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To my father





At page 59, vol. I, we find this sentence – ”He was
advancing by the only road that was ever traveled by
the stranger as he approached the Hut; or, he came
up the valley.” This is merely a vagueness of speech.
[· · ·] The whole would be clearer thus – ”He was ad-
vancing by the valley – the only road traveled by a
stranger approaching the Hut.” We have here sixteen
words, instead of Mr. Cooper’s twenty-five.

E.A. Poe – Comments on F. Cooper’s ”Wyandotte”.

... and this round gold is but the image of the
rounder globe, which, like a magician’s glass, to each
and every man in turn but mirrors back his own mys-
terious self. Great pains, small gains for those who
ask the world to solve them; it cannot solve itself.

H. Melville – Moby Dick or the whale, ch. 99, ”The
Doubloon”
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Summary

In the modern world, current needs have provoked a fast increase
in the interest in image processing applications. In the beginning,
these applications were approximated with heuristics, using techniques
particularly adapted to each case. Nowadays, it is increasingly important to
develop good image models allowing a generic application to a wide variety
of tasks. Our brain is able to discriminate the relevant information in a
distorted image, because the objects of the world have a typical structure.
This structure is reflected in natural images (those representing the real
world we are living in), whilst random images do not have, in general, any
structure at all. If we want to replicate this behaviour in a machine, it is very
important to have a good a priori knowledge about the typical structure of
natural images.

Inspired on what we know about the processing of visual stimuli in
our brain, we want to represent images with as few samples as possible,
making easier not only to describe them statistically, but also their capture,
processing and storage. The ability to express images with few elements
can be considerably increased if we transform the pixels to a new redundant
domain, where there are more coefficients than pixels in the image. Given
a vector and a set of other vectors defining a redundant domain, the sparse
approximation problem is formulated as minimizing a certain measurement
of the error when expressing the vector as a linear combination of a given
number of (unknown) vectors from the given set. Because of the inherent
complexity of this problem, most approximations have been traditionally
based on greedy heuristics or convex relaxation of the cost function. In
addition, much effort has been made to find the theoretical conditions
under which these two types of approximations find the global optimum
to the sparse approximation problem. A third class of methods exists
based on iterative thresholding. They have been shown to be more efficient
and provide better results than greedy heuristics or classic optimization
methods. However, some of their more successful variants are still not well
grounded in theory, and their performance when applied to restoration has
not been yet extensively studied. In this Thesis, two methods of this kind
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are examined. They had been already proposed as heuristics, but never
derived as solutions to an optimization problem. This Thesis shows that
it is possible to apply classical optimization tools to obtain useful (though
suboptimal) solutions directly to the sparse approximation problem.

The first proposed method minimizes the approximation error given
a value of a determined `p-norm of the representation. Its convergence
is proven by describing it as based on alternated orthogonal projections
between two sets. We call this method `p-AP. We focus on the cases
p = 0, where sub-optimal solutions are found, and p = 1, where the global
optimum is achieved. The emphasis of our experiments is on analysing
the behaviour of the methods in practical image processing conditions, by
means of intensive experiments. We show that `0-AP is superior to `1-AP
and greedy methods. The second method is derived as a gradient descent
in successively decreasingly smoothed versions of a continuous, constrained
function which is equivalent to the (discontinuous, unconstrained) cost
function of the sparse approximation problem. We call this method `0-
GM. We show that `0-GM outperforms `0-AP, with performance close to
the state-of-the-art in sparse approximation. We also show a convex version
of this method, which we call `1-GM.

Last but not least, we have adapted the proposed methods to be applied
to several restoration problems. We propose to use `0-AP for removing
spatial quantization artifacts and `0-GM for interpolation of lost pixels or
missing regions of the image, for the interpolation of color images from
mosaics and finally for increasing the detail level or super-resolving images.
We show that the proposed methods provide good results to these problems,
being superior or similar to other methods chosen as representatives from
current state-of-the-art.
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Chapter 1

Introduction

1.1 Introduction and objectives

Human brain has adapted throughout a long evolution, as well as during our
personal development, to efficiently deal with visual stimuli [1]. So, there
is a strong connection between the physical origin of those stimuli and the
human visual system structure. In addition, vision is arguably the most
powerful among human senses, in terms of the amount of information that
it can acquire and process by time unit.

On the other hand, we have always had the need to transmit information
to other people. To do it, we count on some tools limited to the precise place
and moment where the message is emitted, as phonetic language. However,
we also need to communicate to larger number of people, even though they
are not present at the moment of emitting the message. This achievement
was made first, and not by chance, through visual stimuli, as idiographic
language or paintings. Some examples are Palaeolithic art and symbolic
writings.

To obtain an image from the world around consists of projecting
the three dimensional space we are living in onto a two dimensional
surface, reproducing the shape of the objects and their details. Under the
term natural image we denote those images captured, typically through
photography, from the real world. This means that they are similar to the
visual information usually captured by our eyes. Surprisingly enough, for
the message to be interpreted properly, it is not necessary that those images
are perfect projections of the real world. Indeed, our visual system is able to
detect and recognise the represented objects even if they are distorted, up
to a certain degree, naturally. This is a characteristic skill of very advanced
visual systems which exploit in a massive way this kind of information.

Nowadays, we are witnessing an unprecedented technological revolution.
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We are increasingly processing more and more information, which has
to be transmitted to more and more people As a natural consequence
of the dominant role of vision in our perception, one of the areas more
affected by this revolution is that of digital images. In the last years,
techniques for capturing, processing, transmitting and storing these images
have developed beyond expectations. In fact, digital images have already
substituted analogue ones as the main representation vehicle. Thanks to
the vast possibilities of digital technology, the image manipulation tools
have exponentially increased. We keep on demanding more quality without
compromising speed, and, therefore, a new effort is needed for improving
the capture and the posterior processing. In addition, because of the greater
importance of digital communications, it is also increasingly important to
save bandwidth, and so it is sought to maximise the visual quality for a
given information support (number of bits).

In the beginning, problems such as image coding for compression,
enhancement, removing noise and annoying artifacts, lost information
recovery, pattern recognition, etc., were approached heuristically, using
more or less ad-hoc techniques. However, now there is no doubt about
the importance of developing good image models allowing a more generic
application to a wide variety of tasks.

Most of these applications are related to human vision. These kinds of
tasks are carried out continuously in our brain. Therefore, to develop a
good model it is convenient to pose the following question. How can our
visual system discriminate the relevant information in a distorted image?

Obviously, an arbitrary image does not represent objects of our world,
which have a typical structure allowing us to recognise them. This structure
is reflected in natural images [1, 2], which consist, typically, of localised
oriented features (edges, lines, corners, etc.) and relatively large smoothly
varying areas, possibly with some texture in them. Left superior panel in
the Figure 1.1 is an example of a typical natural image. On the other hand,
random images, as that seen in the right superior panel in the Figure 1.1, do
not have, in general, any structure at all. Due to the huge amount of visual
stimuli processed, and learned to process through evolution, our brain is able
to distinguish very clearly the original image underlying a degraded version
of itself (see inferior panel in the Figure 1.1, formed as an additive mixture
of the two panels above). Thus, if we want to automate this behaviour, it
is very important to have good a priori knowledge of the typical structure
of natural images, as many authors have pointed before (e.g., [3, 1, 4, 5]).

One of the criteria usually considered when evaluating the efficiency of
a neural system is the maximisation of the ratio between the amount of
information and the number of neurons required to represent it [5]. In a
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Figure 1.1: Top left, Einstein standard image. Top right, random image (white
Gaussian noise). Bottom, sum of the two images above.

similar way, we can pose the same goal when we deal with natural images.
If we manage to represent them with as few numbers as possible, it will
be easier not only to store them, but also to get more powerful statistical
descriptions. As a consequence, we will also increase the performance in
restoration tasks.

Unfortunately, despite their typical structure, the large size of the set of
natural images and the strong statistical dependence between neighbouring
pixels make the modeling too complex to be done in the pixel domain.
The ability to accumulate information in few elements can be considerably
powered by transforming the image from pixels to new domains. Let us
come back to the example shown in the left panel of Figure 1.1. If we only
take the 10% of the pixels with largest deviation with respect to the global
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Figure 1.2: Left, image obtained using the 10% of pixels with largest deviation with
respect to the global mean of the Einstein image. Right, image built using the 10% of
the coefficients with largest amplitude in the Fourier representation of the same image.

mean, we obtain the image in the left panel of Figure 1.2, where, as we can
see, most of the features of the original image have been removed. On the
other hand, right panel of Figure 1.2 shows the image made by the 10%
of the frequencies in the Fourier domain whose coefficients are largest in
amplitude. Although obtained using the same number of coefficients, the
latter image is much closer to the original than the former one, both in
objective and subjective terms.

This property also makes easier, as we have already mentioned, the
statistical description of natural images. For example, they typically have
large areas with smooth texture, and, thus, the energy of the Fourier
representation is usually concentrated in the low frequencies. When
degrading an image, if every frequency is uniformly corrupted (e.g., white
Gaussian noise) then dominant frequencies are relatively less affected.
Intuitively, we see that, by removing the lower amplitude frequencies,
relatively very affected but with little significance to reconstruct the original
image, we would greatly reduce the amount of noise in the observation, while
maintaining a high fidelity to the original image. As a consequence, when
most of the energy is concentrated in few coefficients, removing those with
low amplitude will result in more important reduction of noise in the image
than when the energy is more uniformly distributed.

The Oxford English Dictionary defines sparseness as the property of
being thinly dispersed. The Cambridge Advanced Learner’s Dictionary
defines it as the property of being small in numbers or amount, often
scattered over a large area. In this Thesis, we have made an extended use of
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Figure 1.3: Left, sub-band of the representation of a natural image under a wavelet-
like (DT-CWT) filter bank. Dark pixels represent high amplitude coefficients and light
ones those with low amplitude. Right, same sub-band of a sparse approximation to the
natural image.

this term, interpreting it as a continuous concept based on the concentration
of most of the energy of a discrete signal in a relatively small proportion
of coefficients. In order to measure the degree of energy concentration we
use some norm of the representation vector. In the Figure 1.3 we can see
two different two-dimensional distribution of coefficients. Whereas the right
panel shows a sparse distribution, the left shares-out more the energy among
the coefficients.

Apart from Fourier, there are other representations which further favour
an efficient processing, making easier to describe the image statistics.
For example, linear representations based on multi-scale pass-band filters,
called generically wavelets, are especially well adapted to represent several
properties of the natural images, as scale invariance and the existence of
locally oriented structures. It has been experienced that the responses to
this kind of filters of natural images typically produce sparse distributions [3,
6].

Redundant representations, those using more coefficients than pixels
in the image, favor the extraction of relevant local features [7, 5], so
they allow for a more powerful image analysis and processing compared
to critically sampled ones. Also, being invariant to translation, rotation,
phase, etc. [8, 9], they usually provide better results in image restoration
(e.g., [7, 8]).

Nevertheless, direct transformation to a redundant domain does not
necessarily increase the sparseness of the representation with respect to
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non-redundant ones (see, for example, [10], or Chapter 2 in this Thesis).
We need, in addition, some non-linear methods to further increase the
sparseness. We define a dictionary as a set of vectors, also called atoms.
The sparse representation problem is defined as finding the expression of
an input signal as linear combination of as few elements as possible from
a given representation. In this Thesis, we will tackle a common variant,
called sparse approximation problem, that allows some tolerance in the
fidelity to the input signal. Thus, we can obtain sparse representations
with different approximation error, which is very useful for coding and
restoration of images. The main issue that has traditionally prevented from
solving these problems is their tremendous complexity [11], which has been
considered, for a long time, as a too severe obstacle in practice. However,
during the last years, and thanks to both a spectacular improvement in
the computation speed and to increased consciousness of the importance
of sparseness in signal processing, the methods for solving them have been
object of big interest. Then, more or less efficient techniques to find sub-
optimal solutions have been developed (e.g., [12, 11, 13, 14, 15, 16, 17]);
mostly to use the sparseness as a priori knowledge for restoration purposes
(e.g., [18, 14, 19, 20, 21]).

Current trends in these kinds of methods follow three main strategies.
The oldest one tries to incrementally express the image by using greedy
techniques, that is, sequentially using those vectors better approximating
the part of the image still not represented (e.g., see [3, 22, 23]). The main
problem of these techniques is that, being very inefficient, they often get
trapped in non-favourable local minima in terms of energy compaction.
There are other greedy techniques based on different selection strategies,
as [24], where, in a previous work to this Thesis, we selected the significant
coefficients by directly thresholding the observed representation vector.

The next strategy, by order of appearance, is based on reducing the
complexity of the problem by changing the search for strict sparseness
by the minimisation of the sum of the absolute values of the coefficients
of the representation. This results in the minimisation of a convex
function (see, e.g., [25, 11, 26]). In fact, this technique is called convex
relaxation. Solving it provides, in general, a local solution to the sparse
representation or approximation problems. The first approaches to this
problem used numerical optimization algorithms, as conjugate gradient
or interior-point methods (e.g., [25, 11, 27]). However, these are often
inefficient, moreover when dealing with many dimensions, as typically
happens in image processing.

Finally, during the last years, a number of efficient methods have been
developed that are providing good practical results in both compaction and
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restoration problems. They are based on iteratively combining linear with
shrinkage operations (see, e.g., [14, 28, 29, 16, 17]). In Chapter 2 we will
make a more extended review of the existing literature in this area.

In the literature, much effort has been devoted to find the constraints
under which these two types of techniques manage to find the optimal
solution to the sparse representation or approximation problems (see, among
others, [30, 31, 32, 33]). But these conditions appear to be too restrictive
for being accomplished in most practical image processing scenarios, where
natural images, typical representations and useful sparseness levels are used.
This has been already shown, for example, in [34, 16].

1.2 Contribution of this Thesis

In this Thesis we derive two iterative, though relatively efficient, methods
to solve the sparse approximation problem. Besides trying to minimize the
`0-quasi-norm1 for a given approximation error, we have also developed the
resulting version of both methods when using the sum of absolute values of
the coefficients (`1-norm) as the criterion to be minimised, as proposed by
the convex relaxation methods.

The first of the methods presented is based on reformulating the sparse
approximation problem as finding, given p and R, the best approximation
to the image inside the `p-ball of radius R. Our solution uses alternated
orthogonal projections [35, 36] between the `p-ball and the set of vectors
that represent perfectly the image. We have focused on the cases p = 0 and
p = 1. Similar methods can be found in the literature, using both p = 0,
where they have been derived heuristically [15], as well as p = 1 [37, 38].
We have called this method `p-AP.

The second one is based on re-expressing the cost function of the
sparse approximation problem, which is discontinuous and unconstrained,
to obtain a continuous and constrained equivalent version. By means of
gradient descent in this new cost function, we obtain a generalised version
of the Iterative Hard Thresholding (IHT) method [39]. This derivation
allows us to prove that the fixed point of the iterations of this method is a
local minimum to the sparse approximation problem. Next, we will show
the proposed method, which consists of performing gradient descent over
gradually less smoothed versions of the new cost function. This method,
that we call `p-GM, has been used before [40, 15, 19]. Nevertheless, this is
the first time that it is derived as the solution to an optimisation problem.

1Though the `p-norm is not strictly a norm when 0 ≤ p < 1, in this Thesis we will
usually use this term for every p value, for simplicity sake.
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We have also studied the counterpart of this method, `1-GM, which solves
the convex relaxation problem.

We have followed a very rigorous methodology for obtaining our
methods as solutions to optimisation of well-defined standard criteria.
However, instead of trying to guarantee that these methods will reach
the global optimum under some given constraints, as other authors do
(e.g., [30, 31, 32]), in this Thesis we have sought to obtain useful results in
practical image processing conditions. Opposite to the extended assumption
that the methods based on maximising the strict sparseness are intractable
in practice, we have experienced that our sub-optimal methods based on
minimisation of the `0-norm provide much better results than those based
on minimising alternative convex criteria (as the `1-norm). Especially, `0-
GM offers an excellent compaction performance, as other methods based
on dynamically adjusting a threshold, and superior not only to our first
method, but also to widely used greedy heuristics and convex relaxation
techniques. In fact, we show that it has a nearly optimal asymptotic
behaviour, when the number of active coefficients of the representation
approaches the number of pixels of the image.

In addition, the interest of the proposed techniques is considerably
increased when studying the application of the methods to different image
restoration problems. We will show very high-quality results in a wide
variety of applications, such as removing spatial quantisation artifacts
(de-quantising), recovering missing pixels (in-painting), spatial-chromatic
interpolation in digital camera mosaics (de-mosaicing), or static super-
resolution. Up to our knowledge, this is the first time that this kind of
methods are applied to de-quantising.

The content of this document is divided in the following chapters. In
Chapter 2 the sparse approximation problem is stated, motivating it by the
need for increasing the energy compaction achieved by linear transforms.
The main traditional strategies for solving this problem are also analysed
in detail. Next, Chapter 3 develops the first method proposed in this
Thesis, `p-AP. We focus on the cases p = 0 and p = 1, and compare
their performance one to each other and also with respect to other methods
existing in the literature. In Chapter 4, we derive the IHT method and prove
that its fixed point is a local minimum to the problem. Then, we obtain the
second proposed method, `0-GM. We also show an analogous derivation for
p = 1, resulting in the `1-GM method. In the results section we compare
the behaviour of the proposed method versus the previous one and versus
those existing in the literature. We also present the practical advantages of
`1-GM compared to other methods solving optimally the convex relaxation
problem. In Chapter 5 we see how to adapt our methods to restoration
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problems. Finally, in Chapter 6 we show the results of applying these
methods to the restoration of several different degradations (see above).
Chapter 7 concludes this Thesis.



10 Introduction



Chapter 2

The Sparse Approximation
Problem

The sparse approximation problem can be defined as minimising a
measurement of the error when approximating an image as linear
combination of a limited number of atoms taken from a redundant set
(dictionary). In this work, we will measure this approximation error by
means of the Mean Square Error (MSE). In this chapter we show that,
in a redundant domain, there are infinite ways of representing an image.
Traditionally, the minimum energy solution has been chosen, because it can
be easily calculated (linearly). Nevertheless, non-linear methods have much
higher potential to compact the energy in few coefficients. These kinds of
methods have been extensively used and they are very useful for restoration
purposes.

In Section 2.1 we motivate the use of non-linear methods to obtain
sparse representations in redundant domains. In Section 2.2, we formulate
the sparse approximation problem, and we describe the most important
methods that has been used for solving it in Section 2.3. Finally, in
Section 2.4 we analyse the conditions under which the sparse approximation
problem can be solved optimally using convex optimisation, and same for
greedy heuristics.

2.1 Analysis-based sparseness vs. Synthesis-

based sparseness

Mathematically, to represent an image as a linear combination of vectors
taken from some redundant set means to solve a system of linear equations
with more equations than unknowns. There are, therefore, infinite solutions.
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How to choose one of them? The minimum Euclidean norm solution has
been traditionally chosen. Being a linear solution, it is easy to calculate
it fast. In fact, usual ”inverse” transforms used in image processing for
representing images are minimising the Euclidean norm (trough pseudo-
inverse). However, as we have discussed in the Introduction, there are good
reasons to look for solutions concentrating the energy in as few as possible
coefficients. These solutions express the image, possibly with some error,
as a linear combination of fewer vectors from the dictionary than the linear
solution. Although some authors have observed that the linear response
to wavelet filter banks of natural images already concentrates most of the
energy in relatively few coefficients (e.g., [3, 41, 42, 6]), nevertheless the
minimum Euclidean norm solution tends to spread as much as possible
the energy among the coefficients, which makes it inadequate for sparse
representation. Next we illustrate that the energy compaction in redundant
dictionaries is much bigger for certain non-linear transformations of the
image.

Figure 2.1 shows the fidelity (in dB) to the original image obtained
by approximating it using different representations and a wide range
of sparseness levels, that is, of number of vectors involved in the
approximation. Data have been averaged (using the MSE) for the five
images in our test set (see Appendix A). The fidelity to the original
image is measured by the Peak Signal-to-Noise Ratio (PSNR), defined as

10 · log10(
ρ2

MSE
) and which is measured in decibels (dB), and where ρ is the

maximum value of the involved signals. In our case ρ = 255, because we
are dealing with 8-bits monochromatic images. In this Thesis, we usually
represent the number of active coefficients normalized by the total number
of pixels in the image). Each curve in Figure 2.1 has been obtained by
reconstructing the image using the largest coefficients (in amplitude) of each
linear transform, for different sparseness levels. Three of the representations
used are critically sampled (pixels, Fourier, Haar Wavelets) and the fourth
one is redundant (Dual Tree Complex Wavelets or DT-CWT [43]).

We can see how the quality of the approximation for a given number
of elementary functions is increased when we transform the pixels to the
Fourier domain, and even more when we use critically sampled wavelets.
Unfortunately, the performance of the linear redundant representation
suffers a brisk fall, due to many coefficients responding to the same feature of
the image, which results in a sparseness decrease. Then, as we have pointed
out before, if we want to outperform the critically sampled wavelets, we
need to use a non-linear vector selection mechanism. In Figure 2.1 we also
show the result obtained using DT-CWT with the best method proposed
in this Thesis (`0-GM, see Chapter 4). We can see that it provides a great
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Figure 2.1: Sparse approximation results comparison for several representations. Data
have been obtained using the largest in amplitude coefficients of the linear responses
and then averaging in our test set. Performance is measured in terms of PSNR given a
number of coefficients. This number is normalised by the total number of pixels in the
image.

improvement over the approximations obtained using linear representations.
The need for non-linear selection mechanisms to better concentrate the
energy of the representation in few coefficients has been already treated
by a number of authors, as, for example [27, 11, 26, 44, 45, 46].

Figure 2.2 illustrates the effect of using this type of selection mechanisms
on the transform with DT-CWT of the Peppers image. Top left panel shows
the coefficients of a sub-band of the linear representation of the image. In
central panel we show the coefficients of the representation obtained non-
linearly by maximising the sparseness (using `p-AP, see Chapter 3). In the
former we can see a less sparse distribution of coefficients than in the latter,
which strongly decreases simultaneous responses to the same feature. This
better compaction makes possible that, using only a small proportion of the
total number of coefficients (around 7 times less than pixels in the image,
in this case) a high reconstruction quality is preserved (35.70 dB in this
example, see right panel).
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Figure 2.2: Top-left, highest-frequency sub-band of analysis vector of Peppers image
using DT-CWT with 8 scales. Light and dark points correspond, respectively, with low
and high amplitudes of the coefficients. The size of the sub-band has been doubled in
both directions through replication of rows and columns in order to match the size of
the image, and then it has been cropped to 64 × 64 for visibility. Top-centre, same
sub-band, but this time non-linearly obtained using the `0-AP method (see Chapter 3).
Top-right, result of applying a threshold in amplitude to the result in central panel
(preserving 7 times less coefficients than pixels in the image). Bottom-left, original
image, which is perfectly reconstructed by the representations corresponding to the left
and central panels of the top row. Bottom-right, approximation obtained with the
sparse coefficients corresponding to the top-right panel (35.67 dB).

2.2 Formulation of the sparse approximation

problem

Next we formulate the sparse approximation problem. Let Φ be a N ×M
matrix with M > N and range(Φ) = N , representing the synthesis operator
of a Parseval tight frame1. N is the number of pixels in the original domain
and M the number of coefficients in the transformed domain. Then, for an
observed image, x ∈ RN , the linear system of equations:

Φa = x, (2.1)

1A linear transform with a Parseval tight frame preserves the Euclidean norm of the
original vector. We will use the term Parseval frame for simplicity.
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has infinite solutions in a ∈ RM . If we want to favour one of them, we
should add some additional criteria. Thus, we can introduce a function
f(a) to discriminate this solution, and the problem is set out as:

âf = arg min
a∈RM

f(a) s.t. Φa = x. (2.2)

Among the possible options for f(a), the p-th power of the `p-norm has

often been used. For a given value of p, this is defined as ‖a‖p
p =

∑M
i=1 |ai|p.

In Figure 2.3 we show the shape of this function in its one-dimensional
version and for several values of p. We have already mentioned that the
most commonly used norm has been the Euclidean, p = 2, obtaining for it
the minimum energy solution, aLS. This is especially easy to calculate for
Parseval frames. In fact, ΦT = ΦT [ΦΦT ]−1 is the analysis operator of the
Parseval frame, calculated as the pseudo-inverse of Φ, that is, aLS = ΦTx.
However, as we have seen in the previous section, this is not an appropriate
solution in terms of maximising the sparseness, which is measured using
the `0-norm. This is expressed, by extension of the definition of norm,
as the number of non-zero coefficients in the vector. Then, the sparse
representation problem is expressed as:

â0 = arg min
a
‖a‖0 s.t. Φa = x. (2.3)

However, redundant dictionaries typically used in image processing do not
allow representations of natural images where most of the coefficients are
exactly zero. It is more useful to search for representations concentrating
most of the energy in as few as possible coefficients, so most of them
have relatively small amplitudes. This kind of distributions, as we have
exemplified in the previous section, have the property that a few high-
amplitude coefficients can approximate the image with an error that can be
acceptable for most applications. This is why many authors prefer to relax
the constraint of Equation (2.3), and to formulate the sparse approximation
problem as:

â0(λ) = arg min
a
{‖a‖0 + λ‖Φa− x‖2

2}, (2.4)

where λ ∈ R∗ is a real positive number controlling the relative importance
between the sparseness and fidelity terms in the cost function; so the
higher its value, the smaller reconstruction error of the solution, whilst
the sparseness is reduced. Note that Equation (2.4) is equivalent to either
minimise ‖a‖0 for a given quadratic error (which depends on λ) or to
minimise the quadratic error for a given `0-norm of the approximation
(which also depends on λ). Equation (2.3) is a particular case of
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Figure 2.3: One-dimensional p-th power of the `p-norm for different p values.

Equation (2.4), when λ tends to infinite. As an example, the sub-band
shown in the central panel of Figure 2.2 can be understood as belonging
to the solution of (2.4) when λ is infinite, where the image is perfectly
reconstructed but there is no sparseness. On the other hand, the sub-band
in the right panel would correspond to the solution with a lower value of λ,
using less coefficients but reducing the quality of the reconstruction of the
image.

2.3 The sparse approximation problem in

the literature

Finding the global optimum of the sparse approximation problem is a
combinatorial problem, and, thus, NP-complex. It requires to look for
every possible combination of columns of Φ, and solve for the least squares
solution, choosing the one providing the lowest MSE. Some of the first
approximations were restricted to some dictionaries (for example, wavelet
packets or localised trigonometric functions) where it is possible to extract
the orthonormal basis representing more efficiently the image [41]. But,
during the last two decades, more effective and general methods to find local
solutions to both problems (2.3) and (2.4) have become popular. We can
classify these techniques in three main groups: greedy heuristics, methods
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based on convex relaxation and methods based on iterative shrinkage.
Next we will review the most important literature references in these three
families.

2.3.1 Greedy heuristics

The first strategies to obtain local solutions to Equation (2.4) using
general dictionaries were derived heuristically. Among them, the most
frequently used comes from the observation that it is convenient, in order
to approximate a given vector from a given a collection of vectors, start by
selecting from the latter that vector having maximum correlation with the
former (see, for example, [47]).

This family of algorithms is well known and widely used. In fact, these
methods have been re-invented in several fields. In statistical modeling
they are called forward stepwise regression, and they have been used since
the 60s (see, for example, [48, 49] and references therein). When used in
signal processing, they have been termed Matching Pursuit (MP) [12] and
Orthogonal Matching Pursuit (OMP) [22], among others. In approximation
theory they are referred as Greedy Algorithms [50, 51, 52, 53]. A wide
review of these methods, applied to non-linear approximation, can be found
in [54].

In our context, MP is the simplest greedy method. It is implemented
through a set of indices, I, indicating the functions of the dictionary that
have been already selected to form the approximation, and a residual, r,
which is the part of the image not yet represented. The set of indices is
initialised empty, I(0) = ∅, and the residual to the entire image, r(0) = x.
In each iteration k + 1, the selected basis is updated by adding that vector
having maximum correlation with the residual:

I(k+1) = I(k)
⋃
{i : 〈φi, r

(k)〉 ≥ 〈φj, r
(k)〉∀j 6= i, j /∈ I(k)},

where 〈·, ·〉 indicates inner product of two vectors. The estimation is
updated then as:

x̂(k) =
k∑

j=1

〈φi(j), r
(j)〉φi(j),

where i(j) represents the chosen index at i-th iteration. The next step is to
update the residual as:

r(k+1) = r(k) − 〈φi, r
(k)〉φi.
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The iterations end either when the desired error level is reached, or when
the desired number of terms has been selected. The main problem of MP
is that, given the set of elementary functions selected at each iteration, the
amplitudes of the coefficients are not optimised to represent the image.
OMP adds an intermediate least squares optimisation step. Given the
subset of indices selected in iteration k, I(k), we define the N × k matrix
ΦI(k) formed by all columns φi from Φ such that i ∈ I(k). Then, in all OMP
iterations, additionally to the MP steps, the following problem is solved:

â
(k)
I = arg min

aI∈Rk
‖x−ΦI(k)aI‖2.

To update the residual we now use: r(k) = x − ΦI(k) â
(k)
I . Not only this

method provides better compaction results than MP, but it also converges
faster [22]. However, as often happens with greedy strategies, OMP gets
stuck in local optima that frequently are not satisfactory for the problem
at hand. A number of modifications have been proposed based mostly on
recursive searches, sometimes also in hierarchical trees, trying to explore
the maximum possible number of combinations at each step (see, for
example, [55, 56, 57, 58]). Another disadvantage of OMP, even more serious
in the variants mentioned, is that selecting only one coefficient at each
step is unfeasible in terms of computation time for most commonly used
dictionaries in image processing. There exist more efficient variants of
OMP which selects more than one coefficient at each step, either with a
fixed (e.g., [59]) or variable (e.g., [60, 23]) step size. In this Thesis, we
refer to these methods with the name of maybe the more extended of them,
Stage-wise OMP (StOMP) [23].

OMP has been applied with different degree of success to several
applications, as for example noise removal [21, 61], video coding [62, 63, 64],
colour image compression [65] or audio signals separation [66, 53]. However,
all these applications either need few steps of the algorithm or they used
orthogonal dictionaries. Only StOMP-like techniques can be applied, in
most practical situations, with redundant dictionaries commonly used in
image processing.

In a previous work to this Thesis [24], we presented a method
for removing spatial quantization artifacts through finding a sparse
approximation to the observation. The resulting method selects the
significant coefficients via direct thresholding the amplitudes of vector aLS,
which can be also seen as a greedy strategy.
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2.3.2 Convex relaxation problem and Basis Pursuit

As we have already seen, using the Euclidean norm to obtain solutions
(either approximate or exact ones) to the linear system of equations (2.1) is
not efficient in terms of obtaining sparse solutions. On the other hand, the
`0-norm is not convex nor even continuous, which makes the optimisation
problem difficult to solve. This disadvantage, in practice, is not well solved
by greedy heuristics. Can we find an intermediate way allowing to profit
from the advantages of both approaches? In some cases the answer is
provided by the `1-norm. In this case, p = 1 < 2, so it promotes sparse
solutions; but, as it is convex, global optima are achievable in polynomial
time. Note also that, as `1-based techniques optimise all the coefficients
at the same time, we can reach approximation levels in practice that
OMP cannot. This variant is termed convex relaxation problem, and it
is formulated, analogously to Equation (2.4), as:

â1(λ) = arg min
a
{‖a‖1 + λ‖Φa− x‖2

2}. (2.5)

This problem has been frequently formulated, since the 50s, in terms of a
linear program (LP). For example, in [25], a Simplex method is proposed
to get minimum `1-norm solutions formulating the problem as an LP.
Nevertheless, this technique was not systematically exploited until the
microprocessor speed and the memory capacity of computers were boosted
in the last three decades or so.

Basis Pursuit (BP) and Basis Pursuit De-noising (BPDN) methods [11,
26] respectively solve the convex representation and approximation
problems through an LP equivalent to the Equation (2.5), by using Interior-
Point Methods. Both BP and BPDN have had so much diffusion that are
nowadays taken as synonymous for the convex relaxation problem.

The appearance of BP and BPDN was preceded by two significant
advances: 1) the surprising discovery that we can nearly optimally estimate
a piece-wise smooth function from a noisy observation, by solving a convex
relaxation problem using the appropriate wavelet basis and a value of the λ
parameter related to the variance of the noise [30]; and 2) the development of
LASSO, which proposed the convex relaxation to solve the problem of subset
selection in linear regression [67]. The technique known as Least Angle
Regression [60] was later adapted to solve the LASSO formulation. The
great disadvantage of this and other techniques (for example, FOCUSS [27])
is that they need to explicitly deal with the dictionary matrix. This is
not practicable in most image processing scenarios, where the matrix often
have hundred of thousands rows and columns. However, we can use very
efficient techniques to solve the product of the big matrix corresponding to
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the representation used with a vector corresponding to the image. Both
BP and iterative methods seen in the next section take advantage of these
tools. A brief but complete history of the different approximations to the
convex relaxation problem can be found in [68].

Apart from coding, the main areas where this kind of methods have
been applied are statistical regression [67, 27] and noise removal [11, 26],
although it is possible to find other applications are, for example, missing
pixels recovery [69].

Recently, a great sense of expectancy has been generated with a new
application for the convex relaxation problem, which is named Compressed
Sensing (e.g., [70, 71]). This technique is based on the observation that a
relatively small number of random projections of a sparse signal suffice to
recover from them a good approximation of that signal [72]. It has been
proposed as a powerful alternative to the traditional Nyquist Sampling
Theorem, when the signal can be expressed as linear combination of few
elements.

It is also possible to use intermediate quasi-norms (0 < p < 1) when
regularising the problem (2.2) (see, for example, [73, 14]). Although these
norms do not lead to convex cost functions, and therefore the global
optimum is difficult to calculate, several authors have pointed the fact
that the marginal distribution of the coefficients of the linear transform
of a natural image under a wavelet filter bank is appropriately modeled
using these norms (see, for example, [74, 18]). This approach to the sparse
approximation problem is very interesting, but its study is beyond the scope
of this Thesis.

2.3.3 Iterative shrinkage

We have already said that application of greedy methods to sparse
approximation of natural images is not completely satisfactory, because
they are too expensive in computational terms and they get trapped in
unfavourable local optima. On the other hand, methods based on a direct
approach to the convex relaxation problem require too much computation
for natural images of usual size.

During the last years new efficient techniques have been developed in
order to solve the problem (2.4). They are based on iteratively apply
shrinkage operations (coefficient-wise) combined with linear projections. By
shrinkage we understand those operations that decrease the amplitude of the
coefficients in the representation, possibly setting to zero the ones below and
amplitude threshold. We call these techniques Iterative Shrinkage Methods2.

2Other possible name is Thresholded Landweber Iteration.
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The iterative shrinkage methods have been widely used. For
example, [75] already used similar techniques for image segmentation. In [8]
it is proved that, in presence of observations degraded by additive white
Gaussian noise, the simple method of applying a (hard or soft) thresholding
to an orthogonal linear transform of the image achieves, for some signal
models, optimal results in terms of MSE.

The optimality of these shrinkage operations depends on the
orthogonality of the dictionary matrix3. But a single shrinkage, by itself,
does not lead to optimal solutions when using redundant transforms. Even
though, it has been widely used in all types of redundant representations
(see [76] and references therein). Shrinkage, within an iterative scheme, can
provide very efficient and reasonable good approximate solutions.

More recently, other authors [74, 77, 78] simplified the ideas in [79, 8]
and re-stated the problem as in Equation (2.2), starting form a Bayesian
formulation to find the Maximum A Posteriori (MAP). The Iterative
Shrinkage Method, applied frequently to solve this problem, can be
described with the following iterations:

a(k+1) = Sp

(
a(k) + ΦT (x−Φa(k)), θ

)
, (2.6)

where Sp(a, θ) indicates a certain shrinkage operation on a vector a with
threshold θ, which in our case is function of the parameter λ. The linear
operation that is the argument of the shrinkage comes from minimising
the fidelity term in the Equation (2.2), for a given vector a, and it is
the orthogonal projection of the vector onto the affine subspace of perfect
reconstruction (see Section 3.1).

Up to our knowledge, the first method proposing an iterative
thresholding technique to solve problem (2.2) was [73, 14], which use `p-
norms with 0 < p ≤ 1. The method is derived from a formulation based
on Expectation-Maximisation (EM). Later on, in [28], the same method was
derived in the case p = 1, using extra terms added to the cost function
without changing its minima. Also [76] derives a similar algorithm using
p = 1, but from a different perspective, because it tries to maximise the
sparseness of the representation. The method used in all these works
is based on alternating a soft thresholding with a linear projection. It
is commonly named Iterative Soft-Thresholding (IST). It corresponds to
iterate with Equation (2.6) using soft-thresholding, defined as S1(a, θ) = b,
where:

bi =

{
sign(ai) · (|ai| − θ), |ai| > θ
0, |ai| ≤ θ.

(2.7)

3It also depends on using the Euclidean norm as error term.



22 The Sparse Approximation Problem

Here, sign(·) indicates the sign function. The value of the threshold results
in θ = 1

2λ
. Convergence of the method was proven in [28, 37]. These

techniques have also been used to separate the different morphological
components of a signal, using several dictionaries, each having the
property of having sparse response to a different family of input signals
(Morphological Component Analysis, MCA) [45, 19]. Other authors have
derived similar methods from different points of view (e.g., [80]). See [81]
for a review on iterative shrinkage-based methods.

Other iterative algorithms exist, as the one described in [82] using
soft thresholding as a gradient descent operation, and using a linear
search to find the optimal step size for each iteration. Another example
is [77], that applies soft thresholding in redundant representations within
a variational formulation to remove noise and for compression; or the
application of the generic optimisation technique called Iterative Re-
weighted Least Squares [83], which reformulates the Equation (2.5) as
a quadratic programming problem (requiring direct manipulation of the
transform as a large-scale matrix). We want to emphasise, among them,
the gradient descent method recently proposed in [38]. This method is
based on the same type of operations than IST, but the fixed threshold is
changed by a threshold adapted in each iteration to keep constant the `1-
norm. This method is also derived in Chapter 3 of this Thesis, when using
the `1-norm. In addition to this, it applies an optimised step size of the
gradient descent to accelerate convergence.

An alternative method to IST can be derived using hard-thresholding
instead, which is known as Iterative Hard-Thresholding (IHT). In this case,
the operation used in the iterations (2.6) is S0(a, θ) = b, with:

bi =

{
ai, |ai| > θ
0, |ai| ≤ θ.

(2.8)

And the value of the threshold results in θ = λ−
1
2 . The first paper

(heuristically) proposing such a method was [13]. It is also heuristically
proposed in other works, as [39]. In [84] it has been derived using surrogate
functions, and, moreover, its convergence to a local minimum of the sparse
approximation problem has been proved4.

In [15] a similar heuristic is proposed, but instead of applying a fixed
threshold, the number of non-zero coefficients after each hard-thresholding
operation is fixed. This is a similar method to what we derive in Chapter 3
of this Thesis, but here we derive it as solution to an optimisation

4This work is parallel to our derivation of the method and proof of convergence
proposed in Chapter 4 and already published in [10].
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method. This modification provides better compaction results. A further
improvement on these methods can be found in [85], and uses an adaptive
threshold depending on the energy of each sub-band of the representation.

Alternative solutions to soft and hard-thresholding have been proposed.
For example, Firm-Shrinkage [86] tries to improve the results obtained,
in [79], using both thresholding types. In [87, 88] a variational formulation
for IST, IHT and Firm-Shrinkage is shown.

Several authors have compared the performance of both soft and hard-
thresholding. Unless exceptional cases, such as [78], most of them have
experienced that hard outperforms soft-thresholding [78, 34, 89, 90, 91].

Many authors have experienced a great improvement in the general
performance of this type of algorithms when the threshold is decreased at
each iteration (dynamic thresholds). This is one of the ideas involved in the
proximal-points methods [40]. These methods solve iteratively a succession
of problems formulated using the Equation (2.5) with increasing values of
λ. The dynamic version of IST is found in the MCA variant [19, 20, 92] but
no theoretical justification is provided. Also heuristically, [38] proposes to
increase dynamically the radius of the `1-ball where each soft-thresholding
operation is projected. With respect to heuristic versions of dynamic
IHT, they can be found in [93, 13, 15]. [94] presents a method based on
substituting the `0-norm by a equivalent continuous function. They use a
Gaussian function leading to an algorithm different from `0-GM.

Despite their recent introduction, methods based on iterative shrinkage
have already proved to be very powerful for a number of applications. For
example, [20] uses IST and IHT to recover missing pixels in the image. Also
several papers use IST to approach the classic restoration problem (blurring
plus noise, e.g., [29, 95, 96]). Moreover, other applications can be found, as
medics imaging [97] or video coding [98]. Finally, we want to emphasise the
application of this type of techniques to Compressed Sensing [99, 72].

2.4 Equivalence conditions when minimising

`1 and `0-norms

In previous sections we have reviewed the most common techniques to solve
the sparse approximation problem of Equation (2.4). We have seen that the
global solution cannot be found in practice, and that three main approaches
have been proposed: greedy heuristics, convex relaxation methods and
iterative shrinkage methods. Next question is: Do these methods offer
equally good solutions? In this section we review some surprising results
proving that, under certain conditions, both greedy methods (OMP)
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and convex relaxation methods reach the global optimum to the sparse
representation problem, and provide a solution with an error proportional
to the level of noise when dealing with the sparse approximation problem.

In the foundation of these results we find the concept of mutual coherence
of a matrix. This is defined as M(Φ) = sup{〈φi, φj〉;∀i 6= j}. There is
also a stronger constraint, associated to a different measure of the richness
of a dictionary, called Spark(Φ) or Kruskal range. It is defined as the
minimum number of matrix columns forming a linear dependent set. It has
been stated the following relation between Spark(Φ) and mutual coherence:
Spark(Φ) ≥ 1

M(Φ)
.

The first step to establish equivalence conditions between problems (2.4)
and (2.5) was to prove that, if a solution is sparse enough, it is the only
global optimum to the problem (2.3) (see [100, 101] and also [102, 103,
104, 105, 106]). These results are interesting because they allowed for the
first time to have a simple way to check if solutions obtained with different
methods were optimal or not. The condition to check was established as
‖â0‖0 < Spark(Φ)

2
. But more general results were still missing, because there

was no known method to obtain effectively the global optimum.
It has been empirically shown in [11, 26] (using small 1-D standard

discrete functions) that the solution to the convex relaxation problem
is sparser than the minimum Euclidean norm solution. Defining the
mutual coherence, for two matrices of equal size, as M(ΦA, PhimtxB) =
sup{|φa; φb| : φa ∈ ΦA, φb ∈ ΦB}, in [101] it is proven that, if the solution
to the sparse representation problem holds that ‖â0‖0 < 1

2
(1 + 1

M(Φ)
), when

Φ is formed by concatenating two mutually incoherent dictionaries (those
leading to a small value of M(ΦA,ΦB)), then â0 is the unique global solution
and it can be obtained through the minimisation of the `1-norm. Later
on, [107] improved this upper bound setting it to ‖â0‖0 < 0.9142

M(Φ)
. This result

can be also extended to redundant dictionaries [108, 109, 110]. In these
works the uniqueness upper bound for general dictionaries were decreased to
‖â0‖0 < Spark(Φ)

2
, what is twice tighter than the upper bound for the convex

relaxation methods to reach the global optimum of the sparse representation
problem. Finally, [30] relaxed the conditions to prove that, if a signal has
a representation with fewer than τN non-zero coefficients, where τ > 0
is a real proportionality factor, then the solution to the convex relaxation
problem is equal to the sparse representation problem. However, it is not
made clear how to calculate ρ for each dictionary.

In most practical situations it is not reasonable to assume that the
observed coefficients perfectly represent the signal. Then, it is more
interesting the scenario where an ideal signal has a sparse approximation,
but we only observe a version degraded with white additive noise. [32]
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studies the algorithms based on convex relaxations in the same conditions
that [108, 109, 110]. Under these sparseness bounds, and if the dictionary
has the property of being mutually incoherent, then the convex relaxation
algorithms are globally stable. That is, the error made is proportional to
the noise level even under an arbitrary amount of noise. It is also shown
that, under certain conditions, the support of the results of these methods is
contained within the ideal selection existing for the original signal. Similar
results were also derived in [110, 68]. We refer to [46] to find a more complete
review of these works.

On the other hand, in [31, 32] it is shown that greedy techniques, such as
OMP, find the global solution in the same conditions as BP for the sparse
approximation problem, with the difference that OMP is locally stable.
That is, under a small quantity of noise we can recover the ideal sparse
representation with an error that increases, at worst, proportionally to the
noise level. However, in [111, 112] it is shown that, in practice, OMP gets
better results, and it is also faster. We refer to [112] to see these results
in detail. Nowadays, there are no similar results stating the conditions
under which the iterative shrinkage methods reach the global optimum to
the sparse representation or approximation problems.
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Chapter 3

Sparse approximation using
alternating projections

In this chapter we present a simple and robust optimisation non-linear
method providing sub-optimal solutions to the sparse approximation
problem (Equation (2.4)). It is based on, given a Parseval frame
transforming the pixels of the image to a redundant transformed domain,
and given values for parameters p and R, look for the vector with `p-norm
equal to R which best approximates the image, in terms of the MSE in
the reconstruction. The method consists of applying alternating orthogonal
projections1 onto the set of vectors of the transformed domain with `p-
norm equal or less than R and the set of vectors representing perfectly
the image. We call this method `p-AP (for Alternated Projections). We
show that it converges to the global optimum of the cost function when
p ≥ 1, and to a local optimum if 0 ≤ p < 1. Here we will focus on the
cases p = 0 and p = 1. We will show that, even being sub-optimal, `0-AP
clearly outperforms `1-AP (which is equivalent to other Basis Pursuit-like
methods). We will also see how to de-bias the coefficients of the solution
given by `1-AP, through a LS-optimization of the active coefficients. We
obtain slightly better compaction results than those of `0-AP. Finally, we
will see that `0-AP also outperforms other existing strategies, as greedy
heuristics and iterative shrinkage methods based on using fixed thresholds.
Previously, [15] had already proposed a heuristical method equivalent to
`0-AP, whilst a very similar method to `1-AP appears in [38], developed
simultaneously and independently to our work.

In Section 3.1 we describe the method `p-AP, explaining in detail the
particular cases p = 0 and p = 1. In Section 3.2 we explain a method

1Here we use the term orthogonal projection in a wide sense, involving any minimum
Euclidean distance projection.
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that, given a set of indices, find the vector whose support is that set and
best approximates the image. After that, we describe the implementation
details in Section 3.3, to discuss the results of the compaction experiments
in Section 3.4. Section 3.5 concludes this chapter.

3.1 `p-AP method

For clarity sake, we start rewriting the problem of approximation minimising
a general `p-norm:

âp(λ) = arg min
a
{‖a‖p

p + λ‖Φa− x‖2
2}, (3.1)

where ‖a‖p = (
∑M

i=1 |ai|p)
1
p denotes the `p-norm of a. If we assume a

determined value of λ, then âp(λ) will have a determined `p-norm, that
we denote2 R(λ). Then, to solve the Equation (3.1) for a given λ value
is equivalent to minimise the approximation error for a given norm of the
solution, ‖âp(λ)‖p = R:

âp(λ) = âp(R) = arg min
a∈RM

‖Φa− x‖2
2 s.t. ‖a‖p

p = R. (3.2)

A `p-ball with radius R, centred at the origin, is formed by all those vectors
with `p-norm less or equal than R, Bp(R) = {a ∈ RM : ‖a‖p

p ≤ R}. Then,
we solve here the problem:

âp(R) = arg min
a∈Bp(R)

‖Φa− x‖2. (3.3)

Although, strictly speaking, âp(R) 6= âp(λ) (because those vectors with
lp-norm lower than R are feasible), in practice, as we will see below, we
use a method that provides, under certain conditions, solutions holding the
constraint of the optimization in Equation (3.2).

Equation (3.3) can be solved using several techniques. We have chosen
to use the Alternating Projections Method [35, 36] due to its simplicity and
convergence properties. This method consists of orthogonally alternately
projecting onto two or more sets until reaching convergence. When the
involved sets are convex and they have intersection, the method converges
to the orthogonal projection of the input vector onto the intersection of the
sets. When they are convex but they have empty intersection, the method
converges to a limit cycle of minimum distance between both sets. When
one or more of them are non convex, the limit cycle is reached in a local

2Through this Thesis, we remove the dependency of R on λ for clarity sake.
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minimum of that distance3. See [113] for a more complete discussion of the
convergence properties when non-convex sets are involved.

In order to apply the Alternating Projections Method, we have to define
two sets. First of them is the set of solutions to the Equation (2.1), defined
as S(Φ,x) = {a ∈ RM : Φa = x}. It is an affine sub-space of RM , and,
thus, it is convex. The second set is the `p-ball of radius R, centred at
the origin, Bp(R), for a given p and R values. This set is convex only if
p ≥ 1. Here we assume that the starting vector for the iterations has a
`p-norm larger than desired (as it happens in practice), which implies that
the solution will lie on the boundary of the `p-ball and, as Bp(R) is a closed
set, the optimization constraint of Equation (3.2) holds.

We denote P⊥
C (v) the orthogonal projection of a vector v onto a given

set C. The orthogonal projection of a onto the affine sub-space S(Φ,x) can
be obtained easily, being:

P⊥
S(Φ,x)(a) = a + ΦT (x−Φa). (3.4)

This result can be interpreted in terms of adding to the vector a the
difference between the minimum Euclidean-norm solution, aLS = ΦTx, and
the analysis vector of the reconstruction using a (ΦTΦa).

On the other hand, the orthogonal projection onto Bp(R), P⊥
Bp(R)(a),

depends, obviously, on the value of p. Next, we explore in detail the cases
p = 0 and p = 1.

Finally, the `p-AP method is implemented through the following
iterations:

âp(R)(0) = P⊥
Bp(R)(a

LS),

âp(R)(k+1) = P⊥
Bp(R)(P

⊥
S(Φ,x)(â

p(R)(k))).

We have chosen to stop the iterations when ‖âp(R)(k+1) − âp(R)(k)‖2 < δ
for a δ > 0 (see implementation details in Section 3.3). Now we study the
p = 0 and p = 1 cases in detail.

3.1.1 `0-AP

3.1.1.1 Projection onto the `0-ball of given radius

When p = 0, it is straightforward to derive that P⊥
B0(R)(a) is a hard-

thresholding preserving the R largest coefficients in amplitude:

P⊥
B0(R)(a) = ah,

3In this case, it can eventually happen that the orthogonal projection onto the non-
convex sets is not unique, but this is a theoretical problem without practical consequences.
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where:

ah
i =

{
ai, |ai| > θh(a, R)
0, |ai| ≤ θh(a, R).

Here, θh(a, R) is the lowest threshold between those preserving the R − n0

largest coefficients in amplitude, being n0 the smallest non-negative integer
guarantying that a solution exists. Thus, n0 = 0 if there are no repeated
amplitudes in the interval of interest. Following the previous definition,
in practice the threshold is set to the amplitude of the R + 1-th largest
coefficient in amplitude in vector a.

This method can be also seen as a particular case of the method
described in [15], but with the difference that in that paper the method
was not formally justified as an optimisation method.

3.1.1.2 `0-AP scheme and convergence

Top panel of Figure 3.1 shows an illustration of `0-AP using few dimensions
(N = 2, M = 3, R = 1).

We will prove next that this method converges to a local minimum, in
the image domain, of the MSE of the reconstruction for the vectors of the
`0-ball. Substituting following the Equation (3.4):

‖a− P⊥
S(Φ,x)(a)‖2 = ‖ΦT (x−Φa)‖2 = ‖x−Φa‖2, (3.5)

where the last step is true because ΦT is a Parseval frame. Given that
â0(R) is a local minimum in B0(R) of the distance to S(Φ,x), then there
exists a δ > 0 such that for all a ∈ B0(R), if ‖a − â0(R)‖2 < δ, then
‖a − P⊥

S(Φ,x)(a)‖2 ≥ ‖â0(R) − P⊥
S(Φ,x)(â

0(R))‖2. Using (3.5) we have that

‖x−Φa‖2 ≥ ‖x−Φâ0(R)‖2. That is, â0(R) is a local minimum in vector
a and within set B0(R) of the Euclidean distance between Φa and x.

Regarding the convergence properties, we have observed that the method
evolves fast towards the solution during the first iterations, and then the
convergence speed decreases, as shown in Figure 3.2 for images Barbara,
Boat and House from our test set (see Appendix A). In the figure we
see that the convergence speed also depends on the degree of sparseness
imposed (the sparser, the faster). In this Thesis, we are interested in
exploring the performance of the methods at convergence, and this has
required making thousands of iterations for each experiment. However,
in a practical implementation, less iterations can be made for obtaining
satisfactory results. In this work, we have established the stopping criterion
based on the PSNR increase every 10 iterations. Dotted curve corresponds
to the increase rate used as tolerance (it would be a straight line if the figure



3.1 `p-AP method 31

Figure 3.1: Top, graphical explanation of the `0-AP method. Bottom, same for `1-AP.
Only a face of the ball is shown for clarity.

was not in logarithmic coordinates). In subsection 3.3.2 we will see more
details about the stopping criterion.
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Figure 3.2: Logarithmic plot of the approximation quality (PSNR, in dB) vs. the number
of iterations for `0-AP for three images and two sparseness levels. The representation
used here is DT-CWT. The number at the end of the curves is the PSNR at convergence.
The numbers accompanying the tangency point (indicated by the intersection with the
dotted curves) are the PSNR and the number of iterations obtained when the stopping
criterion is reached.

3.1.2 `1-AP

3.1.2.1 Projection onto the `1-ball of given radius

When p = 1, it can be proved that the orthogonal projection of a vector
a onto the `1-ball of given radius R, that we denote as as = P⊥

B1(R)(a), is
a soft-thresholding operation. This has been proved before, for example
in [37, 38], but our alternative proof will also provide an iterative method
to find the threshold associated to this operation.
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We first assume that ‖a‖1 > R (otherwise the projection onto B1(R)
would be the identity). In addition, we use the obvious fact that any
projection onto a `p-ball preserves the sign of the coefficients in the original
vector (sign(as) = sign(a)). The problem is then reduced to project the
vector formed by the components {|a1|, |a2|, ..., |aM |}, that we denote aabs,
onto the positive hyper-quadrant of B1(R). Once we have that projection,
we restore the sign of each element to obtain the projection of a onto B1(R).

The positive hyper-quadrant of B1(R) can be defined as the intersection
of two convex sets. The first one is the set of all those vectors whose
components sum, as much, R:

F (R) = {b ∈ RM :
M∑
i=1

bi ≤ R}.

Given a vector c ∈ RM , the expression of the orthogonal projection onto
this set is:

P⊥
F (R)(c) = c− δ,

where δ =
∑M

i=1(ci)−R

M
if
∑M

i=1 ci > R and 0 otherwise.
The second set is the positive hyper-quadrant of the M -dimensional

vector space:

G+ = {b ∈ RM : ∀ i = {1, ...,M}, bi ≥ 0}.

The orthogonal projection onto this set is defined as:

P⊥
G+(c) = Dc,

where D is a diagonal M × M matrix, such that dii = 1 if ci > 0 and 0
otherwise.

Following the alternated projections theory, the orthogonal projection
of a vector a onto the intersection of F (R) and G+, that we name apro =
P⊥

F (R)
⋂

G+(a), is defined as:

apro = lim
n→∞

[P⊥
G+(P⊥

F (R)(· · ·n · · · P⊥
G+(P⊥

F (R)(a
abs)) · · · n · ··))]. (3.6)

The orthogonal projection of a onto B1(R) is finally obtained as:

as = sign(a) · apro. (3.7)

We prove next that the expression obtained in Equation (3.7) is a soft-
thresholding. First, for k = {1, ..., n}, we denote δ(k) the term substracted in
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the k-th application of the orthogonal projection onto F (R) in the iterations
of Equation (3.6). We also denote D(k) the mask applied in the k-th
application of the orthogonal projection onto G+. Then:

apro = lim
n→∞

[D(n)(· · ·D(2)(D(1)(aabs − δ(1))− δ(2)) · · · −δ(n))].

This can be expressed as:

apro = aabs − d, (3.8)

where each element di is defined as:

di =

{
θs(a, R), |ai| > θs(a, R)
|ai|, |ai| ≤ θs(a, R),

and where θs(a, R) =
∑n

k=1 δk. Consequently, if we substitute the
expression of Equation (3.8) into Equation (3.7), we obtain:

as = sign(a) · (aabs − d),

which is the definition of a soft-thresholding. That is, as = S1(a, θs(a, R))
(see Equation (2.7)).

Note that this proof provides a method based on alternating projections
for, given a, finding the value of the threshold that leads to the desired value
of the `1-norm after the shrinkage. This method starts by removing the
sign from a, projecting the result onto the intersection of F (R) and G+, by
using alternating projections, and finally restoring the original sign to every
element of that projection. In practice, this method converges linearly in
very few iterations. Next we develop a method where each iteration requires
less calculation, so the final method is easier to implement.

Firstly, let’s express the `1-norm of the projected vector (that is, R) as
a function of the threshold4 θs(a, R). For that purpose, we define the set of
indices corresponding to those coefficients in a whose amplitudes are above
a threshold θ: Υ(a, θ) = {i ∈ {1, ...,M} : |ai| > θ}. Then, we can write:

R =
∑

Υ(a,θs)

(|ai| − θs)

R =

 ∑
Υ(a,θs)

|ai|

− card(Υ(a, θs)) · θs,

4For notation clarity, in the following derivation we have removed the dependency of
θs upon a and R.
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where card(·) indicates the cardinality of a set. We can express the previous
iterations as:

θs =

(∑
Υ(a,θs)

|ai|
)
−R

card(Υ(a, θs))
. (3.9)

Note that the right term depends on θs, but nevertheless we can solve this
equation iteratively using the following iterations:

θ(0)
s = 0,

θ(k+1)
s =

(∑
Υ(a,θ

(k)
s )

|ai|
)
−R

card(Υ(a, θ
(k)
s ))

. (3.10)

The iterations end when ‖θ(k+1)
s − θ

(k)
s ‖2 is below a tolerance threshold (see

subsection 3.3.2 for more details on the stopping criterion).
Next, we prove that iterations (3.10) converge to θs. We note first that

R(θs) is a strictly decreasing function and, then, so it is θs(R). This implies

that Equation (3.9) has an unique solution in θs. If we find θ
(k+1)
s = θ

(k)
s

then Equation (3.9) is satisfied with that θ value, so we know that if the
iterations converge then they do to the unique solution, θs. Thus, to prove

the convergence to θs, it is left to prove that the succession θ
(k)
s converges.

This can be made by proving that 1) θ
(k)
s is monotonically increasing, and

that 2) it is upper bounded by θs. This is what we do next.

We start by observing that θ
(0)
s = 0 ≤ θs. Assuming that θ

(k)
s ≤ θs, then:∑

Γ(a,θ
(k)
s ,θs)

|ai| ≤
∑

Γ(a,θ
(k)
s ,θs)

θs,

where Γ(a, θ1, θ2) = {i ∈ {1, ...,M} : θ1 < |ai| ≤ θ2}. From here we obtain
that: ∑

Υ(a,θ
(k)
s )

|ai| −
∑

Υ(a,θs)

|ai| ≤
∑

Υ(a,θ
(k)
s )

θs −
∑

Υ(a,θs)

θs,

∑
Υ(a,θ

(k)
s )

|ai| −R ≤
∑

Υ(a,θ
(k)
s )

θs,

∑
Υ(a,θ

(k)
s )

|ai| −R ≤ card(Υ(a, θ(k)
s )) · θs,

∑
Υ(a,θ

(k)
s )

|ai| −R

card(Υ(a, θ
(k)
s ))

≤ θs,

θ(k+1)
s ≤ θs.
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Now we see that, as
∑

Γ(a,θ
(k)
s ,θs)

|ai| ≥
∑

Γ(a,θ
(k)
s ,θs)

θ
(k)
s , and as

∑
Υ(a,θs)

θs ≥∑
Υ(a,θs)

θ
(k)
s , then:∑

Γ(a,θ
(k)
s ,θs)

|ai|+
∑

Υ(a,θs)

θs ≥
∑

Υ(a,θ
(k)
s )

θ(k)
s ,

and we have the following inequalities:∑
Υ(a,θ

(k)
s )

|ai| −
∑

Υ(a,θs)

|ai|+
∑

Υ(a,θs)

θs ≥
∑

Υ(a,θ
(k)
s )

θ(k)
s ,

∑
Υ(a,θ

(k)
s )

|ai| −R ≥
∑

Υ(a,θ
(k)
s )

θ(k)
s ,

∑
Υ(a,θ

(k)
s )

|ai| −R ≥ card(Υ(a, θ(k)
s )) · θ(k)

s ,

∑
Υ(a,θ

(k)
s )

|ai| −R

card(Υ(a, θ
(k)
s ))

≥ θ(k)
s ,

θ(k+1)
s ≥ θ(k)

s .

Consequently, the succession is monotonically increasing, so the proof is
complete.

3.1.2.2 `1-AP scheme and convergence

Figure 3.1 (bottom panel) illustrates the behaviour of `1-AP with N = 2,
M = 3, and R = 1. Only a face of B1(1) is shown for visibility sake.

It is easy to prove that `1-AP provides the global minimum for the
distance, in the image domain, from the reconstruction from vectors in
B1(R) to image x. We first note that â1(R) is the global minimum
in B1(R) of the Euclidean distance to S(Φ,x) (because both sets are
convex). Then, for every a ∈ B1(R), we have that ‖a − P⊥

S(Φ,x)(a)‖2 ≥
‖â1(R) − P⊥

S(Φ,x)(â
1(R))‖2. Applying the Equation (3.4) and being ΦT a

Parseval frame, we obtain that ‖x − Φa‖2 ≥ ‖x − Φâ1(R)‖2. That is,
Φâ1(R) is the global minimum, for all a ∈ B1(R), of the Euclidean distance
of Φa to x.

Figure 3.3 illustrates the convergence properties of `1-AP. The
interpretation is similar to that of Figure 3.2. As there are no local
solutions to avoid, the convergence is more regular that using `0-AP and
fewer iterations are required to converge. We have included an example, in
the bottom panel, where perfect reconstruction is achieved.
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Figure 3.3: Convergence curves in semi-logarithmic scale for `1-AP, using three images
and two sparseness levels. Details are similar to Figure 3.2. It is also indicated the
`0-norm, normalised by N , of the solution at convergence.

3.2 Mean square error minimisation for a

given selection of coefficients

As `0-AP iterations are performed, the selection of coefficients becomes
more and more stable, and the final solution becomes LS-optimal for that
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selection5. As it was already pointed in [15], when, in the limit, the
number of active coefficients becomes fixed, the two involved sets (vector
subspace generated by the selected atoms and affine subspace of perfect
reconstruction) are convex, and so the iterations converge to the global
optimum, for that selection, linearly.

However, this is not true when we use a generic `p-norm, because
the projection onto the `p-ball is not, in general, a hard-thresholding
operation. As our final target is to solve the sparse approximation problem
of Equation (2.4), we should use some method in order to improve the
quality of the approximation for a given set of selected functions. We use
here a method based on alternating projections which has been previously
used by a number of authors, as [11, 13, 24, 32, 96].

Given a set I of R indices extracted from {1, ...,M}, we define ΦI as a
N × R matrix formed by columns φi of Φ such that i ∈ I. Then, we want
to find:

âI = arg min
aI∈RR

‖ΦIaI − x‖2,

which translates into âI = Φ]
Ix, where Φ]

I is the pseudo-inverse of ΦI . Note

that Φ]
I = ΦT

I [ΦIΦ
T
I ]−1 if R > N and Φ]

I = [ΦT
I ΦI ]

−1ΦT
I if R ≤ N . When

dealing with images, the size of ΦI makes the calculation of the pseudo-
inverse a completely intractable task. Instead, we follow these iterations:

a(0) = DIΦ
Tx,

a(k+1) = DI [a
(k) + ΦT (x−Φa(k))], (3.11)

where DI is a diagonal M × M matrix such that dii = 1 if i ∈ I and 0
otherwise. In Appendix B we show that this method effectively solves for
the pseudo-inverse in âI = Φ]

Ix.

3.3 Implementation

3.3.1 Representations

To test the methods, we initially used four different Parseval frames (DT-
CWT [43], Curvelets [114], Steerable Pyramid [7] and a redundant version
of the Haar Wavelets [115]). From them, we chose those two giving the best

5Note that the method is still suboptimal because the selection of elementary functions
is not optimal in general.
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averaged compaction performance. These are DT-CWT and Curvelets6.
Redundancy factor for DT-CWT is 4, and for Curvelets is ≈ 7.2.

In order to make a homogeneous treatment of the two representations,
we have divided DT-CWT coefficients in real and imaginary parts. On the
other hand, to optimise the approximation in the extremely high sparseness
range, we have inserted, in both representations, an extra scale composed
only by the global mean of the image. This way we adapt to the fact
that, usually, the best approximation to a natural image, using only one
coefficient, is the global mean.

MATLABr code for DT-CWT is available in [116]. We have also used
MATLABr code for the Curvelets implementation (CurveLab 2.0 [117]).

3.3.2 Convergence and stopping criterion

The stopping criterion for `p-AP, in our implementation, is based on using
two tolerance constants. The first one controls the PSNR increase in order to
decide if convergence has been reached. The method stops when the increase
after 10 iterations is below 0.02 dB. This stopping criterion is represented
as dotted curves in Figures 3.2 and 3.3. These curves would be straight
and tangents to the convergence curves if the horizontal axis was plotted in
a linear scale. We have experienced that this criterion, typically, provides
differences with respect to the PSNR at convergence below 1 dB in the
high sparseness range and below 2 dB in the low sparseness range. These
differences are even lower for `1-AP (favouring, thus, to this method in their
comparison).

Note that, if the radius of the `p-ball is big, the method achieves perfect
reconstruction of the image. In this case, the increase of PSNR is, as
stated by theory, linear. To detect this situation we have used a second
tolerance criterion, controlling the PSNR increase after every 10 iterations
and stopping them when the difference between the last two increases is
below a constant (10−6 for `0-AP and 10−4 for `1-AP).

We optimise the threshold in each `0-AP iteration through a golden
search. This requires an extra tolerance parameter controlling the size of
the search interval, which we have set to 0.1. In `1-AP, we have used the
method described in subsection 3.1.2, taking for the stopping criterion the
difference between the desired radius for B1(R) and that obtained after
each iteration. We have experienced that, eventually, this iterative method
provides exactly the radius required. However, to reduce computation in
practice, we have also chosen 0.1 for this tolerance.

6The experiments were actually made with all the representations, and all the results
are qualitatively similar to those presented here.
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3.4 Results and discussion

In the following experiments we compare the compaction performance of
our methods with respect to some reference algorithms in the field. Results
have been collected for a wide sparseness range, and for our set of standard
test images. We have used PSNR to measure the approximation error.
We have used a logarithmic scale for the vertical axis, though PSNR is
already a logarithmic measure. This may be unusual, but we think that
it is justified, in this case, because of the great improvement achieved
in the visualisation. Regarding the sampling of the curves, each marker
corresponds to averaging the results of the corresponding method for all
test images, and the intermediate values have been linearly interpolated.

3.4.1 Some previous methods

Our first experiment compares some widely used sparse approximation
strategies. We have the following two objectives: a) compare Iterative
Shrinkage Methods, with fixed threshold, in their two variants: hard and
soft-thresholding; and b) compare the direct and accumulative strategies
for selecting coefficients in greedy methods.

Regarding the former, we have implemented the methods IHT and IST,
as described in subsection 2.3.3. We remind that these methods iterate
between a thresholding operation and the projection onto the affine space
of perfect reconstruction (Equation (3.4)), using a fixed threshold. We have
used the same stopping criterion as in our implementation of `p-AP (see
subsection 3.3.2). Thus, our implementation of these methods only differs
from our implementation of `p-AP in using a fixed threshold instead of a
fixed number of non-zero coefficients after each thresholding.

To compare greedy heuristics, we have implemented StOMP [23] and the
method we presented in [24], called here DT+OP (from Direct Thresholding
plus Least Squares-Optimisation). To choose the threshold used by StOMP,
we previously set how many coefficients will be selected at each iteration.
On the other hand, DT+OP applies the threshold directly (and only once)
upon the linear representation of the image for each sample. Both methods
use Equations (3.11) to LS-optimise the quality of the reconstruction after
the thresholding. Here, we have also used the same stopping criteria as for
`p-AP.

Figure 3.4 shows graphically some numerical results of this experiment.
Top panel shows fidelity results using 8-scale DT-CWT, and bottom one
using 6-scale Curvelets. This figure shows that the compaction performance
of IHT is, on average, clearly better than IST for medium-high levels of
sparseness. In low levels, the number of local minima is considerably
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increased and therefore IHT has more probabilities of getting trapped in
non-favorable local minima. Figure also shows that the results obtained
with DT+OP outperform our implementation of StOMP, except in the
very high sparseness range (of little practical relevance). This indicates
that directly selecting the coefficients is better than accumulating them
by means of the correlation with the residual. Among the compared
methods, IHT provides the best results. Previously, some authors have
also pointed that hard thresholding outperforms soft one when compacting
the energy [78, 89, 90, 16], but no careful and systematic comparisons using
natural images were presented.

3.4.2 Comparison of `0-AP, `1-AP and previous
methods

This second experiment compares `0-AP to `1-AP. Because the result of
`1-AP is not LS-optimal for the selection of atoms from the dictionary,
we also compare with the result of de-biasing these coefficients with
Equations (3.11). We label this method as `1-AP+OP. In addition, we
have included IHT and StOMP as representatives of the iterative shrinkage
and greedy methods, respectively.

Figure 3.5 shows the result of this experiment. Top panel shows fidelity
results with 8-scale DT-CWT, and bottom one with 6-scale Curvelets. We
can see that `0-AP clearly outperforms `1-AP, even though the latter is
optimally minimising the `1-norm for each sparseness level. We also see
that `1-AP+OP improves drastically the results of `1-AP, providing slightly
better results than `0-AP. This shows that the selection of coefficients made
by `1-AP is slightly better, in general, than that of `0-AP, especially in the
low sparseness range. This, as before, seems to be a natural consequence
of `0-AP getting trapped in non-favourable local minima, whose number
rapidly increases when the sparseness gets low.

We can also see that `0-AP significantly improves the results of IHT and
StOMP. It is interesting to note that fixing the radius of the `p-ball provides
much better results than fixing the threshold.

Tables 3.1 and 3.2 show the results plotted in Figure 3.5.
Figure 3.6 compares visually the methods using the Einstein image7

using 0.0765 · N Curvelets coefficients. From top to bottom, left column
shows the original image, the result of `1-AP (30.85 dB) and that of `1-
AP+OP (33.52 dB). Note the great visual improvement obtained when

7For every experiment in this Thesis using Einstein image, we have removed its black
border, by replication of adjacent rows and columns. This makes it a more representative
natural image.
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Figure 3.4: Averaged compaction results (fidelity of the approximation as PSNR, in dB)
for our test set using StOMP, DT+OP, IHT and IST. Top, using 8-scale DT-CWT.
Bottom, using 6-scale Curvelets.

post-optimising the selected coefficients. Right column shows StOMP (28.66
dB), IHT (29.10 dB) and `0-AP (32.98 dB). Although more than half dB
below in terms of PSNR, there is no significant visual difference between
`0-AP and `1-AP+OP in this example. Not shown here, this difference
becomes even smaller for lower PSNR values.

As we have already pointed, `0-AP is equivalent to [15] when a fixed
number of coefficients, and no extra heuristics, are used. They also use
DT-CWT, but they apply the threshold to the magnitudes of complex
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Figure 3.5: Compaction results, averaged in our test set, of methods `0-AP, `1-AP,
`1-AP+OP, IHT and DT+OP. Top, using 8-scale DT-CWT. Bottom, using 6-scale
Curvelets.

coefficients. Then, to compare properly their results with ours, we have
doubled the given number of selected coefficients in their results. We used
5-scale DT-CWT, as these authors do, and using 24000 fixed coefficients
and the 512 × 512 Lena image8, obtaining a result 2.02 dB above theirs
(39.09 vs. 37.07 dB).

In [15] it is also presented a dynamic version increasing the number of

8We thank Prof. Kingsbury for helping us replicating their experiments.
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DT-CWT/Curvelets R/N
Image Method 0.00305 0.00944 0.02914

StOMP 25.75/24.02 27.91/27.26 35.99/32.56
Barbara IHT 28.18/25.98 33.25/30.51 40.58/34.30

`1-AP 26.39/25.75 30.21/31.02 38.65/38.38
`0-AP 29 .23/28 .61 33 .38/34 .29 41 .76/41 .51

`1-AP+OP 29.95/29.10 34.12/34.94 43.09/43.08
StOMP 28.64/25.52 30.81/29.23 37.88/34.22

House IHT 31.19/28.64 34.76/32.69 40.25/37.77
`1-AP 29.60/27.98 32.79/33.32 39.56/39.35
`0-AP 32 .09/30 .45 35 .18/35 .63 43 .00/41 .87

`1-AP+OP 32.61/31.19 35.79/36.69 44.41/43.78
StOMP 24.17/22.46 26.35/24.70 32.53/29.23

Boat IHT 25.46/24.07 30.07/27.62 34.69/31.17
`1-AP 24.10/23.41 27.53/27.00 34.56/33.62
`0-AP 26 .48/26 .15 30 .43/29 .97 38 .00/36 .73

`1-AP+OP 26.92/26.19 31.05/30.24 39.08/38.02
StOMP 24.95/23.10 27.31/25.88 34.42/30.46

Lena IHT 27.09/24.86 32 .17/28.63 39.38/32.54
`1-AP 25.50/24.78 28.92/28.72 36.89/35.69
`0-AP 27 .72/27 .10 31.63/31 .27 40 .29/38 .66

`1-AP+OP 28.49/27.64 32.50/32.15 41.41/40.40
StOMP 24.48/22.97 26.85/25.66 33.14/29.69

Peppers IHT 25.80/24.53 31 .57/28.41 38.43/32.28
`1-AP 24.36/24.47 28.46/28.80 35.99/34.89
`0-AP 27 .43/26 .85 31.47/30 .88 38 .81/37 .35

`1-AP+OP 27.82/27.43 32.26/32.13 40.12/39.17

Table 3.1: Detailed comparison of the methods using 8-scale DT-CWT and 6-scale
Curvelets in our test set. Bold numbers indicate the method providing the best fidelity
results for each image and sparseness level. Cursive numbers indicate the second best.
Each column corresponds to a number of selected coefficients, whose value is normalised
by N . The precise sparseness value for each normalised row correspond respectively to
2001, 6189 and 19096 active coefficients. We have extracted directly the PSNR values
from the experiments, except for IHT, where the values have been linearly interpolated.

active complex coefficients used at each iteration (from 12000 to 24000 in
30 iterations in the experiment they describe). In this case they obtain
38.68 dB in the approximation, still 0.41 dB below our result. However, it
is easy to check that this difference is caused by the extra flexibility of our
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DT-CWT/Curvelets R/N
Image Method 0.05851 0.08552 1.4873

StOMP 42.88/36.91 45.02/38.56 49.86/43.03
Barbara IHT 44.73/39.69 47.69/42.78 53.44/47.16

`1-AP 45.39/44.16 50.24/50.20 > 100/> 100
`0-AP 48 .31/47 .37 51 .76/53 .00 61 .73/64 .86

`1-AP+OP 52.03/51.33 56.88/61.48 > 100/> 100
StOMP 42.78/37.52 45.49/41.29 51.65/44.32

House IHT 45.85/42.02 50.01/43.95 55.98/47.94
`1-AP 46.22/43.78 50.09/50.94 > 100/> 100
`0-AP 50 .92/46 .52 54 .56/53 .96 67 .38/63 .13

`1-AP+OP 53.18/49.17 57.05/60.94 > 100/> 100
StOMP 37.73/32.67 40.20/35.00 45.56/38.01

Boat IHT 40.61/36.07 44.29/38.27 52.50/42.61
`1-AP 40.71/38.73 45.86/45.29 > 100/57.46
`0-AP 45 .50/42 .54 50 .22/49 .66 63 .29/58 .70

`1-AP+OP 47.76/45.14 52.90/55.64 > 100/71.97
StOMP 41.07/34.39 43.31/36.93 48.48/40.95

Lena IHT 43.65/38.07 46.15/41.61 51.57/45.47
`1-AP 43.71/41.30 48.14/49.70 > 100/> 100
`0-AP 47 .54/44 .74 51 .16/51 .02 61 .60/60 .94

`1-AP+OP 50.67/47.47 55.09/58.18 > 100/> 100
StOMP 39.10/33.41 41.91/36.31 47.61/39.61

Peppers IHT 42.38/37.22 45.52/40.31 51.60/44.74
`1-AP 41.92/39.75 49.84/46.17 > 100/58.62
`0-AP 45 .76/43 .04 52 .13/50 .40 63 .78/61 .45

`1-AP+OP 48.12/45.66 56.05/56.30 > 100/72.91

Table 3.2: Continuation of Table 3.1. Sparseness values in the normalised columns
correspond, respectively, to 38342, 56048 and 97471 active coefficients.

implementation which activate independently the real and imaginary parts
of the complex coefficients. Actually, if we use non-separated coefficients
in our implementation of `0-AP, then our result is 1.31 dB below their
dynamic version (37.37 vs. 38.68 dB). Better results can be achieved by
using dynamic threshold and separation of real and imaginary part (see
Chapter 4). The method presented in [85] improves heuristically the results
of `0-AP.
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Figure 3.6: Visual comparison of the methods using 0.0765 ·N Curvelets coefficients and
the Einstein image, , where N is the number of pixels in the image. Results are cropped
to 128 × 128, starting at pixel (71, 41), to improved the visibility. Left column, from
top to bottom: original image and results of `1-AP (30.85 dB) and `1-AP+OP (33.52
dB). Right column, from top to bottom: results from StOMP (28.66 dB), IHT (29.10
dB) and `0-AP (32.98 dB).

3.4.3 Computational load

The time per iteration is dominated in all the methods by one analysis and
one synthesis operation. In addition to this, the search for the threshold in
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`p-AP also takes a significant amount of time. Other methods like DT+OP
and IHT do not require a threshold search, so they are relatively faster.
Even so, the time consumed by the methods depends more critically on the
number of iterations before reaching the stopping criterion. Table 3.3 shows
that `0-AP requires more iterations than `1-AP. This difference is partly due
to the tolerance used to detect the perfect reconstruction is tighter for `0-AP
than for `1-AP (see subsection 3.3.2).

It is important to note, as we did in Section 3.1, that most of the
real applications do not require so many iterations as shown in these
experiments. In this chapter we did not aim to achieve a good compromise
between performance and computation time, but we want to explore the
quality ceiling of each method to appropriately compare them. However,
as we have also experienced (see Chapter 4), methods based on dynamic
thresholding (e.g., [93, 13, 15, 19, 38]) are intrinsically faster than those
based on a fixed threshold or a fixed number of selected coefficients.

For our experiments, we have used an Intelr CoreTM2 Duo processor,
with 1.66 GHz and with 2 GB RAM. As examples of execution time over
256×256 images, `0-AP takes around 7 minutes using DT-CWT and around
1 hour using Curvelets. On the other hand, `1-AP takes around 3 minutes
using DT-CWT and 30 minutes using Curvelets. Again, these running times
are not representative of a real application, for which much fewer iterations
would be applied.

] Iterations
Methods DT-CWT Curvelets

IHT 180 231
DT+OP 188 174
`1-AP 263 360

`1-AP+OP 333 440
`0-AP 495 920

Table 3.3: Averaged number of iterations in our test set using 8-scale DT-CWT and
6-scale Curvelets, for the different methods compared.

3.5 Conclusions

In this chapter, we have presented an optimisation method, which we call
`p-AP, based on minimising the MSE of the reconstruction of an image
using a Parseval frame and given a maximum `p-norm for that vector in
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that representation. Given p and R, the method consists of alternatively
orthogonally projecting between the `p-ball of radius R, centred at the
origin, and onto the set of vectors reconstructing perfectly the image. A
global optimum is achieved when p ≥ 1, and a local one when 0 ≤ p < 1.
We have applied this method to the sparse approximation problem. We
have focused on p = 0 and p = 1. The case of `0-AP translates into a
heuristical algorithm previously proposed in [15]. On the other hand, `1-
AP is similar to the method, developed in a parallel and independent work,
in [38].

Through systematic experiments, we have shown that `0-AP clearly
outperforms `1-AP in terms of energy compaction of natural images using
widely used pyramidal representations, despite `1-AP being optimal for
the convex relaxation problem. Moreover, this behaviour is consisten
throughout the representations studied. This result shows that the
conditions for achieving a global optimum to the sparse approximation
problem by using convex relaxation are not held when using natural image
and typical representations. Nevertheless, we can improve `1-AP results
by LS-optimising a posteriori the amplitudes of the selected coefficients.
Applying this, we have shown that the selection of coefficients made by `1-
AP is slightly superior to that of `0-AP. In the next chapter, however, we
will show that this selection is still far from optimal.

We have also compared iterative to shrinkage methods based on fixed
thresholds and greedy strategies, showing that `0-AP also outperforms IHT,
IST, our implemented version of StOMP, and DT+OP. We would need more
intensive test to establish the superiority of `0-AP over greedy methods in
general, but the huge computational effort required by more strict greedy
algorithms prevented us from doing this comparison. Among the methods
mentioned before (excluding ours), we have seen that IHT achieves the best
compaction results.

Although not compared in detail here, but in the next chapter, methods
based on dynamically adjusting the threshold through iterations provide,
until this date, the best compaction performance. But, up to now, these
methods have not been mathematically formulated, as we have done here
with `p-AP. It is easy to adapt our method to iteratively increase the
number of selected coefficients (as in [15]). An additional fact is that, for
some restoration tasks (as, for example, spatial quantisation artifacts, see
Chapter 6) we have experienced that not always sparser solutions are used.

Another additional advantage of our method is that we use less
parameters than other similar ones [13, 15, 19]. However, it still requires
to establish a radius for the `p-ball. This disadvantage is overcome in the
method proposed in next chapter.



Chapter 4

Sparse approximation using
gradient descent

In this chapter we mathematically derive another method to solve the
sparse approximation problem. It is more accurate and efficient than the
one described in the previous chapter, but it maintains the advantage
of being a solution to an explicit optimisation problem. It is designed
from the next question: Is it possible to include gradient descent in the
criterion to be minimised in the Equation (2.4)? The answer, due to
the discontinuous nature of the `0-norm, is ”not directly”. However, we
will write an equivalent continuous criterion which allows to calculate the
gradient direction. Then we will obtain a generalised version of IHT and
proof that the fixed point of its iterations is a local minimum of the cost
function at hand.

Moreover, to avoid getting trapped by unfavourable local minima, we
will apply a deterministic annealing technique similar to other non-convex
global optimisation algorithms [118, 119, 19]. We name the resulting method
`0-GM. We show through experiments that `0-GM is competitive with
current state-of-art in terms of energy compaction, outperforming both `0-
AP and our LS-optimized version of `1-AP (`1-AP+OP).

We derive analogously the IST method throughout the gradient descent
in a function equivalent to the criterion to be minimised in the convex
relaxation problem (Equation (2.5)). We also derive a convex variant of
`0-GM, which we name `1-GM. We will show that it achieves comparable
results to other convex relaxation methods, and we will describe the
practical cases where it should be used.

We have noted that `0-GM is a dynamic thresholding method. The idea
of decreasing the threshold as iterations are executed is not new [13, 15, 19,
89, 90, 17]. Nevertheless, up to our knowledge, this is the first time that it
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has been formally derived as a direct solution to the sparse approximation
problem. In addition, nobody has analysed, in a certain depth, the reasons
why this solution behaves so well.

We start by reformulating the sparse approximation cost function
(discontinuous and unconstrained) in a continuous and constrained form
(Section 4.1). Then, in Section 4.2 we derive the generalised IHT as local
solution to the sparse approximation problem. We justify the use of a
decreasing threshold in Section 4.3. In Section 4.4 implementation details
of `0-GM are given, and in Section 4.5 we compare the energy compaction
capacity of `0-GM to the methods studied in previous chapter. Finally, we
derive the IST and `1-GM methods in Section 4.6, and compare them to
`1-AP. Section 4.7 concludes this chapter.

4.1 An alternative formulation with a

continuous cost function

We repeat here, for convenience, the sparse approximation problem
formulation of Equation (2.4):

â0(λ) = arg min
a
{‖a‖0 + λ‖Φa− x‖2

2}. (4.1)

The associated cost function is not only non-convex, but it is also
discontinuous. This prevents a direct calculation of its gradient. Next we
derive a new equivalent continuous and constrained function, whose gradient
can be calculated. We start from the following formulation:

(â, b̂) = arg min
a,b

{‖a‖0 + λ‖b− a‖2
2 s.t. Φb = x}, (4.2)

and prove the equality â = â0(λ). Firstly we express Equation (4.2) as:

â = arg min
a
{‖a‖0 + λ min

b
{‖b− a‖2

2 s.t. Φb = x}}. (4.3)

Note that the inner minimisation is the orthogonal projection of a onto
the affine subspace S(Φ,x) of perfect reconstruction of x. This projection
was already defined in Equation (3.4). We repeat its expression here for
convenience:

P⊥
S(Φ,x)(a) = a + ΦT (x−Φa).

Substituting it in Equation (4.2) we obtain:

â = arg min
a
{‖a‖0 + λ‖ΦT (Φa− x)‖2

2}.
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Given that Φ is a Parseval frame, it finally yields:

â = arg min
a
{‖a‖0 + λ‖Φa− x‖2

2} = â0(λ),

as we wanted to prove. In the next step, in order to obtain a continuous and
constrained cost function only depending on b, we start from Equation (4.2)
and swap the minimization variables with respect to Equation (4.3):

b̂ = arg min
b
{min

a
{‖a‖0 + λ‖b− a‖2

2} s.t. Φb = x}.

It is easy to see that, in this case, minimising this cost function for vector
a is equivalent to minimising independently for each index. We express the
cost as c(a,b) =

∑M
i=1 c′(ai, bi), where:

c′(a, b) =

{
1 + λ(b− a)2, |a| > 0
λb2, |a| = 0.

Given b, it is easy to see that if the value ãi(bi) minimising c′(ai, bi) is not
zero, then ãi(bi) = bi, and c′(ãi(bi), bi) = 1. Then, we have:

c(ã(b),b) =
M∑
i=1

min(1, λb2
i ).

Figure 4.1 shows a one-dimensional illustration of this minimum (with
λ = 1). Given some λ value, we note θ the value holding λθ2 = 1. Therefore:

θ = λ−
1
2 ,

and we have that:

ãi(bi) =

{
bi, |bi| > θ
0, |bi| ≤ θ.

This is a hard-thresholding operation with threshold θ, which we note
ã(b) = S0(b, θ). Substituting S0(b, θ) for a, in Equation (4.2):

b̂ = arg min
b
{‖S0(b, θ)‖0 + λ‖b− S0(b, θ)‖2

2 s.t. Φb = x}.

When evaluating this criterion for each coefficient in b, one of the two terms
(fidelity or sparseness) is zero. Thus, we can express the same as:

b̂ = arg min
b
{C0(b, θ) s.t. Φb = x}, (4.4)

â = S0(b̂, θ),

where:

C0(b, θ) =
M∑
i=1

min

(
1,

(
bi

θ

)2
)

. (4.5)
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Figure 4.1: Bold line shows the minimum between y(x) = 1 (dashed) and y(x) = x2

(dotted).

4.2 Local minimisation with `0-norm: IHT

The gradient of the new (unconstrained) cost function is ∇C0(b, θ) = c,
where:

ci =

{
0, |bi| > θ
2
θ2 bi, |bi| ≤ θ.

This can be expressed more compactly as:

∇C0(b, θ) =
2

θ2
(b− S0(b, θ)) .

The projection of this gradient onto the affine subspace of perfect
reconstruction, S(Φ,x), is:

∇S(Φ,x)C0(b, θ) = (I−ΦTΦ)∇C0(b, θ).

Every iteration of the gradient descent method is:

b(k+1) = b(k) − α∇S(Φ,x)C0(b
(k), θ).

As this projection is the component of the gradient in the null space of Φ,
b(k) always provides perfect reconstruction, no matter which value of α we
use. Substituting the gradient expression we obtain:

b(k+1) = b(k) − 2α

θ2
(I−ΦTΦ)

(
b(k) − S0(b

(k), θ)
)
.
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A necessary and, in our case, sufficient condition to reach a local minimum
of the cost function is that:

∇S(Φ,x)C(b∗, θ) = 0.

This is the convergence condition of the previous iterations. This means
that, if those iterations converge ,they do it to a local minimum of the cost
function in Equation (4.5).

Note that the choice of α = α0 = 1
2λ

= θ2

2
minimises the unconstrained

cost function of Equation (4.5) for a single descent step, resulting in:

b(k+1) = S0(b
(k), θ) + ΦT

(
x−ΦS0(b

(k), θ)
)
,

that is, the same Iterative Hard Thresholding (IHT) method described in
subsection 2.3.3.

We have shown that this procedure provides, when converging, a local
minimum in the classical sparse approximation criterion (Equation (4.1)).
However, in general, choosing the α value which minimises in one step
the unconstrained cost function (α0) is not optimal in terms of convergence
speed. We have hand-optimised the convergence speed by using α ∼ 1.85α0.

Recently, we have known that [84] also proved, in a parallel and
independent way to our work, that the convergence point of the IHT
iterations is a local minimum of the cost function1. However, they prove, in
addition, that the iterations converge indeed, provided that the eigenvalues
of (I−ΦTΦ) are between 0 and 1, where I is the M ×M identity matrix.

Figure 4.2 shows some convergence curves using fixed thresholds and
different α values, and using 8-scale DT-CWT as representation2, whose
redundancy factor is 4. We can see that, although the striking simplicity of
this method, doing gradient descent for a given λ value until convergence is
too expensive in computational terms. In addition, we know that the local
minimum obtained is clearly worse than that of `0-AP (see Section 3.4).

4.3 Global minimisation with `0-norm: `0-

GM

We propose next an efficient alternative to IHT and `0-AP, inspired by
deterministic global optimisation techniques, which drastically reduces

1This work was published in April 2007, while ours [10] appeared in August same
year.

2Except when indicated, this is the representation used throughout the chapter. We
have experienced that other representations, as Curvelets, provide a qualitatively similar
behaviour.
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Figure 4.2: Top, IHT convergence curves using a low threshold (θ = 5) and three different
α values. We have used House image and 8-scale DT-CWT. Bottom, same result for a
higher threshold (θ = 60).

computational cost compared to IHT, while increasing the energy
compaction capacity.

The cost function in Equation (4.5) can be re-written as:

C0(b, θ) =
M∑
i=1

(1− h(bi/θ)), (4.6)

where h(x) = max(1 − x2, 0) is the inverted parabolic arc centred at zero,
going from −1 to 1, and reaching a maximum value of one at zero, with an
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Figure 4.3: 1-D smoothing function: an inverted parabola in the interval [−1, 1], centred
at 0 and with maximum 1. Outside that interval is 0.

amplitude of one. A plot of this function is shown in Figure 4.3. We can
re-write the optimisation problem in Equation (4.4) as follows:

b̂ = arg max
b

C ′(b, θ), (4.7)

â = S0(b̂, θ),

C ′(b, θ) =
M∑
i=1

h(bi/θ) = M − C0(b, θ).

It is easy to express this in terms of an infinitely sharp cost function, Cδ(b),
convolved with a smoothing kernel, H(b/θ), which has a variable width
depending on θ (the higher is θ the stronger the smoothing effect):

C ′(b, θ) ∝ Cδ(b) ∗H(b/θ), (4.8)

where H(b) =
∏M

i=1 h(bi) and Cδ(b) =
∑M

i=1 δ(bi). In order to prove this
proportionality, we start by writing:

Cδ(b) ∗H(b/θ) =

(
M∑
i=1

δ(bi)

)
∗

(
M∏

k=1

h(bk/θ)

)
.
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We can express the delta function as an outer product of constants expressed
as functions of each dimension separately:

Cδ(b) ∗H(b/θ) =

(
M∑
i=1

δ(bi)[
∏
j 6=i

c1(bj)]

)
∗

(
M∏

k=1

h(bk/θ)

)
,

where c1(bj) = 1 is a constant function of bj. Now, we can write the
convolution of outer products as outer product of convolutions:

Cδ(b) ∗H(b/θ) =
M∑
i=1

(
∏
j 6=i

h(bj/θ) ∗ c1(bj))(δ(bi) ∗ h(bi/θ)).

The convolution with the unit constant is an integral, and the convolution
with the unity delta at zero does not change the function being convolved.
So, we write:

Cδ(b) ∗H(b/θ) =
M∑
i=1

h(bi/θ)(
∏
j 6=i

A(θ)),

where A(θ) =
∫∞
−∞ h(x/θ)dx =

∫ θ

−θ
h(x/θ)dx = 4θ/3. Then:

Cδ(b) ∗H(b/θ) = A(θ)M−1

M∑
i=1

h(bi/θ).

Finally, by substituting the definition of C ′(b, θ):

Cδ(b) ∗H(b/θ) = A(θ)M−1C ′(b, θ).

So we can express:

C ′(b, θ) = A(θ)1−MCδ(b) ∗H(b/θ),

and the relation of proportionality in Equation (4.8) is proved. The scale
factor, A(θ)−M+1, is irrelevant in terms of the minimisation of vector b in
Equation (4.7).

As Figure 4.2 illustrates, it is faster to find a local optimum when θ is
high, or, equivalently, λ is low, which corresponds to a smooth cost function.
Moreover, having a good candidate for the global optimum for a given λ,
we can expect a good result by searching from it the nearest optimum
corresponding to a similar, slightly higher, λ. From here we derive the
following method. Starting from a small λ, we do gradient descent until
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reaching convergence, then set a slightly higher λ, do again gradient descent
from the previous convergence point, and so on until reaching the desired
λ value. We call this method `0-GM (from Gradual Minimisation). A
faster and simpler approximated version is to increase slowly λ at each
iteration, so drastically reduce the number of iterations. In fact, both
versions become equivalent in the limit when the increase of λ at each
iteration becomes infinitesimal. In terms of the threshold θ, we start
from the highest possible threshold (highest amplitude in aLS) and slowly
decrease it at each de-smoothing iteration, until reaching the desired value.
In Figure 4.4 we illustrate the concept guiding this method with an example
of a function of multiple minima smoothed until getting a function with one
single minimum. The path joining all the minima throughout the different
scales is drawn. In this example there is continuity of the global minima as
a function of the scale, which is a necessary condition for `0-GM to reach
the global optimum. This, in general, does not happen in real cases. We
have seen that this method finds the global optimum for extremely high
sparseness levels (around few tens of DT-CWT coefficients). Nevertheless,
global optimality conditions are beyond the scope of this Thesis, where we
are more interested in the methods behaviour under practical conditions.

The idea of smoothing a cost function to avoid getting trapped by
unfavourable local minima is closely related to other deterministic annealing
schemes, such as [118, 119]. Some authors had already proposed this idea
as an heuristic to obtain algorithms promoting the energy compaction, by
using either soft-thresholding [19] or hard-thresholding [13, 89]. But the
referred authors did not propose their algorithms as means to solve well-
founded optimisation problems.

Figure 4.5 shows, on the one hand, some convergence trajectories
(dashed lines) of IHT for different fixed thresholds (which corresponds to
search for a local optimum by doing gradient descent with a fixed λ). On the
other hand, it shows two trajectories (circles and solid lines) corresponding
to exponentially decrease the threshold with the rule θ(k) = θ(0)βk for two
different β values. The closer to 1 is β, the better is the compaction,
but also the slower is the convergence. We, as other authors [15, 19],
have experienced that, in practice, exponential decreasing of the threshold
provides a better compromise between computational cost and quality of the
result than other decreasing functions, as linear. By decreasing dynamically
the threshold we are not only dramatically reducing the required number of
iterations for reaching convergence, but we are also significantly improving
the achievable fidelity for any given sparseness level.

Top panel of Figure 4.6 shows a family of fidelity-sparseness curves for
different β values. An ideal curve would have an asymptote to perfect
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Figure 4.4: 1-D Function with multiple minima progressively smoothed until obtaining
only one. The black continuous line indicates the path joining the global optima through
the scale of the smoothing kernel. We have used here as smoothing kernel a normalised
(in area) version of h(x) (See Figure 4.3).

reconstruction in N . Note that `0-GM approximates this asymptote as β
gets closer to 1. This is even more significant if we consider that achieving
a global optimum for low sparseness levels is much more difficult than for
high sparseness, because the number of local optima increases very rapidly
with λ.

4.3.1 Using a single solution for all the sparseness
levels

If we optimise using `0-GM for a set of λ values, we end up having multiple
solutions, one for every value taken by the threshold in its descending
path. Which criterion should we apply to choose a particular solution?
Is it possible to find a θ0 value whose associated minimum of the cost
function, C0(b̂(θ0), θ0), can be extended as C0(b̂(θ0), θ) to approximate the
minimum of the cost function for other thresholds θ (that is, such that
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Figure 4.5: Fidelity-sparseness results of `0-GM, using β = 0.9 (circles, 1.5·102 iterations)
and β = 0.99 (solid, 1.5 · 103 iterations), compared to IHT, using several thresholds
(dashed, 105 iterations). We use House image and DT-CWT with 8-scales.

C0(b̂(θ0), θ) ≈ C0(b̂(θ), θ), for all θ > θ0)? The answer, surprisingly enough,
is ”yes”. This problem has an important practical impact, because in that
case we could use â′(θ) = S0(b̂(θ0), θ) as an almost equally good substitute

of â = S0(b̂(θ), θ), that does not require to use, and store3, b̂(θ).
We have explained before how, to get a good solution for some λi > λj, it

is good to start from the solution associated to λj and, from there, refine it
until reaching the solution associated to λi. This seems to imply that good
solutions for high λ values should be reasonable good for lower values. In
bottom panel of Figure 4.6 we show the fidelity-sparseness curve obtained by
a posteriori thresholding the solution obtained using a very high λ value.
As we can see, for β < 0.99, the results are even better than the curve
obtained throughout the execution of the direct `0-GM method. This means
that only an optimisation solution, for a determined sparseness level (the
lowest one) is enough to have a good approximate solution to all λ values
considered. This is a practical advantage, because it means that we do

3However, this does not prevent us from computing b̂(θ), if θ > θ0, because the
computation of b̂(θ0) in `0-GM requires the computation of b̂(θ), for all θ > θ0 (in
practice, a dense enough sampling of the interval [θmax,θ0])
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Figure 4.6: Top, sparse approximation fidelity averaged in our test set using `0-GM
with α = 1.85(θ2/2), three different β values and 8-scale DT-CWT. Bottom, quality of
the reconstruction from the highest amplitude coefficients of the vector obtained using
`0-GM for a very high λ value (very low sparseness), and the same β values. Dotted
curves correspond to that of top panel. The vertical axis has been re-scaled to improve
visibility.
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not need to store all b̂(θ) to choose a threshold level θ, corresponding to a
certain λ, in real time. This allows, for example, for adapting to a variable
channel bandwidth in communications, and it provides, in general, a flexible
approach to quickly shift the trade-off between fidelity and sparseness.

4.4 Implementation

We have experimented with several Parseval frames, as we did with `p-AP
method. Although the qualitative conclusions of the experiments are similar
using any of them, we have chosen DT-CWT to show the experiments
in this chapter. Together with Curvelets, it offers the best compaction
results among the compared representations. In addition to this, the
MATLABr implementation available [116] is much faster than the one
for Curvelets [117].

Similarly to the previous chapter, the complex coefficients of DT-CWT
have been separated in real and imaginary parts, in order to make a
homogeneous treatment of them. Moreover, it has also been added an
extra scaled composed by one only coefficient storing the global mean of
the image.

We have checked that, in our `0-GM implementation, the best results are
obtained when the decrease interval of θ is as large as possible. Then, the
threshold is initialised to the second largest amplitude of the linear response
to the image (to choose at least one coefficient in the first iteration). Then
it is decreased until reaching the desired value. This value depends on the
application. Following the previous section, we choose a small final value
for θ, then obtaining a solution with good performance at every sparseness
level.

4.5 Results and discussion for `0-GM

Figure 4.7 compares the compaction performance of the following methods:
`0-GM with β = 0.99, `0-AP, post LS-optimised `1-AP (`1-AP+OP),
IHT and StOMP. See more details about these methods in Chapter 3.
The improvement on the behaviour of `0-GM with respect to the rest
is very remarkable. These plot show clearly that we can obtain, in the
conditions of this experiment, a much better local minimum to the sparse
approximation problem by directly minimising the `0-norm than solving
the convex relaxation problem, even LS-optimising the coefficients for the
selected support. One important difference of `0-GM with the methods
based on alternating projections is that we can sweep all the sparseness
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Figure 4.7: `0-GM sparse approximation results averaged in our test set compared to
other methods previously seen (StOMP, IHT, `0-AP and `1-AP+OP).

levels in the same execution of the method, instead of making a lot of
iterations for each level, each time. Tables 4.1 and 4.2 show the numerical
data of Figure 4.7.

Other strategies exist in the literature for the dynamic thresholding,
and depending on the precise case, they can give slightly better results than
those of `0-GM. For example, in [15], the number of preserved coefficients
at each iteration is linearly increased.

Figure 4.8 shows a visual comparison of sparse approximation with the
different methods using 0.04 ·N DT-CWT coefficients and Einstein image.
We see that `0-GM preserves significantly better the perceptually relevant
information of the original.
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] active coeffs./N
Image Method 0.00868 0.02536 0.04761

StOMP 24.48 25.55 26.45
Barbara IHT 23.16 27.25 29.89

`0-AP 24.89 28.67 31.89
`1-AP+OP 25 .24 29 .38 32 .60

`0-GM 26.18 30.47 33.93
StOMP 26.40 28.27 29.82

House IHT 24.08 30.35 32.91
`0-AP 27.33 31.50 34.16

`1-AP+OP 27 .75 32 .01 34 .73
`0-GM 28.85 33.18 35.65
StOMP 20.75 23.89 24.89

Boat IHT 16.82 24.74 27.09
`0-AP 21.57 25.76 27.86

`1-AP+OP 21 .96 26 .12 28 .37
`0-GM 23.77 27.32 30.13
StOMP 23.21 24.67 26.02

Lena IHT 17.27 26.22 28.93
`0-AP 23.62 27.20 30.09

`1-AP+OP 24 .17 27 .96 30 .95
`0-GM 25.19 29.29 32.34
StOMP 21.43 24.19 25.28

Peppers IHT 16.76 25.15 27.93
`0-AP 22.61 26.39 29.17

`1-AP+OP 22 .81 26 .85 29 .74
`0-GM 24.03 28.43 31.57

Table 4.1: Fidelity (PSNR, in dB) for several sparseness levels, using the images in our
test set and five different methods, and using 8-scale DT-CWT. Bold numbers indicate the
method providing the best approximation for each image and sparseness level, and italic
indicate the second best. Columns correspond to 569, 1662 and 3120 active coefficients.
We have directly extracted the PSNR values from the experiments, except for IHT, where
they have been linearly interpolated.

4.6 Gradient descent for minimisation of `1-

norm: IST & `1-GM

4.6.1 Alternative formulation of the convex cost
function

We described the convex relaxation problem in Equation (2.5), which we
repeat here for convenience:

â1(λ) = arg min
a
{‖a‖1 + λ‖Φa− x‖2

2}, (4.9)
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] active coeffs./N
Image Method 0.1865 0.5021 0.9869

StOMP 34.58 42.39 46.63
Barbara IHT 35.68 44.12 48.56

`0-AP 40.39 47.63 55.64
`1-AP+OP 41 .57 51 .22 > 100

`0-GM 43.05 54.93 > 100
StOMP 33.86 41.83 47.89

House IHT 38.14 44.61 50.75
`0-AP 38.40 49.25 58.98

`1-AP+OP 39 .20 51 .25 62 .31
`0-GM 43.47 56.12 > 100
StOMP 29.06 36.42 42.05

Boat IHT 32.07 39.30 45.65
`0-AP 33.52 43.29 58.91

`1-AP+OP 34 .25 45 .02 > 100
`0-GM 38.09 50.10 > 100
StOMP 31.70 39.48 45.06

Lena IHT 34.33 42.30 48.21
`0-AP 36.85 45.66 55.51

`1-AP+OP 37 .79 47 .95 63 .72
`0-GM 40.97 52.97 > 100
StOMP 31.60 38.50 43.17

Peppers IHT 33.98 41.19 48.66
`0-AP 37.20 44.84 57.09

`1-AP+OP 38 .41 47 .13 > 100
`0-GM 39.93 51.63 > 100

Table 4.2: Continuation of Table 4.1. Columns correspond, respectively, to 12221, 32905
and 64682 active coefficients.

The associated cost function, in contrast to the `0-norm case, is convex
and, thus, continuous. Nevertheless, we are interested in doing a similar
transformation as for that case. The proof of that solution â of the problem:

(â, b̂) = arg min
a,b

{‖a‖1 + λ‖b− a‖2
2 s.t. Φb = x}, (4.10)

is equivalent to â1(λ) is analogous to the one `0-norm case. We can express

b̂ as:

b̂ = arg min
b
{min

a
{‖a‖1 + λ‖b− a‖2

2} s.t. Φb = x}. (4.11)
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Figure 4.8: 64 × 64 crop of the reconstruction of Einstein image using 0.04 · N (2605)
active DT-CWT coefficients, for several sparse approximation methods. Top-left, result
of StOMP, implemented as described in Section 3.4.1 (28.98 dB). Top-right, IHT (31.20
dB). Centre-left, `1-AP (29.70 dB). Centre-right, `0-AP (31.97 dB). Bottom-left,
`1-AP+OP (32.38 dB). Bottom-right, `0-GM (33.28 dB).

First, we find the generic expression minimising the inner cost function given
b. This cost can be decomposed as a summation of a coefficient for each



66 Sparse approximation using gradient descent

element of the involved vectors, so the vector ãs(b) minimising the inner
criterion in Equation (4.11) is:

ãs(b) = min
a
{

M∑
i=1

c(ai, bi)},

where c(a, b) = |a| + λ(b − a)2. The derivative in a of this function is
∂c(a,b)

∂a
= d + 2λ(a− b), where:

d =


1, a > 0
−1, a < 0
0, a = 0.

(4.12)

For the case a > 0, we have that:

∂c(a, b)

∂a
= 1 + 2λ(a− b).

Equaling to zero we obtain:

a = b− 1

2λ
,

from where it follows that b > 1
2λ

, given that λ > 0 by definition. For the
case a < 0, analogously, we obtain:

a = b +
1

2λ
,

and then b < − 1
2λ

. Joining these two cases we have that:

a = sign(b) · (|b| − 1

2λ
),

when |b| > 1
2λ

.
On the other hand, when |b| ≤ 1

2λ
, the value of a minimising the

associated cost function changes the sign with respect to b. Given that for
every quadrant we only consider values in the same quadrant, this implies
that the minimum is at zero.

Thus, by applying these results in our problem, we obtain that the vector
ãs(b) is the result of a soft-thresholding operation of b with threshold
θ = 1

2λ
. We denote this operation as ãs(b) = S1(b, θ). Substituting in

Equation (4.10):

b̂ = arg min
b
{‖S1(b, θ)‖1 + λ‖b− S1(b, θ)‖2

2 s.t. Φb = x}.
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And finally, given that the cost function of the previous expression is
separable as a sum of independent terms for each coefficient index, we can
write:

b̂ = arg min
b
{C1(b, θ) s.t. Φb = x},

â = S1(b̂, θ),

where:

C1(b, θ) =
M∑
i=1

ci, (4.13)

ci =

{
|bi| − θ

2
, |bi| > θ

b2i
2θ

, |bi| ≤ θ.

4.6.2 Cost function minimisation with a fixed
threshold: IST

The derivation of the gradient descent-based method with the cost function
C1(b, θ) is analogous to the one shown for function C0(b, θ). From
Equation 4.13 we obtain:

∇C1(b, θ) =
1

θ
(b− S1(b, θ)),

and, after projecting onto the affine space of perfect reconstruction,
∇S(Φ,x)C1(b, θ) = (I − ΦTΦ)∇C1(b, θ), we end up with the following
iterations:

b(k+1) = b(k) − α

θ
(I−ΦTΦ)

(
b(k) − S1(b

(k), θ)
)
.

A necessary (and also sufficient, in this case) condition to reach the global
minimum of the function C1(b, θ) is that ∇S(Φ,x)C1(b

∗, θ) = 0. Note that
this is the convergence condition for the previous iterations. Choosing
α = α0 = 1

2λ
= θ leads us to IST method:

b(k+1) = S1(b
(k), θ) + ΦT

(
x−ΦS1(b

(k), θ)
)
.

It has been proved [28, 37] that this procedure provides the global minimum
of the convex relaxation problem shown in Equation (4.9).

However, as in the case p = 0, in general the α = θ choice, though it
minimises in α in one step the unconstrained cost function, is not optimal
in terms of convergence speed. We have also experienced that we can obtain
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Figure 4.9: Top, convergence curves for IST with a low threshold (θ = 5) and three
different α values. We have used House image and 8-scale DT-CWT. Bottom, same
result for a higher threshold (θ = 60).

a faster convergence using α ∼ 1.85α0, though now the difference of using
α = α0 is very small. Figure 4.9 shows the corresponding convergence curves
in the same conditions stated for IHT in Figure 4.2. The convergence here
is much much faster and uniform than for IHT, because of the convexity of
the cost function.
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4.6.3 A more efficient convex minimisation: `1-GM

We can derive an equivalent, but often more efficient, alternative method
to IST and `1-AP. For any θ value, the cost function C1(b, θ) is convex
and therefore one can find its global minimum using IST or `1-AP. As the
value of θ is increased (λ decreased), the quadratic term of the function
dominates, which provokes a faster convergence (as seen in Figure (4.9)).
Moreover, we know that, in this case, it does exist continuity along the
global minima of the function for different λ values, and this condition holds
because there is only one minimum for each λ and because that minimum
must be a continuous function of λ. This property ensures that, starting
from the global optimum of a given λ we rapidly converge to the optimum
for a slightly higher λ. From here we derive a method similar to `0-GM
but minimising the `1-norm. That is, we fix a small λ, do gradient descent
with IST until reaching convergence, then fix a slightly higher λ, we apply
again IST from the previous convergence point, and so on until reaching to
the desired value of λ. We call this method `1-GM. Similarly to the `0-GM
case, a faster and simpler approximation consists of increasing very slowly
λ at each iteration, so the number of iterations is significantly reduced.

Figure 4.10 compares the convergence trajectories of IST, using for
different thresholds, with respect to two `1-GM trajectories corresponding
to exponentially decreasing the threshold using the rule θ(k) = θ(0)βk for two
different β values. We can see that, in practice, the result of the exponential
decrease with β = 0.99 needs less iterations (1.5 · 103 vs. 103 for IST) to
provide a quasi-optimal result for many values of λ, executing in total as
many iterations as IST takes for only one sparseness value. Furthermore,
using β = 0.9, we achieve a good approximation to the optimal result with a
much more reduced number of iterations. Also in this case, as other authors
(e.g., [40]), we have experienced that the exponential decay of the threshold
provides a better compromise between computational cost and quality of
the result than other decreasing functions, as linear, for example.

Figure 4.11 shows a family of fidelity-sparseness for different β values.
We have also indicated the results of `1-AP as a reference. We can appreciate
that the fidelity obtained with `1-GM approximates better the result of `1-
AP as β gets closer to 1.

4.6.4 Practical advantages of `1-GM

We have observed that `1-AP is faster if the solution has a medium-high
sparseness level (equivalently, a medium-low λ value), whereas `1-GM is
better in case of having high λ values. Figure 4.12 shows a comparison,
using Barbara image and 8-scale DT-CWT, of the iterations needed to reach
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Figure 4.10: Fidelity-sparseness results of `0-GM, using β = 0.9 (circles, 1.5 · 102

iterations) and β = 0.99 (solid, 1.5 · 103 iterations), compared to IHT, using several
thresholds (dashed, 103 iterations). We use House image and DT-CWT with 8-scales.

a close to optimal result for different sparseness level by methods `1-AP (as
described in Chapter 3) and `1-GM (with α = θ and β = 0.99). Note
that, for low sparseness level, `1-GM is faster. This case appears often
in practice, when trying to look for exact sparse representations, or when
solving image restoration problems, if some localised information has been
lost (see Chapter 6). That is, when the goal is to match, total or partially,
an observation.

4.7 Conclusions

In this chapter we have derived an optimisation method, based on iterative
shrinkage and with dynamic adjusting of the threshold, to solve the
sparse approximation problem. In contrast to existing heuristics (for
example [15, 19, 17]) our approximation is fully justified in theory and it is
formulated as a classical optimisation problem solution.

Our first step has been to reformulate the sparse approximation problem
to obtain an equivalent optimisation problem, but using a constrained
continuous function, instead of the discontinuous and unconstrained original
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Figure 4.11: Averaged sparse approximation results in the test set using `1-GM with
α = 1.85θ, different β values and using DT-CWT with 8 scales. We also show the result
of `1-AP.

cost function, which prevented us to apply classical optimization tools.
Then, we have derived a solution for the problem by applying gradient
descent on this function, and projecting each iteration onto the set of vectors
holding the constraint, S(Φ,x). The resulting method is a generalisation
of IHT for the case p = 0. Finally, we have proposed the `0-GM method,
which is based on a dynamic update of the threshold, while doing gradient
descent of the cost function. This method has been justified as a type of
deterministic annealing equivalent based on expressing the cost function as
the result of convolving tan infinitely sharp reference cost function with a
decreasingly smooth kernel.

Our experiments show that `0-GM is not only more efficient and requires
less iterations than other methods (`0-AP, `1-AP+OP, IHT) but that it also
provides much better compaction results. In fact, its performance, when
the number of selected coefficients is close to the number of pixels in the
image is close to optimal (asymptotical). This method is comparable to the
state-of-the-art in sparse approximation performance. These results show
that, under the practical conditions presented in this Thesis, trying to solve
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Figure 4.12: Iterations needed to provide nearly optimal result for different sparseness
level using `1-AP and `1-GM (α = 1.85θ, β = 0.99). We use Barbara image and 8-scale
DT-CWT.

directly for the sparse approximation problem leads to better local minima
than solving for the convex relaxation problem.

Analogously, we have derived generalised IST and `1-GM from the
gradient descent in a constrained equivalent version of the cost function
associated to the convex relaxation problem. Both methods provide the
optimal solution to the problem (`1-GM when β → 1). We have seen
that using `1-GM is recommended for those applications where we are
constrained to preserve some part (of all) of the observation.

We could use the same ideas presented here with other norms. Although
the mathematics behind using intermediate quasi-norms (0 < p < 1) can
be more complicated, but it may be beneficial in order to improve the
compaction result.



Chapter 5

Application to image
restoration

We now consider that we have an incomplete observation. For example,
it has lost some pixels, chromatic components, bits, resolution, etc. Our
goal is estimating that missing information. We approach the problem by
maximising the fidelity to the observation regularised by an a priori model
based on statistical properties of natural images.

Our fidelity model is based on the concept of consistency. We say that
an image is consistent with a degraded observation when, applying the
same degradation to the image; we obtain again the given observation.
Consequently, to apply this in practice, the degradation should be perfectly
reproducible from the observed image. In some cases, it is not possible to
identify the precise degradation suffered by some given observation (e.g.,
white Gaussian noise). But, in some others, it is possible (e.g., missing
pixels, bits, chromatic components, resolution, etc.). We call the latter a
posteriori deterministic degradations.

Our a priori model is based on favouring the sparseness of the estimation.
This is justified by the observation that most of the degradations decrease
the sparseness of the representation (e.g., wavelets) with respect to the
original image [120, 121, 24]. Figure 5.1 shows an example. Left column
corresponds to a crop of Peppers image (top) and a high-frequency sub-band
of the linear response using DT-CWT with this image (bottom). Right
column corresponds to randomly missing 40% of the image pixels (top)
and the corresponding sub-band (bottom). We note that the energy is less
concentrated in the degraded sub-band.

The two observations made about natural images in Chapter 2 (energy
compaction of the linear response and sparseness increase using non-linear
methods) lead us to two different variants to describe the a priori knowledge
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Figure 5.1: Top-left, Peppers crop, starting at row 111, column 91. Bottom-left,
same crop of the high frequency sub-band of the linear response to Peppers using 8-
scales DT-CWT, corresponding to orientation −45. We have previously doubled the
size of this sub-band, through pixel replication, in order to match the image size. Top-
right, degraded image by setting to zero, randomly, 40% of the pixels. Bottom-right,
corresponding sub-band.

we have about them. On the one hand, we can assume that the original
image can be expressed as a linear combination of few representation
vectors. This implies a sparse vector of synthesis coefficients. Many authors
have previously used this concept to approach image restoration [26, 29, 61].
We call this Synthesis-sense Sparseness (SS).

Although the use of the SS approach is perfectly legitimate and
reasonable successful in practice, one could object to the lack of a
direct empirical basis. The traditional Bayesian approximation to image
restoration is based on building a priori models of the image reflecting the
typical behaviour of the signals in many previous observations. However,
the synthesis coefficients of an optimally sparse representation cannot be
observed directly, and, often, they cannot be exactly calculated in practice
(because, in general, the global optimum solution is not available).

Following this reasoning, it seems conceptually more consistent to use an
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a priori statistical model based on direct observations, describing the typical
distribution of the coefficients of the linear transformation of natural images.
We call this Analysis-sense Sparseness (AS). This is a natural extension of
many previous works that, under different points of view, have used sparse
density models for the linearly transformed image (e.g., [74, 18]). Moreover,
some authors have implemented practical methods based on AS for image
processing, with very positive results (e.g., [19, 20]). As it will be seen
in the next chapter, we have experienced a generally better restoration
performance using AS than SS, in agreement with [122].

In this chapter we show how to apply the methods presented in previous
chapters to restoration of a posteriori deterministic degradations. We have
observed, for each method, which sparseness type is better in practice.
Consequently, we have used `p-AP method for SS-restoration and `p-GM
for AS.

We start by explaining and formulating the consistency set with a generic
degraded observation (Section 5.1). Then we formulate the SS restoration
problem (Section 5.2). Next we show how to adapt `p-AP to solve it
(Section 5.3). Then we formulate the AS problem (Section 5.4), and show
how to adapt `p-GM to solve it (Section 5.5).

5.1 Consistency with an observation

We have a degraded image y ∈ RN . Consider that the degradation
consists of missing some identifiable pieces of information. This could
be bits, pixels, chromatic components, etc. We assume that we can
exactly know, given y, which elements of the original image are preserved
(a posteriori deterministic degradations). Then, we can replicate the
associated degradation, noted as:

y = fy(x). (5.1)

We define the consistency set for observation y, R(y), as all those images
which, after being degraded with fy(x), result in the same observation.
Mathematically:

R(y) = {x ∈ RN : fy(x) = y}.
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5.2 Formulation using synthesis-sense sparse-

ness

If we are dealing with a redundant representation domain, we have that:

y = fy(Φa),

where a is a synthesis vector whose reconstruction provides the original
image. The Maximum A Posteriori estimate of a is given by:

â = arg min
a
{log p(a) + λ‖y − fy(Φa)‖2

2},

where p(a) is a prior for the representation coefficients. As is common in
the literature when using, as in our case, wavelets (e.g., [3, 74, 78, 29]),
we assume independent coefficients and heavy-tailed priors, such as the
Generalized Gaussian density :

p(a) ∝ exp{−k‖a‖p
p}.

When 0 ≤ p ≤ 1, this distribution is sparse, in the sense of having a
probability density function concentrating most of the coefficients around
zero, and having a small proportion of them with relatively high amplitudes.
The logarithm of this prior is proportional to the p-th power of the `p-norm
of the vector plus some irrelevant constant (log p(a) ∝ ‖a‖p

p + A). Then,
our optimisation problem is set up as follows:

â = arg min
a
{‖a‖p

p + λ‖y − fy(Φa)‖2
2}.

Note that this is analogous to the `p-norm minimisation problem in
Equation (3.1), but the fidelity is measured in terms of the residual between
the observation and the degradation of the estimation. Therefore, the
cost function to be minimised is formed by the addition of two terms, one
corresponding to the sparseness of the approximation, and the other to the
quadratic distance to the consistency set R(y). The parameter λ controls
the relative importance of each term in the final solution. In practice,
we require our estimation to belong to R(y), same as the original image.
Equivalently, we require â to be inside the set S(y) of synthesis vectors
representing images in R(y):

S(y) = {a ∈ RM : Φa ∈ R(y)}.

Then, we set λ to infinite, which yields the following problem:

â = arg min
a
‖a‖p

p s.t. a ∈ S(y), (5.2)

x̂ = Φâ.
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5.3 Estimation using `p-AP and synthesis-

sense sparseness

The solution to Equation (5.2) has a certain `p-norm, ‖â‖p
p = R∗. This

value can be found by solving the problem:

R∗ = min{R ∈ R∗ : Bp(R)
⋂

S(y) 6= ∅}.

The intersection between the corresponding sets, Bp(R
∗) and S(y), will have

more than one element in general. Among them, we choose the closest one
to the observation:

â = P⊥
S(y)

⋂
Bp(R̂∗)

(ΦTy).

It is easy to see that we can use `p-AP (see Chapter 3) to solve this problem,
only substituting the set S(Φ,x) with the set S(y). Then, we obtain the
following iterations:

â(0) = P⊥
Bp(R̂∗)

(aLS),

â(k+1) = P⊥
Bp(R̂∗)

(P⊥
S(y)(â

(k))). (5.3)

Iterations end when ‖â(k+1) − â(k)‖2 < δ, for δ > 0. The proof that the
fixed point of these iterations is a local minimum to the distance to S(y)
is completely analogous to that shown in Section 3.1 for the case of sparse
approximation.

We derive now the expression of the orthogonal projection of a vector
bo onto S(y):

b̂p
S(y) = P⊥

S(y)(b
o) = arg min

b
{‖b− bo‖2

2 s.t. b ∈ S(y)}. (5.4)

S(y) is orthogonal to the set A of linear responses to images, defined as:

A = {b : ∃x ∈ RN , ΦTx = b}.

Then, analogously to the case of the affine space of perfect reconstruction
of an image (see Equation (3.4)), we have that:

b̂p
S(y) = bo + ΦTΦ[b̂p

S(y) − bo].

We now define SA(y) as the set of linear responses whose reconstruction is
consistent with the observation:

SA(y) = {b ∈ RM : ∃x ∈ R(y), ΦTx = b}.
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We have that b̂p
SA(y) = P⊥

SA(y)(b̂
p
S(y)) = ΦTΦb̂p

S(y), and thus:

b̂p
S(y) = bo + b̂p

SA(y) −ΦTΦbo. (5.5)

To solve b̂p
SA(y), we have to derive an expression of the orthogonal projection

onto SA(y) in terms of our observation bo. We have that:

b̂p
SA(y) = arg min

b
{‖bo − b‖2

2 s.t. b ∈ SA(y)}.

We can express:

bo − b = (bo −ΦTΦbo) + (ΦTΦbo − b).

These two bracketed differences are orthogonal vectors, as the first one
belongs to the null space of Φ, whereas the second one has no null
component in Φ (that is, ΦTΦb = b, because b ∈ SA(y)). Then, we
can write:

b̂p
SA(y) = arg min

b
{‖ΦTΦbo − bo‖2

2 + ‖b−ΦTΦbo‖2
2 s.t. b ∈ SA(y)}.

As the first summation term is independent from b, it can be ignored in
the minimisation, resulting in:

b̂p
SA(y) = arg min

b
{‖b−ΦTΦbo‖2

2 s.t. b ∈ SA(y)}.

We know that, for every vector b ∈ SA(y), another vector x ∈ R(y) exists
such that b = ΦTx. Thus, substituting in previous expression, we get:

b̂p
SA(y) = ΦT [arg min

x
{‖ΦTx−ΦTΦbo‖2

2 s.t. x ∈ R(y)}].

And because ΦT is a Parseval frame:

b̂p
SA(y) = ΦT [arg min

x
{‖x−Φbo‖2

2 s.t. x ∈ R(y)}].

The minimisation in x corresponds to the orthogonal projection of Φbo onto
the set of images consistent with the observation, P⊥

R(y)(Φbo), so we obtain:

P⊥
SA(y)(b

o) = ΦT P⊥
R(y)(Φbo). (5.6)

And, substituting in Equation (5.5) we finally have that:

P⊥
S(y)(b

o) = bo + ΦT (P⊥
R(y)(Φbo)−Φbo).

Finding the orthogonal projection onto the consistency set R(y) is trivial for
a wide number of strictly reproducible a posteriori degradations, by simply
forcing the reconstruction to preserve the desired values. Of course, the
precise form of this projection depends on each degradation. We explain
some cases in detail in Chapter 6.
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5.4 Formulation using analysis-sense sparse-

ness

We cannot reach, in general, strict sparseness when dealing with linear
responses of natural images, because we cannot avoid the simultaneous
response of several coefficients to the same feature. Instead, we can consider
that most of the energy is concentrated in a small proportion of coefficients.
Then, we can model the linear representation as a strictly sparse vector
whose support corresponds to the highest responses in amplitude, called a,
plus a Gaussian correction term, noted r. Then, if we define SA(y) as the set
of linear responses whose reconstruction is consistent with the observation:

SA(y) = {b ∈ RM : ∃x ∈ R(y), ΦTx = b},

then, we can write our optimization problem as:

(â, r̂) = arg min
a,r

{‖a‖p
p + λ‖r‖2

2 s.t. (a + r) ∈ SA(y)}, (5.7)

x̂ = Φ(â + r̂).

5.5 Estimation using `p-GM and analysis-

sense sparseness

Following a completely parallel way to that of the sparse approximation
problem, when solving Equation (5.7) we derive an expression which only
depends on a vector b = a + r, and where the constraint set, S(Φ,x), is
substituted by the new constraint, SA(y). Note that this new set is no longer
affine and that, therefore, we have to consider its curvature by projecting
the cost function gradient onto its tangent hyperplane on every border point
b. This projection can be calculated as the limit:

∇SA(y)Cp(b, θ) = lim
α→0

P⊥
SA(y)(α∇Cp(b, θ))

α
,

where P⊥
SA(y) is the orthogonal projection onto SA(y) (Equation (5.6)), and

where Cp(b, θ) indicates, with p = 0 or p = 1, the cost functions defined
in Equations (4.5) and (4.13), respectively. The gradient descent method is
then formulated as:

b(k+1) = b(k) − α∇SA(y)Cp(b
(k), θ). (5.8)
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However, it is more convenient in practice to use the following simpler
calculations in the estimation loop:

b(k+1) = P⊥
SA(y)

(
b(k) − α∇Cp(b

(k), θ)
)
,

which ensures that the updated vector belongs to the consistency set SA(y)
for any value of α. This update rule is equivalent to that of Equation (5.8)
if the projection is linear.

Because of the similar structure of the minimisation problem described
in Equation (4.2), and that described in Equation (5.7), we can apply the
same strategy to look for a global minimisation of the cost function when
p = 0 or p = 1. This implies, in practice, that we get a significatively
better restoration performance if we use an exponentially decaying threshold
until reaching the desired value, and then we use that fixed threshold until
convergence. We have empirically tested in different applications that the
optimal final threshold in our optimisation is usually close to zero, as it was
also indicated by [19, 20]. Thus, in the absence of any additional information
source, an arbitrarily small threshold1 is a suitable stopping criterion for the
iterations.

1Too low thresholds demand more computation, so here there is again a trade-off
between time and quality.



Chapter 6

Some applications

In this chapter we present several applications to restoration problems of
the methods derived in this Thesis. We focus on a posteriori deterministic
degradations (see Chapter 5). We motivate each problem and formulate the
associated consistency set and the orthogonal projection onto it. Finally, we
present some experiments showing that our methods are highly competitive
for the applications studied.

In Section 6.1 our sparse approximation methods are applied to remove
spatial quantisation artifacts. In Section 6.2 they are applied to estimation
of missing pixels of the image. In Section 6.3 we study the interpolation of
Bayer Color Filter Array mosaics. Finally, in Section 6.4 we approach the
problem of increasing the details of images.

6.1 Removing quantisation artifacts

6.1.1 Introduction

Spatial quantisation is an indispensable part of the capture of images with
digital devices. Usually, the artifacts derived from it, as false contours and
destruction of low-contrast texture, are close or even below the visibility
threshold. However, in a number of situations they can become evident.
For example, when the local luminance range of an image is stretched to
inspect low-contrast details, or when blurry and quantised images are de-
convolved, especially if there is little noise from other sources. It can also be
useful as a previous step to extract sensitive local features, like the gradient
of the luminance. Other possible applications are interpolating level curves
in topographic or barometric maps, or using a reduced number of bits per
pixel when there are not enough resources to perform a more advanced
compression of the image.
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Surprisingly enough, until very recently the removal of quantisation
artifacts in the image domain (from now on, de-quantising) has received
little attention in the scientific literature. In contrast, the quantisation in
the transformed domain has been widely used, especially in the context of
post-processing compressed images (e.g., [123, 124, 125, 126, 127]).

Nevertheless, during the last years there has been a growing interest in
approaching the problem in the image domain. Up to our knowledge, the
first work was [128], which used de-quantising as a previous step to edge
detection. Recently, other methods have been published, based on iterating
between some filtering operation and the correction of the difference with
the original [129, 130]. But this type of strategies, though they result in
efficient algorithms, are too simple to provide satisfactory results. In parallel
to these works, we presented a method based on promoting the sparseness on
a representation with redundant wavelets [24]. The selection of coefficients
was made, in this method, by directly thresholding the analysis wavelet
coefficients, so we can classify this technique within the greedy heuristics.
Last three referred methods are described in this section in detail.

In this section we compare the performance of `p-AP adapted to de-
quantising in the two versions presented, p = 1 and p = 0. We
see, through intensive experiments, that `0-AP significantly outperforms
methods in [24, 129, 130], and also `1-AP.

6.1.2 Consistency set

In this case the consistency set is made of those images that, when
quantised using the same observed quantization levels, result in the same
observation. Therefore, being y a quantised observed image, the consistency
set associated to it, noted as RQ(y), is defined as:

RQ(y) = {x ∈ RN : yi −
δi

2
< xi ≤ yi +

δi

2
, ∀i ∈ {1, ..., N}},

where δi indicates the size of the quantisation interval associated to each
pixel1.

Given an image x ∈ RN , the orthogonal projection onto RQ(y) is easily
computed as z = P⊥

RQ(y)(x), where:

zi =


xi, yi − δi

2
< xi ≤ yi + δi

2

yi − δi

2
+ ε, xi ≤ yi − δi

2

yi + δi

2
, yi + δi

2
< xi,

1Here we have assumed uniform quantisation, for simplicity, but all the methods
described here are easily applicable to other types of quantisation.
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where ε ∈ R∗ (ideally infinitesimal) is an artifice added to achieve empty
intersection between closed adjacent quantisation intervals.

6.1.3 Implementation

In the experiments shown in next subsection we have compared our methods
with three recent algorithms applied to quantisation artifacts removal. We
briefly describe next these three methods and our implementation of them.
The values given to the different parameters have been hand-optimised for
every method to stop the iterations at a similar approximation level to the
final convergence.

Direct thresholding and optimisation. In [24] we describe a method
for de-quantizing in the image domain, by enforcing a high degree of
sparseness in its representation with a redundant wavelet-based dictionary.
For this purpose we devise a linear operator that returns the minimum
`2-norm image preserving a set of significant coefficients, and estimate the
original by minimising the cardinality of that subset, always ensuring that
the result is compatible with the quantized observation. We implement
this solution by alternated projections onto convex sets. To select the set
of significant coefficients, we threshold directly the amplitudes of the linear
representation of the image, using a threshold proportional to the estimated
energy of each original sub-band.

This application is based on the method that we call Direct Thresholding
and Optimisation (DT+OP, see Chapter 3), and by extension this will be
the name given to it here. Its details can be seen in [24]. In the following
experiments we have used 7-scale DT-CWT and we have assumed that there
is intersection between the sets when, in less than 30 iterations, the mean
square difference of the subsequent projected vectors onto both sets is less
or equal to 0.5.

Constrained Diffusion, In [130] the method of Constrained Diffusion
(CD) is presented, based on combining linear filtering with non-linear
correction of the difference with the observation.

Our implementation of the method follows the steps explained in [130],
that is, an iterative method initialising the estimate with the observation
and having two steps: 1) Convolution of the estimated image with the
following matrix:0 1

5
0

1
5

1
5

1
5

0 1
5

0

 , (6.1)

and 2) projection onto the consistency set with the observation. The
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iterations ed when the mean square difference of the estimation of one
iteration with respect to the previous one is less than 0.5.

Regularised Constrained Iterative Restoration. In [129] it is
described a method to remove quantisation artifacts, called Regularised
Constrained Iterative Restoration (RCIR). The method is described applied
to vector quantisation. However, when dealing with uniform quantisation,
as in our case, it is reduced to a simple strategy based on minimising the
`2-norm of the output of a high-pass filter, enforcing, at each step, again
that the estimation belongs to the consistency set.

Our implementation results in an iterative method, initialised with the
observation at the first estimation. It consists of two steps: 1) Subtract
from the estimation its own convolution with a Laplacian spatial filter. 2)
Project onto the consistency set. The stopping criterion for the iterations
is similar to that of CD.

`p-AP. We use a binary search to find the radius of the smaller `p-ball
having non-empty intersection with the set of vectors consistent with the
observation (see Chapter 5), whose interval is initialised between 0 and M
in `0-AP and between 0 and ‖ΦTy‖1 in `1-AP. We consider that we have
found the required radius when the search interval has a length less or equal
to 5000, and we assume that there exists intersection when in less than 30
iterations the mean square difference between the projected vector onto one
of the sets and the other is less or equal to2 0.3.

6.1.4 Results and discussion

6.1.4.1 `0-AP vs. `1-AP

Figure 6.1 compares the de-quantising performance of `0-AP vs. `1-AP,
using 3-bits quantisation of Einstein image. Results are shown using both
8-scale DT-CWT and 6-scale Curvelets. We observe that the performance
of `0-AP is much better, both in PSNR increase and visually: it manages
to remove the quantisation discontinuities but preserves a high definition in
the original edges of the image. We also see that results using Curvelets are
slightly better in this case than those obtained using DT-CWT.

Figure 6.2 shows a similar example with a little texture image (Peppers).
Note that the relative behaviour between the methods is qualitatively
similar, although the difference in visual quality between `1-AP and `0-
AP is not so big in this case as in the Einstein example. This is due to this
image has less high-frequency texture, and then over-smooth estimations

2The higher tolerance given to methods based on linear filtering favour them, because
making more iterations will smooth too much the estimation, thus decreasing the PSNR.
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are having little visual impact. However, the difference in PSNR is still
favourable to `0-AP. Note also that now the performance is better using
DT-CWT than Curvelets.

Regarding the behaviour of `p-GM, we have experienced that it is not
very satisfactory for both p = 0 and p = 1. Using AS it is not able to
remove the quantisation artifacts; and using SS too smooth estimations are
obtained. In the latter case, the compaction capacity of `0 − GM is much
better than that of `0-AP, but this does not reflect in a parallel way on the
method’s performance.

6.1.4.2 `0-AP vs. existing methods

Now we compare the `0-AP performance vs. that of the methods previously
described: RCIR [129], CD [130], and DT+OP [24]. Table 6.1 shows
the performance average (obtaining the MSE for the average) of each
method in our test set (see Appendix A) for all the range of possible
quantisation bits in 8-bits images. We can see that methods based on
enforcing sparseness, DT+OP and `0-AP, outperform clearly those based
on simpler linear operations, except when the image is quantised with only
one bit. Note that `0-AP is the best for those levels which, in practice,
result in visible artifacts (low and medium range).

PSNR (dB)
] Bits 1 2 3 4 5 6 7

Observed 16.40 22.73 29.22 34.71 40.59 46.45 51.11
RCIR 17 .62 24.25 29.75 34.37 39.20 44.56 51.87
CD 17.88 24 .33 29.60 34.38 39.30 44.65 51 .89

DT+OP 16.46 24.05 30 .83 35 .67 40.61 45.28 49.27
`0-AP 17.29 24.74 31.49 35.91 40 .21 45 .11 52.03

Table 6.1: PSNR (MSE averaged) using the images in our test set, quantised with all the
possible range of bits and restored using methods RCIR, CD, DT+OP and `0-AP. First
row corresponds to the averaged PSNR of the observed images. Bold numbers indicate
the best result for each number of bits, and italic the second best.

In addition, the visual appearance of the results of methods based on
promoting sparseness is significantly better than those of their competitors,
even for low number of quantisation bits. In Figures 6.3 and 6.4 we can see a
visual comparison of the application of the methods to Einstein and Peppers
images quantised with 3-bits. Among them, the best one, both visually and
in PSNR, is `0-AP. Both RCIR and CD destroy too many high-frequency
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Figure 6.1: Example of application of `1-AP and `0-AP to de-quantizing. Top-left,
original Einstein image, cropped to 128 × 128 pixels. Top-right, 3-bits observed
quantisation (PSNR: 27.98 dB). Centre-left, `1-AP result using 8-scale DT-CWT (30.17
dB). Centre-right, `1-AP result using 6-scale Curvelets (30.61 dB). Bottom-left, `0-
AP result using 8-scale DT-CWT (31.21 dB). Bottom-right, `0-AP result using 6-scale
Curvelets (31.38 dB).

components without removing completely the artifacts. Using an adaptive
threshold allows DT+OP to remove isolated elementary functions (present
in `0-AP). However, presence of ringing effect and poor performance in
areas of high-frequency texture contribute to the fact that the visual effect
(and also the PSNR) is better in `0-AP. Finally, we show in the last panel
the result of `0-AP using a joint DT-CWT - Curvelets representation (see
Appendix C). Note that increasing the richness of the dictionary, not
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Figure 6.2: Example of application of `1-AP and `0-AP to de-quantizing. Top-left,
original Peppers image, cropped to 128 × 128. Top-right, 3-bits observed quantisation
(PSNR: 28.81 dB). Centre-left, `1-AP result using 8-scale DT-CWT (29.08 dB).
Centre-right, `1-AP result using 6-scale Curvelets (29.50 dB). Bottom-left, `0-AP
result using 8-scale DT-CWT (31.06 dB). Bottom-right, `0-AP result using 6-scale
Curvelets (30.85 dB).

only in number but also in type of elementary functions used, significantly
improves the result, increasing the PSNR and drastically reducing the
isolated elementary functions appearing in the estimated image when only
one representation is used. We have chosen these two dictionaries to fairly
compare with the results shown in 6.1 using each representation separately.
Moreover, using other dictionaries we can further improve the results. For
example, using Curvelets and a version of the Steerable Pyramid [131]
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Figure 6.3: Top-left, Einstein quantised with 3 bits and cropped to 128× 128, (PSNR:
27.98 dB). Top-right, RCIR result (30.39 dB). Centre-left, CD result (30.44 dB).
Centre-right, DT+OP result using DT-CWT with 8 scales (30.72 dB). Bottom-left,
`0-AP result using DT-CWT with 8 scales (31.21 dB). Bottom-right, `0-AP result using

jointly 8-scale DT-CWT and 6-scale Curvelets, with equal scale factor,
√

1
2 (31.93 dB).

without high-pass-residual, the PSNR is 31.99 dB for Einstein and 31.46
dB for Peppers.

Note, in Table 6.1, that for a high number of quantisation bits, there is
a relative decrease in PSNR when using `0-AP. However, in these cases this
method also manages to remove low-contrast artifacts, improving the visual
appearance when enhancing the contrast of the image. Figure 6.5 shows an
example. Left panel is a 32× 32 detail of a smooth area in a photographic
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Figure 6.4: Top-left, Peppers quantised with 3 bits and cropped to 128× 128, (PSNR:
28.81 dB). Top-right, RCIR result (29.65 dB). Centre-left, CD result (29.85 dB).
Centre-right, DT+OP result using DT-CWT with 8 scales (30.38 dB). Bottom-left,
`0-AP result using 8-scale DT-CWT (31.07 dB). Bottom-right, `0-AP result using

jointly 8-scale DT-CWT and 6-scale Curvelets, with equal scale factor,
√

1
2 (31.46 dB).

8-bits image, with a contrast amplification factor around 40 times. Right
panel is the same crop in the result after processing with `0-AP. Note the
more natural appeareance.

Regarding computation time, because of their simplicity, RCIR and CD
are clearly faster. They are iterative methods only requiring a convolution
and a projection onto the consistency set at each iteration. The methods
based on promoting sparseness are dominated by one analysis and one
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Figure 6.5: Left, detail of the sky of a photographic 8-bits image with contrast amplified
approximately 40 times. Right, same detail after processing with `0-AP.

synthesis operation per iteration, and they also have to look for the value of
the threshold preserving a certain number of coefficients. Thus, both RCIR
and CD perform around 10 iterations for each estimation, taking barely
half a second in average, for a 256 × 256 image. DT+OP takes between
15 seconds and 5 minutes using DT-CWT with 8 scales, depending on the
number of quantisation bits of the observed image. Finally, `0-AP takes
80 seconds on average using DT-CWT with 8 scales. Times are for our
MATLABr implementatoin on an Intelr, CoreTM2 Duo with 1.66 GHz
and 2 GB RAM.

6.1.5 Conclusions

We have analysed the performance of `0-AP applied to removing spatial
quantisation artifacts, comparing it to `1-AP and to other recently published
methods (RCIR, DT+OP CD). We can say that the search for the sparsest
image within the consistency set made by `0-AP provides very satisfactory
results. In general, we have seen that methods based on promoting
sparseness outperform those based on linear filtering operations. However,
`0-GM, which possesses a better energy compaction capacity, provides
estimations too concentrated in low frequencies. The discussion about why
this happens is left to a future work.
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6.2 Interpolation of missing pixels

6.2.1 Introduction

Missing pixels in images is a common problem both in the capture and
transmission of digital images. It is also usual wanting to remove some
undesired details in an image (overprinted test, publicity, a disturbing cable
in a beautiful landscape, etc.) or to restore images degraded by the pass of
years.

In the last 30 years, or even more, many different techniques have been
proposed to recover missing pixels (they are usually referred as in-painting
techniques). On the other hand, texture-synthesis methods can also be
used to fill-in missing regions. There are many papers using this latter
type of strategies, and we can refer to [132, 133, 134, 34] among others.
Unfortunately, the need to manually indicate the areas of the image from
where the information needed for the interpolation should be taken, makes
them inappropriate in practice. The most successful heuristic strategies
combine the edge propagation (using partial differential equations, PDE)
with local texture synthesis (e.g., [135, 136, 137, 138]).

There is a fast and very simple method providing comparable results to
PDE-based methods [139]. It is based on iteratively combining a filtering
linear operation and the non-linear constraint preserving the observed
pixels.

Recently, some different strategies based on promoting sparseness have
been developed. A good example of this is [20], proposing a formulation
based on Expectation-Maximisation to approximate the sparsest solution
consistent with the observation through optimal minimisation of the `1-
norm.

In this section we compare the performance of our methods (`p-AP and
`p-GM) adapted to pixel interpolation of missing regions of the image. We
see, through application examples, that `0-GM provides the best results,
among them, in MSE sense. We also compare to some of the referred
techniques ([20] and [139]).

6.2.2 Consistency set

When the degradation is missing pixels in the image, the consistency set is
composed by those images resulting in the same observation when missing
the same pixels. Then, given a subset of fixed indices, I, from 1 to N , and
given an observation y preserving pixels yi from the original image for all
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i ∈ I, we define the consistency set associated to y, RI(y), as:

RI(y) = {x ∈ RN : xi = yi, ∀i ∈ I}.

Given an image x ∈ RN and a N × N diagonal matrix D, where each
element dii is 1 if i ∈ I and 0 otherwise, the orthogonal projection of a
vector x ∈ RN onto RI(y) is PRI(y)(x) = Dy + (I − D)x, where I is the
N ×N identity matrix.

6.2.3 `0-AP: new strategy for searching the radius

We have experienced that `p-AP does not provide good interpolation results
if we search for the sparsest image within the consistency set. In practice,
the quality of the interpolation depends on finding a precise value of R
allowing to minimise the error of our estimation. We call Ropt to this value.
Then, what we are looking for is, given a sparseness level Ropt, the projection
onto the consistency set of the image with coefficients belonging to the `p-
ball of radius Ropt, and whose pixels in I are closest, in a MSE sense, to the
observed pixels in y. To find this optimal value we propose a solution based
on maximising the Mean Square Value (MSV) of the interpolated pixels [16].
Intuitively, we see that, for small values of R, only the more salient features
of the observed image will be represented, so the estimation will be too
smooth and we will necessarily obtain low MSV in the interpolated areas.
When we choose a very high R, the broken edges caused by missing pixels
will be better represented by using a lot of vectors that approximating them
at lower scales. This provokes a poor interpolation and, once again, a low
MSV. Finally, if we use intermediate values for R, we expect to have enough
functions to represent the main features of the image, but not enough to
describe false edges. Because of that, the missing holes will be filled with
the appropriate dictionary functions, which will cause a higher MSV in the
interpolated areas, and this is a better interpolation.

Bold line in Figure 6.6, corresponding to the left vertical axis, shows
the normalised MSE in the estimated pixels for each value of R, where R
is normalised by Ropt, which corresponds to the minimum (at one) of this
curve. Dashed line shows the normalised MSV, corresponding to the right
vertical axis. We call Rmax to the value of R where this curve reaches its
maximum. Dotted lines indicate the typical deviation of this curve for each
value of R. Dashed-dotted line is the real MSV value of the lost pixels in
the original image, which is an upper bound for the MSV of the estimation.
All these values are averaged in our test set, using a randomly generated
mask where approximately 40% of pixels are lost. For each test 250 `0-AP
iterations were executed. The described method proposes to estimate Ropt
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from the observed value Rmax. Then, for this percentage of missing pixels,
we have that R̂opt = 1

0.7
Rmax.

Figure 6.6: Bold line - left axis, Mean Square Error of the estimated pixels normalised
to the minimum value of this curve, in ordinates, and to the value for which this minimum
occurs, in abscissas. Dashed line - right axis, Normalised Mean Square Value of the
estimated pixels. Dotted line, typical deviation for each value in the horizontal axis.
Dashed - dotted line, Mean Square Value of the original pixels in the missing positions.
All curves are averaged in our test set, using a random mask where approximately 40%
of the pixels are lost.

6.2.4 Implementation

Fast-inpainting. This method [139] simply consists of iteratively applying
a linear filtering using the 2D convolving mask:0.073235 0.176765 0.073235

0.176765 0 0.176765
0.073235 0.176765 0.073235

 , (6.2)

and a projection onto the consistency set to preserve the observed pixels. In
our implementation, the iterations end when the mean square difference of
the estimation at some iteration with respect to the one at previous iteration
is less than 10−3.

EM-inpainting. This method [20] follows a convex relaxation
approach. We have used the implementation available in MCALab 8.02
for MATLABr, which can be downloaded from [140]. We have used the
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values of the parameters described in [20]. The representation used is 6-
scale Curvelets combined with Local DCT (LDCT) using a block size of
32× 32. In [140] one can also find the analysis and synthesis functions for
both representations.

`p-AP and `p-GM. To apply `p-AP to in-painting. We first estimate
the optimal radius, for which several interpolations are required, and then
we execute the method once again. We have used 100 iterations for each
interpolation. Regarding `p-GM we have experienced that the performance
is not significantly improved when β is greater than 0.8. In addition, in this
case there are no significant differences when using α values greater than
α0. We stop the iterations when the threshold is below 0.1.

As `1-GM and EM-inpainting follow a very similar strategy (promoting
sparseness through minimising the `1-norm), we only present the results of
that implementation giving us the best performance for each case.

6.2.5 Results and discussion

6.2.5.1 Missing random pixels (filling-in)

Here we consider that the pixels are independently lost with a given
probability. Restoration of this type of degradations is usually known as
filling-in.

We systematically compare `0-GM (using SA) to `1-GM (using also SA)
and Fast-inpainting. Tables 6.2 and 6.3 show the averaged performance
of each method with the images in our test set and for a wide range
of the percentage of missing pixels. For `0-GM, we use two different
representations: 6-scale Curvelets alone and combined with LDCT using
32 × 32 blocks. For `1-GM, we only use the combined representation
(providing the best results). For both `0-GM and `1-GM, we have used
a scale factor of

√
0.5 for both dictionaries. Note that by minimising the `0-

norm we obtain the best results, except for very high percentages of missing
pixels. We see again that using combined incoherent dictionaries improves
the quality of the estimation.

Figure 6.7 shows the images corresponding to the compared methods for
randomly missing ≈ 80% of image pixels for Barbara. We observe that the
method based on minimising the `1-norm (`1-GM) is not able to interpolate
properly the missing pixels. On the other hand, the linear interpolation
is totally unable to recover the texture. Surprisingly, `0-GM achieves very
good results, given the high percentage of missing pixels, both in smooth and
texture areas. We can also see that using combined representations removes
the artifacts inherent to the representation (isolated selected atoms).

Time per iteration for `1-GM and `0-GM are, obviously, very similar
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Method PSNR (dB)
≈ % missing pixels 10 20 30 40 50

Observation 24.05 20.90 19.13 17.90 16.82
Fast-inpainting 37.72 34.26 32.23 30.67 29.08
`1-GM (Curv.) 42.21 38.14 35.48 33.29 30.84
`0-GM (Curv.) 43 .00 39 .15 36 .67 34 .72 32 .56

`0-GM (Curv.+LDCT) 43.48 39.65 37.09 35.14 32.96

Table 6.2: PSNR (through MSE average) when restoring the image in our test set after
randomly missing different percentages of pixels. The PSNR of the observation has been
calculated by using the global mean for lost positions. Both `0-GM and `1-GM use 6-
scale Curvelets and LDCT with block-size 32× 32, and the same scale factor for both of
them (

√
0.5). `0-GM is also presented using only Curvelets. Bold numbers indicate the

best method for each percentage, and italic the second best.

Method PSNR (dB)
≈ % missing pixels 60 70 80 90

Observation 16.06 15.42 14.78 14.30
Fast-inpainting 27.78 26.48 24 .85 22.88
`1-GM (Curv.) 28.75 26.38 22.84 18.54
`0-GM (Curv.) 30 .70 28 .45 24.79 19 .86

`0-GM (Curv.+LDCT) 31.03 28.77 25.14 19.68

Table 6.3: Continuation of Table 6.2 for greater missing pixels percentages.

(≈ 3 min.). Fast-inpainting takes only around 0.5 seconds per image, so it
is an alternative when there are not enough resources to apply `0-GM.

6.2.5.2 Missing pixel areas (in-painting)

Recovery of missing areas in an image is more difficult than interpolating
randomly missing pixels. Here we compare the application of `0-GM to this
problem against the methods described previously. Both the test images
and the pixels masks used can be found in [140]. We have also downloaded
from this page the results of EM-inpainting, enforcing the value of observed
pixels in order to compare in the same conditions as the other methods3.

Figure 6.8 shows a particularly interesting example because missing
pixels are localised both in smooth and textured areas. Top-left panel

3Note that enforcing the values of the observed pixels necessarily increases the PSNR
of the estimation, whereas it may make some artifacts more visible.
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Figure 6.7: Visual interpolation example of randomly missing pixels. Top-left, Barbara
image, cropped to 128 × 128. Top-right, missing ≈ 80% of the pixels and filling them
with the global mean (PSNR: 14.75 dB). Centre-left, interpolation made by `1-GM
(23.26 dB). Centre-right, result from Fast-inpainting (24.84 dB). Bottom-left, `0-GM
result using Curvelets with 6 scales (25.19 dB) Bottom-right, interpolation made by
`0-GM combining 6-scale Curvelets and LDCT with block size 32 × 32, and equal scale
factors,

√
0.5 (25.65 dB).

is the observation, with missing pixels filled in using the mean of the
observed pixels. Top-right panel corresponds to Fast-inpainting (32.71 dB),
and bottom-left to EM-inpainting (34.14 dB) using Curvelets and LDCT
with 32× 32 block size. Last panel is `0-GM result using Curvelets with 6
scales (34.92 dB). Note that, in contrast with the randomly missing pixels
case, now the result based on minimising the `1-norm is better than the
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Figure 6.8: Top-left, Barbara image where value of missing pixels is the global mean
of the observed ones (PSNR: 24.19 dB). Top-right, Fast-inpainting result (32.71 dB).
Bottom - left, EM-inpainting result using 6-scale Curvelets and LDCT with block size
32× 32 (34.14 dB). Bottom-right, `0-GM result using 6-scale Curvelets (34.92 dB).

one based on iterative linear filtering. Once again, `0-GM provides the
best performance. Figure 6.9 zooms in the second quadrant of the EM-
inpainting (left) and `0-GM (right) results. Partial recovery of the lost
eye is particularly interesting in `0-GM, but we also note a much better
interpolation of the nose and the mouth.

Figure 6.10 is a practical example of restoration of old degraded photos.
The image obtained in [140] was deformed, so we have stretched it with a
1.4 scale factor in the vertical direction. We have also removed last row as a
requisite of the analysis and synthesis functions of LDCT, where the number
of rows and columns should be multiple of half the block size used). The
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Figure 6.9: Left, detail of the result of EM-inpainting shown in Figure 6.8 (PSNR: 34.38
dB). Right, same for the method `0-GM (35.13 dB).

compared methods4 appear in the same order as in Figure 6.8, but `0-GM
is now using 6-scale Curvelets combined with LDCT. Once again, we have
enforced the observed values in the EM-inpainting result to have similar
conditions for the comparison. We see again that `0-GM is qualitatively
better than the other two methods. In contrast with the other methods,
the lower thick horizontal line is barely visible in `0-GM. Also, faces of the
girls, particularly the oldest and the youngest, are much better interpolated
with `0-GM. Figure 6.11 shows a detail of the results of EM-inpainting and
`0-GM for this image.

6.2.6 Conclusions

In this section we have applied the methods derived in this Thesis to the
interpolation of missing pixels in the image. We have introduced a new
heuristic to find the best radium for `p-AP, based on maximising the MSV
of the estimated pixels. This solution, in general, is less sparse than that
obtained with the classical strategy (looking for the sparsest image inside
the consistency set).

Our experiments show, however, that using `0-GM with AS provides
much better results. This is consistent with the model of promoting
sparse solutions. We have compared to a very efficient method (Fast-
inpainting) [139] based on combining linear and non-linear operations in

4The EM-inpainting result available in [140] has a different size to that of the
observation and pixels mask, so we have replicated 3 times the first column.
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Figure 6.10: Top-left, damaged photographic image. Top-right, Fast-inpainting result.
Bottom-left, EM-inpainting result using Curvelets and LDCT. Bottom-right, our
result using `0-GM with 6-scale Curvelets and LDCT using 32×32 blocks and both scale
factors to

√
0.5.

Figure 6.11: Left, detail of the result of EM-inpainting shown in Figure 6.10. Right,
same for `0-GM.
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the image domain. We have also compared to methods based on promoting
sparseness through the minimisation of the `1-norm (EM-inpainting [20]
and `1-GM). In all the experiments, `0-GM has clearly outperformed its
competitors.

To conclude, we have observed, again, that methods based on
finding suboptimal solutions to the minimisation of the `0-norm behave
substantially better than those minimising optimally the `1-norm, for
usual images and representations. Our results also outperform other
heuristics. We should mention the good behaviour of `0-GM with high
randomly missing pixels percentages and with complicated richly textured
areas. Using Curvelets clearly contributes to the success of edge/lines
interpolation, because its atoms are very appropriate for elongated features.
Moreover, we have seen that, usually, combination of Curvelets with LDCT
further improves the results.

6.3 Spatial-chromatic interpolation in digi-

tal camera mosaics

6.3.1 Introduction

Most conventional digital cameras are based on the Colour Filter Array
technology introduced by [141]. This means that they have a sensor
capturing only one colour at each pixel. To reconstruct the complete colour
image it is needed, in consequence, to interpolate the non-captured colour
components at each position. This process is known as de-mosaicing.

There have been proposed very diverse techniques to solve this problem
(see [142] for a review). In order to integrate the de-mosaicing as part
of the digital image capturing process, to have a fast algorithm is very
important, especially when considering the rapidly increasing resolution
of CCD sensors. Bilinear interpolation, for example, is very fast, but it
processes independently each colour channel, thus ignoring the correlation
between them. This results in poor results [143]. On the other hand, high
performance iterative methods are too slow, and thus inadequate for real
time image capture [144, 145, 146]. However, their good results allow having
high-quality images if it is possible to post-process them after the capture.
Finally, some existing methods are based on linear filtering taking into
account the inter-channel correlation, then trying to reach a good balance
between computation and image quality [147, 148, 143, 149].

In this section we explore the performance of `0-GM applied to de-
mosaicing. Given its iterative nature, based on analysis and synthesis
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operations with redundant dictionaries, we cannot expect to be competitive
with other methods in terms of speed. However, the high quality of `0-GM
results makes an appealing alternative when we can post-process the image
after capturing it. Firstly, we compare the results of `0-GM to other methods
proposed in this Thesis, and then to three state-of-the-art methods.

6.3.2 Consistency set

The degradation inherent to the Bayer mosaic is, similarly to the in-painting
case, in missing ”pixels” of the three-folded image formed by the three
chromatic channels of the image. Therefore, the set of images consistent
with the observation is analogous to that used in previous section, that is,
it is formed by all those images preserving the observed colour components.
Then, given a set of indices, I, taken from the interval {1, ..., 3N}, and given
an observation y ∈ R3N , preserving all pixels yi of the original image where
i ∈ I, we define the consistency set associated to y, Rd(y) as:

Rd(y) = {x ∈ R3N : xi = yi, ∀i ∈ I}.

Given an RGB image x ∈ R3N and a diagonal 3N × 3N matrix D where
each element dii is 1 if i ∈ I and 0 otherwise, the orthogonal projection of
a vector v onto Rd(y) is simply PRd(y)(v) = Dy + (I−D)v, where I is the
3N × 3N identity matrix.

6.3.3 Additional constraint increasing the spatial-
chromatic correlation

As we have said, there exists a strong correlation between the amplitude
distributions of the pixels of the three chromatic channels of a RGB image.
If we apply our methods independently to each channel the results will
be unsatisfactory for not considering this correlation. So we introduce
a modification in the sparseness promoting methods, which maintains
the methodology and the convergence properties but preserves better the
correlation between channels.

To start with, we change the colour space of our images from RGB
to YUV. In this new space the correlation between channels is reduced,
because it is composed of one luminance and two chrominance channels.
As transforming from one colour space to the other and vice versa is a
linear operation, this does not affect to the geometrical and convergence
properties of the methods, as the composed transformation including the
change of colour representation and the redundant transform it is still a
tight frame, assuming the latter was already a tight frame.
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Chromatic components U and V represent differences between colours.
They are somehow indicating how correlated they are. We want to keep a
high correlation, to avoid classical high frequency colour aliasing artifacts.
Thus, the elements of such a representation should be low in amplitude,
especially in the high frequencies. Then, we want to promote the smoothness
of the U and V channels. This is consistent to many colour image
representations, which use less information for the chrominance channels
than for the luminance. An example is the PAL colour TV system.

The proposed modification is to introduce one more step at each iteration
of the algorithm. This new step consists of setting to zero all high-frequency
sub-bands of U and V wavelet representation. This can be interpreted as an
added knowledge to the a priori model, so we simultaneously promote sparse
images and those having high correlation between chromatic channels in the
high spatial frequencies. Note that setting to zero some frequencies is not
against promoting sparseness, because the number of significant coefficients
is decreased. In addition, this constraint is an orthogonal projection onto
a convex set, so the convergence properties of the method are basically
unaffected.

A similar idea is described in [148], where a low-pass filter is applied to
the frequencies of R and B channels. This manages to reduce the colour
artifacts of the bilinear interpolation. However, it also smoothes a lot the
image, while our method, as it preserves the high frequency details of the
luminance, it keeps sharp edges (as shown in subsection 6.3.5).

6.3.4 Implementation

Existing methods. We have compared to methods having competitive
performance with the current state-of-the-art. First method is based
on promoting the channel correlation using alternating projections [144].
Second method is an iterative algorithm dealing with representation of
colour differences and using an adaptive stopping criterion in this space,
with the objective of keeping high correlation between colour channels
and removing zipper artifacts [146]. Finally, we also compare with a
heuristic method, which is effective to keep channel correlation, although it
is computationally inefficient [145]. All these methods are implemented in
a MATLABr package available in the Web page of Professor Xin Li [150].

`p-GM. In all the `p-GM experiments we used α = α0 and β = 0.8,
which provide a good trade-off between computation and quality. We
established the stopping threshold for the iterations in 0.01. We used 5
scales for both DT-CWT and Curvelets.
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6.3.5 Results and discussion

6.3.5.1 `0-GM vs. `1-GM

The results obtained for these application using `p-AP are worse (and much
slower) than those using bilinear interpolation. So we have not included
these methods in the comparison.

In our experiments we have also found that `0-GM provides better
results than `1-GM. Figure 6.12 is an example, where the methods have
been applied to the Bayer mosaic with pattern ’GB’ built with image 15
of Eastman Kodak database [151] (Lighthouse). Top-left panel shows a
64× 64 crop of the original image with a very high-frequency pattern and,
thus, particularly difficult to interpolate. The result of top-right panel
corresponds to `1-GM using DT-CWT. PSNR values per channel are: 37.24
dB for R, 39.87 for G, and 37.17 for B. We can still appreciate some colour
artifacts. Bottom-left panel is the result of `0-GM using Curvelets (39.29,
42.27 and 38.20 dB). Finally, bottom-right panel is `0-GM using DT-CWT
(39.59, 41.99 and 39.07 dB). Note that `0-GM is clearly better than `1-GM,
in terms of removing colour artifacts. Using `0-GM, PSNR is similar for
both DT-CWT and Curvelets, but, on the one hand, this difference is hardly
appreciable in these dB levels; and, on the other hand, colour correlation
seems better using DT-CWT. In addition, the implementation we used for
Curvelets is 4 times slower than the one for DT-CWT, which translates in
Curvelets taking around 100 minutes per each full image in [151], whereas
only 25 minutes using DT-CWT.

6.3.5.2 `0-GM vs. other methods

We show in Table 6.4 the averaged MSE for each RGB channel obtained by
a set of methods and for the images 18, 31, 32, 33, 12, 34, 39, 15, 40, 16,
17 and 19 of [151] (same selection as in [146]). We also averaged the error
in ∇E∗

ab S-CIELab metric [152] and the computation time. We use MSE
instead of PSNR because it is a more significant datum in these examples,
given the small difference between the methods and the high level of signal-
to-noise ratio they achieve. In addition to this, in Tables 6.5 and 6.6 we have
detailed these results for every image. Note that, although `0-GM is slower
than the rest, its performance is comparable, being the best or second best
in several cases.

However, we want to emphasize that our method is particularly good
in high-frequency areas where the de-mosaicing is very complicated. In
Figure 6.13 we can see the crop of the results of the methods compared
in a specially difficult area of the image 15 of [151] (128 × 128). We can
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Figure 6.12: Visual example of the comparison between `1-GM and `0-GM applied to de-
mosaicing. Top-left, 64×64 detail of image 15 of Eastman Kodak database. Top-right,
result of de-mosaicing a Bayer mosaic with patter ’GB’ using `1-GM with DT-CWT.
PSNR for channels R, G and B is 37.24 dB, 39.87 dB and 37.17 dB. Bottom-left, `0-
GM result using Curvelets (39.29, 42.27 and 38.20 dB). Top-right, `0-GM result using
DT-CWT (39.59, 41.99 and 39.07 dB).

appreciate the significant reduction of colour artifacts in our method. We
have also reduced the zipper artifacts with respect to [145] and [144]. These
artifacts, are due to imposing the observed values, according to the mosaic
structure, where the holes are not well-interpolated [146].

6.3.6 Conclusions

We have proposed the application of `0-GM to the problem of interpolating
the lost chromatic components after capturing a natural image using a Bayer
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Method MSE ∇E∗
ab Time

R G B S-CIELab (s.)
Lu & Tam [145] 8.67 5.59 11.91 0.78 932.22

Gunturk et al. [144] 7.92 3 .61 10.60 0.84 9 .40
Li [146] 7.66 3.46 8.61 0 .83 2.31
`0-GM 7 .68 4.31 9 .53 0.93 1238.50

Table 6.4: MSE and S-CIELab error averaged in the 12 images described in the text,
including computation times. Bold numbers indicate the best result for each column,
and italic the second best.

mosaic. We have applied our methods to find sparse approximations to the
representation of the image in the YUV colour space. To promote chromatic
regularity, we have introduced an extra projection minimising the `2-norm
of the high-frequency components of the U and V channels by setting to
zero the high-frequency sub-bands of a redundant linear representation of
these channels at each iteration. This does not change the basic geometrical
interpretation and convergence properties of the algorithm.

We have seen again that promoting sparseness through a direct local
minimisation of the `0-norm outperforms the optimal minimisation of `1-
norm. We have also seen that `0-GM is competitive with other methods,
although it is very slow. Moreover, we have seen that our method behaves
particularly well, clearly better than the others, in difficult high-frequency
areas, thus reducing the artifacts significantly. Therefore, we can conclude
that it is a promising alternative when the image can be post-processed
after capturing them.

The results of `0-GM still have many zipper artifacts. These appear
because we are forcing the observed pixels to not quite well interpolated
areas.

6.4 Detail increase

6.4.1 Introduction

Images often suffer from lost resolution. This could happen, for example,
when capturing using photodetectors integrating the incident light; or also
when transmitting images through a limited channel.

Detail increase or super-resolution of images consists of the process of
obtaining an image or sequence of images with higher-resolution from a set
of lower-resolution observations [153]. There are many works approaching
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Image Method MSE ∇E∗
ab Time

R G B S-CIELab (s.)
[145] 3.26 1 .51 3.16 0.56 981.77

18 [144] 2.69 2.01 4.88 0.62 9.71
[146] 4.25 1.99 3.49 0.63 1.78

`0-GM 3 .05 1.44 3 .24 0 .58 1303.50

[145] 9.73 6.43 11.23 0.88 980.13
31 [144] 7 .98 3 .46 13.29 0.97 10.09

[146] 8.15 3.26 9 .86 0.88 2.07
`0-GM 7.21 3.82 8.25 0 .93 1368.15

[145] 3.06 1.75 4.12 0.51 969.55
32 [144] 3 .43 2 .21 6.59 0.63 8.63

[146] 3.99 2.49 5.51 0.65 2.39
`0-GM 4.29 2.23 4 .81 0 .57 1316.93

[145] 20.50 12.17 19.81 1.29 970.12
33 [144] 18.28 7 .42 23.06 1.40 8.84

[146] 16 .74 6.28 14.48 1 .35 3.09
`0-GM 15.71 8.44 17 .88 1.48 1384.49

[145] 3 .30 2.05 4 .06 0.53 971.74
12 [144] 3.29 1 .79 5.43 0 .60 10.21

[146] 3.57 1.77 3.95 0.58 2.30
`0-GM 3.40 2.02 4.37 0 .60 1428.25

[145] 8 .27 5.14 7 .27 0.73 973.10
34 [144] 6.84 3 .78 7.61 0.76 9.05

[146] 8.38 3.29 6.90 0 .75 2.06
`0-GM 9.65 4.39 9.05 0.96 1403.20

Table 6.5: MSE, S-CIELab and computation time for the 12 images describe in the text
and the four methods compared. Bold numbers indicate the best result for each column
and method, and italic the second best.

this problem when there are multiple observations (e.g., video). This is
called dynamic super-resolution (e.g., [154, 155, 153]). Here we have focused
on the case of having a single observation, called static or single-frame
super-resolution case. It is also known as , detail increse, image scaling,
interpolation, zooming-in or enlargement.

There are very simple linear methods (such as bilinear, bicubic, etc.),
which treat homogeneously every pixel, interpolating their value from a
linear combination of the neighbours. Linearity seriously limit the final
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Image Method MSE ∇E∗
ab Time

R G B S-CIELab (s.)
[145] 4.91 3.18 5.50 0 .83 976.80

39 [144] 4.53 1.67 6.23 0.92 8.73
[146] 4 .34 1 .72 4 .92 0.82 2.32

`0-GM 3.30 1.78 3.94 0.82 1385.81

[145] 6.80 4.53 8.02 0.74 975.13
15 [144] 6 .67 2 .67 7 .71 0.74 9.66

[146] 5.88 2.51 6.86 0.74 2.24
`0-GM 7.08 4.12 7.93 0 .88 1144.42

[145] 6.83 5.12 34.98 0 .62 890.25
40 [144] 10.57 2.17 7 .71 0.61 9.77

[146] 5.35 2 .80 7.80 0 .62 2.40
`0-GM 5 .55 3.04 7.44 0.69 1488.72

[145] 8.97 6.49 10.04 0 .85 832.32
16 [144] 7 .43 3.26 9.34 0.84 8.29

[146] 8.08 3 .28 9 .45 0.86 1.99
`0-GM 7.22 4.52 10.13 1.10 1495.98

[145] 7 .72 4.71 8.85 0.85 833.02
19 [144] 7.06 4 .66 10.95 0 .92 9.77

[146] 8.65 4.52 9 .52 0.94 2.10
`0-GM 9.82 6.01 11.97 1.07 1436.15

[145] 20.64 13.96 25.91 0.99 832.75
19 [144] 16.33 8 .19 24 .35 1 .05 10.02

[146] 14.58 7.57 20.59 1.09 3.04
`0-GM 15 .80 9.94 25.38 1.46 1452.55

Table 6.6: Continuation of Table 6.5 for the rest of the 12 images used.

quality. On the one hand there is an excessive blurring, diffusing the edges
and avoiding the preservation of details. On the other hand, there are often
aliasing artifacts.

These problems have motivated the study of more powerful super-
resolution algorithms, based on non-linear techniques. All of them have in
common taking advantage of the strong correlation between neighbouring
pixels. Some of them use heuristics adapted to the problem (e.g., [156, 157]).
Others are based on learning the relationship between observed and original
images, as in [158]. However, these methods lack of a mathematical
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Figure 6.13: Visual comparison between de-mosaicing methods. Top-left, result of
method in [145] with the image 15 of Eastman Kodak database. We have cropped the
image to 64× 64 to improve the visibility of artifacts. PSNR of R,G and B channels is,
respectively, 39.81, 41.57 and 39.09 dB. Top-right, [144] result (39.89, 43.87 and 39.26
dB). Bottom-left, [146] result (40.39, 44.14 and 39.73 dB). Bottom-right, `0-GM result
(39.59, 41.99, 39.07 dB).

model founding their good performance. There are other methods based
on setting a priori models of the statistics of natural images. For
example, [159] establishes a model based on high-kurtosis distributions.
Similarly, [160] develops a successful method based on promoting sparseness
via minimisation of the `1-norm. See [161] for recent (2006) and interesting
review on non-linear static super-resolution methods.

In this chapter we apply `p-GM to the static super-resolution problem.
We see that both versions, p = 0 and p = 1, behave similarly both in
terms of PSNR and visually, although `0-GM obtains sparser solutions. We
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have also compared, for reference, to the nearest neighbour and bilinear
interpolation. Our objective in this section is not to propose an alternative
to current static super-resolution methods but to analyse the potential of the
models and methods used in this Thesis regarding this kind of applications.

6.4.2 Consistency set

We name L the number of pixels averaged to obtain every observed pixel.
We note the observed image y ∈ RN/L. We define a family of indices sets, Ji,
with i = {1, ..., N/L}, and corresponding to the non-overlapping

√
L×

√
L

block formed by all j ∈ {1, ..., N} whose corresponding pixels in the original
image, x0 ∈ RN , have been averaged to provide the observed value yi. We
also define xJi

0 as the block formed by pixels of x0 ∈ RN in the positions
indicated by Ji. The consistency set, Ra(y), is then formed by those images
x ∈ RN whose associated blocks, xJi , preserve the observed average. Then
we have that:

Ra(y) = {x ∈ RN : < xJi >= yi, ∀i ∈ {1, ..., N/L}},

where < a > denotes the average value of the coefficients of vector a.
Geometrically, it is easy to check that the projection onto the affine subspace
of vectors preserving a given averaged consists of subtracting a constant
vector in amplitud, which is the difference between the mean of the vector
to be projected and the target mean. Thus, given x ∈ RN , we have that
PRa(y)(x) = z, where, for all i ∈ {1, ..., N/L} and j ∈ {1, ..., N}:

zJi
j = xJi

j − (< xJi > −yi).

6.4.3 Implementation

`p-GM. We have experienced that, for application to static super-resolution,
best results of `p-GM, for both p = 0 and p = 1, are obtained when using
DT-CWT with only 3 scales. The parameters used are α = α0 and β = 0.8.
Iterations end when the threshold is below 0.01.

6.4.4 Results and discussion

Table 6.7 compares methods `0-GM, `1-GM, nearest neighbours and bilinear
filtering. It reflects the averaged PSNR of the estimation in the images of
our test set. To begin with, it is interesting to note the good behaviour of
the simplest possible method, nearest neighbours. This is because we are
imposing a local mean, what is, in average, the best possible linear strategy
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for this degradation. On the other hand, we see that `p-GM, in both cases
p = 0 and p = 1, behaves quite well. It is curious to observe that, in
contrast to the rest of studied degradations, both cases provide very similar
results in PSNR terms. This does not mean that the results are strictly
similar. The `0-GM result provides a significantly sparser distribution of
coefficients (≈ 2.15 · 105 for `0-GM and ≈ 2.45 · 105 for `1-GM, on average).
With these results at hand, we conclude that the relative performance of `0-
GM has decreased with respect to previous applications, probably because
the function performance vs. achieved sparseness has a maximum (this
hypothesis is consistent with the bad results provided by `0-GM in de-
quantizing). In fact, if we use β values closer to 1, the sparseness is further
increased but the estimation error is also increased.

Figure 6.14 shows an example, using (House) of visual results of the
methods. Both `1-GM and `0-GM have a sharper visual aspect, and better
behaviour in the edges than the linear strategies compared. The aliasing is a
significantly reduced (note, for example, the edges of the roof). Finally, we
see that, in this case, there is no significant difference, despite the disparity
of sparseness, between `1-GM and `0-GM.

PSNR (dB)
Method Barbara Boat House Lena Peppers

Nearest-neighbour 27.09 26.54 30.52 27.68 25.74
Bilinear interpolation 24.16 24.25 25.84 25.41 23.76

`1-GM 27.49 28.84 33 .50 30 .66 28 .06
`0-GM 27 .14 28 .80 33.53 30.75 28.07

Table 6.7: PSNR (using averaged MSE) obtained in the super-resolution of the methods
to recover original size of the images of our test set, when they are averaged in non-
overlapping 2×2 blocks. Bold numbers indicate the best result for each image, and italic
the second best.

6.4.5 Conclusions

In this section we have explored the application of `0-GM and `1-GM to
static super-resolution. Both of them clearly outperform linear methods
compared (nearest neighbours and bilinear interpolation). Nevertheless, we
have seen that the sparser solution, provided by `0-GM, is not better than
that of `1-GM. Moreover, for both methods the increase in the performance
is inverted when going beyond the sparseness level shown in the experiments.
These are preliminary results that need to be improved in the future,
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Figure 6.14: Top-left, nearest neighbour interpolation (replication) of the resizing of
the sub-sampling of the 2× 2 averaged blocks House image (PSNR: 30.52 dB). We have
cropped to 128 × 128 to improve visibility. Top-right, result of bilinear interpolation
(29.65 dB). Bottom-left, result of `1-GM (33.50 dB). Bottom-right, result of `0-GM
(33.53 dB).

through a better understanding of the underlying sparseness promoting
mechanisms for this type of applications.
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Chapter 7

Conclusions and future work

7.1 Conclusions

The main conclusion that we obtain from this Thesis is that, although
the global optimisation posed by the sparse approximation problem is NP-
complex, it is not only possible but relatively simple to find equivalent
formulations that allow, using tight frames, the application of well-known
optimisation techniques to solve, at least locally, the problem. Although the
proposed methods have been recently proposed and used as heuristics, until
this work, up to our knowledge, nobody had established an appropriate
theoretical framework to obtain them as solutions to classical optimisation
problems. This is against the common belief, quite extended through the
scientific community in this field, that it is only possible to theoretically
derive these kind of methods by using convex approximations to the cost
function.

The main objective of this work has not been to obtain the precise
theoretical conditions under which the methods find the global optimum.
Instead, we have preferred to study, in an intensive way, their practical
application in real image processing conditions, both in terms of energy
compaction and application to restoration problems.

We have derived two methods to solve the sparse approximation
problem. First one is formulated from the equivalent problem of minimising
the MSE to the represented image from a vector of synthesis coefficients
inside a `p-ball of given radius. It results in a method based on alternated
orthogonal projections, using two sets: 1) the set of vectors that reconstruct
perfectly the image; and 2) the `p-ball of given radium. We have called this
method `p-AP. We have focused on the cases p = 0, where sub-optimal
solutions are achieved, and p = 1, where we find the global minimum to
the convex relaxation problem. In the experiments, we have shown that
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`0-AP outperforms `1-AP under the applied conditions (natural images
and useful sparseness levels in typical redundant dictionaries). It also
outperforms other iterative techniques based on fixed threshold and also
greedy strategies. However, we have seen that the choice of elementary
functions is better in `1-AP than in `0-AP. In addition, the need of `p-AP
for choosing an appropriate value for a sparseness parameter decreases its
applicability.

To overcome these problems, we have derived another method. Firstly,
we have reformulated our optimisation problem by finding a continuous and
constrained function which is equivalent to the cost function of the sparse
approximation problem. Then, we have derived a generalised version of
IHT using gradient descent on this new function. We have proved that
the convergence point of this method is a local minimum to the sparse
approximation problem. Next, we have proposed `0-GM method, by re-
writting the new function as an infinitely sharp cost function convolved with
a smoothing kernel, which has allowed us to use a deterministic annealing
approach to justify the use of decreasing threshold. We have also derived
a similar version of the method using the `1-norm instead, `1-GM, whose
use is recommended when our estimation is required to have low sparseness
levels.

We have experienced that `0-GM outperforms all compared methods
in providing sparse approximation solutions, including `0-AP and the
optimisation of the support given by `1-AP. Then, we can conclude that
methods based on minimising the `0-norm are better than those based on
`1 in the conditions of this study.

It is important to note that the number of coefficients required by `0-
GM to reconstruct perfectly the image tends to the theoretical asymptote
as the annealing gets slower. This means a quasi-optimal asymptotic
performance in the fidelity-sparseness curve. In addition, solutions with
low sparseness approximate quite well the optimal solution for other values
when thresholding a posteriori. This is very important in practice, because,
in this way, we avoid searching for the optimal sparseness level in a first
stage, thus simplifying the final implementation of the method and also
increasing the efficiency of adjusting the sparseness level afterwards.

Regarding the application to restoration problem, we have seen that
is generally easy to adapt these methods to restore images affected by
strictly reproducible degradations. We have studied two different kinds
of sparseness that can be used as a priori model for this problems. On the
one hand, the synthesis-based sparseness (SS) assumes that natural images
can be expressed as a linear combination of a few elementary functions of
a given dictionary. This approximation, though completely valid, does not
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have a solid empirical justification. We have proposed instead the use of
a priori models based on the sparseness of the analysis coefficients (SA),
which are based on the observation that the energy of the linear response of
redundant wavelet-like dictionaries to natural images is concentrated in a
small proportion of coefficients. This allows having a fully justified empirical
basis. Adapting our methods to this kind of sparseness does not require to
change their conceptual framework.

We have proposed to use `0-AP, with SS, for removing spatial
quantisation artifacts and `0-GM, with SA, to several interpolation-based
problems, as the recovery of missing pixels, the construction of colour images
from mosaics and the increase of the detail of the images. We have seen
that results based on minimisation of the `1-norm are worse in most of the
studied applications. In addition to this, we have seen that our methods
have a similar or superior performance with respect to other existing ones.
To the best of our knowledge, nobody has explicitly applied before sparse-
promoting techniques to de-quantizing.

Despite good performance, these results made us also realise of some
weaknesses of the model. For example, we have seen that `0-GM provides
worse results than `0-AP when removing spatial quantisation artifacts, being
sparser. Moreover, `0-GM has problems to interpolate regular grids, because
it tends to represent the artifacts. We have used heuristics to force the
method to get out of these non-favourable local minima. However, we have
experienced that this problem is not only due to the method, but also to
the too simplistic sparseness model used here.

7.2 Future work

We believe that these Thesis opens several interesting venues to explore in
the future. Firstly, the marginal statistics of the analysis coefficients can
be better approximated by using intermediate norms (0 < p < 1) [74, 72].
In this sense, we believe that it is possible, though not trivial, to derive
an analogous method to `0-GM and `1-GM based on them. For restoration
purposes, the use of intermediate norms is more justified as a priori model
for the analysis coefficients (see, e.g., [29]).

Secondly, we would like to study the use of a priori knowledge for
synthesis coefficients in a more justified basis. On the one hand, using
intermediate norms could be justified as a better compromise between the
good behaviour of `0 and the ability of `1 to avoid local minima. On the
other hand, we are working on a fully justified Expectation-Maximization-
like method based on maximising the likelihood of a model for the synthesis
coefficients.
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With a more practical orientation, but also with important theoretical
impact, we want to explore the problems of the method when dealing with
regular grid interpolation. We believe that these problems are caused by
the extreme simplicity of the model.

Finally, it would be interesting to study the application of the proposed
methods to classical image restoration problems, as additive noise and
blurring. This could be approached through a statistical formulation of
the sparse approximation problem by searching the Maximum A Posteriori
(MAP) solution to the restoration problem (as seen, for example, in [72]).



Appendices





Appendix A

Test images set

Most of the experiments in this Thesis has been performed over a standard
test set of images of size 256 × 256, composed by House, Boat, Barbara,
Peppers and Lena. Boat and Barbara has been cropped from their original
size starting by row 200 and column 100 in Boat; and by row 150 and
columns 50 in Barbara. In Figure A.1 we show this set.
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Figure A.1: Test set of images used in this Thesis.



Appendix B

Minimisation of the quadratic
error of the reconstruction
with a given support.

We prove next that Equation (3.11) solves the pseudo-inverse involved
in the problem of minimising the reconstruction error of an image as
linear combination of a given set of elementary functions from a redundant
dictionary. Given an image x ∈ RN , a subset I of R indices extracted from
the set {1, ...,M}, and a N × R matrix ΦI formed by columns φi from Φ,
we want to solve for aI :

âI = arg min
aI

‖ΦIaI − x‖2, (B.1)

which can be expressed as:

âI = Φ]
Ix,

where Φ]
I is the pseudo-inverse of ΦI . We study two possibilities: 1)

range(ΦI) = R ≤ N , and 2) R > range(ΦI) = N .

B.1 First case: incomplete subset

When range(ΦI) = R ≤ N , then:

âI = [ΦT
I ΦI ]

−1ΦT
I x.

The involved matrix inversion is potentially huge. Fortunately, we can use
the Taylor expansion of the inverse of a matrix [162], and write:

âI =
∞∑

k=0

(I−ΦT
I ΦI)

kΦT
I x.
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Minimisation of the quadratic error of the reconstruction with a

given support.

As necessary convergence condition for the Taylor expansion, we check that,
for usually used frames, the eigenvalues of (I − ΦT

I ΦI) are not above 1
in absolute value. From here we derive the following iterative method to
calculate âI :

a
(k+1)
I = a

(k)
I + ΦT

I (x−ΦIa
(k)
I ). (B.2)

Now we define SI as the R×N matrix selecting the R coefficients indicated
by set I. Then, ST

I is the operator expanding a R × 1 vector into a N × 1
one by placing each coefficient in its original position and setting the rest to
zero. Then, ΦI = ΦST

I and ΦT
I = SIΦ

T , and substituting in Equation (B.2)
we get:

a
(k+1)
I = a

(k)
I + SIΦ

T (x−ΦST
I a

(k)
I ).

Multiplying both sides by ST
I (which is an expansion matrix, so it does not

destroy any information), it yields:

ST
I a

(k+1)
I = ST

I a
(k)
I + ST

I SIΦ
T (x−ΦST

I a
(k)
I ).

And as aI = SIa, for some a ∈ RM we can write:

ST
I SIa

(k+1) = ST
I SIa

(k) + ST
I SIΦ

T (x−ΦST
I SIa

(k)).

Let DI be a M×M diagonal matrix, where dii = 1 if i ∈ I and 0 otherwise.
Noting that ST

I SI = DI and using the fact that DI is idempotent, we see
that:

DIa
(k+1) = DI [DIa

(k) + ΦT (x−ΦDIa
(k))].

As the right term only depends on DIa
(k), and, by construction (following

Equation (3.11)), a(k) = DIa
(k), for all k ≥ 0, then these iterations

are completely equivalent to those of Equation (3.11), being a(k) the
intermediate result of those iterations.

B.2 Second case: complete subset

When R > range(ΦI) = N , then Equation (B.1) has infinite solutions with
perfect reconstruction of x. The pseudo-inverse provides, among them, the
one with minimum Euclidean norm:

âI = ΦT
I [ΦIΦ

T
I ]−1x.
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We can write âI = ΦT
I ẑI , where ẑI = [ΦIΦ

T
I ]−1x. Then:

ẑI =
∞∑

k=0

[I−ΦIΦ
T
I ]kx,

that can be calculated using the following iterations:

z
(k+1)
I = z

(k)
I −ΦIΦ

T
I z

(k)
I + x.

Multiplying by ΦT
I :

ΦT
I z

(k+1)
I = ΦT

I z
(k)
I −ΦT

I ΦIΦ
T
I z

(k)
I + ΦT

I x,

and substituting ΦT
I z

(k)
I by a

(k)
I we obtain the Equation (B.2), so the solution

is reached using the same iterative method than in the previous case.
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given support.



Appendix C

A Parseval frame formed
concatenating two Parseval
frames

Let ΦA be a N × M matrix with M > N and ΦB a N × L matrix with
L > N . Assume that both matrices are Parseval frames. Then, if we form
a new N × (M +L) matrix as the union of the columns of ΦA and ΦB, this
new matrix is no longer a Parseval frame, because the linear transformation
doubles the energy of the original vector. Then, we should modulate each
primitive matrix with a scale factor. In order to preserve the energy of the
joint transformation, the sum of the square power of these factors should
add 1. These two factors act as weight of the relative importance of each
matrix in the new frame.

Formally, we define the N × (M + L) matrix Φ as formed by the union
of the columns of ΦA and ΦB, respectively multiplied by two scale factors,√

γA and
√

γB, such that γA + γB = 1.
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Appendix D

Publications

This is a list of publications derived from this work:

• L. Mancera, J.A. Guerrero-Coln, J. Portilla. Sparse Approximation
via Orthogonal Projections: Beyond Greed and Convexity. IEEE
Transactions on Image Processing (submitted)

• J. Portilla, L. Mancera. L0-based sparse approximation: Two
alternative methods and some applications. SPIE Optics & Photonics,
edited by SPIE, San Diego (CA), August 2007.

• L. Mancera, J. Portilla. L0-norm-based Sparse Representation
through Alternate Projections. 13th International Conference on
Image Processing (ICIP’06), Atlanta, GE (USA), October 2006.

• L. Mancera, J. Portilla. Image De-Quantizing via Enforcing
Sparseness in Overcomplete Representations. Lecture Notes in
Computer Sciences, vol. 3708, pp. 411-418. Also in 7th International
Conference on Advanced Concepts for Intelligent Vision Systems
(ACIVS 2005), Antwerp (Belgium), September 2005. (Present in
2005 JCR Science Edition)
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