
On the quest for easy-to-understand splitting

rules

Fernando Berzal ∗

Dept. Computer Science and AI, University of Granada (Spain)

Juan-Carlos Cubero

Dept. Computer Science and AI, University of Granada (Spain)

Fernando Cuenca

Xfera, Madrid (Spain)

Maŕıa J. Mart́ın-Bautista

Dept. Computer Science and AI, University of Granada (Spain)

Abstract

Decision trees are probably the most popular and commonly-used classification
model. They are built recursively following a top-down approach (from general con-
cepts to particular examples) by repeated splits of the training dataset. The chosen
splitting criterion may affect the accuracy of the classifier, but not significantly. In
fact, none of the proposed splitting criteria in the literature has proved to be univer-
sally better than the rest. Although they all yield similar results, their complexity
varies significantly, and they are not always suitable for multi-way decision trees.
Here we propose two new splitting rules which obtain similar results to other well-
known criteria when used to build multi-way decision trees, while their simplicity
makes them ideal for non-expert users.

Key words: supervised learning, classification, decision trees, splitting rules

∗ Fernando Berzal Galiano (fberzal@decsai.ugr.es), Department of Computer
Science and Artificial Intelligence, E.T.S. Ingenieŕıa Informática, University of
Granada, 18071, Spain. Telephone: +34 958 242376. Fax: +34 958 243317
Email addresses: fberzal@decsai.ugr.es (Fernando Berzal),

JC.Cubero@decsai.ugr.es (Juan-Carlos Cubero), fernando.cuenca@xfera.com
(Fernando Cuenca), mbautis@decsai.ugr.es (Maŕıa J. Mart́ın-Bautista).

Preprint submitted to Elsevier Science 6 February 2002

1 Introduction

Decision trees are probably the most popular and commonly-used classification
model; e.g. see [16] and [5]. Decision trees are built recursively following a top-
down approach (from general concepts to particular examples). That is the
reason why the acronym TDIDT, which stands for Top-Down Induction on
Decision Trees, is used to refer to this kind of algorithms.

TDIDT algorithms do not usually include any mechanisms to handle noise in
the input data themselves; that is, they just try to obtain a perfect description
of the training dataset. This is counterproductive in real problems, where
management of noisy data and uncertainty is a must. Post-pruning techniques
(such as those used in ASSISTANT and C4.5) have proved to be really useful
in order to avoid this problem, also referred to as overfitting. Those branches
with lower predictive power are usually pruned once the whole decision tree
has been built.

The TDIDT algorithm family includes classical algorithms such as CLS (Con-
cept Learning System), ID3 [15], C4.5 [17] and CART (Classification And
Regression Trees) [1] and also more recent ones such as SLIQ [12], SPRINT
[19], QUEST [9], PUBLIC [18], RainForest [6] and BOAT [4].

Most TDIDT algorithms use some kind of greedy heuristics to build the deci-
sion tree. Such heuristics, also known as splitting criteria, are usually hard to
understand for non-expert users. In this paper we present two new splitting
rules which are simpler than previous proposals in the literature and preserve
the overall classifier accuracy. Similarity-based impurity measures are intro-
duced in the following section. Classical proposals are described in Section
3. Section 4 details the process he have followed to obtain two alternative
splitting rules. These splitting rules are compared with previous proposals in
Section 5 using some datasets from the UCI Machine Learning Repository.

2 Impurity-based splitting criteria

Most TDIDT algorithms decide how to branch the tree using some measure of
node impurity, as the information gain criterion found in ID3 [15], C4.5 gain
ratio [17], and Gini index in CART [1]. That kind of heuristics tries to benefit
splits which are useful to differentiate among problem classes. They attempt
to build small decision trees following Occam’s Economy Principle.

The node impurity makes reference to the mixture of classes in the training
examples covered by the node. When all the examples in a given node belong

2

to the same problem class, then the node is said to be pure. The more equal
proportions of classes there are in a node, the more impure the node is.

A decision tree impurity measure can be recursively obtained from the im-
purity measures of its leaves T̃ (also called terminal nodes) in the following
way:

φ(T) =
∑

t∈T̃

p(t)φ(t)

where p(t) is the probability that a given instance is covered by the leaf t, and
φ(t) is the impurity of this terminal node (t).

The goodness of a given split can be measured as the impurity decrease which
is achieved in the tree when it is branched. The split goodness maximiza-
tion, therefore, is equivalent to the minimization of the split-generated tree
impurity, since the starting point is the same for every possible split.

An impurity function φ measures the impurity of a given tree node. Given
a classification problem with J different classes, this function is non-negative
and it is defined over the set of J-tuples (p1, p2, .., pJ), where each pj is the
probability that a case belongs to class j in the current subtree. It is obvious
that

∑

pj = 1. Any function φ must have the following properties [1]:

• The function φ has a unique maximum at (1/J, 1/J, .., 1/J). The impurity
measure is largest when there is the same number of instances beloging to
each one of the problem classes (that is, the classes are distributed evenly
in the node).

• The function φ has J minima at φ(1, 0, .., 0), φ(0, 1, .., 0) ... φ(0, 0, .., 1).
Moreover, φ equals 0 at those points. In other words, a tree node is pure
when it contains only examples of a given class.

• The function φ is symmetric with respect to p1, p2, ... pJ .

3 Classical splitting rules

Every possible test which splits the training dataset into several subsets will
eventually lead to the construction of a complete decision tree, provided that
at least two of the generated subsets are not empty. The final aim of the deci-
sion tree learning process is, however, to build a decision tree which conveys
interesting information in order to make predictions and classify previously
unseen data.

Each possible test must be evaluated using heuristics and, as most TDIDT

3

algorithms perform a one-ply lookahead heuristic search without backtracking
(i.e. they are greedy), the selected heuristic plays an essential role during the
learning process. Several splitting rules have been proposed in the literature.
Here, we review some of the most relevant ones.

3.1 Information gain: Entropy

ID3 [15] attempts to maximize the information gain achieved through the use
of an attribute Ai to branch the tree by minimizing function I:

I(Ai) =
Mi
∑

j=1

p(Aij)H(C|Aij)

where Ai is the attribute used to branch the tree,Mi is the number of different
values for Ai, p(Aij) is the probability of attribute Ai taking its jth value, and
H(C|Aij) is the classification entropy of the set of instances where Ai takes
its jth value. This classification entropy is defined as

H(C|Aij) = −
J

∑

k=1

p(Ck|Aij) log2 p(Ck|Aij)

where J is the number of classes in our classification problem and p(Ck|Aij)
is the probability of an example belonging to class Ck given that its attribute
Ai takes its jth value.

The information conveyed by a message depends on the probability of the
message p and can be expressed in bits as − log2 p, which corresponds to
the number of yes-no questions needed to pick out a given message among
1/p different messages. For example, if we had 256 different messages (as
the number of ASCII characters), each message would convey 8 bits. The
probability of a randomly chosen example belonging to class Ck is p(Ck) and
the information obtained is − log2 p. The information we expect to obtain
when classifying any example in the training set is −

∑

p(Ck) log2 p(Ck). This
quantity is known as the set entropy.

The information needed to transmit the splitting of the training set T intoMi

subsets Tj equals
∑

p(Tj)H(Tj), where p(Tj) is the probability of an example
belonging to subset Tj and H(Tj) is the classification entropy of the set Tj.

The information gain we obtain by splitting T into the Tj subsets equals
H(T)−

∑

p(Tj)H(Tj), where H(T) is the entropy of T . The information gain
achieved by alternative splits is compared to select the best partition of T . We

4

just have to check −
∑

p(Tj)H(Tj) since H(T) is the same for every possible
split.

This heuristic favors the construction of decision trees with a high branching
factor: “it has a strong bias in favor of tests with many outcomes” [17, p. 23].
This fact gave origin to the gain ratio criterion, which is the main topic of the
following subsection.

3.2 The gain ratio criterion

Using the information gain as partition criterion, we would tend to build de-
cision trees using key or nearly-key attributes. We would obtain the optimum
tree regarding to its information gain, but this tree could be useless to classify
unseen data.

We can still resort to Information Theory in order to attain a normalization
criterion. Let us consider the information content of the message which in-
dicates not the class of a given instance, but the value of a given predictive
attribute (i.e. an attribute which can be used to branch the tree). The infor-
mation content of such a message is −

∑

p(Aij) log2 p(Aij). Using this value,
it is possible to redefine the previous splitting criterion as follows:

R(Ai) =

H(C)−
Mi
∑

j=1

p(Aij)H(C|Aij)

−
Mi
∑

j=1

p(Aij) log2 p(Aij)

This ratio is the splitting criterion used in C4.5 [17]. When the training set
partition is nearly trivial, the value of R(Ai) approaches zero. We have to
choose the attribute which maximizes R(Ai) and whose information gain is at
least equal to the average gain obtained with the analyzed partitions of the
training set.

Since in practice we have access to many more training examples than differ-
ent problem classes, the gain ratio criterion avoids the construction of decision
trees which classify input instances attending to their keys (i.e. their identi-
fiers).

It has been observed that the gain criterion tends to build quite unbalanced
decision trees, a property which inherits from its predecessor, the information
gain. Both heuristics are based on entropy measures which favor uneven train-
ing set partitions when one of them is of great purity (when all its training

5

instances belong to the same problem class), even when it does not have a
high support (that is, when it covers only a few training examples).

3.3 Gini index of diversity

Gini index tries to minimize the impurity contained in the training subsets
generated after branching the decision tree. It employs the following function:

G(Ai) =
Mi
∑

j=1

p(Aij)G(C|Aij)

G(C|Aij) = −
J

∑

k=1

p(Ck|Aij)p(¬Ck|Aij) = 1−
J

∑

k=1

p2(Ck|Aij)

where Ai is the attribute used to branch the tree, J is the number of classes in
our classification problem,Mi is the number of different values for Ai, p(Aij) is
the probability of attribute Ai taking its jth value, p(Ck|Aij) is the probability
of an example belonging to class Ck given that its attribute Ai takes its jth
value, and p(¬Ck|Aij) is 1− p(Ck|Aij).

Gini index measures the class diversity in the nodes of a decision tree. This
splitting criterion is used, for example, in CART [1].

As we can see from the above expressions, these formulae are quite similar
to the ones we employed to define the information gain: we have just substi-
tuted p(¬Ck|Aij) for − log2 p(Ck|Aij). In fact, both are alternative impurity
measures and share their properties (remember Section 2). However, in binary
decision trees, Gini index prefers splits that put the largest class into one pure
node, and all others into the other, while the entropy criterion, for instance,
puts its emphasis on balancing the sizes at the two children nodes [2].

3.4 Other criteria

Lopez de Mantaras [10] proposed an alternative to the gain ratio normaliza-
tion. He prevented the information gain bias towards selecting variables which
fragment the training set using a distance metrics:

6

LM(Ai) =

H(C)−
Mi
∑

k=1

p(Aij)H(C|Aij)

−
Mi
∑

j=1

J
∑

k=1

n(Ck|Aij)

N
log2

n(Ck|Aij)

N

Taylor and Silverman [21] proposed the mean posterior improvement (MPI)
criterion as an alternative to the Gini rule. Their MPI criterion was defined
for binary trees and, although it can be extended to handle multi-way decision
trees, it does not yield noteworthy results in latter situation. Maintaining the
notation used in this paper, their criterion would be formulated as

MPI(Ai) =
Mi
∏

j=1

p(Aij) ∗

1−
J

∑

k=1

Mi
∏

j=1

p(Ck|Aij)

P (Ck)

Other splitting criteria have been proposed in the literature during the last
decade. Most of them are impurity functions as the ones presented in this sec-
tion, which emphasize the purity of the split subsets, although other measures
fall into different categories [11]:

• Some of them measure the difference among the split subsets using dis-
tances or angles, emphasizing the disparity of the subsets (on binary trees,
typically).

• Others are statistical measures of independence (a χ2 test, for example) be-
tween the class proportions and the split subsets, emphasizing the reliability
of class predictions.

[11] includes an good survey of splitting criteria, a study on the correlation
among them, and empirical results for binary decision trees. Splitting criteria
for binary decision trees are also studied in [20].

Other research papers also include comparisons of several splitting rules [13]
[3]. For example, [13] compares six of them and points out that understandabil-
ity could be another evaluation criterion for evaluating alternative splitting
rules (apart from the commonly used tree size and classification accuracy).
Unfortunately, no standard measure exists for the understandability criterion.
More theoretical studies on splitting rules can be found in [2] and [8]. The
interested reader can find additional information and related references in
Murthy’s extensive survey [14].

Most of the proposed splitting rules improve the decision trees accuracy only
a little in some cases (if any), but they are always more complicated than their

7

predecessors, i.e. Gini index and the information gain criterion. In the following
section, we propose two impurity-based splitting criteria which are simpler
than other proposals found in the literature without sacrificing classification
accuracy.

4 Alternative splitting rules

“Everything should be made as simple as possible, but not simpler.” Albert
Einstein.

Our aim is to obtain alternative splitting criteria whose formulation may be
easier to understand for end-users, since the company executives and analysts
who work with decision trees may feel reluctant to accept classification models
just because they do not understand how they are obtained. In this section
we describe the process which led us to a pair of alternative splitting criteria
which can be described in terms of simple language that involves example
counts rather than probability or Information Theory.

4.1 MaxDif

Impurity-based splitting criteria (such as information gain maximization) min-
imize entropy. The probability corresponding to the most common class is the
term which increases the overall entropy the least. This probability is thus a
candidate maximization criterion to measure the goodness of a given partition.
We are tempted, therefore, to use the following function:

K(Ai) =
Mi
∑

j=1

p(Aij)K(C|Aij)

K(C|Aij) = max
k

p(Ck|Aij)

where Ai is the attribute used to branch the tree,Mi is the number of different
values for Ai, p(Aij) is the probability of attribute Ai taking its jth value, and
P (C|Aij) corresponds to the evaluation of each child node. This evaluation
function is just the maximum class probability p(Ck|Aij) in the child node
resulting from the jth value of attribute Ai (i.e. the maximum class probability
in the training set given that attribute Ai takes its jth value).

In some sense, K is a purity-based measure. This function meets the three
properties of any impurity function (see Section 2) if we consider the trans-
formation

∑Mi

j=1 p(Aij)/J − K(Ai). Since the function K(Ai) is symmetric,

8

Attribute # Values Class distribution

A1 2 (90, 10, 0)

(0, 85, 15)

A2 3 (90, 9, 0)

(0, 84, 13)

(0, 2, 2)

Table 1
A classification problem with three classes.

its minimum is obtained at (1/J,1/J,..,1/J), and its maxima are achieved at
(1,0,..,0), (0,1,..,0), ..., and (0,0,..,1); then the above transformation demon-
strates it is a purity measure.

This simple criterion, however, tends to build decision trees with a high
branching factor, as happens with the entropy measure used by ID3.

For example, let us consider the example shown in table 1. The first column
in this table indicates the attribute used to branch the tree. The second one
shows the number of different values for that attribute, that is, the number
of branches resulting from branching the tree using that attribute. Finally,
the third one collects the class distribution of the training examples for each
attribute value (i.e. the number of examples belonging to each class in every
child node of the tree resulting from using the specified attribute to branch
the tree).

Let us assume that the probability p(X) is estimated as n(X)
N
, where n(X) is

the number of examples verifying a property X and N is the total number of
examples. If we used the above criterion, we would obtainK(A1) =

90+85
200

= 175
200

and K(A2) =
90+84+2

200
= 176

200
. This would lead us to employ attribute A2 to

branch the tree, which is not the best decision in this case because the training
dataset is unnecessarily fragmented and one of the resulting branches, the
one corresponding to A2 third value, holds an insufficient number of training
examples to build a robust classification model. The presence of the slightest
amount of noise in those training examples would render useless the inferred
classification model.

The situation could be even worse if we had a primary key in our dataset with
200 different values. In that case, we would have an attribute which partitions
the training set in 200 subsets, each one containing just one training instance.
Using the above function K, we would evaluate this attribute Akey and obtain
K(Akey) =

1+1+..+1
200

= 200
200
, which is the maximum value of our purity function

K since all the child nodes are pure (i.e. containing examples of just one class).

9

We could reduce this side effect just by redefining the previous function as

K ′(Ai) =
∑

j∈U

p(Aij)K(C|Aij)

U = {j|max{n(Ck|Aij)} ≥ S}

K(C|Aij) = max
k

p(Ck|Aij)

where S is a user-established support threshold and n(Ck|Aij) is the number
of examples in the training set which belong to class Ck and take the jth value
for attribute Ai.

The support threshold S indicates the minimum number of examples we are
interested in to branch the decision tree further. In other words, we consider
that training sets with less than S examples are useless to build a good clas-
sifier since they do not constitute a representative sample of the population
we try to model. Support thresholds have been traditionally used in associa-
tion rule mining [7] and they can be considered as the simplest pre-pruning
technique for decision trees.

It should be noted, however, that our use of a support threshold differs from
the conventional stopping rules used by many TDIDT software packages. We
use this threshold just to cancel the contribution of small subsets such as
the one which appears when using the A2 attribute to branch the tree in
the example shown in Table 1. Those small contributions to the node purity
do not convey any meaningful information for the decision tree construction
process because the resulting training subsets cannot be used to build reliable
classification models.

We could set S to 1 by default, but in this case our classification model would
be affected by any outlier in the training dataset (as most TDIDT classi-
fiers are), and we would need further post-processing to improve our classifier
accuracy. Typical decision tree pruning techniques would be useful here. Set-
ting a value higher than 1 for the support threshold would automatically
discard any small subsets. In the above example, if we had set S = 3, then
K ′(A1) =

90+85
200

= 175
200
, K ′(A2) =

90+84
200

= 174
200
, and K ′(Akey) =

0
200
. Thus, we

would use A1 to branch the tree, which seems to be the wiser decision at this
point.

Taking into account that P (Ck|Aij) = n(Ck|Aij)/n(Aij) and also that P (Aij) =
n(Aij)/Ni, being Ni the total number of training examples for which attribute
Ai is not null, n(Aij) the number of instances which take the jth value of its
ith attribute, and n(Ck|Aij) the number of examples belonging to class Ck

10

which take Ai jth value, we can reformulate function K
′(Ai) in the following

way:

K ′(Ai) =
1

Ni

∑

j∈U

K ′(C|Aij)

U = {j|max{n(Ck|Aij)} ≥ S}

K ′(C|Aij) = max
k

n(Ck|Aij)

If there are no missing values, the factor 1
Ni

will be the same for every attribute
and can be eliminated from the above expression. In this way, we obtain a
splitting rule which is just a sum of support counts in accordance with our
quest for simple partition rules.

We have observed, however, that the K ′ heuristics favors the construction
of decision trees with the lowest possible branching factor (that is, binary
trees), even when the attribute used to branch the tree is irrelevant to the
classification task at hand. For example, in problems where one class accounts
for most of the training examples, it would not be difficult to obtain decision
trees which use binary tests over numeric attributes even when those attributes
are not predictive. These tests send most of the training examples to one
subtree and leave only a few for the other subtree. The heuristics is mixed up
just because the majority class is very frequent in the large training subset
and the small subset contributes a little to make the selected test attractive.

The unwanted effect which we have described in the previous paragraph could
be compensated somewhat by adding an additional factor #U (i.e. the cardi-
nality of U) to the K ′ function:

K ′′(Ai) =
#U

Ni

∑

j∈U

K ′(C|Aij)

U = {j|max{n(Ck|Aij)} ≥ S}

K ′(C|Aij) = max
k

n(Ck|Aij)

Intuitively, the summation in the above expression counts the number of ex-
amples which will be correctly classified within the training dataset (without
branching the tree further). Dividing by Ni, we normalize that count to be
able to compare different attributes which may have missing values. The fi-
nal factor #U is used to bias the decision tree learning process towards flat

11

decision trees (that is, trees with more interesting branches).

The use of the factor #U combined with the minimum support threshold
S provides an artificial mechanism to avoid using primary keys to branch
the tree, although it lacks a theoretical basis. It does not guarantee the con-
struction of good decision trees, although it sometimes improves the results
obtained with more complex heuristics such as C4.5 gain ratio criterion.

We have obtained a well-behaved splitting criterion, although its artificial
complexity is not desirable. The apparent dead end we have reached in our
journey from K(Ai) to K

′′(Ai) can be avoided if we reformulate the original
maximization problem:

Let us consider using the difference between the number of examples belonging
to the most common class and the rest of examples in a particular node. This
criterion substracts the number of cases which would be misclassified in a leaf
to the number of correctly-classified instances. Mathematically,

D(Ai) =
Mi
∑

j=1

p(Aij)D(C|Aij)

D(C|Aij) = max
k
{p(Ck|Aij)− p(¬Ck|Aij)}

This heuristics, which we call MaxDif, behaves properly without making it
more complex and is equivalent to the original function K when there are
no missing values in the training dataset, since p(Ck|Aij) − p(¬Ck|Aij) =
2p(Ck|Aij)− 1. As its predecessor, it satisfies the properties of any impurity-
based splitting criterion if we reverse its sign.

We can also express MaxDif using support counts in order to obtain the
following expressions:

D(Ai) =
1

Ni

Mi
∑

j=1

D(C|Aij)

D(C|Aij) = max
k
{n(Ck|Aij)− n(¬Ck|Aij)}

Using again the example shown in Table 1, we would obtain the following
figures:

D(A1) =
(90−10)+(85−15)

200
= 80+70

200
= 150

200
,

12

D(A2) =
(90−9)+(84−13)+(2−2)

200
= 81+71+0

200
= 152

200
, and, even worse,

D(Akey) =
(1−0)+(1−0)+..+(1−0)

200
= 200

200
.

The above results show that this criterion still lacks the necessary properties
needed to avoid the effects caused by noise and isolated outliers in the training
datset. Those outliers make the decision trees overfit the training dataset and
the additional pruning step a necessary evil (evil in the sense that it requires
additional computing resources).

We should also face the problem of primary keys and small training subsets.
As we did before, we can introduce a minimum support threshold constraint
in the following way:

D′(Ai) =
1

Ni

∑

j∈U

D(C|Aij)

U = {j|max{n(Ck|Aij)} ≥ S}

D(C|Aij) = max
k
{n(Ck|Aij)− n(¬Ck|Aij)}

After some unsuccessful attempts, we have finally obtained a relatively simple
splitting criterion which performs well in most situations (see our experimental
results in Section 5): we decide how to branch a decision tree just by counting
how many examples are sent to each subtree and the number of instances
corresponding to the most common class in each subtree. We subtract the
number of misclassified examples in a node from the number of correctly-
classified instances (supposing that the tree will not be branched further) and
that is our heuristic evaluation of that node. We aggregate our evaluations
of every child node using a weighted average as usual, and obtain the figure
which will be used to decide how to branch the tree (that is, which attribute
will be used to branch the tree at the current node).

An additional minimum support constraint is included to prevent the effects
of keys and outliers in the training set. The minimum support constraint can
actually be used with any other impurity-based splitting criterion in order
to improve the performance of any TDIDT algorithm. The effect of primary
keys and isolated outliers on TDIDT classifiers can be removed just by using
a minimum support threshold above 1 tuple. A higher support threshold,
between 1% and 5% of the training data set size, would also allow us to prevent
the undesirable contribution of scarcely populated branches to the overall node
impurity measure and, thus, it can be used to address the tendency of entropy-
based impurity measures to build quite unbalanced decision trees, as discussed

13

in Section 3.2.

4.2 Generalized Gini

Some similarities exist between Gini index and ourMaxDif criterion when no
minimum support threshold is used: the summation is substituted by a max-
imum and the product by a substraction. This suggests us another approach
in our quest for easy-to-understand splitting rules.

We could try to generalize Gini index criterion using¯ and⊕ operators instead
of the typical arithmetic operations:

GG1(Ai) =
Mi
∑

j=1

p(Aij)GG1(C|Aij)

GG1(C|Aij) = ⊕

k=1..J

(p(Ck|Aij)¯ p(¬Ck|Aij))

It should be noted that the first equation is not altered because it just performs
a weighted sum of the child nodes evaluations.

The formula above is still too complex to be amenable to further simplification,
so we will use an alternative formulation of Gini index:

G(Ai) =
Mi
∑

j=1

p(Aij)G(C|Aij)

G(C|Aij) = 1−
J

∑

k=1

p2(Ck|Aij)

Loosening the above formulae, we obtain the following expressions:

GG2(Ai) =
Mi
∑

j=1

p(Aij)GG2(C|Aij)

GG2(C|Aij) = 1− ⊕

k=1..J

(p(Ck|Aij)¯ p(Ck|Aij))

14

We can simplify the above equation by removing the ¯ operator, since p2 ≤
p between 0 and 1, and underestimating the node impurity in GG2(C|Aij)
does not significantly affect the overall heuristics performance. In this way, we
obtain the following expressions for our division rule:

GG3(Ai) =
Mi
∑

j=1

p(Aij)GG3(C|Aij)

GG3(C|Aij) = 1− ⊕

k=1..J

p(Ck|Aij)

When we are trying to split the training set, we assume that a local deci-
sion will yield good results whatever happens hereafter. If we have to choose
between a node whose class distribution is (0.6,0.4,0.0) and another node
(0.6,0.3,0.1), we usually opt for the former one, although we have no evidence
that it will lead to a better decision subtree. For example, there could exist
a 3-valued attribute which differentiates among the three classes perfectly in
the apparently worst node (0.6,0.3,0.1). Just by branching the subtree at that
point we would attain a 100% classification accuracy, something which might
be impossible if we had chosen the supposedly more promising first alternative
(0.6,0.4,0.0).

When we arrive at a node in the decision tree during TDIDT learning, we
cannot assume that a given node will lead to a better decision tree than
another one if the probability of the most common class is the same in both
nodes. That would be the training classification accuracy for both nodes if we
were unable to branch the tree further. Thus, we could simplify our splitting
rule taking that fact into account:

GG(Ai) =
Mi
∑

j=1

p(Aij)GG(C|Aij)

GG(C|Aij) = 1− max
k=1..J

p(Ck|Aij)

This function, in fact, is quite similar to the original function K(Ai) we used
to derive MaxDif and, unlike that initial attempt, it allows the construction
of good decision trees keeping the splitting criterion complexity to a minimum.

Using support counts instead of probabilities and a minimum support thresh-
old as we did in MaxDif, we obtain the following equations:

15

GG′(Ai) =
1

Ni

∑

j∈U

GG′n(C|Aij)

U = {j|max{n(Ck|Aij)} ≥ S}

GG′n(C|Aij) = n(Aij)− max
k=1..J

n(Ck|Aij)

We just have to count the number of instances belonging to the most common
class in each node to obtain the number of examples which would be misclas-
sified if the tree were not branched further (i.e. GG′n(C|Aij)) , and aggregate
those counts into a unique value in the usual way.

4.3 Summary

In this section, we have obtained two functions which can be used as splitting
criteria to build multi-way decision trees:

D(Ai) =
Mi
∑

j=1

p(Aij)D(C|Aij)

D(C|Aij) = max
k
{p(Ck|Aij)− p(¬Ck|Aij)}

and

GG(Ai) =
Mi
∑

j=1

p(Aij)GG(C|Aij)

GG(C|Aij) = 1−max
k

p(Ck|Aij)

As previous splitting rules, they perform a weighted sum of impurity measure-
ments over the resulting subtrees. It is remarkable that both of them depend
only on the probability of the most common class in each subtree and still
yield excellent results. In fact, that probability is the only true evidence we
have to compare alternative splits when building decision trees.

Moreover, a minimum support threshold can be used to improve TDIDT per-
formance in the presence of keys and noise in the training dataset. This thresh-
old provides a simple and powerful mechanism to avoid common problems in
decision tree learning, as the tendency to build quite unbalanced trees when
some branches are pure even if they hold only a few training examples. It

16

should be noted that this threshold could also be used with other splitting
criteria.

5 Empirical results

We have chosen multi-way splits because knowledge workers (the executives,
analysts, and managers who employ decision support systems) feel more com-
fortable with them than with binary trees. Binary trees have less leaves, but
are deeper and their training time is longer, as indicated by [11]. Shallow trees
are preferred because they are easier to understand and multi-way decision
trees tend to be more shallow.

Tables 2 and 3 summarize the results we have obtained building multi-way de-
cision trees for some datasets obtained from the UCI Machine Learning Repos-
itory (http://www.ics.uci.edu/∼mlearn/MLRepository.html). Table 2 shows
TDIDT classification accuracy before pruning and Table 3 shows the results
when pessimistic pruning is used (with CF=0.25).

Primary keys were removed from those datasets in order to avoid the problems
they cause when the information gain criterion is used: algorithms such as
ID3 would directly choose them to branch the tree and the resulting classifiers
would be useless.

All the classification accuracy results reported in this paper were obtained us-
ing 10-CV (ten-fold cross-validation) without any kind of a minimum support
constraint because primary keys were removed beforehand.

The accompanying tables include the results obtained using three splitting
rules based on Information Theory concepts (the entropy-based information
gain criterion used by ID, the gain ratio criterion proposed in C4.5, and Lopez
de Mantaras’ alternative to the gain ratio normalization [LM]), as well as Gini
index and our two proposals. The intermediate criteria we have described
in the preceding section are not included in these tables because they were
explained just to illustrate the process which led us to MaxDif and GG.

All the studied splitting criteria exhibit a similar behaviour. No rule is always
better than the others. Even ID3 information gain criterion can be better than
its alleged improvements (C4.5 gain ratio and Lopez de Mantaras’ rule) when
primary keys are removed from the training dataset. In fact, in problems with
a small number of classes, all criteria should produce similar results [2]. The
accuracy differences among the alternative splitting criteria are not significant
(below 2% on average when the deviation among the experiments in a given
cross-validation is above 4% on average).

17

Even without primary keys in the input datasets, the use of a minimum sup-
port threshold can improve the overall classifier accuracy in specific situations.
As a mechanism to avoid overfitting, such a threshold cancels the contribu-
tions of small data subsets to the overall purity measure for a given node
in the decision tree. For example, using the Bupa data set and MaxDif as
impurity measure, if we set the minimum support threshold to 5% of the tu-
ples in that data set, we improve classifier accuracy up to 67% before pruning
and outperform the results obtained without any support constraint. Different
support constraints could be suitable for other datasets and there are datasets
for which there is no suitable support constraint. It should be taken into ac-
count that the suitable value for the support threshold depends on the nature
of the training dataset and on the preprocessing steps performed to clean this
dataset. It should also be noted that a minimum support threshold in the
splitting criterion can be applied to any of the splitting rules discussed in this
article, since its use is orthogonal to the splitting rule used to branch the tree.
The above considerations explain why we have not included a separate set of
experiments using different support thresholds.

Our simplified splitting criteria proposals seem to obtain worse results in prob-
lems where there are many different classes and a small number of training
examples for some of them (as in the SOYBEAN dataset, which includes 19
different classes and only 683 examples), just because focusing their attention
only on the most common class provides less information to build an accurate
decision tree in that kind of problems. In fact, when the number of classes is
high, the original Gini index may also produce splits that are too unbalanced
[2] and degrade its performance. This problem would disappear if we could
define a taxonomy for the problem classes and build a decision tree of decision
trees (in some sense, a second order decision tree classifier). This is an open
research problem which could eventually lead to interesting results.

During our experiments we have also found that MaxDif tends to build
smaller decision trees than its counterparts before and after pruning, as Tables
4 and 5 illustrate. In fact, it seems that MaxDif trades a little accuracy for
a noteworthy decrease in tree complexity. Unfortunately, no theoretical result
supports this fact.

Despite the problems encountered with some particular datasets, our exper-
iments show that our alternative splitting rules obtain results which are al-
ways comparable to those obtained by more complex criteria. It should be
noted that our proposals are not random. They verify some properties which
are required for any impurity-based measure without unnecessary complex-
ities. Since they are easier to formulate (and, thus, easier to understand by
non-expert users) than previous proposals, we believe that their use can be
justified.

18

6 Conclusion

No particular splitting rule does significantly improve classification accuracy
for decision tree classifiers in TDIDT algorithms using standard splitting cri-
teria such as ID3 information gain.

However, some of them are notably more complex to formulate than others.
This fact makes TDIDT algorithms somewhat mysterious and harder to under-
stand for lay users. In turn, this poor understanding of the process which leads
to a given decision tree can provoke some reticences from executives, analysts
and managers. These knowledge workers often refrain from using classification
models because they do not understand how they are obtained.

In this paper we have presented two alternative splitting criteria whose for-
mulation is easier to understand for people without previous exposure to In-
formation Theory concepts and advanced statistics topics. Both rules depend
on the probability of the most common class in each subtree exclusively, and
both of them obtain results which, even though they are not significantly bet-
ter than previous criteria, are comparable to the outcome of more complex
rules.

References

[1] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. (1984).
Classification and Regression Trees. Wadsworth, California, USA, 1984.

[2] Breiman, L. (1996). Techical note: Some properties of splitting criteria. Machine
Learning, vol. 24, no. 1, pp. 41-47.

[3] Buntine, W.L., and Niblett, T. (1992). A Further Comparison of Splitting Rules
for Decision-Tree Induction. Machine Learning, vol. 8, no. 1, pp. 75-85.

[4] Gehrke, J., Ganti, V., Ramakrishnan, R., and Loh, W.-Y. (1999a). BOAT -
Optimistic Decision Tree Construction. Proceedings of the 1999 ACM SIGMOD
international conference on Management of Data, May 31 - June 3, 1999,
Philadelphia, PA USA, pp. 169-180

[5] Gehrke, J., Loh, W.-Y., and Ramakrishnan, R. (1999b). Classification and
regression: money can grow on trees. Tutorial notes for ACM SIGKDD 1999
international conference on Knowledge Discovery and Data Mining, August 15-18,
1999, San Diego, California, USA, pp. 1-73

[6] Gehrke, J, Ramakrishnan, R., and Ganti, V. (2000). RainForest - A Framework
for Fast Decision Tree Construction of Large Datasets. Data Mining and
Knowledge Discovery, Volume 4, Numbers 2/3, July 2000, pp. 127-162

19

[7] Hipp, J., Güntzer, U., and Nakhaeizadeh, G. (2000). Algorithms for Association
Rule Mining - A General Survey and Comparison. SIGKDD Explorations, Volume
2, Issue 1, June 2000, pp. 58-64

[8] Kononenko, I. (1995). On biases in estimating multi-valued attributes. In IJCAI-
95, pp. 1034-1040.

[9] Loh, W.-Y., and Shih, Y.-S. (1997). Split Selection Methods for Classification
Trees. Statistica Sinica, Vol.7, 1997, pp. 815-840

[10] Lopez de Mantaras, R. (1991). A Distance-Based Attribute Selection Measure
for Decision Tree Induction. Machine Learning, 6, pp. 81-92.

[11] Martin, J. K. (1997). An Exact Probability Metric for Decision Tree Splitting
and Stopping. Machine Learning, 28, pp. 257-291.

[12] Mehta, M., Agrawal, R., and Rissanen, J. (1996). SLIQ: A Fast Scalable
Classifier for Data Mining. Advances in Database Technology - Proceedings of the
Fifth International Conference on Extending Database Technology (EDBT’96),
Avignon, France, March 25-29, 1996, pp. 18-32

[13] Mingers, J. (1989). An empirical comparison of selection measures for decision-
tree induction. Machine Learning, vol. 3, no. 4, pp. 319-342.

[14] Murthy, S.K. (1998). Automatic Construction of Decision Trees from Data: A
Multi-Disciplinary Survey. Data Mining and Knowledge Discovery, vol. 2, no. 4,
pp. 345-389.

[15] Quinlan, J.R. (1986a). Induction on Decision Trees. Machine Learning, 1, 1986,
pp. 81-106

[16] Quinlan, J.R. (1986b). Learning Decision Tree Classifiers. ACM Computing
Surveys, 28:1, March 1986, pp. 71-72

[17] Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[18] Rastogi, R., and Shim, K. (1998). PUBLIC: A Decision Tree Classifier that
integrates building and pruning. VLDB’98, Proceedings of 24th International
Conference on Very Large Data Bases, August 24-27, 1998, New York City, New
York, USA, pp. 404-415

[19] Shafer, J.C., Agrawal, R., and Mehta, M. (1996). SPRINT: A Scalable
Parallel Classifier for Data Mining. VLDB’96, Proceedings of 22nd International
Conference on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay),
India, pp. 544-555

[20] Shih, Y.-S. (1999). Families of splitting criteria for classification trees. Statistics
and Computing, vol.9, no.4; Oct. 1999; pp. 309-315.

[21] Taylor, P. C., and Silverman, B. W. (1993). Block diagrams and splitting criteria
for classification trees. Statistics and Computing, vol. 3, no. 4, pp. 147-161.

20

Dataset Entropy GainRatio LM Gini GG MaxDif

Audiology 76.00% 81.81% 78.70% 75.45% 80.45% 74.68%

Australian 80.72% 78.70% 82.46% 80.87% 80.14% 84.35%

Bupa 62.40% 62.03% 63.26% 66.45% 60.62% 63.01%

Car 94.73% 94.50% 94.56% 94.50% 89.07% 93.46%

Glass 72.40% 71.10% 72.40% 69.13% 72.79% 71.95%

Hayes-Roth 73.75% 75.00% 74.38% 73.13% 74.38% 74.38%

Heart 74.07% 71.85% 70.00% 73.33% 68.52% 71.85%

Ionosphere 89.45% 91.74% 93.18% 90.32% 87.18% 90.89%

Iris 95.33% 95.33% 94.00% 95.33% 94.67% 94.67%

Mushroom 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Nursery 98.89% 98.80% 98.80% 98.89% 97.39% 97.77%

Pima 71.22% 70.17% 67.68% 70.83% 66.91% 72.50%

Soybean 89.60% 92.97% 93.41% 91.65% 88.00% 87.56%

Splice 91.24% 91.72% 91.34% 90.17% 85.35% 82.80%

TicTacToe 85.29% 86.96% 86.44% 85.49% 83.72% 83.93%

Titanic 79.05% 79.05% 79.05% 79.05% 79.05% 79.05%

Votes 94.93% 95.16% 94.93% 94.93% 95.62% 95.85%

Waveform 75.92% 76.50% 71.72% 75.26% 72.00% 76.86%

Wine 94.41% 95.52% 94.93% 89.95% 92.19% 89.93%

Average 84.12% 84.64% 84.25% 83.85% 82.48% 83.28%

Table 2
TDIDT classification accuracy obtained with different splitting criteria using 10-CV
(before pruning)

21

Dataset Entropy GainRatio LM Gini GG MaxDif

Audiology 72.51% 81.36% 79.57% 75.18% 77.81% 71.58%

Australian 85.07% 84.06% 85.51% 86.52% 83.62% 85.07%

Bupa 64.71% 64.36% 61.53% 65.87% 59.18% 62.43%

Car 93.46% 92.88% 93.00% 93.00% 85.60% 92.07%

Glass 70.50% 68.70% 71.47% 71.49% 72.90% 71.49%

Hayes-Roth 72.50% 73.75% 73.13% 73.75% 72.50% 74.38%

Heart 80.00% 75.93% 74.07% 77.04% 73.33% 72.96%

Ionosphere 88.60% 91.45% 92.62% 89.75% 89.17% 90.32%

Iris 95.33% 95.33% 94.67% 95.33% 94.67% 93.33%

Mushroom 100.00% 100.00% 100.00% 99.99% 100.00% 100.00%

Nursery 96.17% 96.17% 96.17% 96.52% 95.08% 94.35%

Pima 72.65% 72.38% 70.16% 71.60% 68.73% 71.46%

Soybean 90.62% 93.70% 93.71% 91.95% 88.00% 88.15%

Splice 93.51% 94.08% 93.80% 93.54% 89.48% 89.83%

TicTacToe 84.35% 83.82% 83.62% 84.35% 83.82% 83.93%

Titanic 79.05% 79.05% 79.05% 79.05% 79.05% 79.05%

Votes 94.71% 95.86% 95.86% 94.95% 94.03% 94.48%

Waveform 76.90% 76.94% 72.76% 76.16% 74.66% 76.98%

Wine 94.97% 94.41% 94.48% 90.45% 91.60% 89.35%

Average 84.51% 84.96% 84.48% 84.55% 82.80% 83.22%

Table 3
TDIDT classification accuracy obtained with different splitting criteria using 10-CV
and pessimistic pruning (CF=0.25)

22

Dataset Entropy GainRatio LM Gini GG MaxDif

audiology 113.6 100.2 97.0 108.6 115.8 119.9

australian 197.3 230.1 193.7 210.3 297.4 99.7

bupa 140.8 139.0 180.0 144.4 220.0 35.4

car 373.3 369.1 369.4 373.0 567.1 382.3

glass 76.0 74.6 82.8 90.0 111.0 58.8

hayesroth 53.1 53.5 53.4 53.3 53.7 53.7

heart 80.2 87.5 98.7 83.8 136.2 35.6

ionosphere 37.0 37.0 43.2 44.0 87.0 23.2

iris 16.4 16.4 18.0 16.4 26.2 7.2

mushroom 29.0 25.0 25.0 29.6 29.9 31.3

nursery 1126.4 1125.4 1124.8 1070.1 1848.1 1993.4

pima 232.8 241.2 309.2 244.8 401.0 55.2

soybean 157.5 124.6 127.7 157.8 203.9 190.9

splice 491.7 466.8 465.2 513.2 824.6 883.5

tictactoe 300.3 291.6 294.6 295.2 363.1 351.3

titanic 15.0 15.0 12.0 15.0 14.1 15.0

votes 54.4 58.1 56.5 55.9 96.9 78.9

waveform 862.0 862.8 1146.0 985.2 1721.2 479.0

wine 15.8 14.8 12.4 18.6 29.4 18.4

Relative tree

complexity 150% 151% 168% 158% 238% 100%

Table 4
Average number of tree nodes using different splitting criteria and 10-CV (before
pruning)

23

Dataset Entropy GainRatio LM Gini GG MaxDif

audiology 38.6 67.0 55.4 42.1 51.7 62.2

australian 43.6 30.7 64.3 42.7 48.9 37.6

bupa 62.8 63.4 107.2 60.2 72.4 27.2

car 164.8 162.0 163.0 161.6 193.2 153.3

glass 41.8 44.4 54.6 46.6 50.0 41.0

hayesroth 24.8 24.8 24.8 24.8 24.9 24.9

heart 35.6 36.6 44.4 38.2 33.3 28.2

ionosphere 25.4 28.4 19.8 26.6 24.6 21.8

iris 7.0 7.0 8.2 7.0 7.0 6.2

mushroom 29.0 25.0 25.0 28.5 28.8 29.1

nursery 406.4 406.4 406.4 400.4 498.0 494.8

pima 110.6 116.8 163.0 122.0 127.6 41.6

soybean 87.3 73.9 77.1 91.0 110.6 105.2

splice 134.6 140.0 144.8 136.3 171.4 121.3

tictactoe 123.9 120.6 120.8 124.8 120.6 118.1

titanic 15.0 15.0 12.0 15.0 14.1 15.0

votes 13.3 12.9 13.0 13.5 8.4 5.3

waveform 549.8 582.8 807.8 581.0 786.6 373.8

wine 9.6 9.6 8.6 11.6 15.2 14.6

Relative tree

complexity 126% 127% 149% 129% 137% 100%

Table 5
Average number of nodes using different splitting criteria, 10-CV and pessimistic
pruning (CF=0.25)

24

