAL (Giordana and
Neri, 1996), also fall in this category.

Decision lists can be considered to be an extended if - then - else
if - ... - else - rule. In fact, k-DL (decision lists with conjunctive
clauses of size at most k) are polynomially learnable (Rivest, 1987).
Although rule learning systems are computationally expensive, more
efficient algorithms exist for decision lists, e.g. IREP (Fr̈nkranz and
Widmer, 1994), RIPPERk (Cohen, 1995), and PNrule (Joshi et al.,
2001). These algorithms are incremental, in the sense that they add one
rule at a time to the classification model they build (usually through
a “separate and conquer algorithm”). Some proposals, however, try to
discover the whole set of rules in a single search, e.g. BruteDL (Segal
and Etzioni, 1994) performs a depth-bound search of rules up to a
certain length.

An alternative approach to obtain a set of if-then rules consists of
building a decision tree using a “divide and conquer” algorithm. Rules
can be easily extracted from decision trees, and there are methods, such
as C4.5rules (Quinlan, 1993), which convert decision trees into decision
lists simplifying the set of rules which is derived from a decision tree.

ART: A Hybrid Classification Model 3

2.2. Decision trees

Decision trees, also known as classification or identification trees, prob-
ably constitute the most popular and commonly-used classification
model; e.g. see (Quinlan, 1986b) and (Gehrke et al., 1999b).

The knowledge obtained during the learning process is represented
using a tree where each internal node holds a question about one par-
ticular attribute (with one offspring per possible answer) and each leaf
is labeled with one of the possible classes.

A decision tree may be used to classify a given example beginning at
the root and following the path given by the answers to the questions
at the internal nodes until a leaf is reached.

Decision trees are built recursively following a top-down approach
(from general concepts to particular examples). That is the reason
why the acronym TDIDT, which stands for Top-Down Induction on
Decision Trees, is used to refer to this kind of algorithms.

The TDIDT algorithm family includes classical algorithms such as
CLS (Concept Learning System), ID3 (Quinlan, 1986a), C4.5 (Quinlan,
1993), and CART (Classification And Regression Trees) (Breiman et
al., 1984), as well as more recent ones such as SLIQ (Mehta et al.,
1996), SPRINT (Shafer et al., 1996), QUEST (Loh and Shih, 1997),
PUBLIC (Rastogi and Shim, 1998), RainForest (Gehrke and Ramakr-
ishnan, 1998) and BOAT (Gehrke et al., 1999a). Other decision tree
classifiers include BCT (Chan, 1989), which builds polythetic decision
trees combining ideas from ID3 and CN2, and TX2steps (Elder, 1995),
which performs a lookahead in decision tree construction.

2.3. Association rules

Association rule mining has been traditionally applied to databases of
sales transactions (referred to as basket data). In this kind of database,
a transaction T is a set of items, henceforth itemset, with a unique
identifier and some additional information (e.g. date and customer). A
transaction contains a set of items I if I is contained in T. Such a set
of items is called k-itemset, where k is the number of items in the set.

An association rule is an implication X⇒Y where X and Y are
itemsets with empty intersection (i.e. with no items in common). The
intuitive meaning of such a rule is that the transactions (or tuples)
which contain X also tend to contain Y.

The confidence of an association rule X⇒Y is the proportion of
transactions containing X which also contain Y. The support of the
rule is the fraction of transactions in the database which contain both
X and Y.

4 F. Berzal, J.C. Cubero, D. Sánchez & J.M. Serrano

Given a database, association rule mining algorithms try to ex-
tract all the association rules with support and confidence above user-
specified thresholds, MinSupp and MinConf respectively.

Many algorithms have been proposed to solve this problem, from the
original proposals, such as AIS (Agrawal et al., 1993), SETM (Houtsma
and Swami, 1993), or, in particular, Apriori (Agrawal and Skirant,
1994), to more advanced algorithms such as DHP (Park et al., 1995),
DIC (Brin et al., 1997), CARMA (Hidber, 1999), FP-Growth (Han et
al., 2000), and TBAR (Berzal et al., 2001). See (Hipp et al., 2000)
for a recent survey of the problem and (Han and Plank, 1996) for a
somewhat older comparison of some selected algorithms.

2.4. Related work

Some fundamental differences exist between classification and associa-
tion rule discovery (Freitas, 2000). Association rules do not involve
prediction, nor do they provide any mechanism to avoid underfitting
and overfitting apart from the crude MinSupport user-specified thresh-
old. An inductive bias is also needed to solve classification problems, i.e.
a basis for favoring one hypothesis over another (e.g. Occam’s razor).
This bias, like any other bias, must be domain-dependent.

Association rules have however been used to solve classification prob-
lems directly. In (Ali at al., 1997), association rules are used to build
partial classification models in domains where conventional classifiers
would be ineffective. For example, traditional decision trees are prob-
lematic when many values are missing and also when the class distri-
bution is very skewed.

In (Wang et al., 2000), a tree of rules is built from an arbitrary set of
association rules without using an ad-hoc minimum support threshold.
The authors have observed that predictivity often depends on high
confidence, and rules of high support tend to have low confidence, so
MinSupport pruning is not suitable for their classification purposes.

CBA is an algorithm for building complete classification models
using association rules which was proposed in (Liu et al., 1998). In
CBA [Classification Based on Associations], all “class association rules”
are extracted from the available training dataset (i.e. all the associa-
tion rules containing the class attribute in their consequent), and the
most adequate rules are selected to build an “associative classification
model”, which uses a default class to make it complete. This classifier
builder uses a brute-force exhaustive global search, and yields excellent
results when compared to C4.5. In (Liu et al., 2000c), CBA performance
was “improved” allowing multiple minimum support thresholds for the

ART: A Hybrid Classification Model 5

different problem classes and recurring to traditional TDIDT classifiers
when no accurate rules are found.

A similar strategy to that of CBA is used to classify text documents
into topic hierarchies in (Wang et al., 1999). All the generalized asso-
ciation rules with the class attribute in their consequent are extracted,
these rules are ranked, and some of them are selected to build a classifier
which takes context into account, since class proximity is important
when classifying documents into topics.

Hybrid approaches have also been suggested in the literature. LB
(Meretakis and Wüthrich, 1999), which stands for “Large Bayes”, is
an extended Näıve Bayes classifier which uses an Apriori-like frequent
pattern mining algorithm to discover frequent itemsets with their class
support. This class support is an estimate of the probability of the
pattern occurring with a certain class. The proposed algorithm achieves
good results. However, it lacks the understandability of symbolic models
(such as decision trees).

Emerging patterns are itemsets whose support increases significantly
from one dataset to another (Dong and Li, 1999). They have been used
to build classifiers following the LB philosophy. For example, CAEP
(Dong et al., 1999) finds all the emerging patterns meeting some sup-
port and growth rate thresholds for each class. It then computes an
aggregated differentiating score to determine the most suitable class
for a given instance. This computation allows the algorithm to perform
well when the class populations are unbalanced, although it gives no
further insight into the data.

Liu, Hu and Hsu (Liu et al., 2000a) propose the use of a hierarchical
representation consisting of general rules and exceptions in order to
replace the usual flat representation model where too many associa-
tion rules hamper the understanding of the underlying data. The same
approach is followed in (Liu et al., 2000b) in order to obtain a good
summary of the knowledge contained in an arbitrary set of rules. In
some way, ART takes a further step in that direction, as we will see in
the following sections.

3. ART Classification model

Instead of discovering rules one at a time, as most decision list learners
do, ART discovers multiple rules simultaneously. ART builds partial
classification models using sets of association rules. The instances in the
input dataset which are not covered by the selected association rules
are then grouped together in ‘else’ branches to be further processed
following the same algorithm.

6 F. Berzal, J.C. Cubero, D. Sánchez & J.M. Serrano

3.1. Building the classifier

ART constructs a decision list using a greedy algorithm where each
decision is not revoked once it has been taken. Since it employs an
association rule mining algorithm to efficiently build partial classifi-
cation models, it requires the typical user-specified thresholds used
in association rule mining, MinSupp (minimum support for the fre-
quent itemsets) and MinConf (minimum association rule confidence),
although the latter can be omitted, as we shall see. On the other hand,
the minimum support threshold can be established as a percentage over
the current dataset size and it implicitly restricts the tree branching
factor. Therefore, primary or candidate keys in the input dataset will
never be selected by ART.

3.1.1. ART Overview
The special kind of decision list ART obtains can be considered as a
degenerate, polythetic decision tree. Unlike most traditional TDIDT
algorithms, ART is able to use several attributes simultaneously to
branch the decision tree. This fact has proved to improve the per-
formance of decision tree learning in terms of both higher prediction
accuracy and lower theory complexity (Zheng, 2000).

In our context, a good rule is an accurate rule, i.e. an association
rule with a high enough confidence value so that it can be helpful in
order to build an accurate classifier. As we will see in Section 3.1.3, the
best set of good rules is the most promising set of rules according to
some preference criterion. In other words, it is the set of rules which
best seems to serve our purpose of building a predictive model (from
a heuristic point of view, as is evident). ART will choose such a set to
branch the decision tree.

In its quest for candidate hypothesis, ART begins by looking for sim-
ple association rules such as {Ai.ai} ⇒ {C.cj}, where A is an attribute,
a is its value, C is the class attribute and c is one of the problem classes.
The attribute A with the best set of good rules {Ai.ai} ⇒ {C.cj} is then
selected to branch the tree. A leaf node is generated for each good rule
and all the data instances not covered by any of these rules are grouped
in an ‘else’ branch to be further processed in the same way.

When no suitable association rules are found for any single attribute-
value pair A.a, ART looks for more complex association rules. It begins
with rules of the form {A1.a1 A2.a2} ⇒ {C.cj}. If no good candidate
rules are found, ART then searches for rules with three attribute-value
pairs in their antecedents, such as {A1.a1 A2.a2 A3.a3} ⇒ {C.cj}, and
so on. An upper bound on the size of the left-hand side (LHS) of the
association rules is then advisable to stop the search in the rare case

ART: A Hybrid Classification Model 7

when no suitable rules are found. This parameter is designed as Max-
Size and its maximum possible value equals the number of predictive
attributes in the training dataset (recall the First Normal Form). In
fact, this parameter can be set to that value by default, unless the user
explicitly changes it.

ART therefore begins by using simple hypotheses to classify the
training data and makes more complex hypothesis only when no simple
hypotheses are found to work well. ART thus incorporates an explicit
preference for simpler models using Occam’s Razor as its inductive bias.
Despite recent criticisms about using Occam’s razor in the KDD field
(Domingos, 1998) (Domingos, 1999), we believe Occam’s Razor is still
appropiate for classification tasks. It should be noted that an inductive
bias is necessary for any classification task anyway, since, given a set
of observed facts, the number of hypotheses that imply these facts is
potentially infinite (Freitas, 2000).

A pseudo-code description of the ART algorithm is sketched in
Figure 1.

3.1.2. Rule mining: Candidate rules
The first step in the ART algorithm is to discover potentially predictive
rules in the training dataset. These rules will be used to grow the
decision tree which ART builds. An algorithm is needed to look for
underlying rules in the input dataset.

The simplest possible rule mining algorithm is to discover all the
association rules which include the class attribute as their consequent
and satisfy the user-specified MinSupp and MinConf thresholds.

Since dense datasets are common in the relational databases typi-
cally used for classification problems (i.e. datasets with a relatively
small number of missing values), an algorithm like TBAR is the best
choice (Berzal et al., 2001) because it takes advantage of the First
Normal Form to reduce the size of the candidate set in the association
rule mining process (i.e. the number of potentially relevant itemsets).

The MinSupp parameter can be a fixed number of tuples, or a per-
centage of the size of the current training dataset. In the first case, an
absolute minimum support threshold is established beforehand and is
fixed during all the stages of the decision tree learning. Using a relative
minimum support threshold, the actual support is adapted to the size
of the remaining dataset. For example, if MinSupp is set at 0.1 and
we begin with 1000 tuples, the absolute minimum support will be 100
tuples at the root of the tree while it will be lower in later stages of the
algorithm. If there are N tuples left in the training dataset, 0.1*N will
be used as the minimum support threshold in order to obtain all the
frequent itemsets in the remaining dataset, which might not be frequent

8 F. Berzal, J.C. Cubero, D. Sánchez & J.M. Serrano

function ART (data, MaxSize, MinSupp, MinConf): classifier;
// data: Training dataset
// MaxSize: Maximum LHS itemset size
// (default value = number of predictive attributes)
// MinSupp: Minimum support threshold
// (default value = 0.05 = 5%)
// MinConf: Minimum confidence threshold
// (automatic selection by default)

k = 1; // LHS itemset size
tree = null; // Resulting tree

while ((tree is null) and (k ≤ MaxSize))

// Rule mining
Find all the good rules from input data with
k items in the LHS and the class attribute in the RHS

e.g. {A1.a1 .. Ak.ak} ⇒ {C.cj}

if there are candidate rules to branch the tree

// Rule selection
Select the best set of rules with the same set of attributes
{A1..Ak} in the LHS according to the preference criterion.

// Tree branching
tree = Tree resulting from using the selected rules, where

- Each association rule {A1.a1 .. Ak.ak} ⇒ {C.cj}
is used to build a new leaf (labeled cj).

- All training examples not covered by the selected
association rules are grouped into an ‘else’ branch
which is built calling the algorithm recursively:
data = uncovered data // Transaction trimming
tree.else = ART (data, MaxSize, MinSupp, MinConf);

else
k = k + 1;

if tree is null // no decision tree has been built
tree = leaf node labeled with the most frequent class;

return tree;

Figure 1. ART Algorithm Outline

ART: A Hybrid Classification Model 9

in the complete dataset. When setting MinSupp as a percentage of the
size of the remaining dataset, this parameter adjusts itself to the size
of the current dataset, so it does not need to be tuned by the end-user.
A value between 0.05 and 0.1 seems reasonable for building decision
trees which are neither too leafy nor too bare. See Section 3.4 for a
more formal discussion of the MinSupp threshold value effect on the
ART decision tree properties.

Let us now examine how to work with the MinConf threshold. This
parameter is directly related to the confidence of each of the associa-
tion rules considered and thus, it should be a near-to-1 value (0.9, for
instance). But we have found that MinConf should not be finely tuned
by the expert user. As we will show, it is better to let ART adjust it
automatically.

In any case, if the expert user so requires, MinConf can be manually
tuned. A typical example of this situation can be found in the MUSH-
ROOM dataset from the UCI Machine Learning Repository, where a
single classification mistake could have disastrous consequences. In this
particular case, a false positive is not allowable because a poisonous
mushroom would be labeled as edible. Obviously, that is not advis-
able, since a classification mistake could provoke health problems, even
death. A stringent 100% minimum confidence threshold is required for
the MUSHROOM dataset. In cases such as these, a user-established
MinConf threshold must be used to ensure that the classification model
obtained by ART has the desirable properties (no false positives in the
previous example).

The MUSHROOM dataset is an extreme example, however. Setting
a minimum confidence threshold beforehand can be counterproductive
if this threshold is not realistic, since no classification model would be
obtained if MinConf were too high for the actual dataset. In such a
case, no association rules would be discovered and no suitable decision
tree could be built. Moreover, a higher MinConf threshold does not
imply greater classifier accuracy, and, from a practical point of view,
our algorithm training time could be significantly increased (see Section
4).

Consequently, we need to introduce an automatic MinConf threshold
selection method into ART. The idea underlying any such algorithm is
that once the most accurate association rule has been found (i.e. the
one with the best confidence value), only similarly accurate rules are
used to build the tree. One heuristics we have found to work quite well
is to consider only those rules with confidence above MaxConf - ∆ in
each step, where MaxConf stands for the maximum confidence among
the discovered association rules. This heuristics uses a parameter ∆ to
establish a “tolerance” interval for the confidence of the rules. We select

10 F. Berzal, J.C. Cubero, D. Sánchez & J.M. Serrano

the best possible rule and only allow slightly worse rules to be included
in each set of good rules. Using this rather restrictive approach, the
algorithm ensures that no bad rules will be considered in order to build
new leaves. In the worst case, a good rule might not be considered at
the current level of the decision tree. In any case, it will be considered
later when processing the remaining data, where it will hold with even
more support (since the dataset is trimmed every time that new leaves
are added to the decision tree).

Our experiments have demonstrated that the automatic confidence
threshold selection obtains nearly optimal solutions (when, e.g., ∆
is made equal to MinSupp). In our opinion, a user-established min-
imum confidence threshold should only be used when our problem
domain requires it and it therefore becomes strictly necessary (as in
the MUSHROOM example).

3.1.3. Rule selection: Preference criterion
Once we have obtained some suitable rules for classifying input data,
i.e. a partial classification model has been built, some of them must
be selected to build the current level in the decision tree (which, once
built, is a complete classification model).

Our algorithm checks for the existence of at least one set of suitable
attributes {A1 A2 .. Ak} for branching the decision tree. The selected
set of attributes must lead to predictive and accurate rules of the form
{A1.a1 A2.a2 .. Ak.ak} ⇒ {C.cj}, which will be used to classify input
data as belonging to class cj .

ART tries to make good use of the information obtained from the
rule mining process. All the rules obtained at each stage of the algo-
rithm involve k-itemsets in their left-hand side. Each k-itemset corre-
sponds to a set of k different attributes (recall again the First Normal
Form). The rules corresponding to each set of k different attributes
are grouped together and heuristics are employed to choose the best
candidate among these sets in order to branch the tree.

ART follows a simple heuristics which consists in choosing the set
of attributes which correctly classifies more instances in the train-
ing dataset (using the previously obtained rules), provided that the
corresponding rules verify the MinConf constraint. Such a heuristics
maximizes the number of classified examples and, thus, minimizes the
number of unclassified examples at each level of the tree: ART tends
to reduce the height of the decision tree following Occam’s Economy
Principle.

ART: A Hybrid Classification Model 11

3.1.4. ‘Else’ branches
Once a set of rules with the same set of attributes in their antecedents
has been selected during the rule selection phase, we proceed now to
branch the tree using the discovered information.

− Each of the selected rules leads to a new leaf in the tree. Each leaf
is labeled with the class value which appears in the consequent of
the corresponding rule.

− All the training examples which are not covered by the selected
rules are grouped together into an ‘else’ branch to be processed in
later stages of our algorithm.

ART differs from traditional TDIDT algorithms because it uses ‘else’
branches to group all the tuples which have not been covered by the
selected rules at each level of the decision tree. In other words, the
remaining training examples are treated as a whole. ART does not
therefore need to build a new branch for each possible value of the
selected attributes. ART focuses its attention only on those values
which yield interesting results, reducing the decision tree branching
factor. This fact, in turn, lets ART choose a set of attributes to branch
the decision tree, instead of the single attribute or binary test most
TDIDT algorithms use.

The use of ‘else’ branches in decision lists can make classification
models harder to understand by humans when compared to standard
decision trees, since the meaning of a given rule depends on its position
in the list (Segal and Etzioni, 1994). However, it also helps to build
better classifiers by grouping small datasets which would otherwise
correspond to different subtrees in TDIDT algorithms. Moreover, these
datasets would eventually become too small to be able to build accurate
classifiers. Better prediction accuracy is then achieved by joining all
these small datasets, since the effect of noise in input data is diminished
and the overfitting problem is avoided.

In some sense, ART embeds the philosophy of the algorithms pro-
posed by Liu et al. (Liu et al., 2000a) (Liu et al., 2000b), who try to
organize and summarize the set of all the discovered rules intuitively by
using general rules, summaries and exceptions. The idea is to replace
a set of potentially too many rules by a more concise representation of
the discovered knowledge, which is also easier to work with. The ART
approach achieves this goal while creating its classification model, while
Liu et al. attain it with hindsight.

It should be noted that ART also differs from conventional decision
list learners because it discovers multiple rules at a time, so that the
rules learnt at a given level in the tree are independent and mutually

12 F. Berzal, J.C. Cubero, D. Sánchez & J.M. Serrano

exclusive, whereas rules are strictly ordered in standard decision lists.
This fact reduces the decision list depth and partially mitigates the
understandability problem mentioned above, which is inherent to the
decision list model.

Once we have described our proposed classification model, we present
one application where we have obtained interesting results in order to
illustrate ART main features.

3.2. An example application: The SPLICE dataset

Our aim is to determine the type of a DNA splice junction (exon/intron,
intron/exon, or neither) given a primate splice-junction gene sequence,
which consists of 60 nucleotides. The following problem description
is a verbatim transcript from the UCI Machine Learning Repository
documentation:

Splice junctions are points on a DNA sequence at which ‘super-
fluous’ DNA is removed during the process of protein creation in
higher organisms. The problem posed in this dataset is to recognize,
given a sequence of DNA, the boundaries between exons (the parts
of the DNA sequence retained after splicing) and introns (the parts
of the DNA sequence that are spliced out). This problem consists
of two subtasks: recognizing exon/intron boundaries (referred to
as EI sites), and recognizing intron/exon boundaries (IE sites). (In
the biological community, IE borders are referred to as “acceptors”
while EI borders are referred to as “donors”.)

For this particular problem, ART algorithm builds a classifier which
achieves excellent classification accuracy and whose size is still manage-
able. TDIDT algorithms, such as C4.5, obtain slightly better classifica-
tion accuracy (above 90% using cross-validation) but they also require
much larger decision trees which are harder for humans to understand.
The C4.5 decision tree, for example, would require between three and
four times the space occupied by our tree even after pessimistic pruning.

Moreover, ART exploits the symmetries around the junction (which
occurs between P30 and P31) to attain a better understanding of the
underlying patterns. Observe, for example, the P29-P31, P28-P32 and
P25-P35 pairs used to branch the decision tree. Typical TDIDT al-
gorithms cannot use such associations and thus their applicability to
problems where correlations play an important role is restricted. Al-
though they might obtain better classification accuracy, ART provides
simpler and much more understandable classification models.

ART: A Hybrid Classification Model 13

P30 = A : TYPE = N (473|62)
P30 = C : TYPE = N (441|24)
P30 = T : TYPE = N (447|57)
else

P28 = A and P32 = T : TYPE = EI (235|33)
P28 = G and P32 = T : TYPE = EI (130|20)
P28 = C and P32 = A : TYPE = IE (160|31)
P28 = C and P32 = C : TYPE = IE (167|35)
P28 = C and P32 = G : TYPE = IE (179|36)
else

P28 = A : TYPE = N (106|14)
P28 = G : TYPE = N (94|4)
else

P29 = C and P31 = G : TYPE = EI (40|5)
P29 = A and P31 = A : TYPE = IE (86|4)
P29 = A and P31 = C : TYPE = IE (61|4)
P29 = A and P31 = T : TYPE = IE (39|1)
else

P25 = A and P35 = G : TYPE = EI (54|5)
P25 = G and P35 = G : TYPE = EI (63|7)
else

P23 = G and P35 = G : TYPE = EI (40|8)
P23 = T and P35 = C : TYPE = IE (37|7)
else

P21 = G and P34 = A : TYPE = EI (41|5)
else

P28 = T and P29 = A : TYPE = IE (66|8)
else

P31 = G and P33 = A : TYPE = EI (62|9)
else

P28 = T : TYPE = N (49|6)
else

P24 = C and P29 = A : TYPE = IE (39|8)
else

TYPE = IE (66|39)

Figure 2. ART classifier for the SPLICE dataset

14 F. Berzal, J.C. Cubero, D. Sánchez & J.M. Serrano

function classify (art, instance): class;
// Input: art = ART classifier
// instance = Unlabeled instance
// Output: class = Assigned class

Match the value(s) of the instance attribute(s)
with the value(s) used to branch the tree

if the value(s) correspond(s) to
any of the branches leading to a leaf

return the corresponding leaf class
else if there exists an else branch // follow it

return classify(art.else,instance);
else

return default class;

Figure 3. Unlabeled data classification

3.3. Using the classifier

The classifier obtained by ART can be used to classify unlabeled in-
stances as any other algorithm of the TDIDT family. Beginning at the
root of the tree, a given example follows different branches of the tree
depending on its attribute values (as if the tree nodes were railroad
switches). Any example will reach a tree leaf eventually, and it will be
labeled with the most common class in that leaf. The ART classification
process is described in Figure 3.

When building the classifier, null values can be automatically sent
to the ‘else’ branch, since they are not covered by the discovered asso-
ciation rules. However, when classifying data with unknown values for
some attributes, another alternative could be followed, such as the one
used by C4.5, for instance.

Decision trees are also popular because IF-THEN rules can be de-
rived from them trivially. When trying to obtain a set of rules from the
decision tree, ART differs from traditional TDIDT algorithms since it
employs ‘else’ branches. This kind of branch causes negations to appear
in the rule antecedents when deriving production rules from the decision
tree.

In addition, a simple rule-based procedure to evaluate an ART clas-
sifier exists, since ART classifiers can be viewed as decision lists. These
decision lists may end up in a default class value (produced when no
association rules are found to branch the decision tree further). Even
worse, when the association rules used to build the tree cover all the

ART: A Hybrid Classification Model 15

examples in the input dataset, a given instance may lead to nowhere in
the decision tree. In this unlikely but possible case, that instance would
be labeled with the most common class in the current subtree (i.e. in
the training data which led to that subtree).

3.4. ART Classifier properties

In this section, we will discuss further several key properties of our
method for building classifiers:

Search strategy: ART performs an exhaustive global search of po-
tentially interesting rules in the training dataset but it makes that
search local to the remaining dataset in the current level of the
tree. In this way, the efficiency which characterizes the heuristic
greedy search used in typical TDIDT algorithms is combined with
the power of the exhaustive search performed by the association
rule mining algorithm. In fact, trying to classify as many examples
as possible at each level of the decision tree helps ART to take
better local decisions when building the classification model.

In some respects, ART follows Michalski’s STAR methodology
(Sestito and Dillon, 1994, chapter 3), as CN2 does, since it gen-
erates rules iteratively until a complete classification model has
been built. It should be noted however that ART, as decision list
inducers, removes both positive and negative examples covered by
the generated rules from the current dataset, while other STAR
algorithms must keep all negative examples when trying to build
new hypotheses, which leads to more complex rules. This removal
of covered instances is referred to as ‘transaction trimming’ in Data
Mining (Park et al., 1997) and it helps to reduce the number of
I/O operations needed to build the classifier.

It should also be noted that ART searches for sets of rules in
parallel, while other algorithms try to find one rule at a time.
Moreover, ART performs this search without incurring in a severe
performance penalty (as BruteDL does, for instance).

Although a greedy algorithm was chosen to build the ART classi-
fier, other approaches would also be feasible. For example, a beam
search could be performed to find better classifiers. However, effi-
ciency is a must in Data Mining problems and greedy algorithms
are the best choice in this case.

Robustness (outliers & primary keys): The use of concepts taken
from association rule mining helps to build more robust classifiers,
minimizing the effects of noise in the input data.

16 F. Berzal, J.C. Cubero, D. Sánchez & J.M. Serrano

The minimum support threshold makes isolated outliers harm-
less since they are not taken into account when deciding how
to build the classifier: association rules handle noisy data seam-
lessly. Moreover, the support threshold also removes the problems
faced by other TDIDT algorithms when some attributes are nearly
keys (e.g. ID3 would always choose these kinds of attributes be-
cause they minimize the entropy in the resulting subtrees) without
the need for more artificial mechanisms (such as C4.5 gain ratio
criterion).

ART therefore provides a uniform treatment of outliers (which
do not contribute to association rules significantly), and primary
and candidate keys (whose values do not have enough support to
generate association rules on their own). Both outliers and primary
keys are thorny issues for traditional TDIDT algorithms.

Tree complexity: Both the height and the width of the decision tree
are restricted by the minimum support threshold.

Given an absolute minimum support threshold MinSupp as a nor-
malized value between 0 and 1, the ART decision tree will have at
most 1/MinSupp levels, because at each level n*MinSupp instances
will be trimmed at least, where n is the number of instances in the
training dataset.

When an absolute minimum support threshold is used, no more
than MaxSize*(1/MinSupp) scans over the input data will be need-
ed to build the complete classifier, since all the association rules
can be obtained with, at the most, MaxSize scans over the training
data using simple algorithms such as Apriori. In other words, ART
is O(n) on the size of the training dataset. This fact is essential
for successful data mining.

The tree branching factor is also determined by the minimum sup-
port threshold. 1/MinSupp is an upper bound on the tree branch-
ing factor regardless of whether the minimum support threshold
MinSupp is absolute or relative, because no more than 1/MinSupp
rules can be selected at each level of the tree (an extreme case
would occur when all training instances are classified at the same
level of the tree using the maximum possible number of rules, all
of them with the minimum allowable support).

ART: A Hybrid Classification Model 17

Table I. Datasets used in our experiments

Dataset Examples Attributes Classes

AUDIOLOGY 226 70 24

CAR 1728 7 4

CHESS 3196 36 2

HAYES-ROTH 160 5 3

LENSES 24 6 3

LUNG CANCER 32 57 3

MUSHROOM 8124 23 2

NURSERY 12960 9 5

SOYBEAN 683 36 19

SPLICE 3175 61 3

TICTACTOE 958 10 2

TITANIC 2201 4 2

VOTE 435 17 2

4. Empirical results

We have implemented ART in Java 2 using Sun JDK 1.3. Our pro-
gram accesses data stored in relational databases through JDBC (which
stands for ‘Java Database Connectivity’, the standard call-level inter-
face of the Java programming language). Our implementation of ART
makes use of TBAR (Berzal et al., 2001), an Apriori-like algorithm
for finding frequent itemsets (Agrawal and Skirant, 1994). We also
used AspectJ, an aspect-oriented extension of the Java programming
language (Kiczales et al., 2001), in order to monitor I/O operations in
our experiments.

All the results reported in this section were obtained using 10-CV
(ten-folded cross-validation). The tests were carried out on a Pen-
tium III 1100MHz PC running MS Windows NT 4.0 WorkStation with
128MB of RAM. The back-end database used in our experiments was
InterBase 6 although any other database would work (in fact, we also
tested ART against Oracle and IBM DB2 servers).

Table I shows the datasets we used in our experiments, which were
downloaded from the UCI Machine Learning Repository.

