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Nos convencemos a nosotros mismos de que la vida será mejor después de casarnos,

después de tener un hijo y entonces después de tener otro. Entonces nos sentimos

frustrados porque los hijos no son lo suficientemente grandes y pensamos que seremos

más felices cuando lo sean. Después de eso nos frustramos porque son adolescentes

(difı́ciles de tratar). Ciertamente seremos más felices cuando salgan de esta etapa. Nos

decimos que nuestra vida estará completa cuando a nuestro esposo/a le vaya mejor,

cuando tengamos un mejor carro o una mejor casa, cuando nos podamos ir de vaca-

ciones, cuando estemos retirados.

La verdad es que no hay mejor momento para ser felices que ahora. Si no es ahora,

¿cuándo? Tu vida estará siempre llena de retos. Es mejor admitirlo y decidir ser felices

de todas formas. Una de mis frases: “Por largo tiempo me parecı́a que la vida estaba

a punto de comenzar. La vida de verdad. Pero siempre habı́a algún obstáculo en el

camino, algo que resolver primero, algún asunto sin terminar, tiempo por pasar, una

deuda que pagar. Sólo entonces la vida comenzarı́a. Hasta que me di cuenta que esos

obstáculos eran mi vida”. Esta perspectiva me ha ayudado a ver que no hay un camino

a la felicidad.

La felicidad “es” el camino; ası́ que atesora cada momento que tienes y atesóralo

más cuando lo compartiste con alguien especial, lo suficientemente especial para com-

partir tu tiempo y recuerda que el tiempo no espera por nadie... ası́ que deja de esperar

hasta que bajes cinco kilos, hasta que te cases, hasta que te divorcies, hasta el viernes

por la noche, hasta el domingo por la mañana, hasta la primavera, el verano, el otoño

o el invierno o hasta que te mueras, para decidir que no hay mejor momento que éste

para ser feliz... la felicidad es un trayecto, no un destino.

Eduardo Galeano (1940-2015)
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CHAPTER 1

Introduction

Gaussian Processes (GPs) are non-parametric machine learning methods widely used
in supervised learning Williams and Rasmussen (2006). One way to understand a (real-
valued single-output) GP on a set X is as a probability distribution over the space
of functions from X to R. Specifically, a function f follows a GP distribution with
mean function µ : X → R and covariance function κ : X × X → R, which is de-
noted as f ∼ GP(µ, κ), if (f(x1), . . . , f(xN)) follows a normal distribution N (µ,K)

with µ = (µ(x1), . . . , µ(xN)) and K the N × N matrix (κ(xi, xj))i,j=1,...,N for any
x1, . . . , xN in X . Notice that a GP covariance function must be positive semidefinite,
i.e. the aforementioned K matrix must be positive semidefinite for every x1, . . . , xN in
X (Bishop 2006, Chapter 6).

GPs have become popular due to their flexibility, the possibility of incorporating
prior knowledge and their uncertainty quantification Williams and Rasmussen (2006).
GPs have been used in many different domains, such as renewable energies Manobel
et al. (2018), medicine Alaa and van der Schaar (2017), biology Swain et al. (2016)
and chemistry Dai and Krems (2020). The mean and covariance functions allow for
specifying the types of mappings to be modelled. For instance, in the popular RBF ker-
nel Bishop (2006), the lengthscale parameter regulates the smoothness of the functions,
whereas the amplitude parameter accounts for the range of the output value. The uncer-
tainty estimation is also a very attractive property of GPs. Thanks to its fully Bayesian
approach, GPs provide calibrated error bars for their predictions. This is essential in
many high-risk real-world applications such as medicine Filos et al. (2019), Mobiny
et al. (2019) and self-driving cars Kendall and Gal (2017), Gal (2016).

When used for regression tasks, GP predictions have an elegant closed-form solu-
tion. Namely, assume a (regression) training dataset D = {xn, yn}Nn=1 ⊂ RD × R,
a GP-based model with zero mean and covariance function κ with latent variables
{fn}Nn=1 ⊂ R, and a Gaussian likelihood function p(y|f) = N (y|f, σ2

lik). In this
case, due to the conjugacy between the GP model and the Gaussian likelihood, the
marginal likelihood can be obtained in closed-form. The predictive distribution for a
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new x∗ ∈ RD is a Gaussian with mean

µ∗ = κ(x∗,X)(κ(X) + σ2
lik · I)−1y (1.1)

and variance

σ2
∗ = κ(x∗)− κ(x∗,X)(κ(X) + σ2

lik · I)−1κ(X,x∗). (1.2)

As usual in GP literature, here we are writing X for the N × D matrix whose rows
are given by {xn} and y for the N × 1 vector of {yn} (Williams and Rasmussen 2006,
Chapter 2). These closed-form expressions have an intuitive interpretation. The pre-
dictive mean at x∗ depends on the output values at X (i.e. y), and the dependence is
regulated by how related are x∗ and X (which is mathematically codified within the
covariance function κ). The predictive covariance at x∗ is always less or equal to the
prior covariance (notice that the substracted term is greater or equal to zero since κ is
positive semidefinite), and the reduction in uncertainty is also governed by how related
are x∗ and X (i.e. through κ(x∗,X)).

When used for classification, the (non-Gaussian) likelihood cannot be integrated
out analytically, and therefore a closed-form expression is not available (Williams and
Rasmussen 2006, Chapter 3). This has been typically addressed with local variational
methods Bishop (2006), in which the likelihood function is lower bounded by an ex-
pression that can be integrated out analytically. This approach will be followed in
Chapters 2-5 for the logistic likelihood, i.e. p(y|f) = σ(f)y(1 − σ(f))(1−y), where
σ(f) = 1/(1 + e−f ) is the sigmoid/logistic function and y ∈ {0, 1} (i.e. we are deal-
ing with a binary classification problem). An alternative approach is to maintain the
original non-tractable likelihood and estimate the expectations through Monte Carlo
approximation. This approach will be followed in Chapters 6-8.

An important shortcoming of GPs has to do with scalability. In order to make pre-
dictions, the inverse of the N × N matrix κ(X) + σ2

lik · I must be computed, recall
eqs. (1.1) and (1.2). This implies a training computational complexity of O(N3). In
practice, this means that GPs cannot be applied to datasets with more than a few thou-
sands instances (typicallyN = 104 is considered the practical limit). In order to address
this problem, a plethora of methods have been proposed in the last years. In this thesis
we will focus on three families of approaches.

First, Fourier features have been used to approximate stationary kernels through
linear ones Rahimi and Recht (2008), Lázaro-Gredilla et al. (2010). Then, inference can
be performed in the space of features, which yields a computational cost of O(ND2),
where D � N is the amount of Fourier features used (the more, the better is the kernel
approximation). Notice that the complexity on the training set size N is linear here
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(instead of cubic as in standard GPs). The main drawbacks of Fourier features based
approaches are: 1) it can only be used for stationary kernels and 2) there is no rule of
thumb for the choice ofD (the more the better approximation, but also the less efficient).
Fourier features will be used in Chapters 2, 3 and 5.

Second, inducing points have become one of the most popular approaches for sparse
GPs Snelson and Ghahramani (2006), Quiñonero-Candela and Rasmussen (2005), Tit-
sias (2009), Hensman et al. (2013, 2015), Burt et al. (2019). The idea is to summarize
the information from the training data in a reduced set of M � N inducing points.
The location of these inducing points is typically estimated to maximize the marginal
likelihood of the observed data. Similarly to Fourier features based approaches, the
computational cost is reduced down to O(NM2), i.e. linear on N . Again, the ap-
proximation becomes better for larger values of M , but the efficiency is reduced too.
Therefore, the choice of M is also a tricky aspect of inducing points based methods,
see e.g. Burt et al. (2019). However, in this case there is no restriction on the type of
kernels that can be used. This approach will be followed in Chapters 6, 7 and 8.

Third, inference networks have been recently proposed as an alternative to inducing
points Shi et al. (2019). The goal is to leverage more expressive predictive distributions
that are not limited by the amount of inducing points. In order to do so, variational infer-
ence is applied in the space of functions Cheng and Boots (2016), Sun et al. (2019), and
a flexible parametric variational family of predictive distributions is considered through
a functional mirror descent algorithm Dai et al. (2016). In each iteration, a measure-
ment set of size M is used to match the variational family with the real approximation
at that step. The computational cost is O(M3). Interestingly, the expressiveness of the
predictive distribution is not limited byM , and therefore it can be typically kept smaller
than in inducing point based approaches. This method will be used in Chapter 6.

A very relevant setting for this PhD thesis is that of crowdsourcing. The term crowd-
sourcing was coined in 2006 by J. Howe to describe “the act of taking a job tradition-
ally performed by a designated agent (usually an employee) and outsourcing it to an
undefined generally large group of people in the form of an open call” Howe (2006).
In our case, we focus on the task of labelling a training dataset. The proliferation of
web services such as Amazon Mechanical Turk (www.mturk.com) and Figure-Eight
(www.figure-eight.com, formerly Crowdflower) allows for outsourcing this pro-
cess to a distributed workforce that can collaborate virtually, sharing the effort among a
huge number of annotators Snow et al. (2008), Buhrmester et al. (2011). This approach
is rapidly growing in popularity, and is being applied to many different fields such as
medical imaging Albarqouni et al. (2016), genetics Sáez-Rodrı́guez et al. (2016), re-
mote sensing Fritz et al. (2017), topic modelling Rodrigues et al. (2017), and object
segmentation Heim et al. (2017). Very recently, it has been applied to study the effect
of the Covid-19 pandemic in oncology patients Desai et al. (2020).
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Due to the great number of potential annotators, large datasets can be labeled in a
very short time. However, this approach introduces new challenging problems: combin-
ing the unknown expertise of annotators, dealing with disagreements on the annotated
samples, or detecting the existence of spammer and adversarial annotators Zhang et al.
(2016). GPs have proved successful to model this scenario, which requires an excellent
uncertainty quantification Rodrigues et al. (2014, 2017). Yet, GPs present the afore-
mentioned limitations of scalability and non-conjugacy for non-Gaussian likelihoods.
Both drawbacks are inherited by the crowdsourcing scenario.

In this PhD thesis we have developed different machine learning models based
on Gaussian Processes. Different settings (regression, classification and crowdsourc-
ing) are considered, and various application fields (specially remote sensing and as-
trophysics, but also threat detection and sentiment analysis) are targeted. Three main
blocks can be distinguished in this thesis:

• Fourier features for Gaussian Process classification. This includes Chapters
2–3. The idea here is to approximate a stationary kernel by a linear one through
Bochner theorem Rudin (1962), Rahimi and Recht (2008). The algorithms are
applied to different areas such as remote sensing (cloud detection) and security
(detection of objects concealed under clothes).

• Gaussian Processes for crowdsourcing. This includes Chapters 4-7. Here we
extend some of the most popular GP approaches to the crowdsourcing scenario,
addressing the main limitations of GPs. For example, we use variational infer-
ence for GP based crowdsourcing, Fourier features, inducing points and inference
networks. The range of applications is also extensive: astrophysics (glitch identi-
fication in the search of gravitational waves), social media (evaluation of movies
and music) and healthcare (movement prediction in residential environments).

• Activation-level uncertainty in deep neural networks. This includes Chapter 8.
Here we carry out more fundamental research in machine learning. Specifically,
we propose a new approach to estimate uncertainty in Deep Neural Networks,
which is referred to as activation-level uncertainty. Interestingly, the activation
functions are modelled with simple 1-dimensional GPs. Compared to weight-
level stochasticity, our method yields better calibrated predictions. Moreover, the
connections between our approach and deep GPs are analyzed too.

Next, we provide a general overview for each chapter. The main contributions will
be highlighted at the beginning of the corresponding chapter, and the main joint con-
clusions will be drawn at Chapter 9. Notice how the different developments share a
common element: the underlying GP-based modelling.
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Chapter 2: In this work we propose a first method to sparsify GPs for classification
based on Fourier features. Importantly, the Fourier features are sampled from the be-
ginning and fixed (as opposed to a second method that is proposed in the next chapter).
The proposed approach is evaluated on a Passive Millimeter Wave Images dataset to
detect threats concealed under clothes, a technology that is being increasingly used at
airports worldwide.

Chapter 3: In this work we propose a second method to sparsify GPs for clas-
sification based on Fourier features. The main difference is that Fourier features are
estimated during the training step. This allows for learning the optimal ones, although
the computational cost in practice is higher. In this case, the methods are applied to
cloud detection from multispectral imagery and infrared sounding data, achieving ex-
cellent empirical results.

Chapter 4: In this paper we introduce the use of local variational methods for
GPs in the crowdsourcing scenario, as an alternative to the Expectation Propagation
(EP) algorithm that had been proposed in Rodrigues et al. (2014). We show that our
method outperforms the EP-based one in terms of accuracy and efficiency, and reliably
estimates the expertise of the involved annotators. The algorithm is applied in standard
crowdsourcing benchmarks related to sentiment analysis and music genre estimation.

Chapter 5: In this paper we extend the Fourier features algorithms of Chapter 3
to the GP based formulation of the crowdsourcing problem. This allows for accurate
and efficient learning from crowds. In addition to standard crowdsourcing benchmarks,
the proposed algorithms are applied on the Sphere (Sensor Platform for HEalthcare in
Residential Environment) dataset, a recognition task coordinated by the University of
Bristol to improve the services provided in UK residences.

Chapter 6: In this work we explore alternative approaches to achieve scalabil-
ity beyond that proposed in Chapter 5. The main motivation is that Fourier features
approaches do not allow for mini-batch training, which hampers the application to mas-
sive datasets. Specifically, here we extend the formulation of inducing points and in-
ference networks to the crowdsourcing setting. The algorithms are successfully applied
to detect glitches in the search of gravitational waves within the LIGO project (Laser
Interferometer Gravitational-waves Observatory).

Chapter 7: Motivated by the challenging LIGO problem, in this work we propose
a methodology to integrate expert labels within the crowdsourcing annotations. This
is precisely the scenario available in the LIGO project. We show that the proposed
approach naturally integrates both types of information, surpassing the results obtained
when only one of them is used.

Chapter 8: This work differs from all the previous ones in the fact that GPs are
not the central core of the algorithm, but are used as a component to model the acti-
vation functions in Deep Neural Networks. This allows us to introduce the so-called
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“activation-level uncertainty”, as opposed to the classical weight-space stochasticity.
We show that our approach achieves better calibrated estimates. We also establish that
our proposal requires fewer inducing points and is better suited than deep GPs for deep
architectures.
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CHAPTER 2

Gaussian Processes and Fourier features for threat detection

2.1 Publication details

Authors: Pablo Morales-Álvarez, Adrián Pérez-Suay, Rafael Molina, Gustau Camps-
Valls, Aggelos K Katsaggelos
Title: Passive millimeter wave image classification with large scale Gaussian processes
Reference: 2017 IEEE International Conference on Image Processing (ICIP), 370-374
Status: Published
Quality indices:

• GGS Rating: A-

• GGS Class: 2

• CORE: B

2.2 Main contributions

• We introduce RFF-GPC (Random Fourier Features for Gaussian Processes Clas-
sification). RFF-GPC utilizes Fourier features to approximate stationary kernels
with linear ones. Local variational methods are applied for inference, and the
Fourier features are sampled from the beginning and fixed.

• The proposed approach is successfully evaluated on a unique, large and real
database of Passive Millimeter Wave Images to detect objects concealed under
clothes.
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ABSTRACT

Passive Millimeter Wave Images (PMMWIs) are being increasingly used to identify
and localize objects concealed under clothing. Taking into account the quality of
these images and the unknown position, shape, and size of the hidden objects, large
data sets are required to build successful classification/detection systems. Kernel
methods, in particular Gaussian Processes (GPs), are sound, flexible, and popular
techniques to address supervised learning problems. Unfortunately, their computa-
tional cost is known to be prohibitive for large scale applications. In this work, we
present a novel approach to PMMWI classification based on the use of Gaussian
Processes for large data sets. The proposed methodology relies on linear approxi-
mations to kernel functions through random Fourier features. Model hyperparame-
ters are learned within a variational Bayes inference scheme. Our proposal is well
suited for real-time applications, since its computational cost at training and test
times is much lower than the original GP formulation. The proposed approach is
tested on a unique, large, and real PMMWI database containing a broad variety of
sizes, types, and locations of hidden objects.

1 Introduction

Millimeter wave images can be used to recognize and localize hidden objects under clothing [Sheen
et al., 2001]. This type of images is becoming increasingly popular in threat detection systems
located at warehouses and airports (such as international ones in Los Angeles or San Francisco). In
contrast to active scanners, which direct millimeter wave radiation to the subject and then interpret
the reflected energy, passive systems use only ambient radiation and that emitted from the human
body or objects [Yujiri et al., 2003]. This means safer and less invasive systems, which are better
suited for practical applications.
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Sensor modelling and image processing techniques have been used on PMMWIs. The main con-
cepts related to millimeter images are introduced in [Yujiri et al., 2003,Yujiri, 2006]. Compressive
sensing and superresolution are explored in [Babacan et al., 2011, Saafin et al., 2016]. Denoising,
deconvolution, and enhancement techniques have also been applied to this kind of images [Han
et al., 2010, Mateos et al., 2016, Yang et al., 2010, Yu et al., 2011].

Unfortunately, the literature on classification using these images is still scarce. K-means is used
to segment PMMWIs in [Haworth et al., 2004]. Gaussian mixture models are applied in [Ha-
worth et al., 2006] to characterize people with and without threats. In [Martı́nez et al., 2010]
the authors apply noise elimination and image segmentation using Local Binary Fitting (LBF). A
highly efficient two-step algorithm, based on denoising and mathematical morphology, was pro-
posed in [Maqueda et al., 2015]. It achieves an acceptable detection rate on noisy and low contrast
images. A comprehensive comparison between classical methods (Logistic Regression, SVM,
Random Forest, Boosting) is provided in [Tapia et al., 2016]. In that work, the large size of the
data set imposed constraints on the kernel used for SVM, and prevented the application of GPs.

Kernel machines [Camps-Valls and Bruzzone, 2005, Chapelle et al., 1999] are among the most
popular approaches for supervised learning. Due to its solid Bayesian treatment, GP [Rasmussen
and Williams, 2006] is a current state-of-the-art kernel method, which has also been used for image
classification [Bazi and Melgani, 2010,Ruiz et al., 2016]. For a problem with n training instances,
kernel machines store and manipulate kernel matrices of size n × n, which makes them scale as
O(n3) in training and O(n2) for each test instance. These two orders hamper their applicability to
large scale problems in terms of computational limitations and impossibility of real-time prediction
respectively.

In this paper we develop a new method that allows for large scale PMMWI Gaussian Processes
classification. Our approach relies on linear approximations to kernel matrices based on random
Fourier features (RFF) [Rahimi and Recht, 2007]. The use of GPs with RFF for regression prob-
lems has been presented in [Lázaro-Gredilla et al., 2010, Hensman et al., 2016, Damianou and
Lawrence, 2014]. To deal with the non-conjugate observation model typical of classification prob-
lems, we resort here to the variational inference approach [Bishop, 2006, Section 10.6]. Compu-
tational complexity at test turns out to be independent on the training set size. Cost at training
is also much lower than original GP. These capabilities make our approach suitable for real-time
applications.

The rest of the paper is organized as follows. The proposed method is derived from standard GP
theory and random Fourier features in Section 2. Section 3 presents our PMMWI data set, its
preprocessing, and the experimental setting. Section 4 shows competitive empirical results for our
approach, which outperforms direct application of GPs and allows for real-time prediction. Section
5 concludes the paper with some remarks and future outlook.

2 Gaussian Processes and Random Fourier features

Gaussian Processes (GPs) [Rasmussen and Williams, 2006] are popular Bayesian models for su-
pervised machine learning tasks, such as regression and classification. In the latter case, we
are provided with an input-output data set {(xi, yi)}ni=1 with xi ∈ Rd and yi ∈ {0, 1}. Fol-
lowing a function-space view, GPs codify this relationship by means of latent variables {fi =
f(xi) ∈ R}ni=1. These variables are jointly normally distributed as N (0, (k(xi,xj))1≤i,j≤n), with
k : Rd × Rd 7→ R the kernel function. The outputs yi depend on fi by means of the sigmoid
observation model p(yi|fi) = ψ(fi) = (1 + exp(−fi))−1.
As any other kernel method, GP for classification (GPC) is computationally prohibitive when deal-
ing with large scale problems. The training step scales as O(n3), whereas the computational com-
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plexity of the prediction is O(n2) for each test instance [Rasmussen and Williams, 2006]. In the
case of a standard desktop computer, this places its computational feasibility limit around n = 104

training examples.

2.1 Random Fourier features

The work [Rahimi and Recht, 2007] presents a general methodology (based on Bochner’s theorem
[Rudin, 2011]) for theoretically approximating a positive-definite shift-invariant kernel k. This
is achieved by explicitly projecting the original d-dimensional data onto O(D) random Fourier
features, whose standard linear kernel approximates k. This linearity allows us to reduce n × n
matrix inversions to O(D) × O(D) ones, which decreases the computational cost to O(nD2)
during training and to O(D2) for each test instance. For large scale applications, D will be much
lower than n, which implies a significant benefit.

In this work we use the well-known Gaussian kernel k(x,x′) = γ · exp(−‖x−x′‖2/(2σ2)), which
can be linearly approximated as k(x,x′) ≈ z(x)ᵀz(x′), with

z(x)ᵀ =
√
γD−1

(
cos
(
σ−1wᵀ

1x
)
, sin

(
σ−1wᵀ

1x
)
, . . . , cos

(
σ−1wᵀ

Dx
)
, sin

(
σ−1wᵀ

Dx
))
∈ R2D.

(1)
As indicated in [Rahimi and Recht, 2007], the error in this approximation exponentially decreases
with the number D of Fourier frequencies wi ∈ Rd, which must be independently sampled from
N (0, I). In matrix notation, we approximate the kernel matrix K ∈ Rn×n with the explicitly
mapped data Z = [z1 · · · zn]ᵀ ∈ Rn×D as K ≈ ZZᵀ.

In order to approximate a GP classifier with Gaussian kernel, we will consider a Bayesian linear
model working on these new features. Hyperparameters γ and σ in eq. (1) will be optimized within
a variational approach in order to maximize the marginal likelihood of observed data. Notice that
although we could include the estimation of w1, . . . ,wD in the Bayesian framework, we concen-
trate here on the computing capabilities of the proposed approach and assume the frequencies are
sampled from N (0, I) and fixed.

2.2 Modelling and Inference

We consider the standard binary-classification logistic regression model defined over the explicitly
mapped Fourier features zi:

pθ(yi = 1|β) = (1 + exp(−βᵀzi))
−1, (2)

where θ = (θ1 =
√
γ, θ2 = σ) and zi is given by eq. (1).

Weights β ∈ R2D are assigned a normal prior distribution p(β) = N (β|0, I). Thus, the joint p.d.f.
reads

pθ(y,β) = pθ(y|β)p(β). (3)

To obtain the maximum likelihood (ML) estimate of θ, θ, we integrate the above joint distribution
on β and maximize on θ the marginal distribution pθ(y). The posterior distribution pθ(β|y) is
then calculated. However, the sigmoid likelihood in eq. (2) makes these computations analytically
intractable, and we resort to the variational inference approximation [Bishop, 2006, Section 10.6].

First, we use the variational bound [Bishop, 2006]

log (1 + ex) ≤ λ(ξ)(x2 − ξ2) + x− ξ
2

+ log
(
1 + eξ

)
, (4)
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where x, ξ ∈ R and λ(ξ) = (1/2ξ)
(
(1 + e−ξ)−1 − 1/2

)
. For a fixed x, it is easy to check that

this bound is minimum when ξ2 = x2. This produces the following lower bound for the joint
probability distribution in eq. (3):

log pθ(y,β) ≥ −
1

2
βᵀ (Zᵀ(2Λ)Z + I)β + vᵀZβ + C(ξi), (5)

where v = y − (1/2) · 1n×1 and Λ = diag(λ(ξ1), . . . , λ(ξn)).

Notice that this lower bound is quadratic in β, which enables us to analytically work with it.
Namely, using the exponential function on eq. (5), integrating out β, and maximizing on θ (recall
Z = Z(θ)), we obtain the following approximation of θ:

θ̂ = argmax
θ

(
vᵀZ (Zᵀ(2Λ)Z + I)−1 Zᵀv − log |Zᵀ(2Λ)Z + I|

)
. (6)

To obtain the posterior pθ(β|y), we fix θ in eq. (3) and find the same problem with the sigmoid
function. We again resort to the quadratic variational bound given by eq. (5), which provides the
following approximate posterior normal distribution for β:

pθ(β|y) ≈ qθ(β) = N (β|µβ,Σβ),

Σβ = (Zᵀ(2Λ)Z + I)−1 , µβ = ΣβZᵀv. (7)

Finally, for a given θ, the bound in eq. (5) is optimal when

ξ2i = 〈(βᵀzi)
2〉qθ(β|y) ∀i = 1, . . . , n, (8)

which yields

ξi =

√
(zᵀ
iΣβZᵀv)2 + zᵀ

iΣβzi ∀i = 1, . . . , n. (9)

Our method is named RFF-GPC. At training time, it is fed with labelled data and runs iteratively
to calculate θ̂ and the approximate normal posterior qθ̂(β) (see Algorithm 1).

Algorithm 1 Training RFF-GPC

Input: Data set D = {(xi, yi)}ni=1 ⊂ Rd × {0, 1}.
Randomly sample Fourier frequencies wi in eq. (1) from N (0, I).
Initialize qθ̂(β) to N (0, I) (that is, its prior distribution).
Initialize θ̂
repeat

Update each ξi using eq. (9).
Update θ̂ using eq. (6).
Update the posterior qθ̂(β) using eq. (7).

until convergence
return Optimal estimator θ̂ and the posterior qθ̂(β).

At test time, the probability of class 1 for a previously unseen instance x∗ ∈ Rd is:

p(y∗ = 1) ≈
∫

pθ̂(y∗ = 1|β)qθ̂(β)dβ ≈ ψ
(
zᵀ
∗µβ · (1 + (π/8)zᵀ

∗Σβz∗)
−1/2

)
,
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Figure 1: Examples of PMMWIs with hidden threats before preprocessing (left) and after it (right). Red boxes on the right highlight
object locations, which correspond to lighter areas of the body.

with ψ the sigmoid function. The computations involved in these algorithms scale as O(nD2) for
training stage, and O(D2) for prediction on each test point. Unlike standard GPC, the latter is
independent on the number of training instances. This significant reduction makes our proposal
suitable for large scale real-time applications.

3 Image preprocessing and experimental setting

3.1 General preprocessing

We have available a PMMWIs database of 3309 images of size 125 × 195. They show people
in different positions who may hide (up to two) objects of varied sizes and shapes at different
locations. Unfortunately, acquired images suffer from spatially variant noise, and their general
quality is poor. These problems specially manifest at the contour of the individuals, which can
be confused (even by a human thorough gaze) with hidden threats. This prevents classical models
from achieving competitive detection results, see also [Tapia et al., 2016]. To better identify threats,
the image signal to noise ratio must be increased, and the contrast enhanced. This is addressed by a
combination of linear (local mean) and non-linear (local median) smoothing filters. Figure 1 shows
examples of raw and processed images in the database (see [Tapia et al., 2016] for more images).

Given a new image, our goal is to automatically discern whether it contains some threat or not. We
will not fit the machine learning algorithms directly over the global images, but extract relevant
features from local patches. Namely, for every 2 × 2 non-overlapping block we consider three
regions of areas 39 × 39, 19 × 19, and 9 × 9 (these areas have been selected taking into account
the targeted threat sizes, neither too big nor too small) centered at one of its four points. We only
consider active pixels, i.e. those whose 39 × 39 region is completely contained in the image.
To each one of these blocks we assign a feature vector constructed by concatenating Haar traits
[Papageorgiou et al., 1998] extracted from its three associated regions. On each region we use 115
Haar filters, which are appropriately chosen for the shapes of hidden objects. This yields a 345-
dimensional feature vector for each block, which are considered positive (having threat) if their
39 × 39 region overlaps a hidden object by at least 50%, see [Tapia et al., 2016] for additional
details. In the sequel, we will refer to these blocks (together with their feature vector) as learning
instances. In total, we have 3476 such instances for each image.

3.2 Experimental setting

To test the proposed model we perform a five folds cross validation. We ensure that each partition
contains the same number of images with none, one, and two threats. In the training data sets we
only include a positive instance if it (more precisely, its 39 × 39 associated region) completely
covers the threat. Moreover, since adjacent negative instances have equivalent feature vectors, we
only keep one from every 2×2 group of them. Table 1 summarises the number of available training
instances for the experiments.
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Table 1: Number of negative and positive instances in the training data set for each fold.
Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Negative 1896222 1895130 1898030 1897209 1898825
Positive 299838 302417 299829 299644 298212

Total 2196060 2197547 2197859 2196853 2197037

Table 1 also reveals that the number of negative instances is approximately six times the number
of positive ones in each training data set. This imbalance could bias the algorithms against the
minority class. To avoid it we train six classifiers per fold, each one using all positive instances
and a random sample (without replacement and of equivalent size) of the negative instances in that
fold. This means a training data set with n = 6 · 105 instances approximately.

Standard GPC cannot cope with this large scale setting. In order to comparatively evaluate their
performance against RFF-GPC, we consider a (balanced) subsample of size n = 104 for each
experiment, thus taking GPC until its computational limit. Once the six models are trained, pre-
dictions (i.e. probabilities of class 1) for test instances are collected and the mean is computed.

For GPC we make use of the full 345-dimensional feature vectors. However, in the case of RFF-
GPC we will need to previously reduce this dimensionality.

3.3 Preprocessing for RFF-GPC

A key parameter in our method is the numberD of random Fourier features used. It can be checked,
both empirically and theoretically [Rahimi and Recht, 2007, Claim 1], that the approximation
K ≈ ZZᵀ exponentially improves with D. Likewise, it exhibits an exponential deterioration with
the number d of original features in the data set [Rahimi and Recht, 2007].

In practice, for d = 345 like in our case, we would need a value of D greater than 105. However,
D should not exceed 5 · 103 if we want the training O(nD2) to be computationally feasible in a
standard desktop computer. This would make RFF-GPC even more computationally prohibitive
than standard Gaussian Processes.

In order to overcome this problem, we need to significantly reduce the dimensionality of the data
set before applying RFF-GPC, but preserving as much information as possible. For this, we resort
to Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) (see [Martı́nez
and Kak, 2001] for an interesting comparison). The first one extracts projections that keep most of
the variability of the original data [Bishop, 2006, Chapter 12], whereas the latter provides features
that best linearly separate both classes [Bishop, 2006, Section 4.1.4]. We decided to include 15
principal components (a PCA analysis reveals that they already explain the 97.69% of original
variance) and 5 linear discriminant directions. Therefore, we reduce the dimensionality to d′ = 20.
With this, we can consider more reasonable values for D, which will be fixed at D = 500 in our
experiments. In Sections 4 and 5 we discuss future work related to this parameter.

4 Experimental results

First, we compare prediction time between RFF-GPC and GPC. Figure 2 shows elapsed time to
predict one image, i.e. 3476 patches. We show the evolution in terms of training data set size. To
do this, we extracted balanced subsamples from the largest training data set in each experiment.
We observe that, whereas GPC clearly exhibits an increasing dependence on the training set size,
RFF-GPC is not affected by this quantity. This is the expected behaviour from theoretical test
orders O(n2) and O(D2) respectively. RFF-GPC outperforms GPC at any training size, being
more than 100 times faster at the full models (n = 6 · 105 and n = 104 respectively).
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Figure 2: Elapsed prediction time per image for GPC and RFF-GPC. Notice the logarithmic scale in both axes.

GPC RFF-GPC

Figure 3: Comparative classification results for GPC (left column) and RFF-GPC (right column). First and second rows show the
ROC curves (and AUC) at patch and image levels respectively. Third row explictly depicts the evolution of TPR, TNR, and their
cross point.
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The second experiment compares the classification performance of GPC and RFF-GPC at both
patch and image levels. For the latter, each test image is associated to the highest probability of
threat among all its patches. We use the full models, i.e. n = 104 for GPC and n ≈ 6 · 105
for RFF-GPC. In Figure 3 we show the ROC curves at patch and image levels. They represent
the trade-off between true positive (TP) and false positive (FP) rates when considering different
thresholds over the test probabilities of class 1 (having threat). The TPR-TNR evolution and their
cross point at image level are also provided. We observe that both methods behave similarly, with
RFF-GPC slightly outperforming GPC at image level.

We also carried out a preliminary experiment to assess the quality of our approach when using a
higher number of random Fourier features D (see future work in Section 5). We used RFF-GPC
with D = 1750 and n = 1.5 · 105 training instances (both values can be still further increased).
This significantly improves previous results, see Figure 4. Namely, AUC metric and TPR-TNR
cross point improve from 0.69 and 0.63 to 0.72 and 0.65 respectively. These results suggest that
increasing and wisely combining the values of D and n is a promising future work.

It is worth noticing that our novel approach is competitive with the state-of-the-art results over this
data set presented in [Tapia et al., 2016]. The new method beats other kernel machines like SVM,
and only Random Forest (RF) performs slightly better. Namely, at image level, TP and TN rates
cross at 0.68 for RF (see [Tapia et al., 2016, Figure 6]) while, as we have already indicated, the
crossing point for our method is at 0.65. The future use of prior models on the Fourier frequencies
wi and higher values of D and n are expected to surpass RF performance.

To sum up, our results are competitive with state-of-the-art ones. We already outperform clas-
sical GPC allowing for a much faster prediction (which is a remarkable benefit for real-world
applications). More complex modelling of the classification problem will certainly lead to better
performance.

ROC curve TPR-TNR evolution

Figure 4: ROC curve (and AUC) and TPR-TNR evolution at image level for RFF-GPC with higher value of D.

5 Conclusions and future work

In this work we presented a new kernel-based approach to classify PMMWIs using a large scale
training data set. The method works at patch level by extracting multiscale Haar features which are
then summarized using PCA and LDA projections. The huge number of samples prevents us from
using classical GPC methods on the complete data set. We resort here to the use of random Fourier
features to linearize a non-linear kernel. A variational Bayes scheme is used to make inference
tractable. All the model parameters are estimated. The proposed approach outperforms classical
GPC, it is suitable for real-time applications, and produces competitive results with current state-
of-the-art methods.
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Since detection results are negatively affected by the poor quality of images, we are currently
working on the use of image processing techniques to improve acquired images. Furthermore,
we are also investigating the optimal relationship between the number of projected features d′,
Fourier frequencies D, and training examples n. The optimal estimation of Fourier frequencies in
a probabilistic sense is also currently under study.
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Gaussian Processes and Fourier features for remote sensing
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3.2 Main contributions

• Building on RFF-GPC, we propose VFF-GPC (Variational Fourier features for
Gaussian Processes Classification). The key novel contribution is that Fourier
features are learned during the training step, and not just sampled at the beginning
and fixed as in the case of RFF-GPC. This allows for greater flexibility and higher
accuracy. However, the computational cost is also greater and the learned kernel
may not be an approximation of the original one.

• The performance of VFF-GPC (and that of RFF-GPC) is illustated in complex
problems of cloud detection from multispectral imagery and infrared sounding
data. The results show that the proposed methods allow for scalability to large
datasets, obtaining high accuracy at a reduced computational cost.
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ABSTRACT

Current remote sensing image classification problems have to deal with an unprece-
dented amount of heterogeneous and complex data sources. Upcoming missions
will soon provide large data streams that will make land cover/use classification
difficult. Machine learning classifiers can help at this, and many methods are cur-
rently available. A popular kernel classifier is the Gaussian process classifier (GPC),
since it approaches the classification problem with a solid probabilistic treatment,
thus yielding confidence intervals for the predictions as well as very competitive
results to state-of-the-art neural networks and support vector machines. However,
its computational cost is prohibitive for large scale applications, and constitutes the
main obstacle precluding wide adoption. This paper tackles this problem by intro-
ducing two novel efficient methodologies for Gaussian Process (GP) classification.
We first include the standard random Fourier features approximation into GPC,
which largely decreases its computational cost and permits large scale remote sens-
ing image classification. In addition, we propose a model which avoids randomly
sampling a number of Fourier frequencies, and alternatively learns the optimal ones
within a variational Bayes approach. The performance of the proposed methods is
illustrated in complex problems of cloud detection from multispectral imagery and
infrared sounding data. Excellent empirical results support the proposal in both
computational cost and accuracy.

1 Introduction

“... Nature almost surely operates by combining chance with necessity, randomness with determinism...”
–Eric Chaisson, Epic of Evolution: Seven Ages of the Cosmos

Earth-observation (EO) satellites provide a unique source of information to address some of the
challenges of the Earth system science [Berger et al., 2012]. Current EO applications for image
classification have to deal with a huge amount of heterogeneous and complex data sources.
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The super-spectral Copernicus Sentinels [Drusch et al., 2012, Donlon et al., 2012], as well as the
planned EnMAP [Stuffler et al., 2007], HyspIRI [Roberts et al., 2012], PRISMA [Labate et al.,
2009] and FLEX [Kraft et al., 2013], will soon provide unprecedented data streams to be ana-
lyzed. Very high resolution (VHR) sensors like Quickbird, Worldview-2 and the recent Worldview-
3 [Longbotham et al., 2014] also pose big challenges to data processing. The challenge is not only
attached to optical sensors. Infrared sounders, like the Infrared Atmospheric Sounding Interferom-
eter (IASI) [Tournier et al., 2002] sensor on board the MetOp satellite series, impose even larger
constraints: the orbital period of Metop satellites (101 minutes), the large spectral resolution (8461
spectral channels between 645 cm−1 and 2760 cm−1), and the spatial resolution (60×1530 sam-
ples) of the IASI instrument yield several hundreds of gigabytes of data to be processed daily. The
IASI mission delivers approximately 1.3 × 106 spectra per day, which gives a rate of about 29
Gbytes/day to be processed. EO radar images also increased in resolution, and current platforms
such as ERS-1/2, ENVISAT, RadarSAT-1/2, TerraSAR-X, and Cosmo-SkyMED give raise to ex-
tremely fine resolution data that call for advanced scalable processing methods. Besides, we should
not forget the availability of the extremely large remote sensing data archives1 already collected
by several past missions. In addition, we should be also prepared for the near future in diversity
and complementarity of sensors2. These large scale data problems require enhanced processing
techniques that should be accurate, robust and fast. Standard classification algorithms cannot cope
with this new scenario efficiently.

In the last decade, kernel methods have dominated the field of remote sensing image classifica-
tion [Camps-Valls and Bruzzone, 2009, Camps-Valls et al., 2011]. In particular, a kernel method
called support vector machine (SVM, [Huang et al., 2002, Camps-Valls et al., 2004, Melgani and
Bruzzone, 2004, Foody and Mathur, 2004, Camps-Valls and Bruzzone, 2005]) was gradually in-
troduced in the field, and quickly became a standard for image classification. Further SVM
developments considered the simultaneous integration of spatial, spectral and temporal informa-
tion [Benediktsson et al., 2005, Fauvel et al., 2008, Pacifici et al., 2009, Tuia et al., 2009, Camps-
Valls et al., 2008], the richness of hyperspectral imagery [Camps-Valls and Bruzzone, 2005, Plaza
et al., 2009], and exploited the power of clusters of computers [Plaza et al., 2008, Muñoz-Marı́
et al., 2009]. Undoubtedly, kernel methods have been the most widely studied classifiers, and be-
came the preferred choice for users and practitioners. However, they are still not widely adopted
in real practice because of the high computational cost when dealing with large scale problems.
Roughly speaking, given n examples available for training, kernel machines need to store kernel
matrices of size n × n, and to process them using standard linear algebra tools (matrix inversion,
factorization, eigen-decomposition, etc.) that typically scale cubically,O(n3). This is an important
constraint that hampers their applicability to large scale EO data processing.

An alternative kernel classifier to SVM is the Gaussian Process classifier (GPC) [Rasmussen and
Williams, 2006a]. GPC has appealing theoretical properties, as it approaches the classification
problem with a solid probabilistic treatment, and very good performance in practice. The GPC
method was originally introduced in the field of remote sensing in [Bazi and Melgani, 2010],
where very good capabilities for land cover classification from multi/hyperspectral imagery were
illustrated. Since then, GPC has been widely used in practice and extended to many settings: hy-
perspectral image classification [Yang et al., 2015], semantic annotation of high-resolution remote

1The Earth Observing System Data and Information System (EOSDIS) for example is managing around 4 terabytes daily, and
the flow of data to users is about 20 terabytes daily.

2Follow the links for an up-to-date list of current ESA, EUMETSAT, JAXA, CNSA and NASA EO missions.
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sensing images [Chen et al., 2013a], change detection problems with semisupervised GPC [Chen
et al., 2013b], or classification of images with the help of user’s intervention in active learning
schemes [Ruiz et al., 2014,Kalantari et al., 2016]. Unfortunately, like any other kernel method, its
computational cost is very large. This is probably the reason why GPC has not yet been widely
adopted by the geoscience and remote sensing community in large scale classification scenarios,
despite its powerful theoretical background and excellent performance in practice.

In GP for classification we face two main problems. First, the non-conjugate observation model for
classification (usually based on the sigmoid, probit, or Heaviside step functions) renders the calcu-
lation of the marginal distribution needed for inference impossible. The involved integrals are not
analytically tractable, so one has to resort to numerical methods or approximations [Rasmussen
and Williams, 2006a]. One could rely on Markov Chain Monte Carlo (MCMC) methods, but they
are computationally far too expensive. By assuming a Gaussian approximation to the posterior of
the latent variables, one can use the Laplace approximation (LA) and the (more accurate) expecta-
tion propagation (EP) [Minka, 2001,Kuss and Rasmussen, 2005]. The observation model can also
be bounded, leading to the variational inference approach [Chen et al., 2014] that we use in this
paper. Once the non-conjugacy of the observation model has been solved, the second problem is
the inversion of huge matrices, which yields the unbearable O(n3) complexity. Notice that this is
the only difficulty that appears when GP is used for regression, where the observation model can
be analytically integrated out. This efficiency problem could be addressed with recent Sparse GP
approximations based on inducing points and approximate inference [Damianou, 2015], but they
come at the price of a huge number of parameters to estimate.

In this paper, we introduce two alternative pathways to perform large scale remote sensing image
classification with GPC. First, following the ideas in [Rahimi and Recht, 2007], we approximate
the squared exponential (SE) kernel matrix of GPC by a linear one based on projections over a re-
duced set of random Fourier features (RFF). This novel method is referred to as RFF-GPC. It allows
us to work in the primal space of features, which significantly reduces the computational cost of
large scale applications. In fact, a recent similar approach allows for using millions of examples in
SVM-based land cover classification and regression problems [Pérez-Suay et al., 2017]. The solid
theoretical ground and the good empirical RFF-GPC performance make it a very useful method to
tackle large scale problems in Earth observation. However, RFF-GPC can only approximate (the-
oretically and in practice) a predefined kernel (the SE in this work), and the approximation does
not necessarily lead to a discriminative kernel. These shortcomings motivate our second method-
ological proposal: we introduce a novel approach to avoid randomly sampling a number of Fourier
frequencies, and instead we propose learning the optimal ones within the variational approach.
Therefore, Fourier frequencies are no longer randomly sampled and fixed, but latent variables
estimated directly from data via variational inference. We refer to this method as VFF-GPC (Vari-
ational Fourier Features). The performance of RFF-GPC and VFF-GPC is illustrated in large and
medium size real-world remote sensing image classification problems: (1) classification of clouds
over landmarks from a long time series of Seviri/MSG (Spinning Enhanced Visible and Infrared
Imager, Meteosat Second Generation) remote sensing images, and (2) cloud detection using IASI
and AVHRR (Advanced Very High Resolution Radiometer) infrared sounding data, respectively.
Excellent empirical results support the proposed large scale methods in both accuracy and compu-
tational efficiency. In particular, the extraordinary performance of VFF-GPC in the medium size
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data set justifies its use not only as a large scale method, but also as a general-purpose and scalable
classification tool capable of learning an appropriate discriminative kernel.

The remainder of the paper is organized as follows. Section 2 reviews the RFF approximation
and introduces it into GPC, deriving RFF-GPC and the more sophisticated VFF-GPC. Section
3 introduces the two real-world remote sensing data sets used for the experimental validation.
Section 4 presents the experimental results comparing the two proposed methods and standard
GPC in terms of accuracy and efficiency. Section 5 concludes the paper with some remarks and
future outlook.

2 Large Scale Gaussian Process Classification

Gaussian Processes (GP) [Rasmussen and Williams, 2006b] is a probabilistic state-of-the-art model
for regression and classification tasks. In the geostatistic community, GP for regression is usually
referred to as kriging. For input-output data pairs {(xi, yi)}ni=1, a GP models the underlying depen-
dence from a function-space perspective, i.e. introducing latent variables {fi = f(xi) ∈ R}ni=1 that
jointly follow a normal distribution N (0,K = (k(xi,xj))1≤i,j≤n). The kernel function k encodes
the sort of functions f favored, and K is the so-called kernel matrix. The observation model of the
output y given the latent variable f depends on the problem at hand. In binary classification (i.e.
when y ∈ {0, 1}), the (non-conjugate) logistic observation model is widely used. It is given by the
sigmoid function as p(y = 1|f) = ψ(f) = (1 + exp(−f))−1 ∈ (0, 1).

2.1 Random Fourier Features

The main issue with large scale applications of GP is its O(n3) cost at the training phase, which
comes from the n × n kernel matrix inversion. The work [Rahimi and Recht, 2007] presents
a general methodology (based on Bochner’s theorem [Rudin, 2011]) to approximate any positive-
definite shift-invariant kernel k by a linear one. This is achieved by explicitly projecting the original
d-dimensional data x onto O(D) random Fourier features z(x), whose linear kernel kL approxi-
mates k. This linearity will enable us to work in the primal space of features and substitute n× n
matrix inversions byO(D)×O(D) ones, resulting in a totalO(nD2 +D3) computational cost. In
large-scale applications, one can set a D � n, and thus the obtained O(nD2) complexity repre-
sents an important benefit over the originalO(n3). Moreover, the complexity at test is also reduced
from O(n2) to O(D2), even becoming independent on n.

In this work we use the well-known SE (or Gaussian) kernel k(x,x′) = γ ·exp(−||x−x′||2/(2σ2)).
Following the methodology in [Rahimi and Recht, 2007], this kernel can be linearly approximated
as

k(x,x′) ≈ kL(x,x′) = γ · z(x)ᵀz(x′), (1)

where

z(x)ᵀ = D−1/2 · (cos (wᵀ
1x) , sin (wᵀ

1x) , . . . , cos (wᵀ
Dx) , sin (wᵀ

Dx)) ∈ R2D, (2)

and the Fourier frequencies wi must be sampled from a normal distribution N (0, σ−2I). As ex-
plained in [Rahimi and Recht, 2007, Claim 1], this approximation exponentially improves with the
number D of Fourier frequencies used (and also exponentially worsens with d, the original dimen-
sion of x). However, obviously, increasing D in our methods will go at the cost of increasing the
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O(nD2) and O(D2) complexities. Other kernels different from the SE one could be used, but that
would imply sampling from a different distribution.

Our novel RFF-GPC method considers a standard Bayesian linear model over these new features
z. Such a linear model corresponds to GP classification with the linear kernel kL [Bishop, 2006,
Chapter 6]. Since kL approximates the SE kernel k, our RFF-GPC constitutes an approximation to
GP classification with SE kernel. However, RFF-GPC is well suited for large scale applications,
as it works in the primal space of O(D) features and thus presents a O(nD2) (resp. O(D2)) train
(resp. test) complexity.

Notice that RFF-GPC needs to sample the Fourier frequencies wi from N (0, σ−2I) from the be-
ginning, whereas hyperparameters σ and γ must be estimated during the learning process (just
as in standard GP classification). In order to uncouple wi and σ, in the sequel we consider the
equivalent features

z(x|σ,W)ᵀ = D−1/2 ·
(
cos
(
σ−1wᵀ

1x
)
, sin

(
σ−1wᵀ

1x
)
, . . . , cos

(
σ−1wᵀ

Dx
)
, sin

(
σ−1wᵀ

Dx
))
,
(3)

with wi now sampled from N (0, I) and fixed. Notice that we have collectively denoted W =
[w1, . . . ,wD]ᵀ ∈ RD×d.

At this point, it is natural to consider other possibilities for the Fourier frequencies W, rather than
just randomly sample and fix them from the beginning. The proposed VFF-GPC model treats them
as hyperparameters to be estimated (so as to maximize the likelihood of the observed data), just
like σ and γ in the case of RFF-GPC. This makes VFF-GPC more expressive, flexible, and tailored
to the data, although it may no longer constitute an approximation to the SE kernel (for which the
wi must be normally distributed). More specifically, VFF-GPC does start with an approximated
SE kernel (since the wi are initialized with a normal distribution), but the maximum a posteriori
(MAP) optimization on wi makes it learn a new kernel which may no longer approximate a SE
one. Therefore, for VFF-GPC we also use z(x|σ,W) as in eq. (3), with now both σ and W
to be estimated. Interestingly, VFF-GPC extends the Sparse Spectrum Gaussian Process model
originally introduced for regression in [Lázaro-Gredilla et al., 2010], to GP classification.

More specifically, the authors there also sparsify the SE kernel by working on the primal space of
cos and sin Fourier features, see [Lázaro-Gredilla et al., 2010, Equation 5]. However, our classifi-
cation setting involves a sigmoid-based (logistic) observation model for the output given the latent
variable (see the next eq. (4)), whereas in regression this is just given by a normal distribution.
Therefore, VFF-GPC needs to additionally deal with the non-conjugacy of the sigmoid, which
motivates the variational bound of eq. (6) and the consequent variational inference procedure de-
scribed in Section 2.3. It is interesting to realize that VFF-GPC is introduced here as a natural
extension of RFF-GPC, whereas there is not a regression analogous for RFF-GPC in [Lázaro-
Gredilla et al., 2010].

Another possibility for the Fourier frequencies would be to estimate them (just as in VFF-GPC)
but considering alternative prior distributions p(W) (which means utilizing alternative kernels).
Moreover, instead of maximum a posteriori inference, we could address the marginalization of
the Fourier frequencies W. Alternatively, to promote sparsity, the use of Gaussian Scale Models
(GSM) [Babacan et al., 2012] could also be investigated. These possibilities will be explored in
future work, and here we will concentrate on RFF-GPC and VFF-GPC.



A PREPRINT

2.2 Models formulation

As anticipated in previous section, RFF-GPC and VFF-GPC are standard Bayesian linear models
working on the explicitly mapped features z(x|σ,W) of eq. (3). In the case of RFF-GPC, W is
sampled fromN (0, I) at the beginning and fixed, with σ to be estimated. In the case of VFF-GPC,
both W and σ are estimated, with a N (0, I) prior over W. In order to derive both methods in a
unified way, Φ will denote σ for RFF-GPC and both (W, σ) for VFF-GPC.

Since we are dealing with binary classification, we consider the standard logistic observation model

p(y = 1|β,Φ,x) = ψ(βᵀz) = (1 + exp(−βᵀz))−1, (4)

where z = z(x|Φ). For the weights β ∈ R2D we utilize the prior normal distribution p(β|γ) =
N (β|0, γI), with γ to be estimated, see eq. (1).

For an observed dataset D = {(xi, yi)}ni=1 ⊂ Rd × {0, 1}, the joint p.d.f. reads

p(y,β|Φ, γ,X) = p(y|β,Φ,X)p(β|γ) =

(
n∏

i=1

p(yi|β,Φ,xi)
)

p(β|γ), (5)

where we collectively denote y = (y1, . . . , yn)ᵀ and X = [x1, . . . ,xn]ᵀ. For the sake of brevity,
from now on we will systematically omit the conditioning on X.

2.3 Variational inference

Given the observed dataset D, in this section we seek point estimates of γ and Φ by maximizing
the marginal likelihood p(y|Φ, γ) (in VFF-GPC, the additional prior p(W) = N (W|0, I) yields
maximum a posteriori inference, instead of maximum likelihood one, for W). After that, we
obtain (an approximation to) the posterior distribution p(β|y,Φ, γ). Due to the non-conjugate
observation model, the required integrals will be mathematically intractable, and we will resort to
the variational inference approximation [Bishop, 2006, Section 10.6].

First, notice that integrating out β in eq. (5) is not analytically possible due to the sigmoid functions
in the observation model p(y|β,Φ). To overcome this problem, we use the variational bound

log (1 + ex) ≤ λ(ξ)(x2 − ξ2) +
x− ξ

2
+ log

(
1 + eξ

)
, (6)

which is true for any real numbers x, ξ and where λ(ξ) = (1/2ξ) (ψ(ξ)− 1/2) [Bishop, 2006,
Section 10.6]. Applying it to every factor of p(y|β,Φ), we have the following lower bound

p(y|β,Φ) ≥ exp (−βᵀZᵀΛZβ + vᵀZβ) · C(ξ). (7)

Here we write Z = [z1, . . . , zn]ᵀ ∈ Rn×2D for the projected-data matrix (which depends on
Φ), Λ is the diagonal matrix diag(λ(ξ), . . . , λ(ξn)), v = y − (1/2) · 1n×1, and the term
C(ξ) =

∏
i exp (λ(ξi)ξ

2
i + (1/2)ξi − log(1 + exp(ξi))) only depends on ξ. The key is that this

lower bound for p(y|β,Φ) is conjugate with the normal prior p(β|γ) (since it is the exponential of
a quadratic function on β), and thus it allows us integrating out β in eq (5). In exchange, we have
introduced n additional hyperparameters ξ = (ξ1, . . . , ξn)ᵀ that will need to be estimated along
with Φ and γ.

Therefore, substituting p(y|β,Φ) for its bound, eq. (5) can be lower bounded as

p(y,β|Φ, γ) ≥ F (y,Φ, γ, ξ) · N (β|µ,Σ), (8)
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where we have denoted

F (y,Φ, γ, ξ) = C(ξ)
∣∣γ−1Σ

∣∣1/2 exp

(
1

2
µᵀΣ−1µ

)
,

Σ =
(
Zᵀ(2Λ)Z + γ−1I

)−1
, µ = ΣZᵀv. (9)

Now it is clear that we can marginalize out β, and iteratively estimate the optimal values of Φ, γ
and ξ as those that maximize F (y,Φ, γ, ξ) (or equivalently logF (y,Φ, γ, ξ)) for the observed y.
Starting at ξ(1), Φ(1), and γ(1), we can calculate ξ(k), Φ(k), and γ(k) for k ≥ 1. In the case of ξ, we
make use of the local maximum condition ∂F/∂ξ = 0. From there, it is not difficult to prove that
the optimal value satisfies [Bishop, 2006]

ξ(k+1) =

√
diag

(
Z(k)Σ(k) (Z(k))

ᵀ
)

+ (Z(k)µ(k))
2
, (10)

where the square and square root of a vector are understood as element-wise. In the case of Φ and
γ, we use nonlinear conjugate gradient methods [Fletcher and Reeves, 1964] and obtain (notice
that for VFF-GPC we can collapse W and σ, removing the prior on W)
(
Φ(k+1), γ(k+1)

)
= arg max

Φ,γ

{
− log

∣∣∣2γZᵀΛ(k+1)Z + I
∣∣∣+ vᵀZ

(
2ZᵀΛ(k+1)Z + γ−1I

)−1

Zᵀv

}
.

(11)

Once the hyperparameters Φ, γ, and ξ have been estimated by Φ̂, γ̂, and ξ̂ respectively, we need
to compute the posterior p(β|y, Φ̂, γ̂). As before, this is mathematically intractable due to the
sigmoids in the observation model. Therefore, we again resort to the variational bound in eq. (8) to
get an optimal approximation p̂(β) to the posterior p(β|y, Φ̂, γ̂). Namely, we do it by minimizing
(an upper bound of) the KL divergence between both distributions:

KL
(

p̂(β)||p(β|y, Φ̂, γ̂)
)

=

∫
p̂(β) log

p̂(β)

p(β|y, Φ̂, γ̂)
dβ

= log p(y|Φ̂, γ̂) +

∫
p̂(β) log

p̂(β)

p(y,β|Φ̂, γ̂)
dβ

≤ log p(y|Φ̂, γ̂)− logF (y, Φ̂, γ̂, ξ̂) + KL
(

p̂(β)||N (β|µ̂, Σ̂)
)
.

Thus, the minimum is reached for p̂(β) = N (β|µ̂, Σ̂), with µ̂ and Σ̂ calculated in eq. (9) using
Φ̂, γ̂, and ξ̂.

In summary, at training time, our methods RFF-GPC and VFF-GPC run iteratively until conver-
gence of the hyperparameters Φ, γ, and ξ to their optimal values Φ̂, γ̂, and ξ̂ (see Algorithm 1). The
computations involved there suppose a computational complexity of O(nD2 +D3) (which equals
O(nD2) when n � D), whereas standard GPC scales as O(n3). At test time, the probability of
class 1 for a previously unseen instance x∗ ∈ Rd is:

p(y∗ = 1) ≈
∫

p(y = 1|β, Φ̂,x∗)p̂(β)dβ ≈ ψ

(
ẑᵀ
∗µ̂ ·

(
1 + (π/8)ẑᵀ

∗Σ̂ẑ∗
)−1/2

)
, (12)

with ψ being the sigmoid function. Whereas GPC presents a computational cost ofO(n2) for each
test instance, eq. (12) implies a complexity of O(D2) in the case of our methods. In particular,
notice that this is independent on the number of training instances. These significant reductions
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Algorithm 1 Training RFF-GPC and VFF-GPC.
Require: Data set D = {(xi, yi)}ni=1 ⊂ Rd × {0, 1} and the number D of Fourier frequencies.

Only for RFF-GPC, sample the Fourier frequencies wi from N (0, I) and fix them.
Initialize ξ(1) = 1n×1, γ(1) = 1, and Φ(1). For RFF-GPC (where Φ = σ), Φ(1) is initialized
as the mean distance between (a subset of) the training data points xi. For VFF-GPC (where
Φ = (σ,W)), σ is initialized as described for RFF-GPC and W with a random sample from
N (0, I).
repeat

Update ξ(k+1) with eq. (10).
Update Φ(k+1) and γ(k+1) with eq. (11), using Φ(k) and γ(k) as initial values for the conjugate
gradient method.

until convergence
return Optimal hyperparameter Φ̂ and the posterior distribution p̂(β) = N (β|µ̂, Σ̂).

in computational cost (both at training and test) make our proposal suitable for large scale and
real-time applications in general, and in EO applications in particular.

Finally, regarding the convergence of the proposed methods, we cannot theoretically guarantee the
convergence to a global optimum (only a local one), since we are using conjugate gradient methods
to solve the non-convex optimization problem in eq. (11). However, from a practical viewpoint,
we have experimentally checked that both methods have a satisfactory similar convergence pattern.
Namely, in the first iterations, the hyperparameters experiment more pronounced changes, widely
exploring the hyperparameters space. Then, once they reach a local optimum vicinity, these varia-
tions become smaller. Eventually, the hyperparameters values hardly change and the stop criterion
is satisfied.

3 Data Collection and Preprocessing

This section introduces the datasets used for comparison purposes in the experiments. We consid-
ered (1) a continuous year of MSG data involving several hundred thousands of labeled pixels for
cloud classification; and (2) a medium-size manually labeled dataset used to create the operational
IASI cloud mask.

3.1 Cloud detection over landmarks with Seviri/MSG

We focus on the problem of cloud identification over landmarks using Seviri MSG data. This
satellite mission constitutes a fundamental tool for weather forecasting, providing images of the
full Earth disc every 15 minutes. Matching the landmarks accurately is of paramount importance
in image navigation and registration models and geometric quality assessment in the Level 1 in-
strument processing chain. Detection of clouds over landmarks is an essential step in the MSG
processing chain, as undetected clouds are one of the most significant sources of error in landmark
matching (see Fig. 1).

The dataset used in the experiments was provided by EUMETSAT, and contains Seviri/MSG Level
1.5 acquisitions for 200 landmarks of variable size for a whole year (2010). Landmarks mainly
cover coastlines, islands, or inland waters. We selected all multispectral images from a particular
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Figure 1: Landmarks are essential in image registration and geometric quality assessment. Mis-
classification of cloud contamination in landmarks degrades the correlation matching, which is a
cornerstone for the image navigation and registration algorithms.

landmark location, Dakhla (Western Sahara), which involves 35,040 MSG acquisitions with a fixed
resolution of 20× 26 pixels. In addition, Level 2 cloud products were provided for each landmark
observation, so the Level 2 cloud mask [Derrien and Le Gléau, 2005] is used as the best available
‘ground truth’ to validate the results. We framed the problem for this particular landmark as a
pixel-wise classification one.

A total amount of 16 features were extracted from the images, involving band ratios, spatial, con-
textual and morphological features, and discriminative cloud detection scores. In particular, we
considered: 7 channels converted to top of atmosphere (ToA) reflectance (R1, R2, R3, R4) and
brightness temperature (BT7, BT9, BT10), 3 band ratios, and 6 spatial features. On the one hand,
the three informative band ratios were: (i) a cloud detection ratio, R0.8µm/R0.6µm; (ii) a snow index,
(R0.6µm − R1.7µm)/(R0.6µm + R1.7µm); and (iii) the NDVI, (R0.8µm − R0.6µm)/(R0.8µm + R0.6µm).
On the other hand, the six spatial features were obtained by applying average filters of sizes 3× 3
and 5× 5, as well as a standard deviation filter of size 3× 3, on both bands R1 and BT9.

Based on previous studies [Derrien and Le Gléau, 2005, Hocking et al., 2010], and in order to
simplify the classification task, the different illumination conditions (and hence difficulty) over
the landmarks are studied by splitting the day into four ranges (sub-problems) according to the
solar zenith angle (SZA) values: high (SZA<SZAmedian), mid (SZAmedian <SZA< 80°), low
(80°<SZA<90°), and night (SZA>90°). Therefore, different classifiers are developed for each
SZA range.

The final amount of pixels available for each illumination condition is n = 1500000 for high, mid,
and night, and n = 1365083 for low. Moreover, each problem has different dimensionality: all the
d = 16 features were used for the three daylight problems, and d = 6 was used for the night one
(some bands and ratios are meaningless at night).

3.2 Cloud detection with the IASI/AVHRR data

The IAVISA dataset is part of the study “IASI/AVHRR Visual Scenes Analysis and Cloud De-
tection” (http://www.brockmann-consult.de/iavisa-info-web/), whose aim is to improve the IASI
cloud detection by optimizing the coefficients used for a predefined set of cloud tests performed
in the IASI Level 2 processing. The dataset was derived by visual analysis of globally distributed
data, and served as input for the optimization and validation of the IASI cloud detection. Each
collected IASI sample was classified concerning its cloudiness based on the visual inspection of
the AVHRR Level 1B inside the IASI footprint. Each sample classifies a single IASI instantaneous
field of view (IFOV) as being cloud-free (clear sky, 28%), partly cloudy low (26%), partly cloudy
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Figure 2: Global sample coverage for all seasons, times of day, and cloud cases (left), and examples
of cloud-free and cloudy samples (right).

high (26%), or cloudy (20%). For the sake of simplicity, here we focus on discriminating between
cloudy and cloud-free pixels.

In order to ensure the representativeness of the dataset for the natural variability of clouds, labeling
further considered additional conditions depending on: 1) the surface type (see Table 1), 2) the
climate zone (Köppen classification over land, geographical bands over sea), 3) the season and 4)
day/night discrimination. First, the surface type database used as ancillary information was the
IGBP (International Geosphere-Biosphere Programme) scene types in the CERES/SARB (Clouds
and the Earth’s Radiant Energy System, Surface and Atmospheric Radiation Budget) surface map.
The 18-class map was used to identify surface properties of a given region. The distribution of the
surface types in the map is given in Table 1, showing the even distribution of clouds across land
cover types which ensures representativeness (natural variability) of the database. Second, the
different climate zones were sampled as follows: tropical (n = 7499), dry (n = 3237), temperate
(n = 8150), cold (n = 2205), and polar zones (n = 3832). Third, seasonality was also taken into
account, and yielded the following distribution: Spring (n = 5862), Summer (n = 6930), Autumn
(n = 6662), and Winter (n = 5469). The global sampling and some cloudy and cloud-free chips
are shown in Fig. 2. The final database consists of n = 24923 instances and d = 8461 original
features, which have been summarized to d = 100 more informative directions through a standard
Principal Component Analysis.

Table 1: The samples distribution per surface types.
ID Surface Type Samples
1 Evergreen Needle Forrest 603
2 Evergreen Broad Forrest 876
3 Deciduous Needle Forrest 89
4 Deciduous Broad Forrest 324
5 Mixed Forest 602
6 Closed Shrubs 329
7 Open Shrubs 1484
8 Woody Savannas 768
9 Savannas 656
10 Grassland 886
11 Wetlands 147
12 Crops 1294
13 Urban 44
14 Crop/Mosaic 1436
15 Snow/Ice 1443
16 Barren/Desert 1379
17 Water 12150
18 Tundra 413
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4 Experiments

In this section, we empirically demonstrate the performance of the proposed methods in the two
real problems described above. Moreover, we carry out an exhaustive comparison to GPC with SE
kernel (in the sequel, GPC for brevity).

In order to provide a deeper understanding of our methods, different values of D (number of
Fourier frequencies) will be used. Different sizes n of the training dataset will be also considered,
in order to analyze the scalability of the methods and to explore the trade-off between accuracy
and computational cost. When increasing n (respectively, D), we will add training instances (re-
spectively, Fourier frequencies) to those already used for lower values of n (respectively, D). We
provide numerical (in terms of recognition rate), computational (training and test times), and visual
(by inspecting classification maps) assessments.

4.1 Cloud detection in the landmarks dataset

In this large scale problem, the number of training examples is selected as n ∈
{10000, 50000, 100000, 300000} for RFF-GPC and VFF-GPC, and n ∈ {5000, 10000, 15000}
for GPC. Notice that the improvement at training computational cost (O(nD2) for the proposed
methods against O(n3) for GPC) enables us to consider much greater training datasets for our
methods. In fact, as we will see in Figure 3, even with n = 300000 RFF-GPC and VFF-GPC
are computationally cheaper than GPC with n = 15000. Indeed, higher values of n are not
considered for GPC to avoid exceeding the (already expensive) 106 seconds of training CPU
time needed with just n = 15000. Regarding the number D of Fourier frequencies, we use
D ∈ {10, 25, 50, 100, 150, 200}.
The experimental results, which include predictive performance (test overall accuracy), training
CPU time, and test CPU time, are shown in Figure 3. Every single value is the average of five
independent runs under the same setting. Namely, for each illumination condition, a test dataset is
fixed and five different balanced training datasets are defined with the remaining data. Notice that
a general first observation across Figure 3 suggests that higher accuracies are obtained for higher
illumination conditions (SZA).

Figure 3 reveals an overwhelming superiority of RFF-GPC and VFF-GPC over standard GPC:
our proposed methods achieve a higher predictive performance while investing substantially lower
training CPU time. This is very clear from the third column plots, where for any blue point we can
find orange and yellow points which are placed more north-west (i.e. higher test OA and lower
CPU training time). Furthermore, the fourth column shows an equally extraordinary reduction
in test CPU time (production time), where the proposed methods are more than 100 times faster
than GPC. In particular, this makes RFF-GPC and VFF-GPC better suited than standard GPC for
real-time EO applications.

Regarding the practical differences between RFF-GPC and VFF-GPC, we observe that RFF-GPC
is faster (at training) whereas VFF-GPC is more accurate. This is a natural consequence of their
theoretical formulations: the estimation of the Fourier frequencies W in VFF-GPC makes it more
flexible and expressive, but involves a heavier training. Therefore, in this particular problem, the
final practical choice between the two proposed methods would depend on the relative importance
that the user assigns to test accuracy (where VFF-GPC stands out) and training cost (where RFF-
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GPC does so). In terms of test cost, both methods are very similar, as expected from the identical
O(D2) theoretical test complexity. The independence of this quantity on n is also intuitively
reflected in the experiments, with all the RFF-GPC and VFF-GPC lines collapsing onto a single
one in the fourth column plots of Figure 3.

At this point, it is worth to analyze a bit further the role of D in the performance of our methods.
Recall (Section 2.1) that RFF-GPC is an approximation to GPC, with an error that exponentially
decreases with the ratio D/d between the dimensions of the projected Fourier features space and
the original one. Therefore, it is theoretically expected that the performance of RFF-GPC increases
withD, becoming equivalent to GPC whenD →∞. Actually, this is supported by the first column
of Figure 3. Moreover, since our problem here presents a low d (16 for high, mid, and low, and 6 for
night), it is natural that RFF-GPC with just D = 200 already gets very similar (even better in some
cases) results to standard GPC with the same n (yet far much faster, compare GPC and RFF/VFF
for n = 10000). In the case of VFF-GPC, where the Fourier frequencies are model parameters
to be estimated, the number D is directly related to the complexity of the model. Therefore, its
increase should not always mean a higher performance in test OA, since large values may provoke
over-fitting to the training dataset (this will be clear in the next dataset, whereas it does not occur
in LANDMARKS). Furthermore, unlike RFF-GPC, the performance of VFF-GPC is not directly
affected by d.

It is also reasonable to expect that both test OA and training CPU time increase with the training
dataset size n. More specifically, and from a practical perspective in which the computational
resources are finite, the first column in Figure 3 shows that test OA becomes stalled when only
one of n or D increases. However, greater improvements in test OA are achieved when n and D
are jointly increased. Notice that this is also justifiable from a theoretical viewpoint: the higher
the dimensionality of the projected Fourier features space (which is 2D), the larger number n of
examples are required to identify the separation between classes.

4.2 Cloud detection with the IAVISA dataset

As explained in Section 3.2, this problem involves a total amount of n = 24923 instances. We
performed five-fold cross-validation, which produces five pairs of training/test datasets with (ap-
proximately) 20000/5000 instances each. Results are then averaged. Since RFF-GPC and VFF-
GPC are conceived for large-scale applications (they scale linearly with n, recall their O(nD2)
training cost), they will not be utilized with values of n lower than this training dataset size of
≈ 20000 (even GPC is able to cope with this size). Indeed, in the case of GPC we use the values
n ∈ {1000, 5000, 10000, 15000,ALL ≈ 20000}. Regarding the number of Fourier frequencies D,
we consider the grid D ∈ {1 : 10, 15 : 5 : 25, 50 : 25 : 150}. The experimental results, which
include the same metrics as those used for the previous problem on landmarks, are shown in Figure
4.

In this case, we again observe a clear outperformance of VFF-GPC against GPC: it achieves higher
test OA while requiring less training and test CPU times. Moreover, the improvement in test OA
is greater than 3%, and train/test CPU times are around 100 and 1000 times lower respectively.
However, unlike in the previous problem of cloud detection over landmarks, RFF-GPC does not
exhibit such a clear superiority over GPC in this application. Whereas it does drastically decrease
the train/test CPU times, it is not able to reach the test OA of GPC with n = 10000. There-



A PREPRINT

fore, in practice, the optimal choice for this application is VFF-GPC. RFF-GPC would only be
recommended if the training CPU time is a very strong limitation.

The main reason why RFF-GPC is not completely competitive in this problem is its theoretical
scope: as an efficient approximation to GPC, it is conceived for large scale applications which
are out of the reach of standard GPC. If the size of the problem allows for using GPC (as in this
case), then RFF-GPC will only provide a more efficient alternative (less training and test CPU
times), but its predictive performance will be always below that of GPC. Moreover, the difference
in this performance is directly influenced by the original dimension d of data (recall that the kernel
approximation behind RFF-GPC exponentially degrades with d, Section 2.1). This is precisely a
second hurdle that RFF-GPC finds in IAVISA: the high d = 100 makes RFF-GPC with the full
dataset be quite far from the corresponding GPC at predictive performance (test OA). In conclu-
sion, the ideal setting for RFF-GPC is a large scale problem (high n) with few features (low d),
precisely the opposite to the IAVISA dataset.

Interestingly, VFF-GPC bypasses these limitations of RFF-GPC by learning a new kernel and not
just approximating the SE one. First, VFF-GPC is not just a GP adaptation well-suited for large
scale applications, but a general-purpose, expressive, and very competitive kernel-based classifier
that scales well with the number of training instances. Second, as it does not rely on the kernel
approximation, VFF-GPC is not affected by the original dimension d of data. Both ideas are
empirically supported by the results obtained in IAVISA.

The first plot of Figure 4 shows that the predictive performance of VFF-GPC does not necessarily
improves by increasing D. This is the expected behavior from the theoretical formulation of VFF-
GPC, where the Fourier frequencies are D parameters to be estimated. Thus, a higher amount of
them confers VFF-GPC a greater flexibility to learn hidden patterns in the training dataset, but also
the possibility to over-fit very particular structures of it which do not generalize to the test set. This
is the classical problem of the model complexity in machine learning, and it is further illustrated
in Figure 5. Together with the first plot in Figure 4, it shows the paradigmatic behaviour of train
and test performance in presence of over-fitting: train OA grows with the model complexity (great
flexibility allows for learning very particular structures of the training set, even reaching a 100%
of train OA), whereas test OA initially grows (the first patterns are part of the ground truth and
thus general to the test set) but then goes down (when the learned information is too specific to
the training set). Notice that this over-fitting phenomena did not occur at LANDMARKS, where
test OA monotonically increased with D. In addition to the different nature of the problems, the
training dataset size n plays a crucial role at this: smaller datasets (like IAVISA) are more prone
to over-fitting than larger ones (LANDMARKS) under the same model complexity.

Finally, it is worth noting that VFF-GPC achieves its maximum test OA when using just D = 5
Fourier frequencies. This reflects (i) a not very sophisticated internal structure of the IAVISA
dataset (since just 5 directions are enough to correctly classify 85% of the data), and (ii) the VFF-
GPC capability to learn those discriminative directions from data. In particular, this shows that
VFF-GPC can be used not only as a classifier, but also as a method that learns the most relevant
discriminative directions in a dataset. Unfortunately, RFF-GPC is not able to benefit from these
privileged directions that may exist in some datasets, since it randomly samples and fix the Fourier
frequencies from the beginning.
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4.3 Explicit classification maps for cloud detection

The last two sections were dedicated to thoroughly analyze the performance of the proposed meth-
ods, empirically understand their behavior, weaknesses, and strengths, and compare them against
GPC. In order to illustrate the explicit cloud detection behind the experiments, here we provide
several explanatory classification maps obtained by the best model (in terms of predictive perfor-
mance) for the LANDMARKS dataset: VFF-GPC with n = 300000 and D = 200.

The classification maps are obtained for the whole year 2010 at the Dakhla landmark, with a total of
34940 satellite acquisitions. The acquired window size is 26× 20 pixels. Relying on the proposed
feature extraction procedure, we trained the four necessary models (high, mid, low, night), and
then proceed to predict over the whole available amount of chips acquired in the 2010 year.3

In Figure 6, several chips are provided with the aim of illustrating different behaviors. In the first
situation (first row), we can see a characteristic error of the L2 cloud mask, which sometimes tends
to wrongly label the coastline pixels as cloudy. However, VFF-GPC leads to a better classification,
identifying just one cloudy pixel and thus avoiding this negative coastline effect4. In the second
row, the visual channels show large clouds crossing the landmark. In the bottom-right of the image,
a long cloud is unlabeled in the L2 cloud mask but correctly detected by VFF-GPC. While being
formally accounted as an error, such discrepancy is actually positive for our method. Moreover,
VFF-GPC shows an interesting cloud-sensitive behaviour at the top-left cloudy mass, identifying
a larger cloudy area than that provided by EUMETSAT. This is a desirable propensity in cloud
detection applications, where we prefer to identify larger clouds (and then thoroughly analyze
them) rather than missing some of them. In the third row, the RGB channel allows for visually
identifying three main cloudy masses at the landmark. The L2 mask poorly labels the central
cloudy band, and does not detect the lower cloud. Both deficiencies are overcome by VFF-GPC.
Finally, the fourth chip shows a huge cloudy mass that is undetected by the L2 mask but is correctly
identified by VFF-GPC.

Therefore, although VFF-GPC is trained with an imperfect ground truth, we observe that it is able
to bypass some of these deficiencies, and exhibits a desirable cloud-sensitive behavior. This im-
provement can be also related to the particular design of the training datasets, splitting the problem
into four different cases depending on the illumination conditions.

5 Conclusions and Future Work

We presented two efficient approximations to Gaussian process classification to cope with big data
classification problems in EO. The first one, RFF-GPC, performs standard GP classification by
means of a fast approximation to the kernel (covariance) via D random Fourier features. The
advantage of the method is mainly computational, as the training cost is O(nD2) instead of the
O(n3) induced by the direct inversion of the n×n kernel matrix (the test cost is also reduced to be
independent on n, fromO(n2) toO(D2)). The RFF method approximates the squared exponential
(SE) covariance with Fourier features randomly sampled in the whole spectral domain. The solid
theoretical grounds and good empirical performance makes it a very useful method to tackle large

3A full video with all the classification maps is available at http://decsai.ugr.es/vip/software.html and http://isp.uv.es/code/vff.
html. RFF-GPC and VFF-GPC codes are also provided.

4As a clarification note, the coastline pixels were removed from the training dataset by applying a carefully designed morpho-
logical filter around coastlines.
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scale problems. Actually, the use of RFF has been exploited before in other settings, from classi-
fication with SVMs to regression with the KRR. However, we emphasize two main shortcomings.
Firstly, the RFF approach can only approximate (theoretically and in practice) a predefined kernel
(the SE one in this work). Secondly, by sampling the Fourier domain from a Gaussian, one has no
control about the expressive power of the representation since some frequency components of the
signal can be better represented than others. As a consequence, the approximated kernel may not
have good discrimination capabilities. Noting these two problems, we proposed here our second
methodology: a variational GP classifier (VFF-GPC) which goes one step beyond by optimizing
over the Fourier frequencies. It is shown to be not just a GP adaptation well-suited for large scale
applications, but a whole novel, general-purpose, and very competitive kernel-based classifier that
scales well (linearly, as RFF-GPC) with the number of training instances.

We illustrated the performance of the algorithms in two real remote sensing problems of large and
medium size. In the first case study, a challenging problem dealt with the identification of clouds
over landmarks using Seviri/MSG imagery. The problem involved several hundred thousands data
points for training the classifiers. In the second case study, we used the IAVISA dataset, which
exploits IASI/AVHRR data to identify clouds with the IASI infrared sounding data. Compared to
the original GPC, the experimental results show a high competitiveness in accuracy, a remarkable
decrease in computational cost, and an excellent trade-off between both.

These results encourage us to expand the experimentation to additional problems, trying to ex-
ploit the demonstrated potential of VFF-GPC when dealing with any value of n (training data set
size) and d (original dimension of the data). Other prior distributions and inference methods, as
explained at the end of Section 2.1, will be also explored in the future.
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Figure 3: Experimental results for LANDMARKS dataset. From top to bottom, the rows corre-
spond with the described high, mid, low, and night illumination conditions. For each row, the first
column shows the test overall accuracy (OA) of RFF-GPC, VFF-GPC, and GPC for the different
values of n (number of training examples) and D (number of Fourier frequencies) considered. The
second column is analogous, but displays the CPU time (in seconds) needed to train each method
(instead of the test OA). The third column summarizes the two previous ones, providing a trade-
off between test OA and training CPU time. The last column is analogous to the first and second
ones, but showing the CPU time used at the test step (production time). The legend for the second
and fourth columns is the same as in the first one. However, notice that in the third column plots
the GPC lines degenerate into single points (since GPC does not depend on D). In both legends,
the numbers indicate the amount n of training examples used, which determines the width/size of
the lines/points too. As further explained in the main text, shown results are the mean over five
independent runs.
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Figure 4: Experimental results for the IAVISA dataset. From left to right and top to bottom, the
first plot shows the test overall accuracy (OA) of RFF-GPC, VFF-GPC, and GPC for the different
values of n (number of training examples) and D (number of Fourier frequencies) considered. The
second column is analogous, but displays the CPU time needed to train each method (instead of
the test OA). The third column summarizes the two previous ones, providing a trade-off between
test OA and training CPU time. The last column is analogous to the first and second ones, but
showing the CPU time used at the test step. The legend for second and fourth plots is the same
as the one in the first plot. However, in the third plot the GPC lines degenerate into single points
(since GPC does not depend on D). In both legends, the numbers indicate the amount n of training
examples used, which determines the width/size of the lines/points too (ALL means the whole
training dataset, i.e. n ≈ 20000). As explained in the main text, the results are the mean over five
independent runs.
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Figure 5: Train OA in the IAVISA dataset for RFF-GPC, VFF-GPC, and GPC with different
values of n (number of training examples) and D (number of Fourier frequencies). These results
complement the first plot in Figure 4, showing that high values of D make VFF-GPC over-fit to
the training dataset. The legend and its interpretation are the same as there.
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Figure 6: Explicit classification maps for the Dakhla landmark. The rows correspond with four
different acquisitions. The first column shows the visible RGB channels (which are not informative
for night acquisitions such us the first one), the second column is the infrared 10.8µm spectral
band (very illustrative in night scenarios), the third column represents the ground truth obtained by
EUMETSAT (the L2 cloud mask), and the last one is the VFF-GPC classification map. In the last
two columns, the red color is used for cloudy pixels and blue for cloud-free ones.
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4.2 Main contributions

• We propose VGPCR (Variational Gaussian Processes for Crowdsourcing), which
resorts to local variational methods to perform inference when modelling the
crowdsourcing scenario with Gaussian Processes. The crowdsourcing annota-
tions are modelled through the notions of sensitivity and specificity for each an-
notator, which describe their reliability when annotating instances from each class
(here we focus on binary problems). This approach is presented as an alternative
to the use of Expectation Propagation (EP), a more computationally intensive
method that was the state-of-the-art for GP-based crowdsourcing.

• The proposed algorithm is evaluated at three different levels: on fully synthetic
data, which allows for a controlled supervision of the estimated parameters, on
semi-synthetic data, which provides additional insights into the crowdsourcing
modelling, and on real data, which includes several crowdsourcing benchmarks
on movies reviewing and music genre prediction.
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ABSTRACT

Solving a supervised learning problem requires to label a training set. This task
is traditionally performed by an expert, who provides a label for each sample. The
proliferation of social web services (e.g., Amazon Mechanical Turk) has introduced
an alternative crowdsourcing approach. Anybody with a computer can register in
one of these services and label, either partially or completely, a dataset. The ef-
fort of labeling is then shared between a great number of annotators. However,
this approach introduces scientifically challenging problems such as combining the
unknown expertise of the annotators, handling disagreements on the annotated sam-
ples, or detecting the existence of spammer and adversarial annotators. All these
problems require probabilistic sound solutions which go beyond the naive use of
majority voting plus classical classification methods. In this work we introduce a
new crowdsourcing model and inference procedure which trains a Gaussian Pro-
cess classifier using the noisy labels provided by the annotators. Variational Bayes
inference is used to estimate all unknowns. The proposed model can predict the
class of new samples and assess the expertise of the involved annotators. Moreover,
the Bayesian treatment allows for a solid uncertainty quantification. Since when
predicting the class of a new sample we might have access to some annotations
for it, we also show how our method can naturally incorporate this additional in-
formation. A comprehensive experimental section evaluates the proposed method
with synthetic and real experiments, showing that it consistently outperforms other
state-of-the-art crowdsourcing approaches.

∗The first two authors contributed equally.
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1 Introduction

The main goal in supervised learning is to find a mapping that predicts labels from features
[Bishop, 2006, Murphy, 2012, Watt et al., 2016]. Most of the works in supervised learning as-
sume that training samples have been labeled with no errors by an expert [Das et al., 2018,
Ekambaram et al., 2016]. However, the recent advent of social web services has introduced a new
approach to address the labeling problem. The term crowdsourcing was coined in 2006 by J. Howe
[Howe, 2006] to describe “the act of taking a job traditionally performed by a designated agent
(usually an employee) and outsourcing it to an undefined generally large group of people in the
form of an open call”.

In the last decade, many crowdsourcing services have proliferated in the Internet, where a dataset
can be published and millions of people around the world can provide labels in exchange for
a reward [Zhang et al., 2016]. Amazon Mechanical Turk (www.amt.com), Galaxy Zoo (www.
galaxyzoo.org), Zooniverse (www.zooniverse.org), Crowdflowers (www.crowdflower.com)
or Clickworker (www.clickworker.com) are among the most popular ones. Due to the great
number of potential annotators, large data sets can be labeled in a very short time. However, this
approach introduces new challenging problems: combining the unknown expertise of annotators,
dealing with disagreements on the annotated samples, or detecting the existence of spammer and
adversarial annotators [Zhang et al., 2016].

The first paper on crowdsourcing dates back to 1979 [Dawid and Skene, 1979]. Early contribu-
tions attempted to estimate the underlying true labels and the reliability of the annotators, but were
not conceived to learn a classifier. This idea was explored by Raykar et al. [Raykar et al., 2010],
who proposed to jointly estimate the coefficients of a logistic regression (LR) classifier and the
annotators’ expertise. The latter is modeled through the sensitivity and specificity concepts,
which refer to the accuracy of the annotator when labelling instances from each class. Yan et
al. [Yan et al., 2010] (see also the subsequent journal version [Yan et al., 2014]), introduced a
crowdsourcing classifier (also based on LR) which considers a feature-dependent model for the
annotators’ expertise. The main limitation of these two approaches is the simple LR classification
model, which can only deal with linearly separable data. Rodrigues et al. [Rodrigues et al., 2014]
overcame this problem by introducing a crowdsourcing classifier based on Gaussian Processes
(GP) [Rasmussen and Williams, 2006, Ruiz et al., 2016b, Morales-Álvarez et al., 2018]. GP the-
ory makes use of the so-called “kernel trick” [Bishop, 2006, Chapter 6] to model complex
classification problems where the decision boundary may be non-linear. Expectation Prop-
agation (EP) [Rasmussen and Williams, 2006, Section 3.6] is used as inference procedure in
[Rodrigues et al., 2014]. To the best of our knowledge, this is the most recent general-purpose
probabilistic crowdsourcing approach (see also [Rodrigues et al., 2017, Section 2.2].)

Nowadays, crowdsourcing is a really active and promising research field, in which these general-
purpose crowdsourcing methods are being tailored to a wide range of relevant problems (see the re-
cent survey [Zhang et al., 2016] and related works [Wang et al., 2018, Triguero and Vens, 2016]).
Crowdsourcing is being applied to modern areas such as ecological monitoring and conservation
[Duyck et al., 2015], plant phenotyping [Giuffrida et al., 2018, Siegel et al., 2018], remote sensing
[Fritz et al., 2017], mitosis detection in breast cancer histology images [Albarqouni et al., 2016],
topic modeling from crowds [Rodrigues et al., 2017], and detection of glitches in signals acquired
by the laureate Laser Interferometer Gravitational-Wave Observatory (LIGO) [Zevin et al., 2017].
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Moreover, there exist some recent attempts to combine crowdsourcing with Deep Learning ap-
proaches [Albarqouni et al., 2016, Rodrigues and Pereira, 2018], and new challenges, such as the
optimal expert validation of the crowdsourced labels [Liu et al., 2017], are emerging.

In this work we address the crowdsourcing classification problem. As in [Rodrigues et al., 2014],
the true underlying training labels are modeled as latent variables by means of a GP.
A sensitivity-specificity model is used for the annotators (as in [Raykar et al., 2010] and
[Rodrigues et al., 2014]). However, there exist two main differences with [Rodrigues et al., 2014]:
1) we use Variational Bayes inference (VB) to estimate all unknowns (instead of EP), and 2) we
model sensitivity and specificity as stochastic variables (instead of point parameters). Several
reasons motivated our choice of Variational inference. First, it is well-known that the EP iterative
procedure does not guarantee convergence, and it may not be able to capture complex posterior dis-
tributions (e.g., multi-modal) [Bishop, 2006, Section 10.7]. Second, as it will become clear in the
experiments, the EP inference is usually slower in practice (which, in fact, has led to the introduc-
tion of some strategies to optimize it [Gerven et al., 2009]). A thorough experimentation (including
comparisons with the aforementioned approaches in [Raykar et al., 2010], [Yan et al., 2010] and
[Rodrigues et al., 2014] among others) will show that the proposed ideas can contribute to advance
the current state-of-the-art in crowdsourcing classification. Moreover, the proposed model natu-
rally lends itself to the integration of annotations that may have been provided for test instances in
the prediction of their true class. The experiments will show that, if test annotations are available,
this hybrid human-machine prediction is significantly more accurate than the one produced by ei-
ther the machine or the annotators alone. To the best of our knowledge, this extension had not been
addressed in any previous work.

This paper gathers together, clarifies, and significantly extends the ideas in our two conference
contributions [Besler et al., 2016, Ruiz et al., 2016a]. The main novelties are: first, sensitivity and
specificity are treated as stochastic variables (they are estimated through non-degenerate posterior
distributions instead of point estimates). This allows for a better uncertainty quantification and,
thus, an enhancement in the experimental results. Second, we show how our model can naturally
integrate in the prediction annotations that may have been provided for test instances. If there are
no such annotations, the new predictive distribution recovers the old one. Third, the experiments
are exhaustively extended in several ways: the new methodology to integrate test set annotations
is evaluated, a new type of data popular in crowdsourcing is introduced (semi-synthetic data), the
computational cost is assessed, and the annotators’ expertise estimations are reported in all exper-
iments. Fourth, the experimental section does not restrict itself to the performance of the proposed
method, but also examines the behavior of other state-of-the-art approaches that it is compared
against. Thus, it can be useful as a brief experimental review of the main current crowdsourcing
methods.

The rest of the paper is organized as follows. To facilitate the reading of the paper, an exhaustive
glossary of all the symbols used in this work is included in Table 1. Section 2 presents the pro-
posed probabilistic crowdsourcing model based on GP. The VB inference procedure is described
in Section 3. The process to classify new samples (including the case when there are test annota-
tions available) is described in Section 4. A comprehensive experimental validation is presented in
Section 5. Section 6 concludes the paper and provides some future outlook.
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Symbol Description
C0 and C1 Classes 0 and 1, respectively.

N Number of samples in the training set.
D Dimension of the feature space.
R Number of annotators who provided crowdsourcing labels.

Rn ⊆ {1, . . . , R} Subset of annotators who labeled the n-th sample.
Nr ⊆ {1, . . . , N} Subset of samples labeled by the r-th annotator.

X ∈ RN×D Matrix containing all the samples in the training set.
xn ∈ RD n-th sample of the training set.
x∗ ∈ RD New sample whose class is predicted by the proposed method.

Y Set of annotations provided by the R annotators.
yrn ∈ {0, 1} Label provided by the r-th annotator for the n-th sample.

y∗ = {yr∗ : r ∈ R∗} Annotations provided for the new sample x∗.
z ∈ {0, 1}N Underlying real labels for the training set instances.
zn ∈ {0, 1} Underlying real label for the n-th sample.
z∗ ∈ {0, 1} Underlying real label for x∗.

α = [α1, . . . , αR] Sensitivity of each annotator.
β = [β1, . . . , βR] Specificity of each annotator.
aα0 , bα0 , aβ0 and bβ0 Hyperparameters for α and β. (Default: All of them equal to 1.)
f = [f1, . . . , fN ]T GP modeling the relationship between X and z.

f∗ ∈ R GP modeling the relationship between x∗ and z∗.
k(·, ·|Ω) Kernel function depending on a set of parameters Ω.

K ∈ RN×N Covariance matrix of the prior distribution of f .
h ∈ RN Vector of prior covariances between f∗ and f1, . . . , fn.
c ∈ R+ Prior variance of f∗.

ξ = (ξ1, . . . , ξN )T Variational parameters to be estimated.
Λ ∈ RN×N Diagonal matrix calculated from the variational parameters ξ.
m∗ and s2∗ Mean and variance of the approximated posterior distribution of f∗.
µf and Σf Mean and covariance matrix of the posterior distribution of f .
δ ∈ [0, 1] Classification threshold.

Θ = {f ,α,β,Ω} Subset of unknown variables of the model.
Θ̄ = {z, f ,α,β,Ω} Set of the unknown variables of the model.

Θ̄θ = Θ̄ \ θ Set Θ̄ minus the element θ ∈ Θ̄.
σ(·) and ψ(·) Sigmoid and Digamma functions, respectively.

KL(·||·) Kullback-Leibler divergence.
p(·) and q(·) Probability distributions: Assumed known (p) and approximated (q).
0 and 1/2 Vector with all the components equal to 0 and 1/2, respectively.

Table 1: A comprehensive glossary of all the symbols used in this work.

2 Bayesian Modeling

Let X = [x1, . . . ,xN ]T ∈ RN×D be a training set of N D-dimensional samples, with unknown
labels z = (z1, . . . , zN)T ∈ {0, 1}N . Let us assume there are R different annotators. Let Rn ⊆
{1, . . . , R} denote the subset of annotators who labeled the n-th sample, and Nr ⊆ {1, . . . , N} the
subset of samples labeled by the r-th annotator. Finally, Y = {yrn ∈ {0, 1} | n = 1, . . . , N ; r ∈
Rn} is the set of labels provided by the R annotators.

Gaussian Processes (GP) model the relationship between samples X and the corresponding
unknown true labels z in two steps. First, a set of latent variables f = [f1, . . . , fN ]T fol-
lowing a joint Gaussian distribution p(f |Ω) = N (f |0,K) is introduced. The kernel matrix
K = [k(xn,xm|Ω)]nm is computed with the kernel function k, which defines an inner product
in a (possibly infinite-dimensional) transformed space [Bishop, 2006, Chapter 6]. Intuitively, the
correlation between each pair of entries of f is calculated in a transformed space of the original
feature space, which allows GP to estimate non-linear decision boundaries. In this work we use
the well-known squared exponential (SE) kernel k(xn,xm) = γ · exp(−||xn − xm||2/(2l2)), al-
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though other kernels could be used. The kernel hyperparameters Ω = {γ, l} are called variance
and length-scale, respectively.

The second step is to relate the latent variables f to the unknown true labels z using a product of
Bernoulli distributions:

p(z|f) =
N∏

n=1

σ(fn)zn(1− σ(fn))1−zn =
N∏

n=1

(
1

1 + e−fn

)zn( e−fn

1 + e−fn

)1−zn
, (1)

where the sigmoid function σ maps R into the interval (0, 1). In other words, the sigmoid function
assigns the probability of belonging to a class depending on the value of the real number fn.
When xn belongs to class 1 (zn = 1), only the first factor is considered and a large positive
value is expected for fn. When xn belongs to class 0 (zn = 0), only the second factor appears
and a large negative value is expected for fn. Notice that, although a realization of a GP is a
continuous real function on the feature space, the sigmoid function transforms it into a Bernoulli
parameter. This is a natural generalization of logistic regression [Bootkrajang and Kabán, 2014].
While logistic regression uses a linear combination of the components of xn, with linear weights to
be estimated, GP uses a linear combination of features in a transformed domain (this transformed
domain depends on the kernel used) and denotes by fn the corresponding linear combination.
Moreover, the sigmoid function is an infinitely differentiable function, which allows VB to infer
the posterior distribution of the latent variable f .

The distributions p(f |Ω) and p(z|f) define a standard GP classifier. Now we need to include the
crowdsourcing labelling process in our model. Each annotator r is described by their sensitivity
αr := p(yr = 1|z = 1) and specificity βr := p(yr = 0|z = 0). Intuitively, αr and βr represent the
reliability of the r-th annotator when labeling samples of class C1 and C0, respectively. This model
is the same as in [Raykar et al., 2010, Rodrigues et al., 2014]. Assuming independence between
annotators, we have the following product of Bernoulli distributions

p(Y|z,α,β) =
R∏

r=1

∏

n∈Nr

[
αy

r
n
r (1− αr)1−yrn

]zn [
(1− βr)y

r
nβ1−yrn

r

]1−zn
, (2)

where α = (α1, . . . , αR) and β = (β1, . . . , βR). Some observations are required at this point.
First, this sensitivity-specificity model allows for scenarios where annotators might be non-experts.
Second, spammer (resp. adversarial) annotators are those with αr and βr values close to (resp.
much lower than) 0.5. Third, notice that exchanging the role of zn and 1−zn in eq. (2) corresponds
to exactly the same model but with sensitivities 1 − βr and specificities 1 − αr. This means that,
changing α and β accordingly, a certain set of underlying true training labels and their opposite
are equally plausible. In section 3 we provide an initialization of our algorithm that accounts for
this ambiguity.

In this work, sensitivities and specificities are treated as stochastic variables, and Beta distribu-
tions are used as hyper-priors. This treatment allows us to introduce prior knowledge about these
parameters and weigh more certain configurations of them, yielding more accurate results and
a better uncertainty quantification of the model. The independence between annotators yields
p(α) =

∏R
r=1 Beta(αr|aα0 , bα0 ) and p(β) =

∏R
r=1 Beta(βr|aβ0 , bβ0 ),where we have removed the

dependency on the parameters for simplicity. Recall that Beta(ω|a, b) ∝ ωa−1(1 − ω)b−1 with
mean <ω> = a/(a + b). During inference, the following expectations will be required (see
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[Bishop, 2006, Exercise 2.11])

< logω> = ψ(a)− ψ(a+ b), < log(1− ω)> = ψ(b)− ψ(a+ b), (3)

where ψ denotes the digamma function. The parameters a and b can be set to introduce prior
knowledge about the expected values of α and β, and our confidence on them. When no prior
knowledge is available, a = b = 1 produces uniform distributions. For instance, these hyper-priors
on α and β are useful to deal with annotators who only provide labels for samples in one of the
classes (see [Murphy, 2012] for more details about the so-called “black swan paradox”).

The proposed joint probabilistic model for the crowdsourcing problem is

p(Y, z, f ,α,β,Ω) = p(Y, z,Θ) = p(Y|z,α,β)p(z|f)p(f |Ω)p(α)p(β)p(Ω), (4)

where Θ = {f ,α,β,Ω}, and p(Ω) is a flat prior on the kernel parameters Ω. The probabilistic
graphical model is depicted in Figure 1. Yellow nodes correspond to observed variables, namely,
the set of features X and the labels provided by the annotators Y (discrete). The unknown vari-
ables, to be inferred during training, are represented using blue nodes, namely, the real labels z
(discrete), the GP latent variable f (continuous), the GP hyper-parameters Ω (continuous), and
sensitivity and specificity α, β (continuous).

Now that we have the full probabilistic modeling of our problem, let us briefly describe and explain
in words its capabilities and limitations. First we utilize a GP (a prior on the set of functions defined
over the feature space) which in combination with the sigmoid function is used to describe the real
underlying classifier. Since we do not have access to the output of this classifier, the probability
distributions of the labels provided by each annotator given the output of the true classifier is
modeled using the sensitivity (when the true label is one) and specificity (when the true label
is zero) parameters. These numbers quantify how close each annotator’s behavior is to the true
classifier. Finally, any additional information on each annotator’s behavior can be included as
prior information on the two aforementioned parameters. In summary, we are using a sound and
robust to outliers probabilistic modeling of our crowdsourcing problem

One of the main limitations of the proposed framework is that the only supervised source of in-
formation consists in the labels provided by annotators, lacking some mechanism to introduce
additional supervised knowledge which may prevail over the annotators. For instance, there may
be some instances in the training set for which we know the real label instead of just (noisy) an-
notations, in which case we would rather rely on this more accurate knowledge. Second, a simple
model has been considered for the annotators, based solely on their sensitivity and specificity. More
complex (in particular, feature-dependent) behaviors could happen in real-world problems. For in-
stance, there might be annotators who are much more skilled when labelling instances coming from
a certain region of the feature space (because they have specialized in that type of instances), but
are not that reliable in other regions. Third, there is the implicit assumption that all the annotators
are not spammers. Notice that, for the scenario where all the annotators provide random labels for
all the instances, there is no information to be able to infer the true decision boundaries, in which
case the proposed method cannot train an accurate classifier.

Having explained the model, let us now see how inference is carried out, what problems will be
found when estimating the posterior distribution of all the unknowns given the labels provided by
the annotators, and how variational inference can be used to solve all of them.
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Figure 1: Probabilistic graphical representation for the proposed model. Yellow nodes de-
note observed variables, and blue nodes unknown variables (to be inferred during training).
Y = {y1, . . . ,yR} and z are discrete variables, whereas the rest are continuous.

3 Variational Bayes Inference

In Bayesian inference, the main goal is to find the posterior distribution p(z,Θ|Y) =
p(Y, z,Θ)/p(Y). This models our certainty about the values of the different model variables
once the annotations Y are observed, and allows us to make predictions on new samples as well as
to assess the reliability of the annotators. However, notice that the marginal

p(Y) =
∑

z

∫

f

∫

α

∫

β

∫

Ω

p(Y, z, f ,α,β,Ω)dfdαdβdΩ (5)

is not tractable, and therefore we resort to the approximated Variational Bayes (VB) inference
procedure.

In principle, inference for this model could be also addressed through Markov Chain Monte Carlo
(MCMC) methods, which involve sampling from the posterior instead of approximating it with an
explicit probability distribution. In fact, MCMC was one of the first approaches for approximate
inference in GP [Neal, 1998], and its extension to our model is straightforward from a theoreti-
cal viewpoint. However, MCMC methods are computationally expensive. This issue is exacer-
bated when using GPs, since the large number of latent variables (at least one for each training
instance) and the high correlation that may exist between them in the posterior usually requires
sophisticated and slow MCMC sampling schemes [Titsias et al., 2011]. Moreover, analytical ap-
proximations (such as EP or VB) have obtained excellent results while being significantly faster
[Kuss and Rasmussen, 2006].

In order to approximate the posterior p(z,Θ|Y), VB minimizes the Kullback-Leibler (KL) diver-
gence with respect to a generic probability distribution q(z,Θ):

KL(q(z,Θ)||p(z,Θ|Y)) =
∑

z

∫
q(z,Θ) log

q(z,Θ)

p(z,Θ|Y)
dΘ

=
∑

z

∫
q(z,Θ) log

q(z,Θ)

p(Y, z,Θ)
dΘ + log p(Y).

The KL divergence between two distributions is always non negative, and is zero if and only if they
coincide. Therefore, the optimal distribution q(z,Θ) in the sense of KL divergence minimization



A PREPRINT

is unique and equals the exact p(z,Θ|Y). Interestingly, notice that we do not need to know the real
posterior p(z,Θ|Y) to minimize the KL divergence on q(z,Θ): since log p(Y) does not depend
on q(z,Θ), only the joint distribution in eq. (4) is required.

However, the sigmoids in p(z|f) (recall eq. (1)) prevents us from directly evaluating the KL diver-
gence, since their expectation over a Gaussian cannot be obtained in closed-form. To overcome this
problem, a variational lower bound for the sigmoid is used [Bishop, 2006, Section 10.6]. Namely,
for any ξ > 0, we have σ(f) = (1 + exp(−f))−1 ≥ σ(ξ) exp ((f − ξ)/2− λ(ξ)(f 2 − ξ2)),
where λ(ξ) = (2ξ)−1 (σ(ξ)− 1/2) [Bishop, 2006, Eq. (10.149)]. In our case, this bound yields
p(z|f) ≥ H(z, f , ξ), where

H(z, f , ξ) =
N∏

n=1

σ(ξn) exp

{
fn

(
zn −

1

2

)
− λ(ξn)f 2

n + ξ2
nλ(ξn)− ξn

2

}
.

Plugging this bound into eq. (4), we have the following lower bound for the joint distribution

p(z,Θ,Y) ≥M(z, f ,α,β,Ω,Y, ξ) = p(Y|z,α,β)H(z, f , ξ)p(f |Ω)p(α)p(β)p(Ω),

which in turn produces

KL(q(z,Θ)||p(z,Θ|Y)) ≤ KL(q(z,Θ)||M(z,Θ,Y, ξ)) + const. (6)

Interestingly, notice that H(z, f , ξ) is quadratic in f , which allows us to compute the expectation
over a Gaussian in closed-form. Therefore, we focus now on minimizing (with respect to q(z,Θ))
the analytically tractable right-hand side term in eq. (6), which enforces the left-hand side term
(intractable) to be small too. The price for using this bound is a new set of parameters ξ =
(ξ1, . . . , ξN)T which need to be estimated.

So far, we have used a generic q(z,Θ) for the approximate posterior distribution. However,
VB requires the specification of a particular family, from which the best distribution, in the
sense of KL divergence, will be chosen. In this work we use the popular mean field theory
[Bishop, 2006, Section 10.1], which assumes that the approximated distribution factorizes as
q(z,Θ) = q(z)q(f)q(α)q(β)q(Ω). Let Θ̄ = {z,Θ} be the set Θ expanded with the variable
z. For θ ∈ Θ̄, let us write Θ̄θ = Θ̄\θ for the set Θ̄ minus θ, and q(Θ̄θ) =

∏
η∈Θ̄θ

q(η). Then, for
each θ ∈ Θ̄, it can be shown that the distribution q(θ) that minimizes the KL-divergence is given
by (see [Bishop, 2006, Eq. 10.9] for details)

ln q(θ) = < ln M(z,Θ,Y, ξ)>q(Θ̄θ) + const. (7)

Alternating the estimation of q(z), q(f), q(α), q(β) and q(Ω) leads to an iterative algorithm
where the KL divergence decreases after each iteration. Since it is always a non-negative number,
the convergence is ensured.

To calculate q(z), we deduce from eq. (7) that it factorizes as q(z) =
∏N

n=1 q(zn). Thus, we can
compute each q(zn) separately. Since zn only takes two values, we have

q(zn = 0) ∝
∏

r∈Rn
exp {yrn< log(1− βr)>+ (1− yrn)< log βr>} , (8)

q(zn = 1) ∝ exp(<fn>)
∏

r∈Rn
exp {yrn< logαr>+ (1− yrn)< log(1− αr)>} .

For q(f) we observe that < ln M(z,Θ,Y, ξ)>q(Θ̄f ) cannot be calculated. To avoid this problem,
we assume that q(Ω) is a degenerate distribution. Then, < ln M(z,Θ,Y, ξ)>q(Θ̄f ) becomes a
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Algorithm 1 VGPCR (Variational GP for CRowdsourcing)
Require: X, Y, ξ0 = 1, q0(z), k = 0.
1: repeat
2: Calculate Ωk+1 as the minimizer of eq. (10) using qk(z) and ξk;
3: Update qk+1(f) with eq. (9) using qk(z), ξk, and Ωk+1;
4: Update qk+1(α) and qk+1(β) with eqs. (11)-(12) using qk(z) ;
5: Update qk+1(z) with eq. (8) using qk+1(f). The expectations are calculated with eq. (3) using qk+1(α) and qk+1(β).
6: Calculate ξk+1 with eq. (13) using qk+1(f);
7: k = k + 1;
8: until convergence
9: output q(z,Θ)

quadratic function of f and, therefore, the approximate posterior q(f) is a Gaussian N (f |µf ,Σf ).
Mean and covariance are calculated by taking first and second order derivatives of log q(f) to
obtain:

µf = Σf (<z>− (1/2)) , Σf =
(
K−1 + 2Λ

)−1
, (9)

where Λ = diag(λ(ξ1), . . . , λ(ξN)), and <z> = (q(z1 = 1), . . . , q(zn = 1))T .

Since q(Ω) is a degenerate distribution, we only need the value of Ω where q(Ω) is not zero. For
that, we minimize the following objective function

L(Ω) = ln |K + (2Λ)−1|+ uT (K + (2Λ)−1)−1u, (10)

where u = (1/2) ·Λ−1(<z>− (1/2)). Recall also that K depends on Ω.

To calculate q(α) and q(β), we deduce from eq. (7) that both factorize as q(α) =
∏R

r=1 q(αr)

and q(β) =
∏R

r=1 q(βr). Then we can calculate each q(αr) and q(βr) separately. From eq. (7) we
obtain the following Beta distributions:

q(αr) = Beta

[
αr

∣∣∣∣aα0 +
∑

n∈Nr
<zn>y

r
n, bα0 +

∑

n∈Nr
<zn>(1− yrn)

]
, (11)

q(βr) = Beta

[
βr

∣∣∣∣a
β
0 +
∑

n∈Nr
(1−<zn>)(1− yrn), bβ0 +

∑

n∈Nr
(1−<zn>)yrn

]
. (12)

For ξ we maximize < ln M(Θ,Y,X, ξ)>q(Θ̄) w.r.t. each ξn, which yields

ξn =
√
<fn>2 + Σf (n, n). (13)

The whole estimation procedure is summarized in Algorithm 1. Notice that an initial approximated
posterior for the true labels q0(z) is required. We propose to initialize it with soft majority voting,
that is, q0(zn = 1) is the proportion of annotators that assign label 1 to the sample xn. This
initialization implicitly assumes that most of the annotators are not adversarial. Otherwise, due to
the ambiguity of eq. (2), we would train a classifier predicting the opposite labels.

4 The predictive distribution

Once the model is trained, we are given a new sample x∗ and we need to predict the probability
of each class. In a crowdsourcing problem, we additionally might have access to a set of labels
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y∗ = {yr∗ ∈ {0, 1} : r ∈ R∗ ⊆ {1, . . . , R}} provided by some annotators. To the best of our
knowledge, this plausible scenario has not been addressed before in the crowdsourcing literature.

In our model, the prediction can be naturally obtained as the conditional of the hidden label z∗
given the observed labels y∗ and Y, that is,

p(z∗|y∗,Y) =
∑

z

∫
p(z∗, z, f∗, f ,α,β,Ω|y∗,Y)dΘdf∗ ≈ (14)

const ·
[∫

p(z∗|f∗)
(∫

p(f∗|f)q(f)df

)
df∗

]
·
[∫

p(y∗|z∗,α,β)q(α)q(β)dαdβ

]
.

The GP conditional is p(f∗|f) = N (f∗|hTK−1f , c − hTK−1h), where h =
[k(x1,x∗), k(x2,x∗), . . . , k(xN ,x∗)]T , c = k(x∗,x∗), and K is the kernel matrix in X. Then,
using q(f) = N (f |µf ,Σf ) (recall eq. (9)) we obtain

∫
p(f∗|f)q(f)df = N (f∗|m∗, s2

∗), where
m∗ = hTK−1µf and s2

∗ = c− hT (K + (2Λ)−1)
−1

h.

Substituting back in eq. (14) and using eq. (4.153) in [Bishop, 2006], we obtain the following
predictive distribution for z∗:

p(z∗ = 1|y∗,Y) ∝ σ(κ(s2
∗)m∗)

∏

r∈R∗

<αr>
yr∗
q(αr)

(1−<αr>q(αr))
1−yr∗ , (15)

p(z∗ = 0|y∗,Y) ∝
(
1− σ(κ(s2

∗)m∗)
) ∏

r∈R∗

(1−<βr>q(βr))
yr∗<βr>

1−yr∗
q(βr)

, (16)

where κ(s2
∗) = (1 + πs2

∗/8)−1/2. Notice that this distribution generalizes the case where no infor-
mation is provided by the annotators, that is y∗ = ∅. In such a case, the predictive distribution
for z∗ is the Bernoulli distribution p(z∗|Y) = [σ(κ(s2

∗)m∗)]
z∗ [1− σ(κ(s2

∗)m∗)]
1−z∗ . Finally, a

threshold δ is used on p(z∗ = 1|y∗,Y) to assign the new sample x∗ to C1.

In the next section we will compare our novel crowdsourcing method against current state-of-the-
art approaches. We will observe that the proposed method stands out as the most robust approach
across a wide range of datasets. In particular, we will see that the proposed VB inference is
better suited than EP for GP-based crowdsourcing classifiers. Finally, although the main goal is to
illustrate the performance of the proposed method, we will also examine the behavior, strengths,
and weaknesses of the other methods it is compared with. To some extent, this provides an up-to-
date experimental review of the main crowdsourcing approaches in the literature.

5 Experimental Results

In this section, we provide a comprehensive experimentation that compares the proposed method
with several state-of-the-art approaches on three different types of datasets. First, we make use of
fully synthetic data, where crowdsourcing annotations are synthetically generated for an also syn-
thetic underlying classification dataset. This constitutes a completely controlled framework where
we can check the expected behavior of the compared algorithms. Second, we evaluate the meth-
ods on semi-synthetic data, where the underlying classification dataset comes from a real-world
problem but the crowdsourcing annotations are obtained synthetically. This is an interesting and
popular hybrid setting in crowdsourcing, where we can keep the influence of the real underly-
ing classification dataset apart from the crowdsourced annotations, which remain under control.
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Table 2: The three types of data used in this work.
Fully synthetic Semi-synthetic Fully real

Classif. data set Synthetic Real Real
Annotations Synthetic Synthetic Real

Examples 1D cosine-based Heart Sentence Polarity
Sonar Music Genre

Third, we evaluate the methods on fully real data, where both features and annotations come from
a real problem. This is the most realistic setting for practical applications, although we have no
knowledge about the data generation process. Table 2 summarizes the types of data used in this
work.

The proposed method is referred to as VGPCR (Variational GP for CRowdsourcing). In all the
experiments, VGPCR is compared against the state-of-the-art GP-based crowdsourcing method in
[Rodrigues et al., 2014] (Rodrigues), which utilizes EP as inference procedure. In the comparison
we also include the most straightforward manner to apply a GP to the crowdsourcing setting,
GP-MV, which consists of a standard GP classifier trained with the Majority Voting (MV) labels.
The last GP-based method included in the comparison is a GP classifier trained with the true
labels (GP-GOLD)2. Notice that, intuitively, GP-GOLD and GP-MV provide (respectively) upper
and lower bounds for the GP-based crowdsourcing methods Rodrigues and VGPCR. Finally, to
obtain a more thorough comparison, we include the methods in [Raykar et al., 2010] (Raykar),
and [Yan et al., 2010] (Yan), which are based in LR instead of GP (recall the third paragraph in
Section 1).

If the annotators provide labels for the test set (that is, some y∗ are available), then our method
is referred to as VGPCR∗. As a baseline, we find interesting to compare VGPCR* with the most
straightforward way to predict with the test set annotations, which we refer to as MV*, and whose
predictions are based only on these annotations (no training step is needed). A brief summary of
all the algorithms used in the experiments is provided in Table 3.

The predictive performance of the methods is compared using two popular metrics: the area under
the ROC curve (AUC), and the overall accuracy (OA), which is calculated for the threshold δ =
1/2. Moreover, in order to compare the computational cost, the CPU time needed to train each
method is also provided.

We implemented VGPCR(∗), Raykar, Yan, and GP-classification (necessary for GP-GOLD and
GP-MV) in Matlab©, whereas a Matlab© implementation for Rodrigues can be downloaded from
his website http://www.fprodrigues.com. All the code and datasets are available at http:
//decsai.ugr.es/vip/software.html. The experiments were run on the same machine Intel©

Xeon© E5-4640 @ 2.40GHz.

5.1 Fully synthetic data

In this section we compare the performance of the methods with a controlled one-dimensional
example. Figure 2a) shows the underlying synthetic classification dataset used. The features are
uniformly sampled in the interval [−π, π]. The real labels are assigned according to the sign

2Clearly, GP-GOLD can only be trained if there are real labels available for the training set. Of course, this is not common in a
real crowdsourcing application (otherwise it could be cast as a standard classification problem). However, in the two real datasets
used here the true labels are also provided in order to compare with GP-GOLD.
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Table 3: An overview of the methods compared in the experiments. From top to bottom, the thick
horizontal lines separate non-crowdsourcing methods (GP-GOLD), crowdsourcing algorithms that
do not use test set annotations, and approaches that do use them.

Algorithm Description

GP-GOLD Intuitive upper bound for the GP-based crowdsourcing methods.
Trains a GP with the real labels (it is not a crowsourcing algorithm).

GP-MV Simplest way to apply GP to crowdsourcing (intuitive lower bound).
Trains a GP with the majority voting labels.

Rodrigues State-of-the-art GP-based crowdsourcing method proposed in [Rodrigues et al., 2014].
EP inference is used.

VGPCR GP-based crowdsourcing method proposed here.
Variational inference is used.

Raykar Based on logistic regression. EM for inference. Proposed in [Raykar et al., 2010].
First probabilistic model for crowdsourcing.

Yan Based on logistic regression. EM for inference. Proposed in [Yan et al., 2010].
Annotators parameters depend on the instance they label.

MV* Simplest (naive) way to use test set annotations for prediction.
It does not need a training step.

VGPCR* Straightforward extension to VGPCR. Proposed here.
Probabilistically integrates test set annotations in the prediction.

-π -π/2 0 π/2 π

-1

0

1
Labels using a cosine function

-π -π/2 0 π/2 π
0

1
Annotator 1. α = 0.9, β = 0.6

Correct
Not Correct

a) b)

-π -π/2 0 π/2 π
0

1
Annotator 2. α = 0.7, β = 0.8

Correct
Not Correct

-π -π/2 0 π/2 π
0

1
Annotator 3. α = 0.8, β = 0.5

Correct
Not Correct

c) d)

-π -π/2 0 π/2 π
0

1
Annotator 4. α = 0.1, β = 0.2

Correct
Not Correct

-π -π/2 0 π/2 π
0

1
Annotator 5. α = 0.9, β = 0.8

Correct
Not Correct

e) f)
Figure 2: a) Original data set labeled using sign of cosine function. b) - f) Labels provided by
annotators 1,2,3,4 and 5 respectively.

of the cosine function on each sample: class C1 (resp. class C0) if the cosine is positive (resp.
negative). Then, we simulate R = 5 annotators by fixing the values of sensitivity and specificity
to α = {0.9, 0.7, 0.8, 0.1, 0.9} and β = {0.6, 0.8, 0.5, 0.2, 0.8}, respectively. That is, if the true
label of the n-th sample is zn = 1 (resp. zn = 0), the r-th annotator assigns it to class C1 (resp. C0)
with probability αr (resp. βr). In Fig. 2 (b-f) we show the labels assigned by each annotator. As
expected from the values of α and β, annotators 1, 2, 3, and 5 make fewer mistakes than annotator
4, who assigns most samples to the opposite class (it has an adversarial behavior).

The experiment is repeated 10 times with different training sets of 100 samples (50 of each class).
In each realization we also generate a uniformly sampled test set with 200 instances (100 each
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Table 4: Predictive performance of the compared methods for the 10 realizations of the fully
synthetic experiment. The best mean performance among the crowdsourcing methods that do not
use test set annotations (central columns) is bolded.

GP-GOLD GP-MV Rodrigues VGPCR Raykar Yan MV* VGPCR*
Rea. AUC OA% AUC OA% AUC OA% AUC OA% AUC OA% AUC OA% AUC OA% AUC OA%

1 1.0000 100.00 0.9978 68.00 1.0000 100.00 1.0000 99.50 0.5800 50.00 0.5800 79.00 0.8520 77.00 1.0000 100.00
2 1.0000 98.50 1.0000 84.50 1.0000 98.50 1.0000 98.50 0.4400 50.00 0.5600 57.00 0.8572 78.00 0.9998 99.00
3 1.0000 100.00 1.0000 64.50 1.0000 100 1.0000 99.50 0.4200 50.00 0.7695 75.50 0.7836 76.00 1.0000 100.00
4 0.9998 98.50 0.9987 94.50 1.0000 94.50 1.0000 96.50 0.5000 50.00 0.5000 50.00 0.8357 75.50 1.0000 100.00
5 1.0000 99.00 0.9934 90.50 0.9965 94.50 0.9984 97.00 0.4700 50.00 0.5654 71.00 0.8435 79.00 1.0000 99.50
6 1.0000 100.00 0.9971 91.00 1.0000 100 1.0000 100.00 0.5100 69.00 0.7403 75.00 0.8261 77.00 1.0000 99.00
7 1.0000 99.00 0.9974 96.00 0.9993 98.00 0.9996 98.00 0.5700 76.00 0.6267 71.50 0.8171 76.50 1.0000 99.50
8 0.9990 97.50 0.9928 94.00 0.9972 95.50 0.9983 97.50 0.5500 46.50 0.7435 75.00 0.8436 77.00 0.9997 98.50
9 1.0000 99.50 0.9895 91.00 0.9997 98.00 1.0000 99.50 0.5100 41.50 0.5100 68.00 0.8368 78.50 1.0000 99.50

10 1.0000 98.00 0.9970 78.50 0.9999 98.00 0.9999 96.50 0.4900 50.00 0.7450 73.00 0.8419 79.50 1.0000 99.50

Mean 0.9999 99.00 0.9964 85.25 0.9993 97.70 0.9996 98.25 0.5040 53.30 0.6340 69.50 0.8337 77.40 1.0000 99.45

class). Moreover, test set annotations are also simulated in order to apply the MV* and VGPCR*
algorithms.

Table 4 shows the predictive performance of all the methods for the 10 realizations. Let us focus
first on the five crowdsourcing algorithms that do not use the test set annotations (i.e., the central
columns of the table). The results show two clear groups: those based on GP (GP-MV, Rodrigues,
VGPCR), whose results are competitive with GP-GOLD, and those that use LR (Raykar, Yan),
whose performance is really poor. This is a reasonable behavior if we take into account that LR
decision boundaries are hyperplanes, i.e., one point in this 1-D example. This is clearly insufficient
to deal with our training dataset, where C0 has two disconnected parts with C1 in the middle (recall
fig. 2a)).

Among the LR-based algorithms, we observe that Yan performs considerably better than Raykar.
This means that Yan’s feature-dependent model for the annotations is, to some extent, helping
to compensate for the insufficient LR model. It is worth noting that the mean result for Raykar is
hardly above a random guess (around 0.5 of AUC and OA). This LR deficiency is clearly overcome
by the GP-based methods, which manage to effectively separate the classes by using a non-linear
kernel that allows for more complex decision boundaries (SE kernel in this work, recall Section
2). Among the GP-based methods, the proposed VGPCR obtains the best result, followed closely
by Rodrigues. Notice that GP-MV is very close to them in AUC but not in OA, which implies that
the threshold δ = 1/2 is not the most appropriate one for class prediction in GP-MV (although
the classes are well-separated by some other threshold). Nonetheless, this simple 1-D example
turns out to be too easy for the GP-based methods, and further differences will be appreciated in
subsequent experiments.

It is also interesting to check that, as theoretically intuited, Rodrigues and VGPCR performances
are upper and lower bounded by GP-GOLD and GP-MV, respectively. Moreover, the differences
with GP-GOLD are almost insignificant, which means that the crowdsourcing methods are able
to extract from the noisy annotations almost the same information as a full GP does from the true
labels.

Let us now concentrate on the methods that use test set annotations (MV* and VGPCR*). The latter
reaches mean AUC and OA of 1.0000 and 99.45% respectively, and manages to totally separate
the classes in 8 out of the 10 realizations. These results are better than those obtained by VGPCR,
which supports the idea that crowdsourcing methods can benefit from the probabilistic integration
of test set annotations if available. Moreover, notice that VGPCR* even outperforms GP-GOLD
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Table 5: Estimated values of sensitivity and specificity for the five annotators in the fully synthetic
experiment. Only those methods that include these parameters in their formulation are shown. The
values are the mean over the 10 realizations.

Annotator Original Raykar Rodrigues VGPCR
α β α β α β α β

1 0.9 0.6 0.8910 0.6340 0.8183 0.5433 0.8993 0.6128
2 0.7 0.8 0.6855 0.8410 0.6058 0.7461 0.6828 0.8119
3 0.8 0.5 0.7916 0.4880 0.7607 0.4487 0.8019 0.4837
4 0.1 0.2 0.1362 0.1793 0.2081 0.2724 0.1015 0.1823
5 0.9 0.8 0.8908 0.8168 0.7986 0.6920 0.9042 0.7816

(and this will be also the case in subsequent experiments). In fact, this is expected when the
annotations generation process follows the one proposed in the model (like in the synthetic and
semi-synthetic experiments) and the sensitivity and specificity parameters (α, β) are correctly
estimated in the training step (as we will check in the following paragraph). In that case, test
annotations are a very valuable source of information for VGPCR*, as they directly depend on the
true test label through α and β. This has an interesting practical implication in real problems: as
long as the crowdsourcing annotation model is representative for the data at hand, it is more useful
to collect non-experts opinions for test instances than to collect expert true labels for train ones.
Regarding MV*, its performance is clearly below VGPCR*. This is reasonable since MV* does not
consider any probabilistic model for the annotations, and thus it is very sensitive to the presence
of noise in them (indeed, it performs better as α,β → 1, i.e., when the noise decreases and the
annotations themselves become very representative of the underlying true labels).

Finally, Table 5 shows the estimated values of sensitivity and specificity for the models that include
them in their formulation (i.e., Rodrigues, VGPCR, and Raykar, since Yan uses a more complex
feature-dependent model). The proposed VGPCR method obtains the most accurate estimations: a
maximum absolute difference of 0.0184, whereas it is 0.0410 for Raykar and 0.1081 for Rodrigues
(in next Section 5.2 we will analyze the difficulties of Rodrigues to estimate α and β). As stated in
the previous paragraph, these reliable estimations of α/β in VGPCR imply that VGPCR* greatly
benefits from test annotations. Moreover, the estimations of VGPCR for annotator 4 are quite
accurate, which means that it has been able to recognize its adversarial behavior (Rodrigues and
Raykar also detect it, although less accurately, especially Rodrigues). Finally, we stress that the
poor performance reported for Raykar in Table 4 does not come from a wrong estimation of α or
β, but from the underlying LR modeling.

For this simple synthetic experiment, CPU training time is not reported, since all values are very
similar (there are only 100 training 1-D instances).

5.2 Semi-synthetic data

In this section we follow an analogous experimental approach as before, but focusing on two more
complex semi-synthetic datasets. This allows us to gain additional insight into the behavior of the
compared methods. In particular, we observe that the proposed method VGPCR (and VGPCR∗)
stand out as the most effective and robust crowdsourcing approaches across the two experiments.
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5.2.1 Heart dataset

This database, also known as Heart Disease, is a popular real classification problem donated by
the Cleveland Clinic Foundation to the UCI Machine Learning repository, see http://archive.
ics.uci.edu/ml/datasets/Heart+Disease. The goal is to predict the presence or absence
(i.e., binary problem) of heart disease in the patient. For that, it contains 13 relevant explanatory
variables (features), such as age, resting blood pressure, and maximum heart rate. After discarding
6 instances with missing features, the final dataset contains 297 samples (137 with disease and 160
without it).

With this real underlying classification problem, we simulate R = 5 crowdsourcing annotators
with the same sensitivity and specificity values as before, i.e., α = {0.9, 0.7, 0.8, 0.1, 0.9} and
β = {0.6, 0.8, 0.5, 0.2, 0.8}. Notice that the crowdsourcing setting is very appropriate for this
medical domain, where different doctors (annotators) may have different opinions (annotations)
about the presence/absence of heart disease based on the 13 provided features. The adversarial
behavior of annotator 4 represents the meddling of a non-expert annotator who is confusing both
classes. We will see that crowdsourcing methods are able to identify this type of undesirable
annotator, and take advantage of their opinions in light of their degree of expertise.

To average the results over different runs, we consider 10 independent random train/test partitions
with 208/89 instances respectively. The results are shown in Table 6 and Figure 3. The table con-
tains the AUC and OA mean values for both the test and train datasets. Moreover, it shows the
mean CPU time needed to train each method. In the figure we focus on two of these quantities,
analyzing the trade-off between generalization capability (in terms of test AUC) and computa-
tional cost (in terms of CPU train time). The figure does not include the methods that use test set
annotations. Moreover, the figure displays plus/minus one standard deviation of the shown mean
quantities. Finally, Table 7 presents the estimated specificity and sensitivity values.

Table 6: Results in the heart semi-synthetic dataset. Test and train performances (in terms of AUC
and OA) and the CPU time needed to train each method are provided. The results are the mean
over the 10 runs. The best generalization (test) performance among the crowdsourcing methods
that do not use test set annotations (central rows) is bolded.

Methods Test set Train set CPU time (s)AUC OA% AUC OA%
GP-GOLD 0.8898 81.91 0.9349 86.25 120.65

GP-MV 0.8633 69.33 0.9133 75.91 46.36
Rodrigues 0.8239 78.09 0.9827 93.46 913.06
VGPCR 0.8870 82.02 0.9298 86.20 29.21
Raykar 0.8853 80.34 0.9287 86.01 0.54

Yan 0.7396 63.37 0.7944 72.69 625.06

MV* 0.8211 74.04 0.8350 76.88 0
VGPCR* 0.9921 95.62 0.9935 96.30 29.21

We observe that, among the five crowdsourcing methods, the proposed VGPCR gets the best gen-
eralization (test) performance in both AUC and OA. In fact, in the latter metric it even outperforms
GP-GOLD, which is trained with the true labels. This means that our method is making the most
of the noisy labels that is provided with, reaching the level of its intuitive upper bound. Table 7 also
supports that VGPCR is able to accurately figure out the model that generates the annotations. The
estimated values for α and β are very close to the true original ones (better than those obtained by
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Figure 3: Trade-off between generalization capability (in terms of test AUC) and computational
cost (in terms of CPU train time) in the heart dataset. For each method, the mean plus/minus one
standard deviation is shown. The color indicates the family of the algorithm, i.e. yellow for the
non-crowdsourcing method GP-GOLD, blue for the GP-based crowdsourcing methods, and red
for the LR-based ones. Notice also the logarithmic scale in the y-axis.

Table 7: Estimated values of sensitivity and specificity for the five annotators in the heart semi-
synthetic experiment. Only those methods that include these parameters in their formulation are
shown. The values are the mean over the 10 realizations.

Annotator Original Raykar Rodrigues VGPCR
α β α β α β α β

1 0.9 0.6 0.8862 0.6070 0.7058 0.4417 0.8901 0.6065
2 0.7 0.8 0.7052 0.7995 0.5144 0.6310 0.7123 0.8021
3 0.8 0.5 0.8151 0.4772 0.7151 0.3821 0.8177 0.4772
4 0.1 0.2 0.1065 0.1789 0.3808 0.4259 0.1006 0.1790
5 0.9 0.8 0.8807 0.7834 0.6271 0.5554 0.8904 0.7877

Rodrigues and similar to Raykar’s). In particular, it manages to detect the adversarial behavior of
annotator 4. Moreover, it obtains the second shortest CPU train time, 29.21 s.

Regarding its GP-based competitors, the intuitive lower bound GP-MV exhibits a worse predictive
capacity, as expected. The behavior of Rodrigues is, however, more surprising and worth analyz-
ing. Rodrigues obtains quite poor test performance, far from GP-GOLD, VGPCR, and even its
supposed lower bound GP-MV. The key is given by its performance in the training set. There,
we observe that Rodrigues is fitting very well the training instances (e.g. 0.9827 of train AUC),
much better than the rest of algorithms (even GP-GOLD). This is the so-called over-fitting prob-
lem, which happens when a machine learning method fits the training data too faithfully, at the
expense of its generalization capability. It is also worth pointing that Rodrigues is the most com-
putationally heavy method (and with a reduced standard deviation, see Figure 3). We will see that
this inefficiency of the EP inference is recurrent across all experiments, and in Section 5.3.1 we
will analyze it in more detail. In the comparison with VGPCR, it is also interesting to note that
the α and β estimates provided by Rodrigues are clearly less accurate than those obtained by the
proposed method, see Table 7. From a practical viewpoint, this means that Rodrigues faces diffi-
culties to identify the annotators reliability, which is a very relevant information for the user. We
hypothesize that all this enhancement is due to the two main differences between Rodrigues and
VGPCR: the use of variational inference and the more refined modeling of the annotators. In sub-
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sequent experiments, we will further support this idea and analyze some other subtle differences
in the modeling of VGPCR and Rodrigues.

Next, let us analyze the results of the LR-based methods. Interestingly, the simpler model of
Raykar obtains an excellent test performance, very close to the GP-based VGPCR and even GP-
GOLD. This suggests some latent linear structure in the heart dataset. Otherwise, as we saw in the
fully synthetic experiment, the LR hyperplanes could not produce as good results as the more com-
plex GP boundaries. In order to confirm this linearity in the underlying heart dataset, we trained
a standard LR classifier with the true labels (following the same scheme as for the GP-based GP-
GOLD). As expected, the mean test AUC is 0.8884, almost the same as GP-GOLD (recall Table
6). Moreover, Raykar’s estimations for α and β are quite accurate (Table 7), and its computational
cost is insignificant (it is the fastest method). Therefore, it could be stated that, in this close-to-
linear dataset, the LR-based Raykar gets the best trade-off between predictive performance and
computational cost. Even better than the proposed GP-based VGPCR (see Figure 3). This sup-
ports the common practice in Machine Learning that, when data is simple, a good model does not
need to be a complicated one. However, in the remaining experiments we will find more complex
datasets where Raykar cannot keep up with the level of the proposed VGPCR.

On the other hand, in spite of the aforementioned linearity, Yan obtains a very poor (the worst) test
performance in this dataset. This must be a consequence of its more complex feature-dependent
model for the annotations, which makes the convergence at the training step more challenging.
This is reflected in the large standard deviations exhibited by Yan in Figure 3, which show that
different runs have converged to very different parameters, leading to very heterogeneous results3.
Moreover, recall that the synthetic generation process used for the annotations does not depend on
the features. Therefore, this scenario seems more favorable to Raykar, and it will be convenient to
compare both methods in the fully real datasets.

Regarding the methods that use test set annotations, the conclusions are the same as in the previous
section. Again, VGPCR* obtains an almost perfect separation between classes, which is mainly
caused by the accurate estimation of α and β (recall Table 7). We also observe that the baseline
MV* is not competitive against VGPCR*, as it is very sensitive to the noisy labels. Recall that MV*
does not need a training step (therefore, its CPU train time is 0).

5.2.2 Sonar dataset

This database, also known as Sonar, Mines vs Rocks, is a real classification problem donated by
R.P. Gorman and T.J. Sejnowski to the UCI Machine Learning repository, see http://archive.

ics.uci.edu/ml/datasets/connectionist+bench+(sonar,+mines+vs.+rocks). The goal
is to distinguish between rocks and mines (metal cylinders) by analyzing the sonar signals bounced
off these materials. The features are 60 numbers in the range [0, 1], where each number represents
the energy within a particular frequency band. The dataset includes 208 records, 97 samples cor-
respond to rocks and 111 to mines. For this real underlying classification problem, we simulate
R = 5 crowdsourcing annotators with the same sensitivity and specificity values as before, i.e.,
α = {0.9, 0.7, 0.8, 0.1, 0.9} and β = {0.6, 0.8, 0.5, 0.2, 0.8}.

3In particular, we observed that the surprisingly high mean training CPU time for Yan is mainly caused by 2 of the 10 runs,
which really struggled to converge. Without them, the mean would be 26.14 seconds, more in accordance with the other LR-based
Raykar.
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To average the results over different runs, we consider 10 independent random train/test partitions
with 146/62 instances. As in the heart dataset, the results are shown in Table 8 and Figure 4.
The table contains the AUC and OA mean values in both the test and train datasets. Moreover, it
shows the mean CPU time needed to train each method. The figure analyzes the trade-off between
generalization capability (test AUC) and computational cost (CPU train time). Finally, Table 9
shows the estimated specificity and sensitivity values.

Table 8: Results in the sonar semi-synthetic dataset. Test and train performances (in terms of AUC
and OA) and the CPU time needed to train each method are provided. The results are the mean
over the 10 runs. The best generalization (test) performance among the crowdsourcing methods
that do not use test set annotations (central rows) is bolded.

Methods Test set Train set CPU time (s)AUC OA% AUC OA%
GP-GOLD 0.9043 80.16 0.9901 94.32 98.09

GP-MV 0.7779 60.97 0.8822 71.51 34.05
Rodrigues 0.8574 71.77 0.9843 91.10 153.67
VGPCR 0.8668 74.84 0.9680 89.59 172.09
Raykar 0.6974 65.65 0.9115 88.08 52.65

Yan 0.6592 57.58 0.7698 75.41 228.72

MV* 0.8452 77.42 0.8449 77.60 0
VGPCR* 0.9890 94.19 0.9851 93.15 172.09
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Figure 4: Trade-off between generalization capability (in terms of test AUC) and computational
cost (in terms of CPU train time) in the sonar dataset. For each method, the mean plus/minus one
standard deviation is shown. The color indicates the family of the algorithm, i.e. yellow for the
non-crowdsourcing method GP-GOLD, blue for the GP-based crowdsourcing methods, and red
for the LR-based ones. Notice also the logarithmic scale in the y-axis.

We observe again that VGPCR obtains the best generalization performance among the five crowd-
sourcing methods that do not use test set annotations (in both test AUC and test OA). Moreover,
it clearly obtains the most accurate estimations of specificity and sensitivity: the maximum abso-
lute difference in Table 9 is 0.0266 for VGPCR, whereas it is 0.1081 for Raykar and 0.3039 for
Rodrigues. The training CPU time is similar to the one obtained by Rodrigues (the only crowd-
sourcing method that is competitive with it in test performance).

Let us analyze the results for the LR-based methods, which will again shed some light on the
internal structure of the underlying classification dataset. As opposed to the heart dataset, here
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Table 9: Estimated values of sensitivity and specificity for the five annotators in the sonar semi-
synthetic experiment. Only those methods that include these parameters in their formulation are
shown. The values are the mean over the 10 realizations.

Annotator Original Raykar Rodrigues VGPCR
α β α β α β α β

1 0.9 0.6 0.8889 0.7081 0.6768 0.4374 0.8734 0.6244
2 0.7 0.8 0.6786 0.8548 0.4890 0.6221 0.7027 0.8167
3 0.8 0.5 0.8215 0.5296 0.7003 0.3717 0.8051 0.4761
4 0.1 0.2 0.2054 0.2580 0.3922 0.4850 0.0961 0.2079
5 0.9 0.8 0.8359 0.8253 0.5961 0.5334 0.8815 0.7997

the test results for Raykar (and Yan) are distinctly worse than those for the GP-based methods
(specially the more elaborated VGPCR and Rodrigues, see Figure 4, which clearly shows that
blue points are to the right of red ones in the x-axis). This suggests that this sonar database is
not as linearly-separable as the one before. Again, this can be confirmed by training a standard
LR classifier with the true labels. Indeed, it obtains a mean test AUC value of 0.7546, very far
from the more complex decision boundary of GP-GOLD (0.9043, see Table 8). Notice also that
this LR classifier is an intuitive upper bound for the LR-based crowdsourcing methods (just as
GP-GOLD is for the GP-based ones). This is in accordance with the test AUC values obtained
by Raykar and Yan (0.6974 and 0.6592, respectively), which are below 0.7546. Regarding the
comparison between them, Yan is again significantly outperformed by Raykar, which is also much
faster. The justification is as before: Yan’s feature-dependent model is too complex for the simple
generation process of the annotations, which follows the simpler model of Raykar. This makes the
convergence more difficult for Yan, whereas Raykar logically gets pretty good estimations of α
and β (see Table 9).

The behavior of the GP-based methods is the expected one. Unlike in the heart dataset, where it
suffered over-fitting, here Rodrigues (and also VGPCR) exhibit better predictive performance than
their intuitive lower bound GP-MV. They are also upper bounded by their natural limit GP-GOLD.
Interestingly, we see that the difference here between GP-GOLD and GP-MV (in test AUC and
OA) is significantly larger than in heart. This is connected with the aforementioned non-linearity
of the dataset: a close-to-linear boundary can be well identified with low-quality labels, but a
complex one needs more accurate data.

The two GP-based methods VGPCR and Rodrigues present a very similar trade-off between pre-
dictive performance and computational cost (Figure 4). However, the estimations of α and β are
much poorer for Rodrigues. In principle this is certainly surprising, because the formulas that de-
fine α and β in this work (recall eqs. (11)-(12)) are the same as in Rodrigues (see eqs. (8)-(10) in
[Rodrigues et al., 2014])4. There are two explanations for this: 1) the treatment of the latent vari-
able z (which appears in the formulas for α and β), and 2) the modeling of α and β themselves.
The first one is pretty subtle but very relevant, and refers to the fact that z is integrated out from the
beginning in the model of [Rodrigues et al., 2014] whereas it is included in our model as a latent
variable. That allows us to compute sounder estimates for z, which is the basis of the α and β
update formulas. The second one is clearer, as our posterior distributions over α and β account
for the uncertainty in the model (whereas the point estimates in [Rodrigues et al., 2014] do not).

4More precisely, recall that we model α and β as stochastic variables whereas they are treated as parameters in
[Rodrigues et al., 2014]. Thus, it is the mean of the beta distributions in eqs.(11)-(12) what equals the formulas in
[Rodrigues et al., 2014].
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Table 10: Examples of positive and negative samples in Sentence Polarity dataset.
Sentence True Label

“An original gem about an obsession with time.”
“positive”“A taut, intelligent psychological drama.”

“Clever, brutal and strangely soulful movie.”
“This is amusing for about three minutes.”

“negative”“The film can depress you about life itself.”
“The pool drowned me in boredom.”

The conclusions for the methods that make use of the test annotations is the same as in the heart
dataset: VGPCR* obtains extraordinarily good results thanks to the accurate estimation of α and
β, whereas MV* is not competitive with it because it does not model the noise in the annotations.

5.3 Fully real data

In this section we compare the performance of VGPCR and its competitors on two real crowd-
sourcing datasets. True labels for the training instances are provided by the datasets contributors.
This allows us to compare also with GP-GOLD. However, no test annotations y∗ are provided, so
VGPCR* and MV* are not included in this section. The obtained results support that the novel
VGPCR is also the most competitive approach in these practical applications.

5.3.1 Sentence Polarity dataset

The Sentence Polarity dataset first was presented by Pang and Lee [Pang and Lee, 2005]. It consists
of 10427 sentences extracted from movie reviews in “Rotten Tomatoes” website http://www.

rottentomatoes.com/. The goal is to decide whether a sentence corresponds to a “positive” or
“negative” review. In Table 10 we show six sentences in the dataset. Preprocessing and feature
extraction were carried out by Rodrigues et al. [Rodrigues et al., 2013], which resulted in feature
vectors with 1200 components. The dataset is divided into train and test sets, with 4999 and 5428
samples, respectively. To obtain crowdsourcing labels, the train set was made available in Amazon
Mechanical Turk. A total amount of 27746 labels were obtained from 203 different annotators.

Results are shown in Table 11 and Figure 5. The table contains the AUC and OA for both test
and train datasets. Moreover, it shows the CPU time needed to train each method. The figure
analyzes the trade-off between generalization capability (test AUC) and computational cost (CPU
train time). Finally, Figure 6 shows the estimated specificity and sensitivity values.

Table 11: Results in the Sentence Polarity fully real dataset. Test and train performances (in terms
of AUC and OA) and the CPU time needed to train each method are provided. The results are
the mean over the 10 runs. The best generalization (test) performance among the crowdsourcing
methods is bolded.

Methods Test set Train set CPU time (s)AUC OA% AUC OA%
GP-GOLD 0.8037 73.07 0.9130 83.76 3.3089140× 104

GP-MV 0.7932 72.03 0.8706 79.22 2.9595670× 104

Rodrigues 0.7815 72.07 0.9415 89.44 1.0685530× 104

VGPCR 0.8000 72.53 0.8861 81.32 3.9638080× 104

Raykar 0.7141 68.22 0.9100 90.68 1.8156210× 104

Yan 0.7530 69.45 0.8974 84.28 1.4089233× 105
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Figure 5: Trade-off between generalization capability (test AUC) and computational cost (CPU
train time) in the Sentence Polarity dataset. The color denotes the family of the algorithm: yellow
for the non-crowdsourcing method GP-GOLD, blue for the GP-based crowdsourcing methods, and
red for the LR-based ones. Notice the logarithmic scale in the y-axis.
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Figure 6: Sensitivity α (left) and specificity β (right) estimations for the 203 annotators in the
Sentence Polarity dataset. Only those methods that include these parameters in their formulation
are shown. For a clearer display, in each figure the annotators are arranged in ascending order of
the VGPCR estimated value.

Again, VGPCR is the best crowdsourcing method in terms of predictive performance (0.8 of AUC
and 72.53% of OA). These values place the proposed method really close to its natural upper bound
GP-GOLD (0.8037 of AUC and 73.07% of OA). As expected, it is also lower bounded by GP-MV.

It is important here to analyze the behavior of Rodrigues. Although it is below its intuitive lower
bound GP-MV (it is clearly suffering from over-fitting, see its high training performance), its
generalization capability is not very far from VGPCR, and it seems that it might be the method
of choice in certain applications because it is around four (resp. three) times faster than VGPCR
(resp. GP-MV). This low computational cost (the lowest in this dataset) seems certainly surprising,
since the EP inference is quite expensive (as both semi-synthetic experiments have shown). The
key is that, in this application, the code provided by the authors fixes the kernel hyperparameters
from the beginning5, and they are not estimated during training (which is the most time-consuming

5Specifically, the length-scale l is fixed to 1.5 and the variance γ to 1.3 (recall Section 2).
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step). However, the other two GP-based methods do estimate them. Therefore, the CPU training
costs should not be compared. If we fix the kernel hyperparameters of VGPCR to its previously
estimated values, then its CPU training time falls down to 2.1312 × 103 seconds (around 5 times
less than Rodrigues), whereas its predictive performance remains unchanged.
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Figure 7: Mean CPU time in
three runs of Rodrigues. The
x-axis shows the number of
training samples.

The problem is that, because of the EP inference procedure, esti-
mating the kernel hyperparameters with Rodrigues in this dataset
(4999 training instances) is computationally prohibitive. Indeed,
Figure 7 shows the experimental CPU time needed to train Ro-
drigues (including the hyperparameters estimation) with increas-
ingly larger subsets of the original set. The rapid growth makes
training with n = 4999 instances infeasible. Interestingly, the
theoretical complexity of each EP iteration is O(n3), the same as
the variational inference used here. However, EP usually requires
many more iterations for convergence, and that makes it computa-
tionally heavier in practice.

Regarding the estimation of specificity and sensitivity, Figure 6
shows very similar estimations for VGPCR and Raykar, whereas
Rodrigues deviates from this common tendency. This is in accor-
dance with all the previous experiments, where Rodrigues estima-
tions were less reliable. The reasons behind this were analyzed in
Section 5.2.2.

Figure 5 shows a clear separation between GP- and LR-based methods in the x-axis (i.e., the
generalization capability). As explained in Section 5.2, this may reveal a non-linear underlying
structure in the dataset.

Finally, as opposed to the semi-synthetic datasets, notice that Yan significantly outperforms Raykar
here. This is in accordance with the fact that the annotations generation process does not neces-
sarily imitate Raykar’s one in this real dataset, and the feature-dependent model of Yan seems to
adapt well. However, this is at the expense of a really heavy training step, being the only method
(together with Rodrigues) beyond 105 seconds of CPU train time.

5.3.2 Music Genre dataset

In this experiment we use the Music Genre dataset presented in [Tzanetakis and Cook, 2002],
which consists of 1000 fragments (30 secs. length) of songs. The goal is to distinguish between
10 music genres: classical, country, disco, hiphop, jazz, rock, blues, reggae, pop, and metal. We
use an one-vs-all strategy to address this multi-class classification problem, and the results are
averaged over the 10 experiments.

For preprocessing and feature extraction, the authors in [Rodrigues et al., 2013] used Marsyas mu-
sic information tool (http://marsyas.info/) to extract 124 features from the original dataset.
These features include relevant technical metrics such us means and variances of timbral features,
time-domain zero-crossings, spectral centroid, rolloff, flux, and Mel-Frequency Cepstral Coeffi-
cients (MFCC).
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Table 12: Results in the Music Genre fully real dataset. Test and train performances (in terms
of AUC and OA) and the CPU time needed to train each method are provided. The results are
the mean over the 10 runs. The best generalization (test) performance among the crowdsourcing
methods is bolded.

Methods Test set Train set CPU Time (s)AUC OA% AUC OA%
GP-GOLD 0.9426 94.60 0.9713 95.69 3.283342× 103

GP-MV 0.8865 91.50 0.8809 91.89 2.170080× 103

Rodrigues 0.8795 85.43 0.9429 92.16 6.520268× 103

VGPCR 0.9152 92.70 0.9259 93.70 1.712601× 103

Raykar 0.8806 90.40 0.9414 95.84 7.201810× 102

Yan 0.8614 91.90 0.8913 93.96 1.088944× 103

The dataset contains 100 samples from each genre, which were randomly divided in 70 samples for
training and 30 for testing. Crowdsourcing labels were obtained with Amazon Mechanical Turk.
Each annotator listened to a subset of fragments and labeled them as one of the ten genres listed
above. A total amount of 2945 labels were provided by 44 different annotators.

The results are shown in Table 12 and Figure 8. The table contains the AUC and OA for both
test and train datasets. Moreover, it shows the CPU time needed to train each method. The figure
analyzes the trade-off between generalization capability (test AUC) and computational cost (CPU
train time). Finally, Figure 9 shows the estimated specificity and sensitivity values.
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Figure 8: Trade-off between generalization capability (test AUC) and computational cost (CPU
train time) in the Music Genre dataset. The color indicates the family of the algorithm: yellow for
the non-crowdsourcing method GP-GOLD, blue for the GP-based crowdsourcing methods, and
red for the LR-based ones. Notice the logarithmic scale in the y-axis.

Once more, the novel VGPCR exhibits the best generalization capability, keeping a considerable
distance with the next one (GP-MV). Moreover, VGPCR is also the fastest among the GP-based
methods. This implies an unbeatable trade-off in Figure 8. Furthermore, as theoretically expected,
its performance lies between that of GP-GOLD and GP-MV.

As opposed to the previous experiment, Rodrigues is now the most computationally expensive
method (around three times more than the next one, GP-MV). This difference is due to the fact that
the kernel hyperparameters are estimated during the training step. Test performance for Rodrigues
is clearly below VGPCR, being only competitive with GP-MV. This is due to over-fitting (see
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Figure 9: Sensitivity α (left) and specificity β (right) estimations for the 44 annotators in the Music
Genre dataset. Only those methods that include these parameters in their formulation are shown.
For a clearer display, in each figure the annotators are arranged in ascending order of the VGPCR
estimated value.

its high training performance in comparison with the test one), and the very poor estimation of
sensitivity/specificity (see Figure 9). In turn, as explained in Section 5.2, these follow from a less
subtle modeling (marginalization of z, point estimates for α and β) and the use of a different
inference approach.

Once more, Figure 9 shows similar estimates for VGPCR and Raykar, whereas Rodrigues exhibits
a quite bizarre behavior with almost constant estimates. This definitely confirms its difficulties for
calculating α and β. In this particular case, the problem may come from the unbalanced setting
(recall the one-vs-all strategy, which implies a 90%-10% balance between negative and positive
classes). In fact, Rodrigues is the only method with test OA below 90%, which would be the OA
for a naive classifier that assigns every instance to the majority class.

In the comparison between GP- and LR-based methods, the x-axis of Figure 8 does not show a
clear separation in predictive performance. This suggests that linear boundaries may be represen-
tative for the classes of this set. Indeed, notice that both families are much better separated in the
y-axis. Interestingly, this is precisely connected with the aforementioned underlying linear struc-
ture, which allows for a fast convergence of the LR-based methods. The same behavior could be
appreciated in the close-to-linear heart set, recall Figure 3.

Regarding the LR-based methods, Raykar and Yan obtain similar results (the former performs
better with respect to AUC and the latter with respect to OA). However, the complex modeling of
Yan makes it computationally heavier, and thus less competitive in practice.

6 Conclusions

We have introduced a new crowdsourcing classification methodology. As previous approaches, it
is based on a Gaussian Process classifier, which allows for the description of complex data. How-
ever, a novel Variational Bayes (VB) inference procedure is proposed here (instead of Expectation
Propagation, EP). The modeling of the annotators is also refined with respect to previous GP-based
methods: the level of expertise is treated as a stochastic variable, and the underlying true training
labels z are not marginalized out from the model. Moreover, the proposed method allows for in-
tegrating in the prediction (possibly non-expert) annotations that may have been provided for test
instances.
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The experimental results have shown that the novel VB-based approach is really competitive and
robust across very different types of datasets, ranking always first among its competitors in terms of
predictive performance. On the contrary, the EP-based method has suffered over-fitting in three out
of the five datasets used. The computational cost of the proposed method is competitive with the
rest of the crowdsourcing classifiers (and considerably lower than the EP-based one). Our refined
model for the annotators is also reflected in the experiments. Indeed, our sensitivity-specificity
estimations are significantly more accurate than those by the EP-based approach. If there are
test annotations available (which is not always possible, see the fully real datasets used here), we
have seen that the proposed method largely benefits from its probabilistic integration within the
model. It would be interesting to study to what extent this generalizes to fully real datasets, where
the annotations generation process does not necessarily follow the one proposed in the model.
Other lines of future work are i) development of alternative and more accurate feature-dependent
crowdsourcing models, ii) a probabilistic multi-class generalization of the proposed model, and iii)
extension of GP-based crowdsourcing methods to large-scale datasets.
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5.2 Main contributions

• In this work we introduce RFFGPCR and VFFGPCR (Random and Variational
Fourier Features for Gaussian Processes CRowdsourcing). The idea is to extend
the methods RFF-GPC (Chapter 2) and VFF-GPC (Chapter 3) to the crowdsourc-
ing scenario. As in VGPCR (Chapter 4), inference resorts to local variational
methods and the annotators modelling is based on their specificity and sensitivity.
This allows for scalability to medium-large datasets in GP-based crowdsourcing
for the first time.

• The proposed approach is evaluated on several synthetic and real datasets, includ-
ing sphere (Sensor Platform for HEalthcare in Residential Environment). This is a
recognition dataset owned by the University of Bristol (UK) that aims at monitor-
ing the well functioning of British residences, based on RBG-D video, a tri-axial
accelerometer, and environmental sensors.
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ABSTRACT

Over the last few years, multiply-annotated data has become a very popular source
of information. Online platforms such as Amazon Mechanical Turk have revolu-
tionized the labelling process needed for any classification task, sharing the effort
between a number of annotators (instead of the classical single expert). This crowd-
sourcing approach has introduced new challenging problems, such as handling dis-
agreements on the annotated samples or combining the unknown expertise of the
annotators. Probabilistic methods, such as Gaussian Processes (GP), have proven
successful to model this new crowdsourcing scenario. However, GPs do not scale
up well with the training set size, which makes them prohibitive for medium-to-
large datasets (beyond 10K training instances). This constitutes a serious limitation
for current real-world applications. In this work, we introduce two scalable and
efficient GP-based crowdsourcing methods that allow for processing previously-
prohibitive datasets. The first one is an efficient and fast approximation to GP with
squared exponential (SE) kernel. The second allows for learning a more flexible ker-
nel at the expense of a heavier training (but still scalable to large datasets). Since the
latter is not a GP-SE approximation, it can be also considered as a whole new scal-
able and efficient crowdsourcing method, useful for any dataset size. Both methods
use Fourier features and variational inference, can predict the class of new samples,
and estimate the expertise of the involved annotators. A complete experimentation
compares them with state-of-the-art probabilistic approaches in synthetic and real
crowdsourcing datasets of different sizes. They stand out as the best performing ap-
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proach for large scale problems. Moreover, the second method is competitive with
the current state-of-the-art for small datasets.

1 Introduction

The term crowdsourcing was coined in 2006 by J. Howe [Howe, 2006] to refer to “the act
of taking a job traditionally performed by a designated agent (usually an employee) and out-
sourcing it to an undefined generally large group of people in the form of an open call”. In
the last decade, many crowdsourcing services have proliferated in the Internet, where a dataset
can be published and millions of people around the world can provide labels in exchange for
a reward [Zhang et al., 2016]. Amazon Mechanical Turk (www.amt.com), Galaxy Zoo (www.
galaxyzoo.org), Zooniverse (www.zooniverse.org), Crowdflowers (www.crowdflower.com)
or Clickworker (www.clickworker.com) are among the most popular ones. Due to the great num-
ber of potential annotators, large data sets can be labeled in a very short time, overcoming one of
the main limitations of the classical expert-alone labelling process. However, this crowdsourcing
approach has introduced new challenging problems, such as combining the unknown expertise
of annotators, dealing with disagreements on the annotated samples, or detecting the existence
of spammer and adversarial annotators [Zhang et al., 2016]. All these problems have required
probabilistic sound solutions, beyond the naive use of majority voting plus classical classification
methods.

Crowdsourcing applications are growing rapidly. Since the early innovative use to detect small
volcanoes in Magellan SAR images of Venus [Smyth et al., 1995], crowdsourcing techniques have
been applied to a wide range of modern problems such as mitosis detection in breast cancer histol-
ogy images [Albarqouni et al., 2016], topic modelling from crowds [Rodrigues et al., 2017], and
detection of glitches in signals acquired by the laureate Laser Interferometer Gravitational-Wave
Observatory (LIGO) [Zevin et al., 2017]. There also exist some recent attempts to combine crowd-
sourcing with Deep Learning approaches [Albarqouni et al., 2016, Rodrigues and Pereira, 2018].
Interestingly, the growth of social websites based on user-generated content (TripAdvisor, Twitter,
YouTube) has turned multiple-annotation into a very natural way of labeling reviews, opinions, or
videos. This relates crowdsourcing to the emerging explainable-AI [Goebel et al., 2018] which, in
addition to predict a label for a given sample, explains the decision process in a human understand-
able and reconstructable way.

The first paper on crowdsourcing dates back to 1979 [Dawid and Skene, 1979]. Early contributions
addressed the estimation of the underlying true labels and the reliability of the annotators, but were
not conceived to learn a classifier. This idea was explored by Raykar et al. [Raykar et al., 2010],
who proposed to jointly estimate the coefficients of a logistic regression (LR) classifier and the
annotators’ expertise. The latter is modelled through the sensitivity and specificity concepts,
which refer to the accuracy of the annotator when labelling instances from each class. Yan et al.
[Yan et al., 2010] (see also the subsequent journal version [Yan et al., 2014]), introduced a crowd-
sourcing classifier (also based on LR) which considers a feature-dependent model for the annota-
tors’ expertise. The main limitation of these two approaches is the simple LR classification model,
which can only deal with linearly separable data. Rodrigues et al. [Rodrigues et al., 2014] over-
came this problem by introducing a crowdsourcing classifier based on Gaussian Processes (GP)
[Rasmussen and Williams, 2006, Ruiz et al., 2016, Morales-Álvarez et al., 2018]. GP is a proba-
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bilistic state-of-the-art model for functions, which uses the so-called “kernel trick” [Bishop, 2006,
Chapter 6] to deal with complex non-linear decision boundaries. Moreover, its Bayesian formu-
lation excels at uncertainty quantification [Rasmussen and Williams, 2006]. Expectation Prop-
agation (EP) [Minka, 2001b] (see also [Rasmussen and Williams, 2006, Section 3.6]) was used
as inference procedure for GP in [Rodrigues et al., 2014]. Recently, Variational Inference (VI)
[Jaakkola, 2000, Blei et al., 2017] was used as an alternative to EP in crowdsourcing, outperform-
ing it in both predictive performance and computational cost [Besler et al., 2016, Ruiz et al., ].
These probabilistic GP-based methods have proven very successful in the crowdsourcing litera-
ture. However, the poor scalability of standard GP models hampers their applicability to current
medium-to-large scale real-world problems. Therefore, the development of scalable and efficient
methods is one of the main research lines in crowdsourcing.

More specifically, classical1 GPs operate with N × N kernel matrices, where N is the train-
ing set size. This implies a O(N2) cost in RAM memory, a O(N3) computational complex-
ity at the training step (since the kernel matrix must be inverted), and O(N2) cost in the test
step. As a consequence, N = 104 instances is generally considered the practical limit of
standard GPs [Rasmussen and Williams, 2006]. Since current real-world problems usually in-
volve larger datasets, many sparse GP approximations have been developed in the Machine
Learning community during the last years. The first approaches focused on selecting a conve-
nient subset of the training set and applying standard GP there [Lawrence et al., 2003], see also
[Rasmussen and Williams, 2006, Chapter 8]. Later on, pseudo-inputs and inducing points were
proposed as a smarter way to reduce the computational cost of classical GP without completely
loosing the information provided by the discarded points [Snelson and Ghahramani, 2006]. This
approach has become very popular, and many works have been devoted to analyze it in depth and
advance it further [Quiñonero-Candela and Rasmussen, 2005, Titsias, 2009, Hensman et al., 2013,
Bauer et al., 2016]. Another recent promising approach is based on the random Fourier features ap-
proximation to the kernel matrix [Rahimi and Recht, 2008], which was proposed for GP-regression
in [Lázaro-Gredilla et al., 2010] and further improved in [Gal and Turner, 2015]. Moreover, it was
recently extended to GP-classification in [Morales-Álvarez et al., 2018].

In this work, we start by applying the aforementioned Fourier features methodology to approx-
imate the squared exponential (SE) kernel of the GP-based crowdsourcing method proposed in
[Besler et al., 2016, Ruiz et al., ]. This approach is referred to as RFF (Random Fourier Features).
Then, we also propose VFF (Variational Fourier Features), which does not approximate a SE ker-
nel but learns a new one well-suited for the data at hand. The training cost and RAM memory
requirements for both approaches, including the computation of the Fourier features, scale linearly
with N , and their test cost is independent on N . These are very significant reductions with respect
to previous approaches. Whereas RFF is a large-scale approximation of the previous approach in
[Besler et al., 2016, Ruiz et al., ], VFF is a whole new scalable crowdsourcing method, whose ad-
ditional flexibility allows one to capture new relevant patterns (even in previously-reachable small
datasets). However, VFF is more prone to overfitting, and slower in practice. A complete ex-
perimentation with real and synthetic crowdsourcing datasets of different sizes will show that i)
the proposed methods can handle much larger training sets than previous approaches, ii) they have
better generalization capability with a faster training step, iii) the test computational cost is extraor-

1Throughout this work, we will refer to classical and standard GP interchangeably to denote the typical and well-known
formulation in [Rasmussen and Williams, 2006].
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dinarily reduced, iv) the estimations of annotators’ sensitivity and specificity are very accurate, and
v) VFF is competitive with other state-of-the-art methods in small datasets.

The rest of the paper is organized as follows. Section 2 introduces the probabilistic modelling
of the proposed methods. Section 3 presents the variational inference scheme used to estimate
the posterior distributions and all the parameters of the model. Section 4 shows the predictive
distribution to be used in the test step. Section 5 includes a complete experimentation evaluating
the proposed methods. Finally, the main conclusions and some future outlook are provided in
Section 6.

2 Probabilistic modelling

Formally, a crowdsourcing classification problem involves a training dataset {X,Y}, where X =
[x1, . . . ,xN ]

ᵀ ∈ RN×D is the set of features, and Y = {yrn ∈ {0, 1}|n = 1, . . . , N, r ∈ Rn}
is the set annotations. N , D, and R denote, respectively, the number of training instances, their
dimension (i.e. the number of features), and the number of annotators. Rn ⊆ {1, . . . , R} denotes
the set of annotators that labelled the n-th instance. Analogously, we define Nr ⊆ {1, . . . , N} as
the set of instances annotated by the r-th annotator.

The most successful probabilistic crowdsourcing approaches model the set of annotations Y by
introducing a set of underlying unknown real labels z = (z1, . . . , zN)

ᵀ ∈ {0, 1}N . Given zn and
r ∈ Rn, the r-th annotator’s label is modelled with the conditional Bernoulli distributions

p(yrn = 1|zn = 1) = αr, p(yrn = 0|zn = 0) = βr, (1)

where αr, βr ∈ [0, 1] are called sensitivity and specificity for the r-th annotator, respectively. These
numbers represent the reliability of that annotator when labelling instances in each class. Assuming
independence between annotators and across their annotations, we have

p(Y|z,α,β) =
R∏

r=1

∏

n∈Nr

[
αy

r
n
r (1− αr)1−y

r
n
]zn [

(1− βr)y
r
nβ1−yrn

r

]1−zn
, (2)

where we denote α = (α1, . . . , αR)
ᵀ, and β = (β1, . . . , βR)

ᵀ.

In this work, as in [Ruiz et al., ], all the αr and βr are treated in a Bayesian way, i.e. they are
assumed to be stochastic variables. More specifically, they are assigned prior beta distributions
αr → Beta(arα, b

r
α) and βr → Beta(arβ, b

r
β). Recall that Beta(x|a, b) ∝ xa−1(1− x)b−1 for 0 < x <

1, with E(x) = a/(a+ b). During inference, the following expectations of a beta distribution will
be also required

E(log x) = ψ(a)− ψ(a+ b), E(log(1− x)) = ψ(b)− ψ(a+ b), (3)

where ψ denotes the digamma function (see [Bishop, 2006, Exercise 2.11]). In a beta distribution,
the hyper-parameters a and b can be set to introduce prior knowledge about the variable (in our
case, the reliability of each annotator labelling instances in each class). When no prior knowledge
is available, a = b = 1 produces an uniform prior distribution. Since the specificity and sensitivity
of the different annotators are assumed independent, we have the joint priors:

p(α) =
R∏

r=1

Beta(αr|arα, brα), p(β) =
R∏

r=1

Beta(βr|arβ, brβ). (4)
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Figure 1: Graphical representations of the classical GP-based probabilistic model for crowdsourc-
ing (left) and the new one proposed here (right). Yellow nodes represent the observed variables,
and blue nodes represent the variables to be estimated. Notice that the only difference is in the
connection between the features X and the underlying real labels z (a GP is used on the left and a
Bayesian logistic-regression model based on Fourier features on the right). In the latter, we have
Ω = ω for RFF and Ω = W for VFF.

Finally, to model the underlying real labels z given the features X, Gaussian Processes (GP) has
proven to be the most successful probabilistic approach, mainly because of its great flexibility
and excellent uncertainty quantification [Rodrigues et al., 2014, Besler et al., 2016, Ruiz et al., ].
A GP introduces N latent variables (f1 = f(x1), . . . , fN = f(xN)) =: f that jointly follow a
multivariate normal distribution whose covariance matrix (the kernel matrix) depends on X, i.e.
the distribution of f is N (0,K = (k(xn,xm))1≤n,m≤N). The kernel function k : RD × RD → R
encodes the properties (like smoothness) of the functions f(x) considered. Then, given each latent
variable fn, the underlying real label zn is modelled with the sigmoid function σ, p(zn = 1|fn) =
σ(fn) = (1 + exp(−fn))−1. Under this common classical model, the main difference between the
previous approaches [Rodrigues et al., 2014] and [Besler et al., 2016, Ruiz et al., ] is the inference
procedure used: Expectation Propagation [Minka, 2001a] in the former and Variational Inference
[Jaakkola, 2000, Blei et al., 2017] in the latter (recall the second paragraph of Section 1). Figure
1a) shows a graphical representation of this GP-based classical model, which is in the basis of our
proposal.

Although standard GP is well-known for modelling very complex data and accurately quanti-
fying and propagating uncertainty, it does not scale up well to large datasets (recall the fourth
paragraph in Section 1). Therefore, different sparse GP approximations have been proposed
over the last years in the Machine Learning community [Hensman et al., 2013, Bauer et al., 2016,
Lázaro-Gredilla et al., 2010, Gal and Turner, 2015, Morales-Álvarez et al., 2018]. Here, as it is
done for regression in [Lázaro-Gredilla et al., 2010, Gal and Turner, 2015] and for classification
in [Morales-Álvarez et al., 2018], we will resort to the interesting Fourier features approximation
[Rahimi and Recht, 2008] and will apply it to crowdsourcing.

2.1 Fourier features

The work [Rahimi and Recht, 2008] presents a general methodology to approximate any positive-
definite shift-invariant kernel k by a linear one. This is achieved by projecting the original D-
dimensional data x into 2Df Fourier features φ(x), whose linear kernel kL approximates the orig-
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inal k. In the case of GP, this linearity enables one to undo the so-called kernel trick and work
in the primal space of features [Bishop, 2006, Chapter 6]. With this, N × N matrix inversions
are substituted by 2Df × 2Df ones, yielding a total O(ND2

f + D3
f ) training cost. In large-scale

applications we can set Df � N , and the resulting O(ND2
f ) complexity, which is linear in N ,

constitutes an important reduction over the original O(N3). Moreover, both the test complexity
and the memory cost reduce toO(D2

f ), which is independent on N . Of course, the main drawback
of this process is that we work with an approximation to the original kernel.

More specifically, let us consider the well-known SE kernel k(x,y) = γ · exp(−||x−y||2/(2ω2)),
where the hyper-parameters γ and ω are called variance and length-scale, respectively. Fol-
lowing [Rahimi and Recht, 2008], this kernel can be approximated as k(x,y) ≈ kL(x,y) :=
γ · φ(x)ᵀφ(y), where the Fourier features φ are given by

φ(x)ᵀ = D
−1/2
f ·

(
cos(wᵀ

1x), sin(w
ᵀ
1x), . . . , cos(w

ᵀ
Df

x), sin(wᵀ
Df

x)
)
∈ R2Df , (5)

and the Df Fourier frequencies wi must be sampled from a normal distribution N (0, ω−2I).
This approximation exponentially improves with the number Df of Fourier frequencies used
[Rahimi and Recht, 2008, Claim 1]. However, increasing Df will go at the expense of increas-
ing train and test computational cost and memory requirements in our methods. Other kernels
could also be used, but that would involve sampling from a different distribution.

2.2 The proposed models

Our first proposal consists of introducing this Fourier features approximation for the SE kernel in
the variational GP-based crowdsourcing method VGPCR [Besler et al., 2016, Ruiz et al., ]. Notice
that, as explained above, the Fourier frequencies wi must be sampled from N (0, ω−2I) and fixed,
whereas the length-scale hyper-parameter ω must be estimated during training (just as for standard
GPs). To uncouple wi and ω, we resort to the following equivalent expression for the Fourier
features, which makes explicit the dependence on ω

φ(x|ω)ᵀ = D
−1/2
f ·

(
cos(ω−1wᵀ

1x), sin(ω
−1wᵀ

1x), . . . , cos(ω
−1wᵀ

Df
x), sin(ω−1wᵀ

Df
x)
)
, (6)

where now wi must be sampled now from N (0, I). Then, undoing the kernel trick and passing
to the primal space of features, we change the GP for the equivalent2 Bayesian logistic-regression
model p(zn = 1|xn, ω,ρ) = (1 + exp (−φ(xn|ω)ᵀρ))−1, where the logistic-regression weights ρ
follow a normal prior N (0, γI) (more details about the kernel trick in [Bishop, 2006, Chapter 6]).
Finally, assuming independence between the different instances given ρ, we have

p(z|ρ, ω,X) =
N∏

n=1

(
1

1 + e−ρᵀφ(xn|ω)

)zn ( e−ρ
ᵀφ(xn|ω)

1 + e−ρᵀφ(xn|ω)

)1−zn
. (7)

This model will be refered to as RFFGPCR (Random Fourier Features Gaussian Processes for
Crowdsourcing), or RFF for short. In RFF, the Fourier frequencies W = (w1, . . . ,wDf

)ᵀ ∈
RDf×D are randomly sampled from N (0, I) and fixed from the beginning, whereas ω is estimated
during training (to maximize the marginal likelihood, see Section 3).

Our second proposal follows the same rationale as RFF, but optimizes the Fourier frequencies wi in
eq. (5). Since they are estimated to maximize the marginal likelihood within a variational scheme

2Again, we stress that this new model is equivalent to GP with the Fourier features approximation for the SE kernel.
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(see Section 3), this approach is refered to as VFFGPCR (Variational Fourier Features Gaussian
Processes for Crowdsourcing), or VFF for short. Therefore, the VFF model for z is identical to that
of RFF, eq. (7), but with W playing the role of ω and with the original Fourier features expression
in eq. (5) instead of the modified eq. (6). To unify the notation, we will indistinctly write Ω for ω
(RFF) or W (VFF), and therefore

p(z|ρ,Ω,X) =
N∏

n=1

(
1

1 + e−ρᵀφ(xn|Ω)

)zn ( e−ρ
ᵀφ(xn|Ω)

1 + e−ρᵀφ(xn|Ω)

)1−zn
, (8)

with φ(xn|Ω) as in eq. (6) (RFF) or eq. (5) (VFF).

Unlike RFF, notice that VFF is no longer an approximation to VGPCR (for which the Fourier
frequencies must be sampled from N (0, ω−2I)), but a whole new probabilistic crowdsourcing
method that learns an appropriate kernel. Moreover, its computational cost is similar to RFF’s.
More specifically, we will see that the theoretical training complexity for VFF isO(NDfD+ND2

f )
(whereas it is O(ND2

f ) for RFF). This is linear in N (like for RFF), and therefore much more
scalable than the original VGPCR (O(N3)). Nonetheless, the experimentation will show that the
Fourier frequencies optimization significantly slows down VFF when compared to RFF in practice.
Moreover, whereas Df has a clear influence in RFF performance (the higher, the better it is the
kernel approximation), it is related to the complexity of the model (the degrees of freedom) in
VFF. Therefore, in VFF, large values of Df may lead to overfitting to the training set.

In summary, the proposed probabilistic crowdsourcing model is

p(Y, z,ρ,α,β|Ω, γ) = p(Y|z,α,β)p(z|ρ,Ω)p(ρ|γ)p(α)p(β), (9)

with p(Y|z,α,β) as in eq. (2), p(z|ρ,Ω) as in eq. (8), p(ρ|γ) = N (ρ|0, γI), and p(α), p(β)
as in eq. (4). Notice that, for clarity, we have omitted X from the notation. Figure 1b) shows a
graphical representation of the proposed model.

3 Variational Bayes inference

Once the training set {X,Y} is observed, Bayesian inference seeks to calculate the maximum-
likelihood hyperparameters (Ω̂, γ̂) = argmaxΩ,γ p(Y|Ω, γ), and the posterior distribu-
tion p(z,ρ,α,β|Y, Ω̂, γ̂). However, in our case, the marginal likelihood p(Y|Ω, γ) =∫

z,ρ,α,β
p(Y, z,ρ,α,β|Ω, γ) cannot be obtained in closed form (for simplicity, the sum in

the discrete variable z is denoted with integration). Variational inference [Jaakkola, 2000,
Blei et al., 2017], see also [Bishop, 2006, Section 10.1], is a very popular approach to obtain an
approximation to the posterior distribution in Bayesian inference. It consists of finding, inside a
predefined family Q, the distribution q ∈ Q that minimizes the Kullback-Leibler divergence (KL)
from q to the real posterior. Recall that the KL divergence from a distribution q(x) to another p(x)
is defined as KL(q||p) =

∫
q(x) log(q(x)/p(x))dx, which is always greater or equal to zero, and

vanishes if and only if q = p. A different popular approach to approximate the posterior distri-
bution is called Expectation Propagation [Minka, 2001b]. However, to the best of our knowledge,
variational inference has achieved better results in classical GP-based probabilistic crowdsourcing
methods, being also significantly more efficient (which is specially relevant in large-scale scenarios
like ours) [Besler et al., 2016, Ruiz et al., ].
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Here, for Ω and γ fixed, we propose an approximate posterior of the form

q(z,ρ,α,β) = q(ρ)q(α)q(β)q(z)3. (10)

The reason for “uncoupling” z is that integrating it out in the true posterior p(z,ρ,α,β|Y,Ω, γ)
is analytically intractable. Notice that this also applies to ρ due to the sigmoids in eq. (8), for
which we will additionally resort to the local variational bound of the sigmoid [Bishop, 2006,
Section 10.5]. Using the factorization proposed in eq. (10), the well-known mean-field formula
[Bishop, 2006, Section 10.1.1, eq. (10.9)] yields the following update for q(z) (which factorizes
along data points):

q(zn = 0) ∝
∏

r∈Rn

exp {yrnEq(log(1− βr)) + (1− yrn)Eq(log βr)} ,

q(zn = 1) ∝ exp(φ(xn|Ω)ᵀEq(ρ)) ·
∏

r∈Rn

exp {yrnEq(logαr) + (1− yrn)Eq(log(1− αr))} ,
(11)

where the expectations are with respect to the current values of q(α), q(β) and q(ρ). For the terms
of the form Eq(log(·)), recall eq. (3). Analogously, the updates for q(α) and q(β) factorize along
annotators and are given by:

q(αr) = Beta

(
αr

∣∣∣∣∣a
r
α +

∑

n∈Nr

Eq(zn)y
r
n, b

r
α +

∑

n∈Nr

Eq(zn)(1− yrn)
)
, (12)

q(βr) = Beta

(
βr

∣∣∣∣∣a
r
β +

∑

n∈Nr

(1− Eq(zn))(1− yrn), brβ +
∑

n∈Nr

(1− Eq(zn))y
r
n

)
, (13)

where the expectations are with respect to the current distribution q(z).

In order to update q(ρ), we find analytic intractability in ρ due to the sigmoids in p(z|ρ,Ω), recall
eq. (8). To overcome this, we use the local variational bound of the sigmoid [Bishop, 2006, Section
10.5, eq. (10.144)], which yields

p(z|ρ,Ω) ≥ exp (vᵀΦρ− ρᵀΦᵀΛΦρ+ C(ξ)) =: H(z,ρ,Ω, ξ). (14)

Notice that this lower bound is exponentially-quadratic in ρ, which will allow us to identify
a Gaussian distribution in ρ. In exchange, we are introducing N additional hyper-parameters
ξ = (ξ1, . . . , ξN) to be estimated. Here we are writing Φ = (φ1, . . . ,φN)

ᵀ ∈ RN×(2Df ) for
the matrix of Fourier features, v = z − (1/2)1, Λ = diag(λ(ξ1), . . . , λ(ξN)), and λ(ξ) =
(2ξ)−1 ((1 + exp(−ξ))−1 − 1/2). The termC(ξ) =

∑N
n=1

(
λ(ξn)ξ

2
n + ξn/2− log

(
1 + eξn

))
only

depends on ξ.

Using eq. (14) we have, up to a constant, the following upper bound for the KL divergence (which
must be minimized, instead of the intractable KL itself, in q(ρ), with q(z), q(α) and q(β) fixed):

KL(q(ρ)q(α)q(β)q(z)||p(z,ρ,α,β|Y,Ω, γ)) ≤∫

z,ρ,α,β,Ω,γ

q(ρ)q(α)q(β)q(z) log
q(ρ)q(α)q(β)q(z)

p(Y|z,α,β)H(z,ρ,Ω, ξ)p(ρ|γ)p(α)p(β)
. (15)

3This is equivalent to the more general form q(ρ,α,β)q(z), since the variables ρ, α, and β are coupled in the joint model of
eq. (9) only through z.
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Following the standard mean-field procedure [Bishop, 2006, Section 10.1.1], this minimization
yields q(ρ) ∝ H(Eq(z),ρ,Ω, ξ)p(ρ|γ). Since H is exponentially-quadratic in ρ, we have q(ρ) =
N (µ,Σ), with

Σ =
(
γ−1I + Φᵀ(2Λ)Φ

)−1
, µ = ΣΦᵀEq(v). (16)

Then, approximating p(z|ρ,Ω) by its lower bound H(z,ρ,Ω, ξ) in the full model
p(Y, z,ρ,α,β|Ω, γ), we find that ρ can be marginalized out (again, H being exponentially-
quadratic in ρ is essential here). Using the current distribution q(z), the maximum-likelihood
estimators for Ω and γ are

(Ω̂, γ̂) = argmax
Ω,γ

(
− log |2γΦᵀΛΦ + I|+ Eq(v)

ᵀΦ
(
γ−1I + 2ΦᵀΛΦ

)−1
ΦᵀEq(v)

)
. (17)

Finally, the hyper-parameters ξ are estimated to minimize the right-hand side of eq. (15), which
yields (notice that the square is element-wise)

ξ =

√
diag (ΦΣΦᵀ) + (Φµ)2. (18)

In summary, the proposed methods calculate sequences {ξk}, {Ωk, γk}, {qk(ρ)}, {qk(α)},
{qk(β)}, {qk(z)} until convergence, following the formulas derived in this section. The train-
ing process is summarized in Algorithm 1. The computational cost of the algorithms is dominated
by 2Df ×2Df matrix inversions (e.g. eq. (17)) and (2Df ×N) · (N ×2Df ) matrix multiplications
(e.g. Σ in eq. (16)). This yields a theoretical complexity of O(D3

f + ND2
f ) which, in large scale

scenarios (where Df will be taken Df � N ), is O(ND2
f ). In the case of VFF, the optimization

with respect to theDf ·D components of W introduces an additional dependence onD, and yields
O(ND2

f +NDfD) cost.

Algorithm 1 Training of RFF and VFF
Require: X, Y, Ω0, q0(ρ), q0(z), k = 0.

repeat
Update ξk+1 with eq. (18) using qk(ρ) and Ωk;
Update γk+1 and Ωk+1 with eq. (17) using ξk+1 and qk(z);
Update qk+1(ρ) with eq. (16) using ξk+1, Ωk+1, γk+1 and qk(z);
Update qk+1(α) and qk+1(β) with eqs. (12)-(13) using qk(z);
Update qk+1(z) with eq. (11) using Ωk+1, qk+1(ρ), qk+1(α) and qk+1(β).
k = k + 1;

until convergence
Output: Final values ξ̂, Ω̂, γ̂, q̂(ρ), q̂(α), q̂(β), q̂(z).

It is interesting to examine and understand how the proposed methodology mitigates the effect
of weak annotators (i.e. those who may provide unreliable labels). Recall from eq. (1) that each
annotator reliability is modelled through sensitivity and specificity parameters α and β. These
parameters are estimated during the training step, see eqs. (12) and (13). Then, these estimations
of α and β are used in eq. (11) in order to update the distribution of the underlying real label z for
each training instance. Importantly, note that the influence of each annotation yrn is appropriately
modulated by the estimations of α and β for the corresponding annotator.
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This becomes even clearer when degenerate posterior distributions are assumed for αr and βr.
In this case, the posterior distribution approximation q(zn) in eq. (11) is proportional to

∏
r(1 −

βr)
yrnβ

(1−yrn)
r and

∏
r α

yrn
r (1 − αr)

(1−yrn) for zn = 0 and zn = 1, respectively. Suppose that an
annotator labels an instance as yrn = 1. Then, this implies a factor (which can be understood as a
“multiplicative” weight) of (1− βr) for the probability of zn = 0, and a factor of αr for zn = 1. If
the annotator is a reliable one, then αr and βr are close to 1, which implies a much greater weight
for zn = 1 than for zn = 0. However, if the annotator is a weak one (for both classes), then αr and
βr will be close to 0, and the weight for zn = 0 will be much greater than for zn = 1, making it
very likely to correctly switch the (very likely) wrong label provided by this weak annotator. The
weaker the annotator is, the more likely it is to switch the annotation. An analogous interpretation
applies when the annotator labels yrn = 0, or when the annotator is weak only for one of the two
classes. Observe also that a spammer annotator (i.e. αr = βr = 0.5), will not influence the
probability of zn, as both weights will be identical.

Finally, notice that the Bayesian modelling allows for naturally specifying the available prior
knowledge on the annotators. For instance, if a particular annotator is known to be weak (even
only for one of the two classes), the corresponding Beta prior distribution (recall the paragraph
before eq. (3)) can be conveniently set to integrate in the model this valuable information.

4 The predictive distribution

Once the model is trained, the final distributions q̂(α) and q̂(β) represent the estimated sensitivity
and specificity for the annotators (as well as their uncertainty). Analogously, q̂(z) describes the
estimated uncertainty for the underlying real labels of the training instances. The most common
problem is to, based on the training data, obtain the predictive distribution for the real class of a new
instance x∗ ∈ RD, i.e. compute p(z∗ = 1|Y) (obviously, p(z∗ = 0|Y) = 1−p(z∗ = 1|Y)). Using
the standard approximation for the expectation of the sigmoid under a Gaussian [Bishop, 2006,
Section 4.5.2, eq. (4.153)], we have

p(z∗ = 1|Y) = Eq̂(ρ)p(z∗ = 1|ρ, Ω̂) ≈ σ


 φ̂ᵀ

∗µ̂√
1 + (π/8)φ̂ᵀ

∗Σ̂φ̂∗


 , (19)

where σ(x) = (1 + exp(−x))−1 is the sigmoid, µ̂ and Σ̂ are the mean and covariance of the
posterior q̂(ρ) (which are obtained in the training step), and φ̂∗ = φ(x∗|Ω̂) (using eq. (6) in the
case of RFF and eq. (5) for VFF).

The theoretical computational complexity for the test step is dominated by the computation
φ̂ᵀ
∗Σφ̂∗. This implies a O(D2

f ) cost per test instance. Unlike classical GP, whose correspond-
ing complexity isO(N2), this is independent on the number of training instances N . In large scale
scenarios (where N is large), this will translate into an overwhelming superiority of the proposed
methods in terms of “production” time (i.e. time needed for prediction), which is essential in
real-world applications.

Finally, since eq. (19) is one of the key ingredients for Active Learning (AL) techniques, let us
conclude this section by commenting on the use of AL for our RFF and VFF models. In section 1
we motivated the use of crowdsourcing in labeling tasks as a very efficient way to annotate large
datasets. In order to further speed up this process, crowdsourcing can be combined with AL. For
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a classic (non-crowdsourcing) classifier, AL selects the most informative instance from a set of
unlabeled samples, and the expert provides the corresponding label. The new labeled sample is
included in the training set, and the classifier is retrained (updated). It has been shown that AL
significantly reduces the number of samples to be labeled in order to train an accurate classifier
(see, for instance, [Ruiz et al., 2014]).

In crowdsourcing labeling problems, AL becomes an even more interesting (and challenging) prob-
lem, since the best annotator/s to provide the label must also be selected. Interestingly, the majority
of probabilistic crowdsourcing AL methods in the literature are based on different combinations of
the same two key ingredients: the uncertainty of the model when labeling a new instance (in our
case given by the predictive distribution in eq. (19)), and the estimated expertise for each annotator
(in our case the sensitivity and specificity posteriors given in eqs. (12) and (13)). Rodrigues et al.
[Rodrigues et al., 2014] first select the closest sample to the decision boundary and then the anno-
tator who maximizes the expected probability of success. Yan et al. [Yan et al., 2011] minimize
an objective function to simultaneously find the closest sample to the decision boundary and the
annotator who minimizes the probability of mistake. More recently, Yang et al. [Yang et al., 2018]
select the sample that maximizes the Shannon entropy of the predictive distribution and the annota-
tor who maximizes the probability of success. All these approaches can be naturally used with our
predictive distribution in eq. (19) and our estimated sensitivities and specificities in eqs. (12) and
(13). However, since the use of AL in crowdsourcing is not the goal of this work, the comparison
and development of AL techniques will not be explored here.

5 Experiments

In this section, we evaluate the performance of our methods and compare them with current
state-of-the-art probabilistic crowdsourcing approaches. These include the GP-based VGPCR
[Ruiz et al., ] and Rodrigues [Rodrigues et al., 2014]. We also include the most straightforward
manner to apply a GP to the crowdsourcing setting, GP-MV, which consists of a standard GP clas-
sifier trained with the majority voting (MV) labels. Finally, to obtain a more thorough comparison,
the classical LR-based methods Raykar [Raykar et al., 2010] and Yan [Yan et al., 2010] are also
considered (recall the second paragraph in Section 1).

Since the main goal is to illustrate the scalability and performance of RFF and VFF in previously-
prohibitive settings, we include two such datasets (where classical approaches must be trained
with a subset). The first one, with 28000 training instances, comes from a real health-care activity-
recognition problem. The second one, synthetic and with 100000 training samples, shows the
potential of the proposed methods in even larger scale problems. Finally, two real datasets with
700 and 4999 training instances, respectively, are included to illustrate the performance of the
proposed methods on small-scale problems. They cover different application domains such as
audio recognition and sentiment analysis.

The predictive performance of the methods is compared using the area under the ROC curve
(AUC). This metric deals well with imbalance scenarios (it penalizes errors in the minority class),
and is independent on the threshold used for the final prediction. In order to compare the compu-
tational cost, the CPU time needed for both train and test steps will be reported. Please notice that
the train CPU time includes the optimization of all the model parameters, including the Fourier
frequencies for VFF (recall that RFF does not estimate them).
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We implemented RFF, VFF, VGPCR, GP-MV, Raykar, and Yan in Matlab©, whereas a Matlab©

implementation for Rodrigues can be downloaded from his website http://www.fprodrigues.

com. All the code and datasets will be made available at http://decsai.ugr.es/vip/

software.html upon acceptance of the paper. The experiments were run on the same machine
Intel© Xeon© E5-2630 v4 @ 2.20GHz.

5.1 The sphere dataset

Sphere (Sensor Platform for HEalthcare in Residential Environment) is a recognition dataset where
activity predictions are made based on RBG-D video, a tri-axial accelerometer, and environmental
sensors [Twomey et al., 2016]. Data was collected from 10 people on two different occasions.
There were 8 males and 2 females, with 8 between the ages of 18 to 29 and 2 within the ages of 30
to 39. Each participant was wearing a wrist-worn accelerometer and was asked to perform a series
of scripted activities, taking around 25 to 30 minutes in total. These activities are categorized into
ambulation actions (e.g. walking), posture actions (e.g. standing), and transitional actions (e.g. sit
to stand). The script was carried out twice in full by each participant on different days.

Labeling this data is challenging, since the annotations are inherently noisy. For instance, the pre-
cise selection of start and end time is inherently ambiguous, as is the distinction among closely
related actions (e.g., “bending” and “kneeling”). In order to mitigate these issues, the full dataset
was annotated at least twice by a team of R = 12 annotators that were recruited and trained to
annotate the set of activities. Our experiments consider the binary task of classifying between am-
bulatory and sedentary activities based onD = 12 statistical features (mean, minimum, maximum,
standard deviation, variance) extracted from the acceleration data. This yields a final dataset with
31050 instances.

A set with 3050 instances was left for test4, yielding a maximum number of 28000 training in-
stances. In order to study the scalability of the compared methods, increasing training set sizes
were considered, namely N ∈ {1000, 5000, 10000, 15000, 20000, 28000}. As classical GP-based
methods are limited in practice to 10000-15000 training points, VGPCR and GP-MV could not be
trained beyond N = 150005. A special grid N ∈ {100, 500, 1000, 2500} was used for Rodrigues,
since it did not manage to converge properly and therefore its computational training cost exploded
as N increased (as we will see in Figure 4). Different values of Df (number of Fourier frequen-
cies) were also considered for RFF,Df ∈ {10, 50, 100, 200, 300, 400, 500, 600, 700}, and for VFF,
Df ∈ {1, 5, 10, 30, 50, 70, 90, 110, 130, 150}. Notice that, since VFF optimizes over the Fourier
frequencies, it is natural to train it with smaller values of Df .

The main ideas and interpretations will be provided in this section together with the most relevant
figures. For completeness, additional information is included in the tables in A. Namely, Table 1
contains the test AUC for all the compared methods (except for Rodrigues, see its own Table 2).
Mean and covariance over five independent runs6 are shown. Analogously, Table 3 (Table 4 for

4Since true underlying labels were not available in this real problem, test instances were selected among those not having
discrepancies between different annotators.

5When trying with N = 20000 for any of these methods, the RAM memory requirements exceeded the possibilities of the
considered machine.

6These independent runs differ in the training subset if N < 28000, and also in the Fourier frequencies initialization for RFF
and VFF.
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Rodrigues) shows the CPU time needed for train, and Table 5 (Table 6 for Rodrigues) the CPU
time needed for test.

First, let us examine the trade-off between generalization capability and training CPU time for
the compared methods, see Figure 2. Notice that Rodrigues does not appear in the figure, since
its predictive performance in this problem is around 0.5 in AUC, see Table 2. Among the rest of
methods, (the x-axis of) Figure 2 shows a clear distinction between LR-based ones (Raykar and
Yan, which are below 0.7 in AUC) and GP-based ones (the other four, which reach around 0.79).
Of course, this is to be expected due to the more complex non-linear boundaries provided by GP-
based methods, and reveals an underlying non-linear structure for the sphere dataset (otherwise,
the gap between LR- and GP-based methods would be smaller).
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Figure 2: Trade-off between predictive performance (test AUC) and training cost (training CPU
time) in the sphere dataset. Each method is trained with its maximum possible number of training
points. For RFF and VFF, the full Df -grids specified in the text are used. We observe that both
RFF and VFF are significantly (more than three times) faster than the other competitive methods
(GP-MV and VGPCR). Indeed, VFF manages to slightly outperform them, whereas RFF is around
50 times faster (and very close in predictive performance). Notice the logarithmic scale in the
y-axis.

Now, among the four outstanding methods in terms of test AUC, the y-axis of Figure 2 shows a
clear difference in the CPU time needed to train each one (recall the logarithmic scale in this axis).
Namely, the proposed RFF and VFF are around three and fifty times faster than GP-MV/VGPCR,
respectively. Notice also that, in terms of predictive performance, RFF is slightly below GP-
MV/VGPCR, whereas VFF is slightly above them. This is the natural and logical behavior of the
proposed pair of methods: since VFF optimizes over the Fourier frequencies, it is more computa-
tionally demanding than RFF; on the other hand, it manages to achieve more accurate results. This
latter advantage will be more noticeable in the next experiment, where many more training points
will be available to learn from.

Second, an essential aspect in real-world applications is the test CPU time, also known as produc-
tion time. This amounts to the actual time that the system needs to make a prediction once it is
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trained. Depending on the problem at hand, test CPU time might be more relevant than train one,
since the latter affects only once whereas the former is involved in any new prediction. In our case,
a fast prediction is essential to develop a practical health-care activity-recognition system that can
be deployed in real nursing or retirement homes. Thus, let us now analyze the compared methods
in terms of test CPU time, see Figure 3.
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Figure 3: CPU time needed at test step (production time) as a function of the training set size in
the sphere dataset. The linear (standard) scale in the left plot allows for a more intuitive perception
of the methods scalability. The logarithmic scale in the right plot shows the differences between
the fastest ones. Different representative values of Df are shown for RFF and VFF. These are
more than 350 times faster than GP-MV and VGPCR (the only competitive methods in terms of
predictive performance). Moreover, as theoretically expected, their test cost is independent on N .

The difference between the proposed RFF/VFF and GP-MV/VGPCR (the only competitive meth-
ods in predictive performance, recall Figure 2) is overwhelming. Whereas the latter need more
than 350 seconds to provide a prediction (for all the 3050 test instances), the former take less than
1 second. But, actually, the difference goes beyond these “absolute” numbers in this particular
problem: whereas the test CPU time for the classical GP-based methods grows as O(N2) with the
training set size N , the novel RFF/VFF are independent on N (as expected from their theoretical
formulation, recall Section 4). This fact makes classical GP-based probabilistic crowdsourcing
methods prohibitive in practice for any medium-size real-world application where the production
time plays an important role. Indeed, the new RFF/VFF might be the only choice for these scenar-
ios (of course, as shown in the figure, test CPU time for LR-based methods is also independent on
N , but their linear boundaries usually limit their applicability to real-world problems).

Among the proposed methods, notice that test CPU time grows with Df (indeed, recall from Sec-
tion 4 that their theoretical complexity is O(D2

f )). Therefore, and since RFF usually works with
larger values of Df , it is usually slightly slower than VFF in production time. Nonetheless, the
difference is normally insignificant.

We have just seen that our methods are scalable in terms of test CPU time (in fact, they are inde-
pendent on N ). Let us now analyze the scalability with N in terms of training CPU time. Figure 2
already showed that RFF/VFF can be trained with N = 28000 instances significantly faster than
GP-MV/VGPCR with N = 15000 (their maximum possible N ). Now we examine more carefully
the explicit dependence on N , see Figure 4.

This figure confirms in practice the theoretical linear-in-N training cost of the novel RFF and VFF,
as well as the cubic of the classical GP-based methods (GP-MV, Rodrigues, VGPCR). This means



A PREPRINT

0 0.5 1 1.5 2 2.5 3
N 104

0

2

4

6

8

10

12

14

tr
ai

n 
C

P
U

 ti
m

e 
(s

)

104

Raykar
Yan
GP-MV
Rodrigues
VGPCR
RFF-10
RFF-300
RFF-700
VFF-1
VFF-50
VFF-150

Figure 4: Training computational cost as a function of the training set size in the sphere dataset.
Different representative values of Df are shown for RFF and VFF. As theoretically expected, we
observe a linear growth with N for the proposed methods, which makes them suitable for large-
scale applications. On the contrary, classical GP-based methods cubic growth is prohibitive for
that setting.

that our methods can still scale up to pretty larger datasets (in fact, in the next experiment they
will reach N = 105), whereas classical ones are not suitable for such scenarios. Moreover, this
training CPU time explosion is not the only limitation of classical approaches. Even if we did not
have training time restrictions (which, of course, is not realistic in practical applications), classical
methods need to deal with N×N matrices, which implies aO(N2) RAM memory cost. However,
RFF and VFF substitute these matrices with 2Df × 2Df ones, removing the quadratic dependence
on N .

Figure 4 also shows that, although both RFF and VFF are linear in N , the latter is computationally
more expensive than the former (because of the Fourier frequencies optimization). Finally, the
extraordinary long training CPU time of Rodrigues is explained because the convergence process
oscillates and the maximum number of iterations is reached. This might be related to the different
inference procedure.

Finally, it is interesting to analyze the role of Df in RFF and VFF, that is, how it influences their
predictive performance in practice. Figure 5 addresses this question. According to their theoretical
formulation (recall second-to-last paragraph in Section 2.2), increasing Df in RFF improves its
approximation to a GP with SE kernel. However, in VFF it regulates the complexity of the model
and, therefore, large values might lead to overfitting to the training set. The left plot in Figure
5 confirms the simple behavior of RFF. Analogously, the right plot shows a more complicated
behavior for VFF, with a slightly decreasing tendency after reaching a maximum performance.
This will be also observed in the next experiment. Finally, as is natural, the performance of both
methods improves with the number of training instances N .



A PREPRINT

0 100 200 300 400 500 600 700
D

f

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

te
st

 A
U

C

RFF (1000)
RFF (5000)
RFF (10000)
RFF (15000)
RFF (20000)
RFF (28000)

0 50 100 150
D

f

0.66

0.68

0.7

0.72

0.74

0.76

0.78

0.8

te
st

 A
U

C

VFF (1000)
VFF (5000)
VFF (10000)
VFF (15000)
VFF (20000)
VFF (28000)

Figure 5: Predictive performance as a function of the number of Fourier frequencies used in RFF
(left) and VFF (right) for the sphere dataset. In both cases, different training set sizes N are
used. As theoretically hypothesized, RFF performance increases with Df (regardless of N ). How-
ever, VFF may suffer from over-fitting when Df exceeds some complexity limit (which usually
increases with the training set size N ).

5.2 The cubes dataset

This experiment shows that the proposed methods scale up to even larger datasets, reaching N =
100000 training instances. Moreover, its synthetic nature allows us to i) have access to the true
labels for test instances, and ii) have true sensitivity and specificity values for the annotators (and,
therefore, evaluate the accuracy of their estimation). In order to analyze the differences with the
previous experiment, we simulated a classification dataset with similar dimensionality,D = 15. Its
structure is simple7, and consists of a cube fitted inside a bigger one. Figure 7 shows the intuitive
idea in R and R2.

More specifically, the cubes dataset is defined in [−1, 1]15 ⊂ R15, i.e. the 15 features are in the
interval [−1, 1]. Training and test datasets are sampled from [−1, 1]15 uniformly and independently.
In order to define the probability that x ∈ [−1, 1]15 belongs to class 1, we resort to the so-called
infinity norm, ||x||∞ = max (|x1|, . . . , |x15|). The level hyper-surfaces of this norm (i.e. the points
that satisfy ||x||∞ = ct.) are (the border of) the hyper-cubes inside [−1, 1]15. Therefore, defining
p(y = 1|x) = ϕ(||x||∞) with ϕ : [0, 1] → R an increasing function, we obtain a dataset in which
class 1 is mainly located in the border of the [−1, 1]15 hyper-cube whereas class 0 is mainly located
in its center. More specifically, we used the function ϕ(w) = max (0, 128(w − 0.5)7), which is
represented in Figure 6. The reasons for this choice is that ϕ(0) = 0, ϕ(1) = 1, and that it generates
a balanced dataset (because the measures of the subsets {x ∈ [−1, 1]15 : 0 ≤ ϕ(||x||∞) ≤ 0.5}
and {x ∈ [−1, 1]15 : 0.5 ≤ ϕ(||x||∞) ≤ 1} are very similar).

Then, five annotators, with sensitivities α = {0.9, 0.7, 0.8, 0.1, 0.9} and specificities β =
{0.6, 0.8, 0.5, 0.2, 0.8}, are simulated. This produces both very reliable annotators (e.g. the
fifth) and adversarial ones (e.g. the fourth). Training and test sets with 100000 and 200000
instances, respectively, were generated. As in the previous experiment, training sets of in-
creasing size were considered in order to examine the scalability of the compared methods,

7The more complex the dataset structure is, the more relevant it is to have a large training dataset which can reveal more detailed
patterns (in other words, if the structure of the dataset is really simple, say linear, the amount of training data needed to puzzle it
out reduces). Therefore, by avoiding complex dataset, we prevent the introduction of artificial complexities that could favor the
proposed methods.
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Figure 6: Graphical representation of ϕ, the function used to define the separation between classes
in the synthetic dataset cubes.

Class 0
Class 1

R1 R2

Figure 7: Structure of the two classes in the synthetic dataset cubes. It consists of a cube (more
generally an hyper-cube, since we work in R15) fitted inside a bigger one. The probability of class
1 grows as we approach the border.

namely N ∈ {1000, 5000, 10000, 15000, 50000, 100000}. As before, classical GP-based meth-
ods GP-MV and VGPCR could not be trained beyond N = 15000, and Rodrigues used
its own grid N ∈ {100, 500, 1000, 2500} (although this time it did not exhibit convergence
problems, its inference procedure is again slow in practice). Finally, the same grids Df ∈
{10, 50, 100, 200, 300, 400, 500, 600, 700} and Df ∈ {1, 5, 10, 30, 50, 70, 90, 110, 130, 150} were
used for the number of Fourier frequencies in RFF and VFF, respectively. For completeness, all
the raw results are shown in A, Tables 7 and 8 (test AUC), 9 and 10 (train CPU time), and 11 and
12 (test CPU time).

First, let us analyze the trade-off between generalization capability and training computational cost
for the compared methods, see Figure 8. Again, in terms of predictive performance (see x-axis),
we observe a clear distinction between LR-based methods (Raykar, Yan), which can only provide
linear boundaries, and GP-related ones (GP-MV, VGPCR, RFF, VFF). Rodrigues is located in the
middle since, although it also provides non-linear boundaries, its inference procedure limited its
application to N = 2500 training instances (Figure 10 will analyze its lack of scalability).

Most importantly, the novel RFF and VFF exhibit the expected complementary behavior that was
already observed in the previous experiment: whereas RFF is significantly more efficient and
faster (it does not optimize over the Fourier frequencies), the flexibility of VFF allows it to capture
additional relevant patterns and, therefore, achieve a superior predictive performance. Here, notice
that RFF with Df = 200 is around 500 times faster than VGPCR (the only competitive method in
terms of predictive performance), while it is already (slightly) better in that aspect. Moreover, VFF
reaches a 0.788 in test AUC, whereas classical approaches get a maximum of 0.704 (VGPCR).
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Figure 8: Trade-off between predictive performance (test AUC) and training cost (training CPU
time) in the dataset cubes. Each method is trained with the maximum possible number of training
points. For RFF and VFF, the Df -grids specified in the text are used. We observe that RFF
is more than 50 times faster than VGPCR (the other competitive method in terms of predictive
performance). Moreover, it slightly outperforms VGPCR in that aspect. It is precisely in predictive
performance where VFF achieves an overwhelming superiority (more than 8 points of test AUC
better than VGPCR). Moreover, it is also faster than VGPCR. Notice the logarithmic scale in the
y-axis.

It is also interesting to observe that VFF with Df = 1 obtains a very similar result (in test AUC)
to LR-based methods (Raykar, Yan). This is reasonable according to its formulation, since it is
optimizing one Fourier frequency that plays the role of the linear regression coefficients. Moreover,
in Figure 11 we will analyze how the number of Fourier frequencies Df influences the behavior of
RFF and VFF.

The second main idea is the overwhelming superiority of RFF and VFF in test CPU time, see
Figure 9. As in the previous experiment, their theoretical independence on N is confirmed here
in practice, as opposed to the O(N2) growth of the classical GP-based crowdsourcing methods.
This makes the latter prohibitive for any real-world problem where the test time plays an important
role. Again, we observe that the test CPU time for RFF and VFF grows with Df , as theoretically
expected.

Third, Figure 10 analyzes the train CPU time scalability of the compared methods in this large
dataset. As theoretically justified, recall also the previous experiment, we confirm here that
RFF/VFF growth depends linearly on N , whereas classical GP-based approaches increase with
N3. In fact, notice that our slowest method (VFF with Df = 150 and N = 100000) is twice faster
than VGPCR with N = 15000 (the best among the competitors, and still 9 points below in predic-
tive performance), and very similar to VGPCR with N = 10000. This suggests that our methods
can be applied to even larger datasets, whereas classical GP-based ones have already achieved their
maximum capabilities in a standard machine (recall their O(N2) cost in RAM memory).
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Figure 9: CPU time needed at test step (production time) as a function of the training set size in
the cubes dataset. The linear (standard) scale in the left plot allows for a more intuitive perception
of the methods scalability. The logarithmic scale in the right plot shows the differences between
the fastest ones. Different representative values of Df are shown for RFF and VFF. These are
more than 250 times faster than VGPCR (the only competitive method in terms of generalization
capability). Moreover, as theoretically expected, their test cost is independent on N .

Figure 10 also confirms that the Fourier frequencies optimization of VFF makes it significantly
slower than RFF. Finally, notice the prohibitive growth of Rodrigues, which was conceived to deal
with small datasets. Although the RAM memory requirements did not prevent us from training
Rodrigues until N = 15000 (just like the rest of classical GP-based methods), we did not try
beyond N = 2500 because of this very large training CPU time.

Let us now analyze how the number of Fourier frequencies Df influences the predictive perfor-
mance of the proposed methods, see Figure 11. Again, this is in accordance with their theoretical
formulation (recall the second-to-last paragraph of Section 2.2) and the results obtained in the pre-
vious experiment. For RFF, it is simple: increasing Df improves its approximation to a GP with
SE kernel, and therefore enhances its predictive performance. For VFF, large values of Df may
lead to excessively complex models which overfit the training data and lose generalization capabil-
ity. This produces the characteristic evolution observed in Figure 11, in which test AUC increases
until an optimal value of Df and then decreases. Naturally, a greater training set size N usually
requires a greater complexity Df to overfit.

Finally, since we have available the real sensitivity and specificity values of the annotators, it is
interesting to assess the quality of the estimations provided by RFF and VFF. We describe the case
N = 100000, since the main goal of this work is to deal with large-scale scenarios. The results
obtained for N < 100000 were almost identical. Table 1 show the estimations of the proposed
methods for sensitivity and specificity. We observe that both RFF and VFF provide very accurate
estimations for all the annotators in both sensitivity and specificity. Namely, the maximum absolute
difference in sensitivity is 0.0118 for RFF, and 0.0039 for VFF. In specificity, it is 0.0123 for RFF,
and 0.0022 for VFF. Moreover, the accuracy in the estimation does not depend on Df . Notice that
this is natural from a theoretical viewpoint, since Df (the number of Fourier frequencies) is not
related to the model of the annotations Y given the latent true labels z (but to the model of z given
the features X, recall Figure 1).
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Figure 10: Training computational cost as a function of the training set size in dataset cubes.
Different values of Df are shown for RFF and VFF. As theoretically expected, we observe a linear
growth with N for the proposed methods, which makes them suitable for large-scale applications.
On the contrary, classical GP-based methods cubic growth is prohibitive for that setting. In fact,
notice that our methods training with 100000 data points is faster than VGPCR (the best method
among the competitors in terms of predictive performance) with 15000 instances (and already
analogous to VGPCR with 10000 instances).
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Figure 11: Predictive performance as a function of the number Df of Fourier frequencies used
in RFF (left) and VFF (right) for the cubes dataset. In both cases, different training set sizes
N are used. As theoretically hypothesized, RFF performance increases with Df (regardless of
N ). However, VFF may suffer from over-fitting when Df exceeds some complexity limit (which
usually increases with the training set size N ).

5.3 Music genre dataset

In this experiment we use the Music Genre dataset presented in [Tzanetakis and Cook, 2002],
which consists of 1000 fragments (30 secs. length) of songs. The goal is to distinguish between
10 music genres: classical, country, disco, hiphop, jazz, rock, blues, reggae, pop, and metal. We
use an one-vs-all strategy to address this multi-class crowdsourcing classification problem, and
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Sensitivity (α), RFF

Annot. Real Df

10 50 100 200 300 400 500 600 700
1 0.9 0.903 0.897 0.894 0.893 0.893 0.893 0.893 0.893 0.893
2 0.7 0.704 0.696 0.692 0.691 0.691 0.691 0.691 0.691 0.691
3 0.8 0.799 0.795 0.794 0.793 0.793 0.793 0.793 0.793 0.793
4 0.1 0.091 0.101 0.107 0.108 0.108 0.108 0.108 0.108 0.108
5 0.9 0.903 0.894 0.889 0.888 0.888 0.888 0.888 0.888 0.888

Specificity (β), RFF

Annot. Real Df

10 50 100 200 300 400 500 600 700
1 0.6 0.594 0.603 0.608 0.609 0.609 0.609 0.609 0.609 0.609
2 0.8 0.795 0.801 0.805 0.806 0.806 0.806 0.806 0.806 0.806
3 0.5 0.500 0.505 0.508 0.509 0.509 0.509 0.509 0.509 0.509
4 0.2 0.205 0.194 0.189 0.188 0.188 0.188 0.188 0.188 0.188
5 0.8 0.792 0.804 0.810 0.811 0.811 0.811 0.811 0.811 0.811

Sensitivity (α), VFF

Annot. Real Df

1 5 10 30 50 70 90 110 130 150
1 0.9 0.900 0.899 0.899 0.900 0.900 0.900 0.899 0.899 0.900 0.900
2 0.7 0.700 0.700 0.699 0.700 0.700 0.700 0.700 0.700 0.700 0.700
3 0.8 0.797 0.797 0.797 0.798 0.798 0.797 0.797 0.797 0.797 0.797
4 0.1 0.096 0.097 0.097 0.096 0.096 0.096 0.097 0.097 0.096 0.097
5 0.9 0.898 0.898 0.898 0.899 0.899 0.899 0.899 0.899 0.899 0.899

Specificity (β), VFF

Annot. Real Df

1 5 10 30 50 70 90 110 130 150
1 0.6 0.599 0.599 0.599 0.598 0.598 0.599 0.599 0.599 0.599 0.599
2 0.8 0.798 0.798 0.798 0.798 0.798 0.798 0.799 0.799 0.798 0.798
3 0.5 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503 0.503
4 0.2 0.199 0.199 0.198 0.200 0.200 0.199 0.199 0.199 0.199 0.199
5 0.8 0.799 0.799 0.800 0.799 0.799 0.799 0.800 0.800 0.799 0.799

Table 1: Sensitivity and specificity estimations of RFF and VFF for the five annotators in the cubes
dataset. Different values of Df are used, and N is set to 100000. The results are the mean over five
independent runs. We observe very accurate estimations, independently on Df .

the results are averaged over the 10 experiments. For preprocessing and feature extraction, the
Marsyas music information tool (http://marsyas.info/) was used to extract 124 features from
the original dataset [Rodrigues et al., 2013]. These features include relevant technical metrics such
us means and variances of timbral features, time-domain zero-crossings, spectral centroid, rolloff,
flux, and Mel-Frequency Cepstral Coefficients (MFCC). The dataset contains 100 samples from
each genre, which were randomly divided in 70 samples for training and 30 for testing. Crowd-
sourcing labels were obtained with Amazon Mechanical Turk [Snow et al., 2008]. Each annotator
listened to a subset of fragments and labeled them as one of the ten genres listed above. A total
amount of 2945 labels were provided by 44 different annotators.

Although RFF and VFF are initially conceived for large-scale problems out of the reach of clas-
sical GP-based crowdsourcing methods, it is interesting to analyze their behavior when applied
in a small (700 training instances) real crowdsourcing problem. Figure 12 shows the predic-
tive performance (left) and training computational cost (right) for the compared methods, using
different values of Df for RFF/VFF. Since the training is much faster now, the same fine grid
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Df = {1, 5, 10, 20, 40, 60, 80, 100, 120, ..., 460, 480, 500} was used for both methods. In all cases,
the whole training set was used (i.e. N = 700).
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Figure 12: Left: predictive performance of the compared methods in the Music dataset. As theo-
retically expected, RFF constitutes an (efficient and scalable) approximation to VGPCR. However,
VFF is a whole new crowdsourcing method which is also competitive with (even outperforms for
some values of Df ) the state-of-the-art in small datasets. Right: training computational cost for
the compared methods in the Music dataset. The approximation RFF stands out for its efficiency,
whereas the new VFF is competitive with the rest of state-of-the-art approaches.

Figure 12 is in accordance with the theoretical formulation of the proposed methods. RFF is
an (efficient and scalable) approximation to VGPCR and, therefore, its predictive performance is
limited by that of VGPCR (as long as they are trained with the same set, like here; the advantage of
RFF is precisely that i) it can scale up to larger datasets, and ii) it is faster than VGPCR even in this
small set). Consequently, in practice, and provided that VGPCR can handle the dataset at hand, it
should be preferred to RFF if we are only interested in generalization capability. If training CPU
time is an issue, the right plot shows that RFF becomes an interesting more efficient alternative.

For its part, since it does not approximate a GP with SE kernel but learns its own one, VFF is
not limited by the performance of VGPCR (i.e., it is a whole novel approach). In fact, the left
plot shows that VFF can outperform VGPCR for many choices of Df . In any case, we observe
that VFF is a new probabilistic crowdsourcing method that is competitive with the current ones in
previously-reachable datasets. Moreover, its scalability to larger datasets makes it push further the
state-of-the-art in this field.

5.4 Sentence polarity dataset

Finally, in order to further assess the robustness of the proposed methods, let us evaluate their per-
formance in an additional application domain: sentiment analysis. More specifically, the sentence
polarity dataset is a real crowdsourcing problem that consists of 10427 sentences extracted from
movie reviews in “Rotten Tomatoes” website http://www.rottentomatoes.com/. The goal is
to decide whether a sentence corresponds to a positive or negative review. In Table 2 we show six
sentences in the dataset. Preprocessing and feature extraction were carried out by Rodrigues et al.
[Rodrigues et al., 2013], which resulted in feature vectors with 1200 components. The dataset is
divided into train and test sets, with 4999 and 5428 samples, respectively. To obtain crowdsourc-
ing labels, the train set was made available in Amazon Mechanical Turk. A total amount of 27746
labels were obtained from 203 different annotators.
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Table 2: Examples of positive and negative samples in sentence polarity dataset.
Sentence True Label

“An original gem about an obsession with time.”
“positive”“A taut, intelligent psychological drama.”

“Clever, brutal and strangely soulful movie.”
“This is amusing for about three minutes.”

“negative”“The film can depress you about life itself.”
“The pool drowned me in boredom.”
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Figure 13: Predictive performance of RFF (left) and VFF (right) in the sentence polarity dataset,
compared to the results reported in [Rodrigues et al., 2014]. As theoretically expected, the approx-
imated RFF stays below classical methods in previously-reachable datasets, becoming closer as
Df grows. However, VFF is a whole new crowdsourcing algorithm which is competitive with
(even outperforms for some values of Df ) the previous approaches in small datasets.

This dataset was used to evaluate Rodrigues method in [Rodrigues et al., 2014]. With 4999 training
instances, it is within the reach of classical crowdsourcing approaches. Yet, let us check that our
large-scale-oriented methods obtain consistent test results in this setting, comparing them to those
reported in [Rodrigues et al., 2014, Table 3] (namely, 0.783 and 0.781 in test AUC for GP-MV and
Rodrigues respectively).

First, since RFF approximates the SE kernel, its performance is expected to be below that of
classical methods when the same amount of training instances is used (its power is, precisely, the
ability to scale up to large datasets, as shown in previous experiments). Moreover, its performance
should increase with the number Df of Fourier frequencies used, since the SE kernel is recovered
when Df → ∞. These hypotheses are confirmed in the results shown in Figure 13, left plot.
Notice how the test performance grows with Df and approaches that of the previously-reported
methods. Observe also that high values of Df have been used for RFF (up to 3500), since the high
original dimension of the data (1200 features) requires a large number of Fourier frequencies to
approximate the kernel.

Second, as VFF learns a new kernel (which might be better suited for the data at hand), its behavior
is more difficult to predict from a theoretical viewpoint. In any case, it is expected to be competitive
with previous approaches in non-large-scale settings. Indeed, Figure 13, right plot, shows that it
outperforms the methods reported in [Rodrigues et al., 2014], reaching a test AUC of 0.7862 for
Df = 500 and 0.789 for Df = 1000. Unlike RFF, observe that VFF achieves good results
with significantly less Fourier frequencies, since they are optimized and therefore have a weaker
dependence on the original dimension of the data.
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6 Conclusions and future work

We have introduced two new scalable and efficient probabilistic crowdsourcing methods that can
deal with previously-prohibitive datasets. Both are closely related to Gaussian Processes (GP),
rely on the Fourier features approximation to achieve scalability, and utilize variational inference
to estimate all the model unknowns. Unlike classical GP-based crowdsourcing approaches, whose
training computational cost and RAM memory requirements grow as O(N3) and O(N2) respec-
tively, the proposed methods scale up linearly with the training set size N in both aspects. This
allows them to go beyond the GP practical limit of N = 10000, reaching datasets with up to
N = 100000 samples. In turn, this allows them to outperform the previous approaches in terms
of predictive performance, while still remaining more efficient and faster. Moreover, an over-
whelming superiority is achieved in test computational cost (i.e. production time), where the novel
methods are independent on N whereas classical ones grow as O(N2). The novel RFF is a large-
scale approximation to the recent GP-based crowdsourcing method VGPCR, while VFF is capable
of estimating a new kernel (different to the squared exponential one that VGPCR is equipped with)
tailored to the training data. In exchange, VFF is slower in practice, and more prone to overfit-
ting. The proposed methods have proven to be the leading approach for medium-to-large scale
problems. They are complementary approaches, and the final choice strongly depends on the ap-
plication: whereas RFF guarantees a very fast and efficient training, VFF may achieve a higher
predictive performance. Finally, the number of Fourier frequencies used, Df , is an essential quan-
tity in the novel approaches. As theoretically expected, more frequencies are always better for
RFF, whereas it might lead to overfitting in VFF.

This is precisely the main future research line. A Bayesian treatment of the Fourier features in VFF
could contribute to weight them across a wide posterior probability distribution, instead of relying
on a single maximum likelihood estimation. An analogous idea has been successfully applied
for regression in [Gal and Turner, 2015]. A multi-class crowdsourcing formulation and the use of
inducing points (instead of Fourier features) to sparsify the underlying GP will also be explored in
the future.

A Tables of results

This appendix contains all the results obtained in the previously-prohibitive datasets sphere and
cubes. Tables 1, 3 and 5 show the test AUC, train CPU time and test CPU time, respectively, in
the sphere dataset for all the methods except for Rodrigues (respectively, Tables 2, 4 and 6 are
dedicated to Rodrigues). Analogously, Tables 7, 9 and 11 show the test AUC, train CPU time
and test CPU time, respectively, in the cubes dataset for all the methods except for Rodrigues
(respectively, Tables 8, 10 and 12 are dedicated to Rodrigues).
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N
1000 5000 10000 15000 20000 28000

Raykar 0.693±0.010 0.699±0.003 0.699±0.001 0.699±0.001 0.700±0.001 0.699±0.000
Yan 0.679±0.018 0.683±0.013 0.696±0.005 0.698±0.003 0.697±0.001 0.697±0.000

GP-MV 0.717±0.006 0.765±0.006 0.780±0.005 0.788±0.004 - -
VGPCR 0.718±0.005 0.767±0.006 0.780±0.004 0.788±0.003 - -
RFF-10 0.685±0.014 0.691±0.012 0.692±0.008 0.695±0.008 0.696±0.007 0.696±0.008
RFF-50 0.691±0.010 0.726±0.003 0.734±0.005 0.737±0.004 0.739±0.004 0.740±0.004
RFF-100 0.702±0.002 0.739±0.006 0.745±0.006 0.749±0.004 0.750±0.004 0.752±0.003
RFF-200 0.710±0.004 0.752±0.006 0.759±0.005 0.765±0.005 0.767±0.003 0.770±0.002
RFF-300 0.716±0.005 0.757±0.006 0.765±0.005 0.771±0.004 0.774±0.003 0.777±0.003
RFF-400 0.717±0.005 0.759±0.006 0.767±0.002 0.773±0.003 0.776±0.004 0.781±0.003
RFF-500 0.715±0.004 0.760±0.007 0.770±0.005 0.775±0.004 0.778±0.004 0.782±0.003
RFF-600 0.715±0.003 0.761±0.007 0.772±0.005 0.777±0.004 0.780±0.002 0.784±0.001
RFF-700 0.714±0.003 0.761±0.007 0.772±0.006 0.777±0.004 0.780±0.003 0.785±0.001
VFF-1 0.682±0.011 0.691±0.004 0.692±0.004 0.693±0.003 0.692±0.002 0.692±0.000
VFF-5 0.720±0.009 0.740±0.011 0.744±0.005 0.746±0.002 0.747±0.010 0.740±0.003
VFF-10 0.693±0.012 0.750±0.002 0.760±0.004 0.761±0.007 0.762±0.007 0.758±0.009
VFF-30 0.700±0.020 0.749±0.004 0.768±0.009 0.777±0.003 0.778±0.003 0.780±0.004
VFF-50 0.681±0.014 0.747±0.004 0.770±0.003 0.776±0.002 0.780±0.002 0.785±0.001
VFF-70 0.688±0.008 0.745±0.010 0.769±0.009 0.772±0.006 0.781±0.004 0.787±0.002
VFF-90 0.675±0.012 0.743±0.008 0.767±0.010 0.778±0.005 0.781±0.004 0.785±0.005

VFF-110 0.688±0.004 0.744±0.004 0.767±0.005 0.770±0.006 0.779±0.005 0.788±0.002
VFF-130 0.694±0.010 0.740±0.008 0.761±0.004 0.769±0.009 0.775±0.005 0.787±0.004
VFF-150 0.695±0.006 0.741±0.011 0.767±0.005 0.767±0.005 0.778±0.003 0.790±0.003

Table 1: Sphere dataset. Mean and standard deviation of test AUC (i.e. generalization capability)
over five independent runs, except for Rodrigues method. For each method, the highest value is
bolded.

N
100 500 1000 2500

Rodrigues 0.507±0.019 0.490±0.009 0.498±0.010 0.495±0.003
Table 2: Sphere dataset. Mean and standard deviation of test AUC (i.e. generalization capability)
over five independent runs for Rodrigues. The highest value is bolded.

N
1000 5000 10000 15000 20000 28000

Raykar 13.0 ± 4.1 76.8 ± 8.2 103.9 ± 5.3 143.1 ± 7.0 199.9 ± 33.3 259.5 ± 48.5
Yan 425.4 ± 89.1 582.0 ± 114.4 695.0 ± 117.9 793.4 ± 121.8 746.8 ± 78.7 2609.0 ± 230.6

GP-MV 160.8 ± 18.2 9262.3 ± 1014.9 41953.7 ± 1725.8 124456.9 ± 3922.0 − −
VGPCR 201.7 ± 67.0 8853.4 ± 595.5 42144.1 ± 2894.0 115996.4 ± 6836.8 − −
RFF-10 10.9 ± 3.3 15.8 ± 4.6 19.6 ± 1.2 37.9 ± 17.5 43.5 ± 17.2 62.9 ± 28.6
RFF-50 15.5 ± 2.2 29.1 ± 4.1 53.2 ± 4.5 69.7 ± 7.0 95.8 ± 27.5 135.0 ± 62.4

RFF-100 25.3 ± 3.2 54.4 ± 4.3 112.6 ± 67.6 149.1 ± 46.7 132.5 ± 12.7 311.2 ± 185.2
RFF-200 42.1 ± 7.4 78.7 ± 3.7 154.6 ± 37.1 193.3 ± 9.6 262.2 ± 48.5 499.4 ± 158.9
RFF-300 56.2 ± 7.3 141.0 ± 31.5 264.6 ± 72.1 322.7 ± 18.5 449.0 ± 52.7 731.2 ± 193.5
RFF-400 89.0 ± 10.5 186.6 ± 8.1 344.5 ± 15.9 496.2 ± 39.0 602.3 ± 53.7 874.6 ± 166.6
RFF-500 111.0 ± 17.5 270.7 ± 11.8 548.4 ± 91.1 670.6 ± 33.3 866.9 ± 109.3 1857.0 ± 950.5
RFF-600 144.5 ± 23.6 348.6 ± 16.1 625.8 ± 4.0 1085.2 ± 349.2 1226.1 ± 189.1 1545.5 ± 137.8
RFF-700 184.0 ± 28.0 427.5 ± 31.6 866.6 ± 184.0 1198.5 ± 72.5 2079.3 ± 750.7 2171.6 ± 279.6
VFF-1 0.9 ± 0.3 7.5 ± 1.3 36.8 ± 7.6 50.0 ± 16.7 47.4 ± 15.4 52.5 ± 8.1
VFF-5 6.3 ± 1.7 44.9 ± 16.5 219.0 ± 62.1 322.9 ± 94.1 310.3 ± 64.2 277.1 ± 33.7

VFF-10 20.4 ± 5.6 105.5 ± 21.9 568.1 ± 171.9 642.3 ± 219.9 801.4 ± 170.3 922.8 ± 373.4
VFF-30 35.2 ± 3.7 337.0 ± 52.4 2478.7 ± 843.6 3596.8 ± 501.3 3418.9 ± 781.6 4187.2 ± 1159.9
VFF-50 47.3 ± 3.0 591.3 ± 71.3 4582.3 ± 1115.0 5862.0 ± 545.2 9075.0 ± 2773.2 9383.2 ± 1194.1
VFF-70 52.2 ± 4.8 815.4 ± 146.0 6786.7 ± 2407.5 9589.2 ± 1262.4 11574.1 ± 3645.6 14535.1 ± 2575.1
VFF-90 62.1 ± 2.5 1012.5 ± 165.2 9984.4 ± 2053.7 11908.1 ± 1549.2 15682.6 ± 3789.9 23716.8 ± 3709.6
VFF-110 75.8 ± 15.1 1320.9 ± 275.5 10240.8 ± 1503.8 14653.5 ± 4986.6 16443.2 ± 2009.3 29169.3 ± 6151.4
VFF-130 81.7 ± 7.0 1883.8 ± 442.7 13186.8 ± 2328.1 16614.2 ± 2184.3 22481.6 ± 4992.3 31939.8 ± 3517.6
VFF-150 80.1 ± 9.5 2027.5 ± 420.0 14133.8 ± 4156.4 17888.4 ± 2623.9 22889.4 ± 1343.3 33984.3 ± 1992.8

Table 3: Sphere dataset. Mean and standard deviation of CPU train time over five independent
runs, except for Rodrigues method.
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N
100 500 1000 2500

Rodrigues 163.6±79.7 11285.1±7749.3 40609.9±13363.6 757778.4±455399.7
Table 4: Sphere dataset. Mean and standard deviation of CPU train time over five independent runs
for Rodrigues.

N
1000 5000 10000 15000 20000 28000

Raykar 0.006 ± 0.005 0.008 ± 0.004 0.002 ± 0.004 0.006 ± 0.008 0.004 ± 0.005 0.006 ± 0.008
Yan 0.008 ± 0.012 0.006 ± 0.005 0.010 ± 0.006 0.012 ± 0.010 0.006 ± 0.005 0.020 ± 0.011

GP-MV 6.322 ± 3.403 58.286 ± 11.929 160.682 ± 14.796 370.072 ± 33.214 − −
VGPCR 3.412 ± 2.055 57.636 ± 13.149 156.912 ± 10.616 359.774 ± 7.491 − −
RFF-10 0.210 ± 0.250 0.082 ± 0.016 0.068 ± 0.012 0.096 ± 0.026 0.080 ± 0.020 0.076 ± 0.010
RFF-50 0.138 ± 0.054 0.134 ± 0.023 0.120 ± 0.021 0.120 ± 0.015 0.134 ± 0.027 0.128 ± 0.015

RFF-100 0.152 ± 0.040 0.148 ± 0.015 0.146 ± 0.016 0.146 ± 0.019 0.160 ± 0.011 0.174 ± 0.019
RFF-200 0.258 ± 0.064 0.230 ± 0.020 0.234 ± 0.014 0.234 ± 0.027 0.248 ± 0.012 0.236 ± 0.019
RFF-300 0.300 ± 0.023 0.306 ± 0.010 0.328 ± 0.031 0.328 ± 0.044 0.336 ± 0.024 0.344 ± 0.031
RFF-400 0.414 ± 0.034 0.412 ± 0.024 0.420 ± 0.028 0.416 ± 0.024 0.422 ± 0.030 0.416 ± 0.021
RFF-500 0.522 ± 0.034 0.558 ± 0.051 0.556 ± 0.053 0.542 ± 0.053 0.532 ± 0.032 0.544 ± 0.036
RFF-600 0.642 ± 0.052 0.660 ± 0.043 0.648 ± 0.026 0.664 ± 0.051 0.644 ± 0.012 0.668 ± 0.024
RFF-700 0.806 ± 0.031 0.796 ± 0.047 0.802 ± 0.037 0.906 ± 0.114 0.834 ± 0.030 0.838 ± 0.031
VFF-1 0.038 ± 0.004 0.052 ± 0.031 0.030 ± 0.006 0.050 ± 0.045 0.030 ± 0.006 0.042 ± 0.020
VFF-5 0.092 ± 0.029 0.066 ± 0.016 0.060 ± 0.011 0.062 ± 0.015 0.070 ± 0.011 0.076 ± 0.036
VFF-10 0.088 ± 0.015 0.086 ± 0.014 0.074 ± 0.010 0.090 ± 0.017 0.100 ± 0.025 0.068 ± 0.007
VFF-30 0.116 ± 0.008 0.116 ± 0.014 0.116 ± 0.024 0.114 ± 0.008 0.104 ± 0.014 0.090 ± 0.009
VFF-50 0.144 ± 0.005 0.130 ± 0.014 0.118 ± 0.017 0.128 ± 0.019 0.128 ± 0.021 0.132 ± 0.017
VFF-70 0.160 ± 0.013 0.146 ± 0.030 0.134 ± 0.008 0.136 ± 0.012 0.128 ± 0.016 0.150 ± 0.017
VFF-90 0.144 ± 0.008 0.156 ± 0.015 0.138 ± 0.022 0.136 ± 0.012 0.152 ± 0.019 0.194 ± 0.027

VFF-110 0.178 ± 0.017 0.154 ± 0.015 0.166 ± 0.024 0.168 ± 0.019 0.164 ± 0.017 0.166 ± 0.015
VFF-130 0.178 ± 0.019 0.170 ± 0.024 0.178 ± 0.019 0.280 ± 0.177 0.164 ± 0.017 0.194 ± 0.015
VFF-150 0.198 ± 0.013 0.178 ± 0.007 0.176 ± 0.023 0.214 ± 0.020 0.194 ± 0.030 0.214 ± 0.019

Table 5: Sphere dataset. Mean and standard deviation of CPU test time (i.e. production time) over
five independent runs, except for Rodrigues method.

N
100 500 1000 2500

Rodrigues 0.444±0.153 1.112±0.576 1.806±0.428 5.788±0.396
Table 6: Sphere dataset. Mean and standard deviation of CPU test time (i.e. production time) over
five independent runs for Rodrigues.
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N
1000 5000 10000 15000 50000 100000

Raykar 0.501±0.001 0.501±0.001 0.501±0.002 0.501±0.002 0.501±0.001 0.499±0.000
Yan 0.500±0.002 0.501±0.002 0.501±0.002 0.501±0.002 0.501±0.001 0.501±0.000

GP-MV 0.489±0.004 0.493±0.001 0.631±0.031 0.670±0.010 - -
VGPCR 0.616±0.031 0.670±0.009 0.694±0.002 0.704±0.001 - -
RFF-10 0.501±0.038 0.491±0.040 0.484±0.050 0.563±0.005 0.556±0.009 0.547±0.012
RFF-50 0.519±0.075 0.548±0.061 0.598±0.014 0.607±0.019 0.617±0.021 0.620±0.020
RFF-100 0.518±0.041 0.617±0.014 0.644±0.014 0.655±0.014 0.675±0.013 0.679±0.013
RFF-200 0.521±0.045 0.644±0.010 0.675±0.004 0.687±0.003 0.707±0.001 0.712±0.001
RFF-300 0.518±0.079 0.652±0.010 0.682±0.003 0.692±0.002 0.709±0.000 0.713±0.000
RFF-400 0.520±0.081 0.655±0.008 0.684±0.002 0.694±0.002 0.709±0.000 0.713±0.000
RFF-500 0.521±0.079 0.659±0.008 0.686±0.002 0.695±0.002 0.709±0.001 0.713±0.000
RFF-600 0.521±0.079 0.661±0.007 0.687±0.002 0.695±0.002 0.709±0.000 0.713±0.000
RFF-700 0.520±0.080 0.662±0.007 0.688±0.002 0.696±0.002 0.709±0.000 0.713±0.000
VFF-1 0.502±0.009 0.501±0.001 0.501±0.002 0.501±0.002 0.501±0.001 0.499±0.000
VFF-5 0.512±0.005 0.552±0.008 0.581±0.007 0.589±0.004 0.602±0.003 0.606±0.002
VFF-10 0.521±0.011 0.574±0.009 0.608±0.013 0.632±0.007 0.658±0.003 0.664±0.001
VFF-30 0.520±0.009 0.590±0.012 0.637±0.007 0.655±0.007 0.697±0.002 0.711±0.004
VFF-50 0.519±0.004 0.582±0.007 0.626±0.008 0.640±0.002 0.714±0.014 0.728±0.010
VFF-70 0.519±0.009 0.587±0.012 0.617±0.005 0.635±0.004 0.717±0.013 0.759±0.011
VFF-90 0.525±0.008 0.584±0.005 0.616±0.006 0.622±0.008 0.706±0.017 0.785±0.011

VFF-110 0.529±0.010 0.579±0.011 0.611±0.005 0.622±0.003 0.677±0.007 0.788±0.014
VFF-130 0.522±0.006 0.576±0.004 0.606±0.003 0.619±0.002 0.683±0.014 0.742±0.021
VFF-150 0.524±0.008 0.575±0.009 0.602±0.008 0.614±0.004 0.696±0.010 0.745±0.032

Table 7: Mean and standard deviation of test AUC (i.e. generalization capability) over five inde-
pendent runs, except for Rodrigues method. For each method, the highest value is bolded. Dataset:
cubes.

N
100 500 1000 2500

Rodrigues 0.501±0.003 0.528±0.006 0.544±0.011 0.568±0.011
Table 8: Mean and standard deviation of test AUC (i.e. generalization capability) over five inde-
pendent runs for Rodrigues. The highest value is bolded. Dataset: cubes

N
1000 5000 10000 15000 50000 100000

Raykar 9.7 ± 1.3 79.7 ± 8.9 113.1 ± 10.3 143.2 ± 11.0 245.5 ± 15.1 376.4 ± 7.8
Yan 29.4 ± 11.9 72.1 ± 10.3 80.9 ± 7.3 89.0 ± 2.7 174.5 ± 1.7 351.6 ± 6.3

GP-MV 293.6 ± 306.5 9662.4 ± 6025.3 13738.3 ± 3357.0 34390.9 ± 503.5 − −
VGPCR 639.4 ± 601.4 5390.8 ± 256.0 67373.8 ± 11094.2 146773.5 ± 31379.0 − −
RFF-10 11.5 ± 5.2 34.3 ± 10.1 55.6 ± 17.6 61.8 ± 19.0 114.4 ± 11.8 162.7 ± 32.0
RFF-50 31.2 ± 15.8 20.2 ± 20.5 31.2 ± 21.2 31.8 ± 9.4 58.0 ± 3.1 109.3 ± 6.8

RFF-100 22.2 ± 21.4 19.3 ± 4.3 30.0 ± 4.7 39.0 ± 7.7 90.7 ± 6.0 163.7 ± 13.0
RFF-200 32.4 ± 28.8 22.9 ± 2.3 43.4 ± 2.9 59.0 ± 4.4 169.3 ± 3.9 327.3 ± 8.8
RFF-300 71.9 ± 51.6 37.5 ± 6.2 64.1 ± 3.2 87.5 ± 7.6 298.4 ± 13.3 564.2 ± 9.2
RFF-400 122.8 ± 83.0 56.2 ± 10.0 96.3 ± 9.2 137.1 ± 17.5 426.5 ± 35.3 839.5 ± 12.4
RFF-500 195.7 ± 157.4 96.8 ± 29.2 153.3 ± 27.6 215.9 ± 33.1 613.0 ± 42.5 1233.3 ± 30.2
RFF-600 277.5 ± 202.9 130.5 ± 34.9 210.8 ± 41.7 284.1 ± 53.1 813.6 ± 87.2 1661.3 ± 48.9
RFF-700 399.1 ± 304.0 167.1 ± 59.4 260.4 ± 52.9 402.0 ± 38.3 1127.6 ± 83.1 2234.7 ± 30.9
VFF-1 3.0 ± 1.2 14.4 ± 3.0 116.2 ± 34.1 124.4 ± 33.4 184.9 ± 27.6 229.2 ± 37.5
VFF-5 8.7 ± 1.1 130.6 ± 35.2 791.1 ± 497.6 608.5 ± 150.7 893.3 ± 298.6 1092.7 ± 389.3
VFF-10 21.0 ± 5.1 173.1 ± 25.3 1480.2 ± 273.7 1460.6 ± 488.5 1726.8 ± 288.2 2160.9 ± 583.5
VFF-30 48.7 ± 11.4 399.2 ± 53.2 5039.8 ± 1208.3 6020.8 ± 1427.5 7832.2 ± 2032.4 10261.9 ± 3239.3
VFF-50 61.5 ± 11.2 638.8 ± 117.8 7388.7 ± 2115.0 8720.7 ± 2936.3 27493.7 ± 15726.5 28411.7 ± 11184.2
VFF-70 70.1 ± 12.3 809.5 ± 59.5 11065.6 ± 3504.0 12704.8 ± 4026.7 32159.1 ± 11781.5 52529.9 ± 13354.0
VFF-90 77.3 ± 15.2 1292.3 ± 247.0 12141.8 ± 3080.7 17052.8 ± 4579.0 33085.1 ± 8452.8 81205.7 ± 11555.1

VFF-110 86.6 ± 18.5 1662.5 ± 383.0 19402.3 ± 5435.1 21365.0 ± 5921.8 27909.0 ± 6329.1 94428.9 ± 33174.8
VFF-130 101.7 ± 31.5 2207.8 ± 404.7 20206.9 ± 5174.2 20747.1 ± 4638.8 46683.2 ± 24627.5 71927.6 ± 18965.0
VFF-150 110.1 ± 28.5 1837.7 ± 331.1 22362.4 ± 6844.6 24831.1 ± 6319.1 49974.3 ± 16474.8 70633.5 ± 32070.8

Table 9: Mean and standard deviation of CPU train time over five independent runs, except for
Rodrigues method. Dataset: cubes
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N
100 500 1000 2500

Rodrigues 67.0±23.2 3646.7±919.1 21471.2±1611.1 340339.7±48419.3
Table 10: Mean and standard deviation of CPU train time over five independent runs for Rodrigues.
Dataset: cubes

N
1000 5000 10000 15000 50000 100000

Raykar 0.052 ± 0.007 0.042 ± 0.010 0.040 ± 0.011 0.022 ± 0.004 0.038 ± 0.007 0.042 ± 0.004
Yan 0.042 ± 0.004 0.040 ± 0.009 0.036 ± 0.005 0.096 ± 0.117 0.042 ± 0.004 0.048 ± 0.012

GP-MV 108.418 ± 2.068 2572.136 ± 72.938 9325.962 ± 27.316 19895.748 ± 661.243 − −
VGPCR 118.398 ± 2.023 2489.040 ± 103.969 9407.908 ± 230.540 12019.232 ± 3653.075 − −
RFF-10 1.118 ± 0.121 1.102 ± 0.172 1.010 ± 0.171 1.148 ± 0.146 1.118 ± 0.137 1.276 ± 0.176
RFF-50 2.332 ± 0.359 2.294 ± 0.177 2.436 ± 0.257 2.478 ± 0.103 2.388 ± 0.165 2.360 ± 0.119

RFF-100 3.900 ± 0.336 4.228 ± 0.334 4.460 ± 0.332 4.322 ± 0.223 4.288 ± 0.221 4.396 ± 0.274
RFF-200 7.976 ± 0.290 8.298 ± 0.218 8.360 ± 0.433 8.656 ± 0.450 8.898 ± 0.282 9.068 ± 0.286
RFF-300 13.738 ± 1.553 13.958 ± 0.416 14.048 ± 0.755 13.818 ± 0.405 14.314 ± 0.617 14.252 ± 0.339
RFF-400 19.826 ± 1.940 19.732 ± 0.838 20.694 ± 0.913 20.406 ± 0.746 21.114 ± 0.701 20.890 ± 0.302
RFF-500 27.160 ± 2.920 27.116 ± 2.087 27.178 ± 0.520 27.354 ± 2.912 29.026 ± 1.834 28.456 ± 0.630
RFF-600 34.788 ± 3.241 35.050 ± 3.523 35.674 ± 1.310 37.036 ± 1.893 37.512 ± 0.362 36.772 ± 1.957
RFF-700 43.928 ± 3.407 44.634 ± 1.275 45.790 ± 2.873 44.960 ± 2.203 46.230 ± 0.872 46.236 ± 2.113
VFF-1 0.744 ± 0.066 0.852 ± 0.180 0.744 ± 0.108 0.688 ± 0.106 0.572 ± 0.097 0.570 ± 0.061
VFF-5 0.824 ± 0.125 0.872 ± 0.122 0.942 ± 0.188 0.744 ± 0.082 0.770 ± 0.119 0.758 ± 0.068
VFF-10 1.092 ± 0.106 1.154 ± 0.159 1.102 ± 0.115 0.908 ± 0.101 0.840 ± 0.117 1.016 ± 0.300
VFF-30 1.804 ± 0.100 1.662 ± 0.156 1.694 ± 0.051 1.712 ± 0.118 1.554 ± 0.083 1.634 ± 0.122
VFF-50 2.362 ± 0.076 2.254 ± 0.088 2.326 ± 0.092 2.442 ± 0.184 2.214 ± 0.152 2.160 ± 0.189
VFF-70 2.842 ± 0.107 2.760 ± 0.154 2.974 ± 0.065 2.992 ± 0.151 3.004 ± 0.079 2.956 ± 0.190
VFF-90 3.576 ± 0.132 3.504 ± 0.259 3.552 ± 0.130 3.688 ± 0.279 3.872 ± 0.352 3.622 ± 0.178

VFF-110 4.206 ± 0.175 4.062 ± 0.213 4.264 ± 0.181 4.556 ± 0.443 4.514 ± 0.313 4.284 ± 0.174
VFF-130 5.072 ± 0.430 4.868 ± 0.306 5.030 ± 0.237 5.008 ± 0.158 5.332 ± 0.166 5.240 ± 0.293
VFF-150 5.770 ± 0.321 5.716 ± 0.122 5.892 ± 0.281 5.850 ± 0.267 6.290 ± 0.915 5.878 ± 0.425

Table 11: Mean and standard deviation of CPU test time (i.e. production time) over five indepen-
dent runs, except for Rodrigues method. Dataset: cubes

N
100 500 1000 2500

Rodrigues 8.294±4.201 48.528±34.869 69.630±31.114 114.842±88.935
Table 12: Mean and standard deviation of CPU test time (i.e. production time) over five indepen-
dent runs for Rodrigues. Dataset: cubes
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6.2 Main contributions

• First, we extend the use of sparse GP approaches based on inducing points to the
crowdsourcing setting. This allows for mini-batch training, achieving scalability
to datasets of virtually any size. The derived training objective naturally integrates
the crowdsourcing and sparse GP ones. Variational inference is used to estimate
the model parameters.

• Second, we leverage Normalizing Flows (NF) to describe a more complex vari-
ational posterior on the inducing point values (which originally is considered as
a Gaussian distribution). NFs sequentially apply invertible transformations with
cheap Jacobian to obtain more expressive distributions.
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• Third, we generalize the use of inference networks for scalable inference of GPs
to the crowdsourcing scenario. This is a very recent approach that allows for ex-
pressive predictive distributions which are not limited by the number of inducing
points used.

• Finally, we evaluate the three approaches on a challenging dataset to detect glitches
in the search for gravitational waves within the laureate LIGO project. The in-
ducing points based method outperforms all previous algorithms, NFs slightly
improves the results a bit further, and inference networks consolidate the outper-
formance even for smaller values of M (which is now the size of the measure-
ment set, used to match the predictions of the predictive and the true distributions
at each step).
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ABSTRACT

In the last years, crowdsourcing is transforming the way classification training sets
are obtained. Instead of relying on a single expert annotator, crowdsourcing shares
the labelling effort among a large number of collaborators. For instance, this is be-
ing applied in the laureate Laser Interferometer Gravitational Waves Observatory
(LIGO), in order to detect glitches which might hinder the identification of true
gravitational-waves. The crowdsourcing scenario poses new challenging difficul-
ties, as it has to deal with different opinions from a heterogeneous group of an-
notators with unknown degrees of expertise. Probabilistic methods, such as Gaus-
sian Processes (GP), have proven successful in modeling this setting. However,
GPs do not scale up well to large data sets, which hampers their broad adoption
in real-world problems (in particular LIGO). This has led to the very recent intro-
duction of deep learning based crowdsourcing methods, which have become the
state-of-the-art for this type of problems. However, the accurate uncertainty quan-
tification provided by GPs has been partially sacrificed. This is an important aspect
for astrophysicists in LIGO, since a glitch detection system should provide very
accurate probability distributions of its predictions. In this work, we first lever-
age a standard sparse GP approximation (SVGP) to develop a GP-based crowd-
sourcing method that factorizes into mini-batches. This makes it able to cope with
previously-prohibitive data sets. This first approach, which we refer to as Scal-
able Variational Gaussian Processes for Crowdsourcing (SVGPCR), brings back
GP-based methods to a state-of-the-art level, and excels at uncertainty quantifica-
tion. SVGPCR is shown to outperform deep learning based methods and previous
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Figure 1: Two examples of glitches observed by the LIGO detector. The fifteen types considered
in this work will be carefully described in section 3, see also figure 3.

probabilistic ones when applied to the LIGO data. Its behavior and main proper-
ties are carefully analyzed in a controlled experiment based on the MNIST data set.
Moreover, recent GP inference techniques are also adapted to crowdsourcing and
evaluated experimentally.

1 Introduction

Crowdsourcing, also known as citizen science, is revolutionizing the way real-world data sets
are obtained nowadays [Irwin, 2018, Guerrini et al., 2018]. Traditionally, the task of labelling
has been accomplished by a single expert annotator in a process that is time-consuming, ex-
pensive and difficult to scale. The proliferation of web services such as Amazon Mechanical
Turk (www.mturk.com) and Figure-Eight (www.figure-eight.com, formerly Crowdflower) al-
lows for outsourcing this process to a distributed workforce that can collaborate virtually, shar-
ing the effort among a huge number of annotators [Snow et al., 2008, Buhrmester et al., 2011].
This approach is rapidly growing in popularity, and is being applied to many different fields
such as medical imaging [Albarqouni et al., 2016], genetics [Saez-Rodriguez et al., 2016], re-
mote sensing [Fritz et al., 2017], topic modelling [Rodrigues et al., 2017], and object segmentation
[Heim et al., 2018].

A very recent application of crowdsourcing in the field of astrophysics is the GravitySpy project
[Zevin et al., 2017], which aims at detecting glitches in the Laser Interferometer Gravitational
Waves Observatory (LIGO). The LIGO collaboration is one of the most exciting and rec-
ognized scientific international initiatives [Abramovici et al., 1992]. It was awarded the 2017
Physics Nobel Prize for the first empirical detection of a gravitational-wave in September 2015
[B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), 2016]. These waves
are ripples in the fabric of spacetime, their existence was theoretically predicted by Einstein’s
General Relativity theory in 1916, and open a whole new way to explore the universe (beyond the
electromagnetic signals available so far) [Castelvecchi and Witze, 2016]. However, the LIGO de-
tector is equipped with extremely delicate technology, which is sensitive to many different sources
of noise. This produces a wide variety of glitches, see figure 1, which make the detection of true
gravitational-waves difficult. The goal of GravitySpy is to leverage citizen science to label the
large data set of glitches produced by LIGO, and then develop a machine learning system (based
on crowdsourcing methods) to help astrophysicists classify them [Zevin et al., 2017].
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The crowdsourcing scenario introduces new challenges in machine learning, such as combin-
ing the unknown expertise of annotators, dealing with disagreements on the labelled sam-
ples, or detecting the existence of spammer and adversarial annotators [Sheng et al., 2008,
Donmez and Carbonell, 2008]. The first approaches to deal with multiple-annotated data used
to rely on some kind of label aggregation mechanism prior to training. The most straightforward
one is majority voting, which assumes that every annotator is equally reliable. More elaborated
methods consider the biases of the different annotators, yielding a better calibrated set of training
labels, see [Dawid and Skene, 1979] (which is usually considered the first crowdsourcing work)
and [Ipeirotis et al., 2010, Whitehill et al., 2009]. In all these cases, the idea is to obtain a set of
clean true labels, which are then fed to the preferred standard (no-crowdsourcing) classification
algorithm.

However, recent works show that jointly modelling the classifier and the annotators behav-
ior leads to superior performance, since the features provide information to puzzle out the
true labels [Raykar et al., 2010, Yan et al., 2014]. In this joint model, Bayesian methods based
on Gaussian Processes (GPs) have proved extremely successful to accurately quantify un-
certainty [Rodrigues et al., 2014, Ruiz et al., 2019, Rodrigues et al., 2017]. However, in real-
world applications they have been gradually replaced by deep learning based approaches
[Albarqouni et al., 2016, Rodrigues and Pereira, 2018, Guan et al., 2018], since GPs do not scale
well to large data sets [Rodrigues et al., 2017, Rasmussen and Williams, 2006]. As a result, the
sound probabilistic formulation of GPs has been sacrificed. However, large scale problems could
greatly benefit from such a solid modelling. In particular, in order to develop a reliable glitch
detection system, astrophysicists with the GravitySpy project are particularly interested in the
Bayesian formulation given by GPs [Zevin et al., 2017]. Therefore, their scalability issues must
be addressed.

GP is a popular Bayesian non-parametric model for supervised learning that excels at uncer-
tainty quantification [Rasmussen and Williams, 2006]. Due to the kernel matrix inversion, its
computational cost at training is O(N3), where N is the size of the training set. To over-
come this problem, different sparse GP approximations have been proposed in the last years
[Bauer et al., 2016]. Many of them rely on the notion of inducing points, a reduced set of
M (M � N ) instances which condense the information contained in the whole data set
[Snelson and Ghahramani, 2006, Titsias, 2009]1. One of the most widespread methods is the
Scalable Variational Gaussian Processes (SVGP) method [Hensman et al., 2015a], which uses
Variational Inference (VI) [Blei et al., 2017] and is inspired by the earlier regression method
[Hensman et al., 2013]. SVGP can be trained through mini-batches and yields a training com-
putational cost of O(NbM

2), with Nb the mini-batch size. This allows SVGP to handle data sets
of practically any size [Hensman et al., 2015a]. In fact, very interesting rates of convergence have
been obtained recently for sparse GP regression problems [Burt et al., 2019]. They provide theoret-
ical guarantees of scalability, showing that the increase of M can be kept slower than N , specially
for large datasets. Although these proofs do not directly apply for classification or crowdsourcing
problems, in practice we will also observe that a small value ofM can deal with the LIGO problem
successfully.

1There exist other sparse GP approximations which alternatively rely on Fourier features [Morales-Álvarez et al., 2018], and
which have been already used for crowdsourcing problems [Morales-Álvarez et al., 2019]. In the experiments, the proposed method
will be shown to clearly outperform these alternative approaches too.
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In this work, we we start by extending the well-established sparse GP approximation behind SVGP
to the multiple-annotated crowdsourcing setting. Importantly, the form of the Evidence Lower
Bound (ELBO) is still suitable for Stochastic VI [Hoffman et al., 2013], which allows for training
through mini-batches. To the best of our knowledge, this allows GPs to be used for crowdsourcing
problems of virtually any size for the first time. This method is refered to as Scalable (or Sparse)
Variational Gaussian Processes for Crowdsourcing (SVGPCR). The annotators noise model is also
fully Bayesian, described by per-user confusion matrices which are assigned Dirichlet priors. The
underlying true labels are modelled in a probabilistic manner as well. VI is used to approximate
the posterior distribution of the model.

In order to deal with the LIGO data, SVGPCR is modelled and implemented as a multi-class
method. The implementation is based on GPflow, a very popular GP library that benefits from GPU
acceleration through TensorFlow [Matthews et al., 2017]. Three sets of experiments are provided.
First, a controlled crowdsourcing problem specified for MNIST illustrates the main properties and
behavior of SVGPCR. Among these, we may highlight its accurate identification of annotators’
expertise degree, reconstruction of the real underlying label, and how the number of inducing
points influences its performance. Secondly, SVGPCR is compared against previous probabilistic
crowdsourcing methods in a relevant binary LIGO problem2. SVGPCR stands out as the best
performing approach, thanks to its innovative scalability through mini-batches. Third, SVGPCR
is shown to outperform state-of-the-art DL-based methods in the full LIGO data set, specially in
terms of test likelihood, due to the more robust uncertainty control.

Once SVGPCR has been successfully developed, we explore more recent GP inference tech-
niques in the LIGO problem (beyond the standard SVGP). For instance, GPs can be com-
bined with inference networks [Shi et al., 2019] and the amortized setting of Variational Autoen-
coders [Casale et al., 2018]. More expressive posteriors can be described by Normalizing Flows
[Rezende and Mohamed, 2015, Papamakarios et al., 2019], and the use of sampling is an alterna-
tive to VI [Hensman et al., 2015b, Tegner et al., 2018]. While the number of possibilities is large
and worth exploring, here we restrict ourselves to two approaches. First, we resort to Normalizing
Flows to allow for richer posterior within the SVGPCR model. The results are only slightly better
than SVGPCR, which suggests that a unimodal Gaussian posterior might be enough in this appli-
cation. Then, we further modify the model by extending to crowdsourcing the use of inference
networks for GPs [Shi et al., 2019]. In this case, the results are clearly better for low values of M
(measurement points), which is precisely one of the main benefits of [Shi et al., 2019].

The rest of the paper is organized as follows. Section 2 describes the proposed model and inference
procedure. Section 3 presents the LIGO data available in the GravitySpy project. The experimental
results for SVGPCR are discussed in Section 4. More recent inference approaches are explored in
Section 5. Finally, Section 6 contains some remarks and future outlook.

2 Probabilistic model and inference

This section introduces the theoretical formulation of the proposed method. Figure 2 shows a
graphical representation of the proposed model, which will be useful here.

2Most of these previous probabilistic crowdsourcing approaches were originally proposed for binary problems, and the code is
available accordingly.
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Figure 2: Probabilistic graphical model for SVGPCR. Observed variables are depicted in yellow,
and those to be estimated in blue. In the latter case, the intensity indicates whether the estimation
is through a posterior distribution (light blue) or a point value (dark).

2.1 The model

In a crowdsourcing problem with K classes, we observe training data D = {(xn,Ya
n) : n =

1, . . . , N ; a ∈ An}, where xn ∈ RD are the training features, and Ya
n is the set3 of annotations

provided by the a-th annotator for the n-th instance. That is, each y ∈ Ya
n is an one-hot encoded

vector in {e1, . . . , eK} that represents the k-th class (i.e., all elements of ek are zero but the k-th
one, which is one). There are N data points, A annotators, and An ⊆ {1, . . . , A} contains the
annotators that labelled the n-th instance. All training instances will be grouped in X = {xn : n =
1, . . . , N}, and analogously all annotations in Y = {Ya

n : n = 1, . . . , N ; a ∈ An}.
As with previous approaches [Rodrigues et al., 2017, Raykar et al., 2010, Yan et al., 2014,
Rodrigues et al., 2014, Ruiz et al., 2019], the proposed model assumes an (unknown) real label
for each instance, zn ∈ {e1, . . . , eK}. The actual annotations depend on this real label and the de-
gree of expertise of each annotator, which is modelled by the confusion matrix Ra = (raij)1≤i,j≤K .
Each raij ∈ [0, 1] represents the probability that the a-th annotator labels as class i an instance
whose real class is j. Notice that this matrix must add up to one by columns. Mathematically, this
is given by

p(Ya
n|zn,Ra) =

∏

y∈Ya
n

yᵀRazn. (1)

If y = ei and zn = ej , the product yᵀRazn yields raij . Other variants of crowdsourcing likelihoods
could be explored. For instance, the values in Ra could depend on the input x (i.e. the annotator
degree of expertise might vary depending on the specific features of the input).

Assuming that all annotators label the different instances independently, we have

p(Y|Z,R) =
N∏

n=1

∏

a∈An
p(Ya

n|zn,Ra), (2)

where Z = {zn : n = 1, . . . , N} and R = {Ra : a = 1, . . . , A} group the corresponding
individual variables, and p(Ya

n|zn,Ra) is given by eq. (1).

The prior distribution for the annotators behavior is modelled through (independent) Dirichlet dis-
tributions, which are conjugate to the categorical one in eq. (1) [Bishop, 2006]. This yields

p(R) =
A∏

a=1

K∏

j=1

p(raj ) =
A∏

a=1

K∏

j=1

Dir(raj |αa1j, . . . , αaKj), (3)

3Notice that annotators are allowed to label the same instance more than once (possibly with different labels). This happens in
a few cases in the LIGO data.
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where raj = (ra1j, . . . , r
a
Kj)

ᵀ denotes the j-th column of the confusion matrix Ra. The hyperpa-
rameters α = {αaij : i, j = 1, . . . , K, a = 1, . . . , A} codify any prior belief on the behavior of
the annotators. The use of a prior protects from the so-called black swan paradox [Murphy, 2012,
Section 3.3.4.1], i.e. when trying to estimate raj for an annotator who provided no annotations
for samples in the j-th class. As we will see in eq. (15), the prior affects the training through a
KL divergence term that couples it to the posterior. If no prior knowledge is available, the default
choice αaij = 1 corresponds to uniform distributions. This is the most standard scenario, and the
one that is considered here. Yet, notice that this would not be the optimal choice if there were very
few annotations, since the prior could hide the effect of the observed data. This is not the case of
LIGO, where there is an average of over 500 annotations per user (see Section 3). Additionally,
the prior allows for more informative modelling. For instance, an annotator who is known to mix
up two classes can be modelled by setting the corresponding values of αaij .

For each instance, the true underlying label zn is modelled throughK latent variables fn1, . . . , fnK .
Both parts are related by means of the likelihood model

p(zn|fn1, . . . , fnK) = zᵀ
nν(fn1, . . . , fnK), (4)

where ν(fn1, . . . , fnK) is any vector with K positive components that add up to 1. In this work
we will use the popular robust-max likelihood [Hernández-Lobato et al., 2011]. It is given by
ν(a1, . . . , aK) = (ν1, . . . , νK), with νi = 1− ε for i = arg max(a1, . . . , aK) and νj = ε/(K − 1)
for j 6= i. The value of ε is fixed to the default value 10−3. This likelihood is implemented in
the GPflow library [Matthews et al., 2017], and in practice it can be substituted by any other one
available in GPflow. For instance the soft-max likelihood, which generalizes the sigmoid likelihood
to multi-class, i.e. νi = eai/

∑
j e

aj .

Assuming that the underlying real labels for the different instances are independent given the latent
variables, it is

p(Z|F) =
N∏

n=1

p(zn|fn,:), (5)

where p(zn|fn,:) is given by eq. (4), and F gathers the K latent variables for the N instances.
Specifically, F is a N ×K matrix, whose (n, k) term is the value of the k-th latent variable for the
n-th instance. As usual, the n-th row of F is denoted by fn,:, and the k-th column by fk.

Finally, independent GP priors are utilized for the latent variables f1, . . . , fK . This yields the joint
prior

p(F|Θ,X) =
K∏

k=1

p(fk|θk,X) =
K∏

k=1

N (fk|0,Kθk(X,X)), (6)

where θk are the kernel hyperparameters for the k-th GP. In this work we will use the well-known
squared exponential kernel, k(x,y) = γ · exp(−||x−y||2/(2σ2)), which has the hyperparameters
of variance γ and length-scale σ. However, as before, GPflow allows us to use any other kernel
[Matthews et al., 2017].

In summary, the full probabilistic model is given by

p(Y,Z,F,R|Θ) = p(Y|Z,R)p(R)p(Z|F)p(F|Θ), (7)

with the four factors on the right hand side defined through eqs. (2), (3), (5) and (6), respectively.
Here, the dependency on the observed features X has been omitted for simplicity.
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In order to introduce the sparse GP approximation, let us expand this model by introducing M
inducing points for each GP. Namely, each GP prior p(fk) can be naively rewritten as the marginal
of p(fk,uk), where uk = (u1k, . . . , uMk) are M inducing points. These represent the value of the
k-th GP on M new locations called inducing inputs, X̃ = {x̃1, . . . , x̃M}, just like fk does for X,
i.e. p(uk) = N (0,Kθk(X̃, X̃)). 4 Analogously to F, we write U for the M ×K matrix gathering
all the inducing points, whose rows and columns are denoted by um,: and uk respectively. The
idea is that, in sparse GPs, these inducing points are used to summarize the information from the
training data. By taking M � N , computational tractability can be achieved.

Then, if the joint GP p(fk,uk) is factorized as p(fk|uk)p(uk), the model in eq. (7) can be analo-
gously rewritten as

p(Y,Z,F,U,R|Θ) = p(Y|Z,R) · p(R) · p(Z|F) · p(F|U,Θ) · p(U|Θ), (8)

where the Gaussian conditional p(F|U,Θ) is given by
∏

kN (fk|Bkuk,Kθk(X,X) −
BkKθk(X̃,X)) and Bk = Kθk(X, X̃)[Kθk(X̃, X̃)]−1.

It is worth stressing that, by marginalizing out U, this model is equivalent to the one in eq. (7). This
is important because sparse GP approximations are grouped into two big categories: those which
approximate the model and perform exact inference (like FITC [Snelson and Ghahramani, 2006]),
and those which keep the model unaltered and introduce the approximation at the inference step.
Our approach, like SVGP, belongs to the second group, and the approximation is carried out next.

2.2 Variational inference

Given the model in eq. (8), an exact solution would involve calculating the marginal likelihood
p(Y|Θ), in order to estimate the optimal kernel hyperparameters Θ̃ and then obtain the posterior
p(Z,F,U,R|Y, Θ̃). However, integrating out Z, F, U and R is analytically intractable, and we
resort to variational inference to approximate the computations [Blei et al., 2017].

The core of variational inference is the following decomposition of the log marginal likelihood,
which is straightforward and holds for any distribution q(z,F,U,R)5:

log p(Y|Θ) = KL(q(Z,F,U,R)||p(Z,F,U,R|Y,Θ))

+

∫
q(Z,F,U,R) log

p(Y,Z,F,U,R|Θ)

q(Z,F,U,R)
dZdFdUdR.

︸ ︷︷ ︸
ELBO

(9)

This distribution q must be understood as an approximation to the true posterior
p(Z,F,U,R|Y,Θ). The second term in the right hand side of eq. (9) is called the Evidence
Lower Bound (ELBO), since it is a lower bound for the model evidence or log marginal likelihood
log p(Y|Θ) (recall that the first term, the KL divergence, is always non-negative, and is zero if and
only if both distributions coincide).

The idea of variational inference is to propose a parametric form for q. Then, the ELBO in eq. (9)
is maximized with respect to these new variational parameters, the kernel hyperparameters Θ, and

4Notice that the inducing locations X̃ do not depend on k. Although different inducing locations could be used for each GP,
in practice they are usually considered the same. However, the inducing points uk do depend on k, as each GP models a different
function.

5Observe that, in order to “lighten” the notation, we use the integral symbol also for the discrete variable Z.
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the inducing locations X̃ (which are not usually considered fixed). Notice that, by maximizing the
ELBO, we are at the same time considering the log marginal likelihood log p(Y|Θ) and the KL
divergence between q and the real posterior (just solve for the ELBO in eq. (9)). Thus, variational
inference converts the problem of posterior distribution approximation into an optimization one
[Blei et al., 2017], which in practice is addressed through optimization algorithms such as Adam
Optimizer [Kingma and Ba, 2015].

Here, the following parametric form is proposed for q:

q(Z,F,U,R) = q(Z)q(F|U,Θ)q(U)q(R), with (10)

q(Z) =
N∏

n=1

q(zn) =
N∏

n=1

zᵀ
nqn, (11)

q(F|U,Θ) = p(F|U,Θ), (12)

q(U) =
K∏

k=1

q(uk) =
K∏

k=1

N (uk|mk,Sk), (13)

q(R) =
A∏

a=1

K∏

k=1

q(rak) =
A∏

a=1

K∏

j=1

Dir(raj |α̃a1j, . . . , α̃aKj). (14)

The proposed posterior on Z factorizes across data points, and each qn = (qn1, . . . , qnK) ∈ [0, 1]K

describes the probability that K is the real class for xn (i.e.,
∑

k qnk = 1). The prior conditional
F|U does not introduce any new variational parameter. The posterior on U factorizes across
dimensions, and each one is given by a Gaussian with mean mk ∈ RM and (positive-definite)
covariance matrix Sk ∈ RM×M . Finally, q(R) factorizes across annotators and dimensions, and
they are assigned Dirichlet distributions with parameters α̃aij > 0. In the sequel, all these variational
parameters {qn : n = 1, . . . , N}, {mk,Sk : k = 1, . . . , K}, {α̃aij : i, j = 1, . . . , K; a = 1, . . . , A}
will be denoted by V.

In the proposed form described by eqs. (10)–(14), the prior conditional p(F|U,Θ) arises in a
natural way if the GP values are assumed conditionally independent on any other value given the
inducing points U. This is the original assumption of Titsias in [Titsias, 2009], and intuitively
implies that all the information is condensed by and propagated through the inducing points U.
This form of F|U, plus that of q(U), are at the core of the sparse GP approximation that we
are inspired by, SVGP [Hensman et al., 2015a]. The distributions q(Z) and q(R) are given the
functional form that would arise if a mean-field approach was applied [Bishop, 2006, Eq. (10.9)].
For that, the conjugacy between the Dirichlet distribution in p(R) and the categorical in p(Y|Z,R)
is essential.
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Table 1: Specifying the dependence of the ELBO on the variational parameters, the kernel hyper-
parameters, and the inducing locations through its five terms in eq. (15).

ELBO term Parameters it depends on
∑

qnkEq(rak)
[log p(y|ek, rak)] qnk, α̃

a
ij

∑
qnkEq(fn,:) [log p(ek|fn,:)] qnk,mk,Sk,Θ, X̃

∑
qnk log qnk qnk

∑
KL(q(uk)||p(uk)) mk,Sk,Θ, X̃

∑
KL(q(rak)||p(rak)) α̃aij

Now, we can compute the explicit expression for the ELBO in our case, which must be maximized
w.r.t. V, Θ, and X̃:

ELBO(V,Θ, X̃) = Eq(Z)p(F|U)q(U)q(R)log
p(Y|Z,R)p(Z|F)����p(F|U)p(U)p(R)

q(Z)����p(F|U)q(U)q(R)

=
N∑

n=1

∑

a∈An

∑

y∈Ya
n

K∑

k=1

qnkEq(rak)
[log p(y|ek, rak)] +

N∑

n=1

K∑

k=1

qnkEq(fn,:) [log p(ek|fn,:)]

−
N∑

n=1

K∑

k=1

qnk log qnk −
K∑

k=1

KL(q(uk)||p(uk))−
A∑

a=1

K∑

k=1

KL(q(rak)||p(rak)),

(15)
A detailed derivation of this expression is provided in the supplemental material. Notice that
the inclusion of the prior conditional p(F|U) in the approximate posterior makes the highlighted
cancellation possible, which is essential for the scalability of the method. All these five terms
in eq. (15) but the second one can be expressed in closed-form as a function of V, Θ, and X̃.
Similarly, the second one can be approximated explicitly through Gaussian-Hermite quadrature
[Olver et al., 2010a], which is already implemented in GPflow for many different likelihoods (like
the robust-max used here) [Matthews et al., 2017]. Further details and the specific expressions can
be found in the supplemental material. As a summary, Table 1 shows which parameters each term
in eq. (15) depends on.

Importantly, observe that the expression for the ELBO factorizes across data points, which al-
lows for stochastic optimization through mini-batches [Hoffman et al., 2013]. To the best of our
knowledge, this allows GP-based crowdsourcing methods to scale up to previously prohibitive data
sets for the first time. More specifically, the computational complexity to evaluate the ELBO in
eq. (15) in terms of the training set size is O(Nb(M

2 + AbK)), where Nb is the mini-batch size,
M the number of inducing points, K the number of classes, and Ab the number of annotations
per instance in the mini-batch. Although this is theoretically linear in N , the amount of inducing
points M might grow with N . An interesting alternative, which is based on inference networks
and addresses this issue, will be presented in Section 5.2. It is also interesting to compare eq. (15)
with the expression for the ELBO in SVGP [Hensman et al., 2015a, Eq. (19)]. The second and
fourth terms, which come from the prior and the classification likelihood, are analogous to the two
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terms in [Hensman et al., 2015a]. The other three terms arise naturally from the crowdsourcing
modelling.

Once the ELBO is maximized w.r.t. V, Θ and X̃, we can make predictions for previously unseen
data points. Given a new x∗, we have

p(f ∗k |x∗,D)=

∫
p(f ∗k |uk)p(uk|D)du ≈ Eq(uk)p(f ∗k |uk)

= N (f ∗k |Bx∗X̃mk, kx∗x∗ + Bx∗X̃(Sk −KX̃X̃)BX̃x∗) , (16)

where Bx∗X̃ stands for Kx∗X̃K−1
X̃X̃

, and we are using the values of mk, Sk, Θ, and X̃ estimated after
training. The predictive distribution on the real label z∗ is obtained as p(z∗) =

∫
p(z∗|f∗)p(f∗)df∗.

For classification likelihoods like ours, this is computed by GPflow through Gaussian-Hermite
quadrature. Moreover, as we will illustrate in the experiments, the posterior distributions q(Z)
and q(R) provide an estimation for the underlying real label of the training points and for
the annotators degree of expertise, respectively. Finally, in order to exploit GPU accelera-
tion through TensorFlow, the novel SVGPCR is implemented within the popular GP framework
GPflow [Matthews et al., 2017]. The code will be made publicly available in GitHub upon accep-
tance of the paper, and will be listed in the “projects using GPflow” section of the GPflow site
https://github.com/GPflow/GPflow.

3 LIGO data description

The Laser Interferometer Gravitational-Waves Observatory (LIGO) is a large-scale physics exper-
iment and observatory to detect gravitational waves (GWs) [Abramovici et al., 1992]. These are
ripples in the space-time produced by non-symmetric movements of masses, being their energy
much higher for events such as binary black holes or neutron stars mergers. Their existence is a
direct consequence of the General Relativity theory postulated in 1916. However, Albert Einstein
himself believed they would be extremely difficult to detect by any technology foreseen at that
time [Kennefick, 2016].

The first direct observation of GWs was made one hundred years later by LIGO, on September
14th, 2015. The discovery had a tremendous impact in the scientific community. Not only as an
empirical validation of one of the most recognized Physics theories, but also as a whole new way
to explore the universe. So far, astrophysicists could perceive the outer space only through one
“sense” (electromagnetic radiation), but were “deaf” to GWs. This detection has inaugurated a
new era of the so-called GWs astronomy, and has been awarded the 2017 Physics Nobel Prize
[B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration), 2016].

To identify GWs, LIGO is able to detect changes of the length of a 4 kilometers arm by a thou-
sandth of the width of a proton [Abramovici et al., 1992]. This is proportionally equivalent to
changing the distance to the nearest star outside the Solar System by one hair’s width. Such pre-
cision requires cutting-edge technology that is also extremely sensitive to different instrumental
and environmental sources of noise. In the spectrograms that astrophysicists analyze to search
for GWs, this contamination manifests itself in the form of glitches, which are noisy patterns that
adopt many different morphologies [Zevin et al., 2017]. The presence of these glitches hinders the
detection of true GWs. Figure 3 shows the 15 types of glitches considered in this work, which will
be later described.
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The goal of the GravitySpy project is to develop a system to accurately classify the different types
of glitches [Zevin et al., 2017]. This would help astrophysicists to gain insights on their taxonomy
and potential causes, enhancing detection of true GWs. Since LIGO produces a constant stream
of data, GravitySpy leverages crowdsourcing techniques through the Zooniverse platform in order
to label a training set https://www.zooniverse.org/projects/zooniverse/gravity-spy.
Then, machine learning crowdsourcing algorithms that can learn from this multiple-annotated data
must be applied (like the SVGPCR presented here).

Our training set contains 173565 instances (glitches) and 1828981 annotations (i.e., a mean value
of more than 10 labels per instance), which have been provided by 3443 collaborators through
the Zooniverse platform. These instances are time-frequency plots (spectrograms) like those in
figures 1 and 3, taken with four time windows. For each one, we will use 256 relevant features
extracted in [Bahaadini et al., 2018]. These glitches have been classified into 15 different classes
proposed by astrophysicists (recall figure 3). Next, we provide a brief description of them (see
[Bahaadini et al., 2018] for a more detailed explanation).

1080 Line: It appears as a string of short yellow dots, always around 1080Hz. It was reduced after
an update on 2017, although it is still present.

1400 Ripple: Glitches of 0.05s or longer around 1400Hz. So far, their origin is unknown. They
are commonly confused with 1080Line and Violin Mode Harmonic.

Blip: Short glitches with a symmetric “teardrop” shape in time-frequency. Blips are extremely
important since they hamper the detection of binary black hole mergers [Abbott et al., 2016].

Extremely Loud: These are caused by major disturbances, such as an actuator reaching the end
of its range and “railing”, or a photodiode “saturating”. They look very bright, due to their very
high energy.

Koifish: Similar to Blips, but resemble a fish with the head at the low frequency end, pectoral fins
around 30 Hz, and a thin tail around 500Hz. LIGO scientists do not understand the physical origin
of this glitch.

Low Frequency Burst: Resembles a hump with a nearly triangular shape growing from low
frequency to a peak, and then dying back down in one or two seconds. It is caused by scattered
light driven by motion of the output mirrors.

Low Frequency Lines: These appear as horizontal lines at low frequencies. Can be confused with
Scattered Light (the latter shows some curvature) and Low Frequency Bursts (the former continues
to look like a line in the 4s window).

No Glitch: No glitch refers to images that do not have any glitch visible at all. The spectrograms
would appear dark blue with only small fluctuations.

Other: This category is a catch-all for glitches that do not fit into the other categories. Therefore,
it presents a great variability in its morphology.

Power-line 60Hz: In US, the mains power is alternating current at 60Hz. When equipment running
on this power switches on or off, glitches can occur at 60Hz or harmonics (120, 180...). These
glitches usually look narrow in frequency, centered around 60Hz or harmonics.
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Repeating blips: Analogous to blips, but repeat at regular intervals, usually every 0.125, 0.25 or
0.5 seconds.

Scattered Light: After hitting optical components, some light from LIGO beam is scattered. It
may then reflect off of other objects and re-enter the beam with a different phase. It usually looks
like upward humps, with frequency below 30 Hz. It hinders searches of binary neutron stars,
neutron star black hole binaries, and binary black holes.

Scratchy: Wide band of mid-frequency signals that looks like a ripply path through time-frequency
space. This glitch hampers searches for binary black hole mergers.

Violin Mode Harmonic: Test masses in LIGO are suspended from fibers with resonances. These
are called violin modes, as they resemble violin strings resonances. Thermal excitations of the
fibers produce movements at the violin mode frequencies, centered around 500Hz. Thus, these
glitches are short and located around 500 Hz and harmonics.

Whistle: Usually appear with a characteristic W or V shape. Caused by radio frequency signals
beating with the LIGO Voltage Controlled Oscillators. Whistles mainly contaminate searches for
binary black hole mergers [Nuttall et al., 2015].

For testing purposes, the astrophysicists at GravitySpy have labelled a set of 9997 instances, in-
cluding glitches from all the 15 types explained above.

4 Experimental results

In this section, the proposed SVGPCR is empirically validated and compared against current
crowdsourcing methods, with a special focus on the LIGO data introduced in the previous sec-
tion. Three blocks of experiments are presented in sections 4.1, 4.2 and 4.3. Firstly, the behavior
of SVGPCR is thoroughly analyzed in a controlled crowdsourcing experiment based on the pop-
ular MNIST set. Secondly, SVGPCR is compared with previous probabilistic (mainly GP-based)
approaches on the LIGO data. Since most of these methods were proposed for binary problems, we
consider a binary task relevant to the GravitySpy project. Thirdly, SVGPCR is compared against
state-of-the-art DL-based crowdsourcing methods in the full LIGO data set.

4.1 Understanding the proposed method

Before comparing against other crowdsourcing methodologies, let us analyze the behavior and
main properties of SVGPCR. To do so, we simulate five different crowdsourcing annotators for the
well-known MNIST data set. The availability of simulated annotators and real training labels on
this graphic data set constitutes a controlled setting that allows for a comprehensive analysis.

We use the standard train/test split of MNIST with 60K/10K hand-written digits from 0 to 9 (multi-
class problem with 10 classes) [LeCun et al., 1998]. Notice that 60K training instances is already
prohibitive for standard GPs. Five decreasingly reliable annotators are considered. The first one
has a 95% accuracy for each class, that is, r1jj = 0.95 for j = 0, . . . , 9 (the rest of values, r1ij , i 6= j,
are randomly assigned to add the remaining 0.05 probability by columns). The second and third
ones are defined analogously, but with 90% and 80% accuracy, respectively. The fourth one is a
spammer annotator, that is, r4ij = 0.1 for all i, j = 0, . . . , 9. This implies that, regardless of the real
class, this annotator assigns a random label. The fifth one is an adversarial annotator. Specifically,
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1080LINE 1400RIPPLE BLIP

EXTREMELY LOUD KOIFISH LOW FREQUENCY BURST

LOW FREQUENCY LINES NO GLITCH OTHER

POWER-LINE 60HZ REPEATING BLIPS SCATTERED LIGHT

SCRATCHY VIOLIN MODE HARMONIC WHISTLE

Figure 3: Representative spectrograms for the 15 different types of glitches considered in this
work. Hanford and Livinsgton refer to the two observatories that LIGO comprises, and ER10/O1
to two different observation runs. A brief description of each glitch is provided in the text. The
goal of the GravitySpy project is to learn a machine learning system to automatically classify these
glitches. The labels for the training set are obtained through crowdsourcing.
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Figure 4: Estimation of the expertise degree of the simulated annotators in the MNIST problem by
SVGPCR. Upper row: true confusion matrices. Lower row: mean of the estimated distribution for
the confusion matrices. Notice that the proposed method perfectly identifies adversarial (fifth) and
spammer (fourth) annotators. Moreover, not only the structure of the matrices is well identified,
but also the actual values (the intensity of color is very similar).

Table 2: Per-class and global test performance of SVGPCR and SVGP-gold in the MNIST prob-
lem. In spite of the corrupted labels, the proposed method almost recovers the golden results.

Test accuracy Test likelihood
SVGP-gold SVGPCR SVGP-gold SVGPCR

0 0.9867 0.9898 0.9777 0.9781
1 0.9885 0.9877 0.9853 0.9845
2 0.9525 0.9535 0.9368 0.9345
3 0.9703 0.9733 0.9475 0.9555
4 0.9715 0.9735 0.9548 0.9570
5 0.9630 0.9540 0.9397 0.9352
6 0.9749 0.9749 0.9604 0.9585
7 0.9591 0.9543 0.9418 0.9432
8 0.9620 0.9620 0.9458 0.9445
9 0.9346 0.9316 0.9217 0.9186

Global 0.9665 0.9657 0.9515 0.9514

in this case, with a 90% of probability, the annotator labels as (i + 1)-th class an instance whose
real class is the ith (samples in class 9 are assigned to class 0). The confusion matrices for these
annotators are depicted in the first row of figure 4. The five annotators label all the instances, which
yields 300K annotations that are used to train SVGPCR.

Since we have available the true labels for the training instances, let us start by comparing SVGPCR
with its theoretical upper bound, namely SVGP trained with the true labels, which we refer to as
SVGP-gold. Table 2 shows the global and per-class test accuracy and test likelihood for both
approaches. Importantly, notice that the results are very similar for all classes and both metrics,
and SVGPCR almost reaches the same global performance as SVGP-gold (in spite of the corrupted
labels provided by annotators).

This excellent performance of SVGPCR can be explained by its accurate prediction of the anno-
tators behavior, which in turn allows SVGPCR to properly reconstruct the underlying true labels
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Table 3: Per-class and global performance of SVGPCR to reconstruct the underlying true label for
training instances in the MNIST problem. An excellent result is obtained across all the classes,
with only 20 (out of the 60000 training examples) not correctly predicted.

0 1 2 3 4 5 6 7 8 9 Global
Accuracy 0.9998 0.9997 1.0000 0.9995 0.9995 0.9993 1.0000 0.9997 0.9997 0.9995 0.9997

Likelihood 0.9997 0.9996 0.9997 0.9992 0.9994 0.9993 0.9999 0.9995 0.9996 0.9991 0.9995
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Figure 5: Upper row: four (out of the 20) examples for which SVGPCR is not able to reconstruct
the real underlying class in the MNIST problem. Lower row: the corresponding probabilities
assigned by SVGPCR. In all cases, the proposed method assigns the second highest probability
to the real class. Notice that some of these examples are not easy, and have some features which
might lead to confusion.

from the noisy annotations. Indeed, firstly, figure 4 shows the exceptional estimations obtained by
SVGPCR for the annotators confusion matrices. Recall from eq. (14) that the expertise degree of
annotators is estimated through posterior Dirichlet distributions. The bottom row of figure 4 shows
the mean of those distributions. Interestingly, the maximum variance was 0.0016, which implies
a high degree of certainty about the predictions in figure 4. Secondly, as previously mentioned,
this allows SVGPCR to correctly puzzle out the underlying true labels from the noisy annotations.
In fact, table 3 shows the excellent per-class and global performance of SVGPCR in this sense
(recall that SVGPCR estimates the underlying true labels through the approximate posterior q(z)
in eq. (11)).

More in depth, we have analyzed the 20 examples where SVGPCR fails to reconstruct the true
label, and some of them can be certainly considered as not-easy ones. Figure 5 shows four of
them, along with the probabilities assigned by SVGPCR for each one. In all cases, the true label
is assigned the second highest probability by SVGPCR, and the digit presents some feature which
certainly leads to confusion with the class that SVGPCR assigns more probability to.

Another key aspect of SVGPCR is the role of the inducing points. In this example we are using
M = 100, and the next experiment will be devoted to analyze the influence of M in the perfor-
mance of SVGPCR. But before, figure 6 shows the locations to which 30 out of the 100 inducing
points have converged after training (recall that the ELBO in eq. (15) is also maximized w.r.t. the
inducing locations X̃). For instance, the first column shows the locations of three inducing points
which are classified as 0 by SVGPCR (according to the estimated mk, recall eq. (13)), and analo-
gously for the rest of the columns. It is very interesting to notice that the inducing point locations
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Figure 6: Some of the inducing point locations learned by SVGPCR in the MNIST problem. They
have been arranged by columns based on their classification. Notice that, for each digit (column),
different representative patterns are learned in terms of shape, orientation and thickness.
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Figure 7: Influence of M (number of inducing points) on the test performance (accuracy and like-
lihood) and computational cost (elapsed time at training and testing) for SVGPCR in the MNIST
problem. As theoretically expected, more inducing points lead to better test performance at the
expense of a higher computational cost.

comprise different calligraphic representations (in terms of shape, orientation and thickness) of the
same digit. This is related to their intuitive role of entities that summarize the training data.

Next, let us study the influence of M (the number of inducing points) on the behavior of SVG-
PCR. Figure 7 shows the dependence on M of four different metrics: two measures of the test
performance (accuracy and mean likelihood), and two related to the computational cost (at train-
ing and test steps). As expected from the theoretical formulation in section 2, a greater number of
inducing points implies a higher performance at test (in both accuracy and mean likelihood), since
the expressiveness of the model is higher. However, this also leads to heavier train and test costs,
since there are more parameters to be estimated (inducing locations X̃, mk, and Sk), and the size
of several matrices increase.

Moreover, for a given M , the model is expected to obtain better test performance as the training
time evolves (i.e., when more epochs are run). In order to further investigate this, figure 8 shows the
test accuracy of SVGPCR as the training time evolves, for different values of M . It is interesting
to observe that, the more inducing points, the higher values of test accuracy can be potentially
reached, but also a greater amount of training time is needed to reach that precision (notice that the
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Figure 8: Evolution of test accuracy as a function of the training time for different values of
M in the MNIST problem. If there is no limit on the available training time, then high values
of M must be selected (as long as it allows for the kernel matrix inversion). However, lower
values would be more appropriate for a fast training, since the amount of parameters to be trained
significantly reduces. Moreover, when a certain (problem-dependent) M has been reached, there
is no a significant benefit by increasing it (observe the difference from M = 250 to M = 500).
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Figure 9: Comparison between CPU and GPU implementations of SVGPCR in terms of compu-
tational cost for the MNIST problem. At training, the time depends on the minibatch size, since a
greater minibatch implies computations with larger matrices and less memory copies, which ben-
efits the GPU. With a minibatch of size 500 (the default used in this section), the GPU is around
two times faster. These values are per epoch. At testing (production time), the GPU is over three
times faster, and logically does not depend on the minibatch size. In this case, the shown values
are for the whole test set.

steps which take M = 100, 250, 500 to the level of their final precision happen increasingly later).
The conclusion is that, for a given computational budget, the M to be selected is the highest one
that can reach convergence in that time (logically, assuming that it allows for the inversion of the
associated kernel matrix, i.e., usually M < 104).

Finally, since the associated code can leverage GPU acceleration through GPflow
[Matthews et al., 2017], let us compare CPU and GPU implementations. Figure 9 shows that,
for training, the GPU is usually the preferred choice, unless the minibatch size is very small, in
which case the amount of memory copies from CPU to GPU does not compensate the advantage
provided by the latter. In test, the GPU is always faster, since it involves much less data transfers
from CPU to GPU.
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4.2 Comparison to classical probabilistic approaches

As explained in section 1, the most popular approaches to crowdsourcing jointly model a classi-
fier for the underlying true labels along with the annotators’ behavior. The first works used basic
logistic regression as the classifier, e.g. Raykar [Raykar et al., 2010] and Yan [Yan et al., 2014]
(the difference between them is the noise model considered for the annotators). However, they
struggled when dealing with complex non-linear data sets. Then, Gaussian Processes became the
preferred choice, since their non-parametric form and accurate uncertainty quantification yielded
much better results, e.g. Rodr14 [Rodrigues et al., 2014] and VGPCR [Ruiz et al., 2019] (they
differ in the inference procedure used, Expectation Propagation [Minka, 2001] and Variational In-
ference [Blei et al., 2017], respectively). However, the poor scalability of GPs hampered the wide
adoption of these approaches in practice. This motivated the development of the so-called RFF
and VFF algorithms, which leverage Random Fourier features approximations to GPs to propose
two more scalable GP-based crowdsourcing methods [Morales-Álvarez et al., 2019]. These ap-
proaches significantly improve the scalability, reducing it from cubic O(N3) to linear O(ND2)
(with D the number of Fourier frequencies used, D � N , see [Morales-Álvarez et al., 2019]). In
practice, this implies moving from manageable data sets of N ≈ 104 up to N ≈ 105/106. How-
ever, RFF and VFF do not factorize in mini-batches, which prevents them from reaching data sets
of virtually any size.

In the last few years, these classical (mainly GP-based) approaches have been re-
placed by crowdsourcing methods based on Deep Learning (DL) [Albarqouni et al., 2016,
Rodrigues and Pereira, 2018]. These achieve excellent scalability through mini-batches, and can
handle data sets of almost any size. Because of this, they have become the state of the art approach
for real-world crowdsourcing problems. In the next section 4.3, we will bring GP-based methods
back to a state of the art level. We will show that SVGPCR is competitive with DL-based methods,
and additionally provides a very accurate control of uncertainty. But before this, it is worth to ana-
lyze here the advances that SVGPCR introduces over its predecessors classical (mainly GP-based)
crowdsourcing approaches.

More specifically, let us compare SVGPCR with the aforementioned Raykar, Yan (based on
logistic-regression), Rodr14, VGPCR (based on GPs), and RFF, VFF (based on scalable approx-
imations to GP). Since most of them were formulated for binary problems, we consider a binary
task relevant to astrophysicists in GravitySpy. Using the data set presented in section 3, the goal
is to distinguish between the glitch called “Other” and the rest of types. This is important in order
to identify potential overlaps between that catch-all class and the rest of glitches. Moreover, it
introduces an imbalanced scenario, since “Other” represents only a 10.12% of the total amount of
annotations. We will use the area under the ROC curve (AUC) as test performance metric.

Figure 10 compares the scalability of the compared methods as the training set grows. SVGPCR
clearly stands out as the most scalable approach. This can be attributed to its training scheme
through mini-batches, which considerably alleviates the dependence on the training set size. The
rest of methods explode at different moments: the heavy EP inference of Rodr14 only allows for
training with up to N = 2500, the GP-based formulation of VGPCR and the complex annotators
noise model of Yan make them reach N = 25000 with difficulties. In spite of the GP approxima-
tion, VFF does not go beyond N = 105 in this problem, because of the expensive optimization of
Fourier features. Finally, Raykar (which is based on cheap logistic regression) and RFF (which
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Figure 10: Elapsed training time as a function of the training set size N in the binary LIGO
data set. The mean over five independent runs is shown. On the left, a standard linear scale is
used for the x-axis. Notice that SVGPCR exhibits a significantly better scalability than classical
probabilistic methods, which is due to its factorization in mini-batches. Moreover, among previous
approaches, we can distinguish between those that have already exploded for N = 25000 (Yan,
Rodr14, VGPCR, VFF), and those which have not yet for the full set size (Raykar, RFF). In order
to better appreciate the differences, a logarithmic scale is used for the x-axis on the figure at the
right. This further shows that Rodr14 shoots up as early as N = 1000, Yan, VGPCR and VFF do
it around N = 10000, and Raykar and RFF are starting beyond N = 105.

does not optimize over the Fourier features) can cope with the full data set, although they are
significantly slower than SVGPCR.

Moreover, figure 11 shows that their test performance is pretty far from that of SVGPCR. Indeed,
the logistic regression model underlying Raykar is not sufficient for the nonlinear problem at hand,
and the GP approximation provided by RFF is known to be poor when the dimensionality of the
problem is high [Morales-Álvarez et al., 2019] (like here, where we are working with 256 features,
recall section 3). The rest of methods are also clearly outperformed, since their limited scalability
prevents them from processing the full data set. Interestingly, figure 11 shows an intuitive and
logical structure: the more simple logistic-regression based methods are located on the left (less
test AUC), the classical GP-based ones in the central part, and SVGPCR on the right.

4.3 Comparison with state of the art DL-based methods

In the last years, Deep Learning has emerged as a scalable alternative to model crowdsourcing
problems. Two of the most popular approaches are AggNet [Albarqouni et al., 2016] and the var-
ious crowd layers proposed in [Rodrigues and Pereira, 2018]. The former considers a deep neural
network (DNN) as underlying classifier, and a probabilistic noise model for annotators based on
per-user confusion matrices. Then, the training step follows an iterative expectation-maximization
(EM) scheme between both parts of the model [Bishop, 2006, Section 9.4]. Alternatively, the
crowd layers in [Rodrigues and Pereira, 2018] allow for end-to-end training of the DNN, without
the need for the EM scheme. This is significantly cheaper in terms of computational cost, although
the probabilistic formulation of AggNet allows for a better uncertainty quantification. The three
crowd layers studied in [Rodrigues and Pereira, 2018] will be considered here: CL-VW, CL-VWB
and CL-MW. They differ in the parametric form of the annotator noise model, which is increas-
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Figure 11: Test AUC achieved in the binary LIGO data set by the compared models (in each case,
the largest one that could be trained). The mean and one standard deviations are shown. SVGPCR
clearly outperforms methods which cannot cope with the full data set (Yan, Rodr14, VGPCR,
VFF). Moreover, RFF and Raykar are also beaten because of their more limited formulation (see
the main text).

ingly complex: a vector of per-class weights for CL-VW, an additional bias for CL-VWB, and a
whole confusion matrix for CL-MW.

These four DL-based methods (AggNet, CL-VW, CL-VWB, CL-MW) are compared against three
increasingly complex SVGPCR models: SVGPCR-10, SVGPCR-50, SVGPCR-100, where each
number represents the amount of inducing points used. As all these approaches are defined for
multi-class tasks, the full LIGO problem in section 3 can be addressed now.

Tables 4 and 5 show the global and per-class test performance of the compared methods. Table 4
is devoted to the test accuracy, which relies only on the mode of the predictive distribution and is
less influenced by the uncertainty quantification of the model. Table 5 shows the test likelihood,
which additionally depends on the uncertainty of the predictive distribution, and therefore depends
more heavily on its accurate control within the model.

In both tables, SVGPCR stands out as the best-performing method globally. The difference is
greater in the case of the test likelihood, which is logically explained by the better uncertainty
quantification of GPs. Indeed, the better control of uncertainty also justifies that AggNet outper-
forms CL-based methods in test likelihood (whereas they are very similar in accuracy). Moreover,
observe that the global superiority of SVGPCR is not due to a great result in only one or two very
populated classes. SVGPCR performs consistently well across the 15 glitch types in both tables,
winning in few of them (a bit more in test likelihood, as logically expected), and avoiding dramatic
failures on difficult classes. This will be also observed for the alternative GP-based methods intro-
duced in Section 5. According to astrophysicists at GravitySpy, this regularity across classes is a
desirable property for a reliable glitch detection system.

It is also worth to notice that M = 50 inducing points seem enough for the problem at hand. In
both tables 4 and 5, a significant improvement is observed from M = 10 to M = 50, but M = 100
produces very similar results. This small value of M = 50 hints at a not very complex internal
structure of the data. It is also interesting to observe that, in general, the most difficult classes are
“Repeating Blips” and “Other” (recall the 15 types in figure 3). This discovery is not surprising for
astrophysicists in GravitySpy, since the former is usually confused with “Blips”, and the latter is a
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Table 4: Per-class and global test accuracy for the compared methods in the LIGO experiment.
Mean and standard deviation over ten runs are shown. Globally, SVGPCR with enough induc-
ing points outperforms DL-based methods by 2%. In per-class results, notice the regularity of
SVGPCR, which performs well across all classes without standing out in many of them.

AggNet CL-VW CL-VWB CL-MW SVGPCR (M=10) SVGPCR (M=50) SVGPCR (M=100)
1080LINE .9791(.0045) .9676(.0063) .9732(.0059) .9746(.0063) .9781(.0075) .9720(.0076) .9720(.0069)

1400RIPPLE .9447(.0237) .1666(.3335) .3243(.4001) .0000(.0000) .0000(.0000) .8528(.0203) .8577(.0171)
BLIP .9737(.0078) .9754(.0079) .9741(.0135) .9826(.0062) .8712(.2904) .9643(.0044) .9622(.0052)

EXTR.LOUD .8704(.0566) .7193(.0652) .8034(.0660) .5272(.3502) .3681(.3705) .7261(.0398) .7295(.0427)
KOIFISH .8760(.0634) .8749(.0151) .9043(.0296) .9023(.0203) .8007(.2673) .8844(.0129) .8828(.0115)

L.F.BURST .7649(.0802) .8639(.0299) .9023(.0211) .9146(.0174) .7912(.2638) .8864(.0087) .8861(.0105)
L.F.LINE .8603(.0742) .8603(.0274) .8514(.0293) .8566(.0279) .8354(.2785) .9150(.0105) .9156(.0111)

NOGLITCH .9174(.0354) .8835(.0201) .8887(.0241) .9141(.0274) .7048(.2366) .7941(.0223) .7951(.0162)
OTHER .2786(.0294) .4167(.0348) .3660(.0376) .3503(.0297) .3622(.1213) .3977(.0083) .4011(.0091)

P.L.60HZ .8885(.0676) .8591(.0290) .9468(.0104) .9365(.0179) .7417(.2476) .8438(.0102) .8425(.0127)
REP.BLIPS .5487(.0730) .0470(.1410) .0572(.1717) .0000(.0000) .0000(.0000) .6649(.0215) .6700(.0210)

SCATT.LIGHT .9088(.0492) .9497(.0126) .9601(.0109) .9645(.0053) .8657(.2886) .9600(.0050) .9562(.0056)
SCRATCHY .8980(.0400) .4433(.4437) .4426(.4452) .4440(.4444) .8093(.2702) .8953(.0206) .9000(.0165)

VIOLIN .9755(.0057) .9932(.0032) .9921(.0033) .9930(.0018) .8915(.2971) .9899(.0027) .9914(.0017)
WHISTLE .9175(.0236) .9359(.0136) .9438(.0137) .9377(.0230) .8122(.2712) .9166(.0070) .9201(.0047)
GLOBAL .8957(.0227) .8886(.0126) .8985(.0105) .8956(.0104) .8355(.1919) .9184(.0031) .9183(.0027)

Table 5: Per-class and global test likelihood for the compared methods in the LIGO experiment.
Mean and standard deviation over ten independent runs are shown. Globally, SVGPCR with
enough inducing points outperforms DL-based methods by almost 3%. It also exhibits a desir-
able regularity across the different classes. Moreover, notice that, compared to the accuracy in
Table 4, there exists here a greater advantage against methods that do not quantify uncertainty (i.e.
CL-based ones).

AggNet CL-VW CL-WVB CL-MW SVGPCR (M=10) SVGPCR (M=50) SVGPCR (M=100)
1080LINE .9781(.0048) .9515(.0091) .9597(.0076) .9649(.0074) .8811(.2715) .9689(.0082) .9688(.0075)

1400RIPPLE .9416(.0242) .1644(.3290) .3196(.3937) .0118(.4874) .0067(.0199) .8475(.0182) .8509(.0156)
BLIP .9709(.0077) .9753(.0079) .9735(.0123) .9777(.0043) .8746(.2694) .9606(.0044) .9587(.0055)

EXTR.LOUD .8626(.0574) .7214(.0645) .8024(.0684) .5276(.3503) .3651(.3541) .7266(.0435) .7242(.0408)
KOIFISH .8688(.0679) .8752(.0161) .9013(.0300) .8959(.0190) .8022(.2457) .8788(.0109) .8784(.0117)

L.F.BURST .7575(.0799) .7249(.0139) .8035(.0177) .8419(.0207) .7966(.2434) .8851(.0083) .8838(.0098)
L.F.LINE .8502(.0786) .5808(.0192) .6200(.0178) .6917(.0242) .8378(.2571) .9125(.0094) .9118(.0103)

NOGLITCH .9091(.0402) .8109(.0247) .8196(.0342) .8196(.0244) .7062(.2146) .7919(.0238) .7932(.0146)
OTHER .2692(.0285) .4123(.0322) .3439(.0362) .3268(.0275) .3686(.1012) .3959(.0095) .3999(.0091)

P.L.60HZ .8700(.0665) .8565(.0291) .8993(.0108) .8929(.0117) .7435(.2260) .8384(.0107) .8380(.0107)
REP.BLIPS .5323(.0664) .0466(.1400) .0584(.1752) .4878(.8447) .0067(.0199) .6581(.0191) .6651(.0198)

SCATT.LIGHT .8716(.0480) .8782(.0165) .8947(.0196) .9416(.0067) .8683(.2673) .9558(.0047) .9520(.0057)
SCRATCHY .8823(.0399) .4425(.4429) .4411(.4440) .4414(.4419) .7971(.2441) .8911(.0215) .8953(.0176)

VIOLIN .9738(.0058) .9823(.0034) .9815(.0024) .9863(.0022) .8960(.2765) .9875(.0020) .9886(.0014)
WHISTLE .9167(.0215) .9341(.0149) .9427(.0141) .9388(.0213) .8124(.2490) .9155(.0064) .9179(.0046)
GLOBAL .8871(.0240) .8175(.0106) .8387(.0113) .8528(.0101) .8126(.2487) .9154(.0033) .9149(.0027)

catch-all class to which some conservative annotators resort too often. The case of “Other” is also
related to the interest of astrophysicists to study it separately in the experiment of previous section
4.2.

It is also important to highlight that all these methods are scalable enough so as to cope with the
full LIGO data set. More specifically, figure 12 shows the elapsed time at training and testing for
the compared methods. In general, the proposed SVGPCR is competitive with DL-based methods
in these aspects. At training, SVGPCR is significantly faster than AggNet due to the heavy iterative
EM scheme of the latter, and is slower than CL-MW6. Nonetheless, less than one hour of training
is a competitive result for a data set with 173565 instances (recall section 3). At testing, SVGPCR
is the fastest approach, which is convenient for real-time applications the system might be used for.

6Results of CL-VW/CL-VWB being worse than CL-MW in figure 12 might be attributed to implementation inefficiency, since
the former include for loops whereas matrix multiplication is used in the latter.
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Figure 12: Train and test times (mean and standard deviation over ten independent runs) for the
compared methods in the LIGO experiment. Notice the logarithmic scale in y-axis. The proposed
SVGPCR is competitive with all the DL-based methods in terms of computational cost at both
training and testing.

As already pointed out in Table 5, the underlying GP model of SVGPCR implies an advantage over
DL-based methods in terms of uncertainty quantification. The test likelihood metric is a global
measure of the quality of the predictive distribution obtained for each individual test instance. To
clearly understand the benefits of the GP modelling, figure 13 shows the predictive distributions
for some test instances which are behind the better global performance of SVGPCR. Only the best
method (in terms of test likelihood) of each type (i.e. CL-based ones, SVGPCR ones, and AggNet)
is considered, which yields the three columns in figure 13. Each row represents a different test
instance.

Interestingly, we observe that the three approaches correctly classify the four instances, that is,
they assign the highest probability to the correct class (which is highlighted in red). In particular,
this means that these four instances contribute equally to the test accuracy of the three methods.
However, notice that the quality of the predictive distribution worsens from left to right (i.e., from
better to worse uncertainty quantification theoretical properties), since the methods become less
certain about the correct answer and assign more probability to wrong ones. This is precisely
what is accounted for in the test likelihood metric. From a practical perspective, this better quality
of the predictive distributions has been particularly appreciated by astrophysicists at GravitySpy,
in addition to the improvement in test accuracy (recall table 4). We stress that test instances in
figure 13 are among those that most contribute to the outperformance in test likelihood. In general,
when it is not certain about the outcome, SVGPCR provides uncertainty for its estimations. This is
illustrated in the third section of the supplementary material. The figure there is analogous to this
one, but using randomly selected test points.

Finally, a key aspect of crowdsourcing methods is the identification of the different annotators
behavior. Unlike in section 4.1, where we had simulated annotators to check the good estimations
of SVGPCR, in this real experiment we do not have available a ground-truth. Nonetheless, let us
compare the predictions obtained by the different methods. We will see that they capture similar
patterns, some of which can be explained from the experience of astrophysicists. Figure 14 shows
the confusion matrices predicted by the compared methods for five different annotators. In the
CL-based family we only consider CL-MW, as it is the best in test likelihood and the only one
which provides a confusion matrix.
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Figure 13: Test predictive distribution obtained by the compared methods for four different test
instances in the LIGO experiment. All the methods assign the highest probability to the correct
class (which is highlighted in red). However, from left to right, the quality of the predictive distri-
bution decreases, as greater probability is assigned to wrong classes. This is related to the uncer-
tainty quantification capabilities of each method, an aspect at which the GP modelling of SVGPCR
stands out. Moreover, these differences in the predictive distributions are behind the superiority of
SVGPCR in test likelihood (table 5).

One of the most distinctive features for all instances and methods is the predominance of high
values in the diagonal. This was considered as a positive feedback by astrophysicists, as it means
that annotators have been generally well instructed to distinguish among glitches. Additionally,
other patterns out of the diagonal are worth an analysis. For the first column (first volunteer),
SVGPCR and AggNet detect that glitches of type 1 (i.e. “1400Ripple”, recall figure 3) are classi-
fied as class 13 (“Violin Mode Harmonic”). This is a very frequent mistake according to experts,
since the general appearance of both glitches is similar. We also observe that CL-MW does not
agree on this prediction. This discrepancy of CL-MW for some particular patterns is recurrent
across different annotators, and can be attributed to the different modelling of the annotators noise
(non-probabilistic one, but through weights in the DNN). The second column shows a typical con-
servative annotator, who resorts too frequently to the catch-all “Other” class. This is reflected in the
persistent high values of the row number 8 in the matrices, regardless of the column (the real class).
For the third column, the three methods identify the confusion from “Violin Mode Harmonic” to
“1400Ripple”. Notice that this is the opposite to the first annotator, where the confusion was the
other way round. In the fourth annotator, SVGPCR detects the same issue with “Violin Mode
Harmonic” and “1400Ripple”, whereas the others are less certain about this. Moreover, AggNet
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Figure 14: Confusion matrices estimated by the three families of algorithms (rows) and for five
different annotators (columns) in the LIGO experiment. In each matrix, the real class is represented
in the x-axis, and the annotated one in the y-axis (that is, the matrices add up to one by columns).
For every annotator, the general structure of the three estimated matrices is similar. In particular,
the highest values are located in the diagonal, which means that annotators have been correctly
instructed in general. Moreover, recall that SVGPCR provides a full probability distribution (in
particular uncertainties) for these predictions.

exhibits a noisy behavior compared to SVGPCR and CL-MW. Although perhaps less explicitly,
this can be also observed across different annotators, and might be due to the iterative nature of
AggNet, which does not allow for an end-to-end learning and leaves some extra noise after train-
ing. In the fifth annotator, the three methods identify a very common confusion, which is labelling
instances whose real class is “Blip” as “Koifish” (classes 2 and 4, respectively). Although these
glitches seem pretty different in the paradigmatic examples shown in figure 3, wider “Blip” and
narrower “Koifish” are frequent in the data set, and might mislead a non-expert volunteer.

Most importantly, the identification of all these wrong behaviors allows crowdsourcing methods to
take full advantage of the noisy annotations. It is also worth noticing that the Bayesian nature of
SVGPCR provides uncertainties for the confusion matrices obtained here (recall the full posterior
Dirichlet distributions in eq. (14)), which is not available for the DL-based methods.

5 Exploring recent inference techniques

Once SVGPCR has been successfully developed, this section explores modern GP inference ap-
proaches beyond the standard SVGP. As motivated in the introduction, Section 5.1 uses Normal-
izing Flows [Rezende and Mohamed, 2015] to represent more complex posterior distributions for
SVGPCR. Then, Section 5.2 adapts the GP-Net model [Shi et al., 2019] to crowdsourcing.
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Table 6: Per-class and global test accuracy for recent inference methods on GPs. Mean and stan-
dard deviation over ten runs are shown. The best performing SVGPCR method is shown for com-
parison. Both NF and GP-Net slightly outperform SVGPCR. Moreover, unlike inducing points
based ones, GP-Net achieves very competitive results for M = 10, as theoretically expected.

SVGPCR SVGPCR-NF SVGPCR-NF SVGPCR-NF GPNETCR GPNETCR GPNETCR
(M=50) (M=10) (M=50) (M=100) (M=10) (M=50) (M=100)

1080LINE .9720(.0076) .9756(.0098) .9724(.0072) .9719(.0067) .9740(.0045) .9732(.0037) .9727(.0042)
1400RIPPLE .8528(.0203) .2374(.3627) .8463(.0216) .8537(.0209) .8398(.0247) .8195(.0272) .8398(.0499)

BLIP .9643(.0044) .8718(.2906) .9632(.0042) .9638(.0043) .9665(.0089) .9679(.0038) .9645(.0066)
EXTR.LOUD .7261(.0398) .5727(.2887) .7091(.0322) .7080(.0469) .7455(.0629) .7420(.0653) .7523(.0794)

KOIFISH .8844(.0129) .7996(.2669) .8845(.0144) .8841(.0139) .8825(.0141) .8845(.0206) .8912(.0130)
L.F.BURST .8864(.0087) .7974(.2660) .8890(.0097) .8832(.0090) .8896(.0162) .8950(.0136) .8864(.0108)

L.F.LINE .9150(.0105) .8296(.2766) .9159(.0097) .9231(.0119) .9096(.0184) .9077(.0178) .9116(.0105)
NOGLITCH .7941(.0223) .7123(.2380) .7919(.0171) .7952(.0146) .7739(.0285) .7797(.0136) .7800(.0240)

OTHER .3977(.0083) .3630(.1212) .3996(.0102) .4004(.0079) .4061(.0253) .4011(.0157) .4069(.0152)
P.L.60HZ .8438(.0102) .7468(.2495) .8472(.0100) .8443(.0146) .8574(.0096) .8634(.0055) .8579(.0127)

REP.BLIPS .6649(.0215) .0000(.0000) .6598(.0198) .6726(.0284) .5812(.0608) .6043(.0465) .6068(.0606)
SCATT.LIGHT .9600(.0050) .8662(.2888) .9567(.0049) .9584(.0033) .9630(.0088) .9606(.0067) .9622(.0068)

SCRATCHY .8953(.0206) .8067(.2694) .9033(.0194) .8973(.0164) .9027(.0191) .8880(.0183) .8947(.0217)
VIOLIN .9899(.0027) .8924(.2975) .9903(.0026) .9906(.0023) .9924(.0028) .9935(.0012) .9921(.0020)

WHISTLE .9166(.0070) .8184(.2732) .9219(.0047) .9237(.0040) .9281(.0156) .9272(.0096) .9254(.0106)
GLOBAL .9184(.0031) .8400(.1935) .9185(.0028) .9192(.0020) .9185(.0021) .9186(.0018) .9184(.0021)

Table 7: Per-class and global test likelihood for recent inference methods on GPs. Mean and
standard deviation over ten runs are shown. The best performing SVGPCR method is shown for
comparison. Both NF and GP-Net slightly outperform SVGPCR. Moreover, unlike inducing points
based ones, GP-Net achieves very competitive results for M = 10, as theoretically expected.

SVGPCR SVGPCR-NF SVGPCR-NF SVGPCR-NF GPNETCR GPNETCR GPNETCR
(M=50) (M=10) (M=50) (M=100) (M=10) (M=50) (M=100)

1080LINE .9689(.0082) .8789(.2708) .9693(.0074) .9685(.0066) .9712(.0043) .9707(.0037) .9704(.0043)
1400RIPPLE .8475(.0182) .2446(.3597) .8423(.0234) .8451(.0209) .8373(.0233) .8167(.0261) .8331(.0490)

BLIP .9606(.0044) .8749(.2695) .9598(.0044) .9592(.0044) .9632(.0089) .9645(.0041) .9615(.0060)
EXTR.LOUD .7266(.0435) .5724(.2712) .7016(.0382) .7069(.0487) .7385(.0659) .7342(.0611) .7447(.0740)

KOIFISH .8788(.0109) .8030(.2458) .8771(.0130) .8775(.0116) .8806(.0145) .8813(.0192) .8839(.0130)
L.F.BURST .8851(.0083) .8027(.2456) .8862(.0096) .8803(.0095) .8877(.0162) .8919(.0136) .8835(.0107)

L.F.LINE .9125(.0094) .8329(.2556) .9122(.0104) .9179(.0116) .9065(.0182) .9045(.0181) .9083(.0104)
NOGLITCH .7919(.0238) .7127(.2160) .7883(.0170) .7929(.0143) .7688(.0283) .7776(.0131) .7799(.0220)

OTHER .3959(.0095) .3690(.1012) .3963(.0089) .3958(.0078) .4056(.0259) .3999(.0153) .4041(.0145)
P.L.60HZ .8384(.0107) .7506(.2286) .8421(.0100) .8393(.0134) .8546(.0115) .8595(.0057) .8542(.0134)

REP.BLIPS .6581(.0191) .0067(.0199) .6537(.0221) .6641(.0259) .5834(.0663) .6031(.0412) .6043(.0596)
SCATT.LIGHT .9558(.0047) .8700(.2679) .9523(.0045) .9537(.0033) .9597(.0080) .9578(.0061) .9593(.0066)

SCRATCHY .8911(.0215) .8029(.2463) .8959(.0203) .8901(.0168) .8985(.0201) .8826(.0163) .8904(.0245)
VIOLIN .9875(.0020) .8967(.2767) .9876(.0021) .9879(.0018) .9898(.0026) .9909(.0011) .9900(.0018)

WHISTLE .9155(.0064) .8163(.2502) .9180(.0062) .9185(.0052) .9297(.0123) .9253(.0076) .9224(.0092)
GLOBAL .9154(.0033) .8176(.2504) .9148(.0029) .9151(.0018) .9157(.0020) .9158(.0019) .9155(.0023)

5.1 Normalizing Flows

Normalizing Flows (NF), originally introduced in [Rezende and Mohamed, 2015], see also the re-
cent review [Papamakarios et al., 2019], have become a very popular technique to represent com-
plex distributions that can be used as approximate posteriors in VI. The idea is to transform a
simple base distribution (typically a Gaussian) through a sequence of invertible transformations.
Sampling from such a distribution is straightforward, and its density depends on the determinant
of the transformations Jacobian, which must be cheap to compute. Different transformations yield
different NFs, such as planar and radial [Rezende and Mohamed, 2015], inverse autoregressive
flow [Kingma et al., 2016], or masked autoregressive flow [Papamakarios et al., 2017].

In our model of SVGPCR, we used an approximate Gaussian posterior q(U) for the inducing
points, recall eq. (13). This yields a tractable KL term in the ELBO between two Gaussians (prior
and posterior), recall eq. (15). However, the true posterior might not be Gaussian, since we are
using a non-conjugate likelihood for z|F (in addition to the crowdsourcing likelihood for Y|z).
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In this section, we consider an approximate posterior for U based on a planar NF with Leaky ReLu
(LReLu) non-linearities. More specifically, each uk is defined through u0

k → · · · → uLk = uk,
where u0

k ∼ N (m0
k,S

0
k) and ulk = f lk(u

l−1
k ) with f lk(a) = a + v · LReLu(wᵀa + b) (logically,

each v, w and b depend on k and l, but this is omitted to lighten the notation). As explained in
[Rezende and Mohamed, 2015, Section 4.1], the determinant of the Jacobian matrix for this trans-
formation, ∂f lk/∂a, can be computed inO(M), whereM is the dimensionality of ulk, i.e. the num-
ber of inducing points. Therefore, the new variational parameters are V = {m0

k,S
0
k,v

l
k,w

l
k, b

l
k}k,l.

This approach will be called SVGPCR-NF. In our experiments, we will use a flow length of L = 6.

Following the approach in [Rezende and Mohamed, 2015], the new KL term in the ELBO is as
follows:

KL(q(uk)||p(uk)) = Eq(u0
k)

log q(u0
k)−

L∑

l=1

Eq(u0
k)

log

∣∣∣∣det
∂f lk
∂ul−1k

∣∣∣∣− Eq(u0
k)

log p(uLk ). (17)

The first term can be computed in closed form (the entropy of a Gaussian is well-known), the
second term can be stochastically approximated inO(LM) by sampling from q(u0

k) and evaluating
the known Jacobian, recall [Rezende and Mohamed, 2015, Section 4.1], and the same applies for
the third one. The rest of the ELBO is as in eq. (15), where q(fn,:) does not have a closed-form
expression anymore, but it is approximated by sampling S values from the flow and averaging the S
conditional Gaussians of f given u. The same applies for predicting. Notice that the computational
complexity is still dominated by the SVGPCR operations.

We apply SVGPCR-NF on the full LIGO dataset with M = 10, 50, 100, as was done for the
standard SVGPCR. The results in terms of test accuracy and likelihood are shown in Tables 6 and
7, respectively. The performance is very similar to SVGPCR, exhibiting a slight improvement.
This suggests that, in this particular case, the true posterior distribution might be unimodal and a
Gaussian could be enough to represent it. Interesting properties of SVGPCR, such as the regularity
across classes and avoiding dramatic failures in difficult ones, are also maintained. Moreover, just
like for SVGPCR, results are clearly improved when growing from M = 10 to M = 50, but stay
similar for M = 100. This is to be expected, since the underlying SVGP model is still the same,
and it is well-known that few inducing points limit the expressiveness of the predictive distribution.
Next we explore a recent model that adopts a different approach.

5.2 Inference Networks for GPs

In this section we adapt GP-Net [Shi et al., 2019] to the crowdsourcing scenario. Since the expres-
siveness of inducing points based sparse GP approaches is limited by the amount of such points,
GP-Net explores the use of inference networks to approximate the posterior distribution of GPs.
Inference is performed in the function space directly, see also [Sun et al., 2019], and the posterior
stochastic process q(f) is modelled with a parametric inference network qγ(f). The joint distri-
bution must be Gaussian for a finite set of points, see [Shi et al., 2019, Section 4] for different
choices, such as the random feature expansions that will be used here. To learn the parameters γ, a
stochastic functional mirror-descent algorithm is tracked, which iteratively adapts the true stochas-
tic posterior [Shi et al., 2019, Section 3.1]. In each step, the inference network is matched to such
posterior on a measurement set XM of size M , which allows for learning meaningful correlations
[Shi et al., 2019, Section 3.2]. Importantly, notice that this M does not limit the expressiveness of
the inference network qγ .
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In the crowdsourcing scenario, recall that eq. (7) defines the full probabilistic model before
inducing points are introduced. Now, we consider an approximate posterior q(F,Z,R) =
q(F)q(Z)q(R) where q(F) is given by K inference networks qγ1(f1), . . . , qγK (fK), one for each
class. We use random feature expansions with 100 hidden units, recall [Shi et al., 2019, Section
4]. Then, VI can be applied to minimize KL(q(F,Z,R)||p(F,Z,R|Y,Θ)) in turns. Fixing q(F),
and following the derivation of eq. (15), a gradient step must be given on {qnk} and {α̃aij} (the
variational parameters of q(Z) and q(R) respectively) to maximize

F({qnk}, {α̃aij}) =
N∑

n=1

K∑

k=1

qnkEqγ(fn,:) [log p(ek|fn,:)] +

+
N∑

n=1

∑

a∈An

∑

y∈Ya
n

K∑

k=1

qnkEq(rak)
[log p(y|ek, rak)]−

−
N∑

n=1

K∑

k=1

qnk log qnk −
A∑

a=1

K∑

k=1

KL(q(rak)||p(rak)). (18)

This is analogous to eq. (15), but the inducing points term is not present anymore, and qγ(fn,:)
is given by the inference networks (fixed in this step; γ denotes γ1, . . . , γK jointly). Then, fixing
q(U) and q(R), and following the derivations in [Shi et al., 2019, Section 3.2] (non-conjugate
likelihood case), the inference networks parameters γ must be updated by maximizing

L(γ) = Eqγ(FM ,F)

[
βt

N∑

n=1

K∑

k=1

qnk log p(ek|fn,:)+

+βt log p(FM ,F) + (1− βt) log qγt(FM ,F)− log qγ(FM ,F)] .

Here, qγt refers to the previous value of the inference network, FM denotes the evaluation of
the K inference networks on the measurement set XM (which is randomly sampled from the
training set as in [Shi et al., 2019]), and βt is the learning rate of the functional mirror-descent
algorithm (which is set to βt = β0(1 + ξ

√
t)−1 as in [Shi et al., 2019]). In practice, the first

term is approximated with a mini-batch, as in eqs. (15) and (18). The GP hyperparameters Θ are
optimized as in [Shi et al., 2019], by minimizing the KL divergence between qγt and the GP prior
on the current mini-batch. This method is called GPNETCR.

As with SVGPCR and SVGPCR-NF, we apply GPNETCR on the full LIGO dataset with M =
10, 50, 100 (here M is the measurement set size). The results in terms of test accuracy and likeli-
hood are shown in Table 6 and 7, respectively. The performance for M = 50, 100 is very similar
to SVGPCR-NF, i.e. just slightly better than SVGPCR. This confirms the robustness and conve-
nience of the GP-based crowdsourcing formulations, which show good results across classes and
avoid noticeable failures in difficult ones. However, the results for M = 10 are very different.
Whereas 10 inducing points do not yield a sufficiently expressive posterior in SVGPCR(-NF), the
GPNETCR inference network capacity is not constrained by M . In fact, the GPNETCR with
M = 10 performs better than SVGPCR for any amount of M . This confirms that the properties of
GP-Net can be extended to crowdsourcing.
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6 Conclusions and future work

In this work we have first introduced SVGPCR, an extension of SVGP to crowdsourcing that can
scale up to very large data sets through its mini-batch training scheme. The motivation is the prob-
lem of glitch classification in the laureate LIGO project, which is addressed with crowdsourcing
techniques in the GravitySpy sub-project. To that end, and in order to obtain accurate predictive
distributions, astrophysicists were interested in combining the excellent uncertainty quantification
of GP-based crowdsourcing methods with the scalability of those based on deep learning (DL).
The proposed SVGPCR brings back GP-based methods to the state of the art in crowdsourcing.

SVGPCR is competitive with DL-based approaches in terms of test accuracy and computational
cost, and stands out in terms of predictive distribution quality. Moreover, its behavior naturally
follows its theoretical formulation: it provides very accurate estimations for the annotators ex-
pertise degree, and the inducing points influence the test performance and the computational cost
as expected. We further leveraged recent inference techniques to propose SVGPCR-NF and GP-
NETCR.

In the LIGO problem, the glitches were given by relevant features extracted by astrophysi-
cists. However, in the case of more complex data such as images, audio or natural lan-
guage, DL-based methods can benefit from convolutional layers in the deep neural network.
From a probabilistic perspective, this could be addresed through Deep Gaussian Processes
[Salimbeni and Deisenroth, 2017] and the very recent attempts to introduce convolutional struc-
ture in GPs [Van der Wilk et al., 2017, Blomqvist et al., 2018]. Moreover, recent successful mod-
els combining the benefits of GPs and Neural Networks, such as (Conditional) Neural Processes
[Garnelo et al., 2018a, Garnelo et al., 2018b], could be extended to crowdsourcing. In fact, these
can also be endowed with the aforementioned convolutional structure [Gordon et al., 2019].
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A Supplementary Material

A.1 Derivation of the ELBO

Let us derive step by step the eq. (15) in the paper:

ELBO(V,Θ, X̃) = Eq(Z)p(F|U)q(U)q(R)

(
log

p(Y|Z,R)p(Z|F)����p(F|U)p(U)p(R)

q(Z)����p(F|U)q(U)q(R)

)

[Grouping and integrating straightforward terms]
= Eq(Z)q(R) log p(Y|Z,R) + Eq(Z)p(F|U)q(U) log p(Z|F)− Eq(Z) log q(Z)

+ Eq(U)

(
log

p(U)

q(U)

)
+ Eq(R)

(
log

p(R)

q(R)

)

[Using the different terms expressions and KL div. definition]

=
N∑

n=1

∑

a∈An

∑

y∈Ya
n

Eq(zn)q(Ra) log p(y|zn,Ra) +
N∑

n=1

Eq(zn)q(fn,:) log p(zn|fn,:)

−
N∑

n=1

Eq(zn) log q(zn)−
K∑

k=1

KL(q(uk)||p(uk))−
A∑

a=1

K∑

k=1

KL(q(rak)||p(rak))

[Doing the expectation over the discrete distribution q(zn)]

=
N∑

n=1

∑

a∈An

∑

y∈Ya
n

K∑

k=1

qnkEq(rak)
log p(y|ek, rak) +

N∑

n=1

K∑

k=1

qnkEq(fn,:) log p(ek|fn,:)

−
N∑

n=1

K∑

k=1

qnk log qnk −
K∑

k=1

KL(q(uk)||p(uk))−
A∑

a=1

K∑

k=1

KL(q(rak)||p(rak)).

(19)

Indeed, this final expression is the same formula as that in eq. (15) in the article. The posterior
over F, q(F), whose marginal q(fn,:) is used in the second term, can be easily obtained in closed
form, since both q(F|U) = p(F|U) and q(U) are Gaussians:

q(F) =
K∏

k=1

q(fk), with q(fk) = N (fk|B ·mk,KXX + B(Sk −KX̃X̃)Bᵀ) , B = KXX̃K−1
X̃X̃
.

A.2 Explicit expressions for the ELBO terms

In order to maximize the ELBO w.r.t. the variational paremeters V, the kernel parameters Θ,
and the inducing locations X̃, we need explicit expressions on these variables. All the five
terms in eq. (19) but the second one can be analytically expressed in terms of V, Θ, X̃. More-
over, the second one admits an approximated expression through Gaussian-Hermite quadrature
[Olver et al., 2010b].

For the first term, we use the expectation of the logarithm of a component of a Dirichlet distribu-
tion (which is in the exponential family): if (X1, . . . , XS) → Dir(γ1, . . . , γS), then E(logXi) =
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ψ(γi) − ψ(
∑S

i=1 γi) [Bishop, 2006]. Here, ψ is the digamma function, which is the logarithmic
derivative of the gamma function and is implemented in TensorFlow as tf.math.digamma. With
this, we have:

qnk · Eq(rak)
log p(y|ek, rak) = qnk ·

K∏

i=1

(
ψ(α̃aik)− ψ

(
K∑

c=1

α̃ack

))yi

,

which depends on {α̃aij} and {qnk}, recall table 1 in the article.

The second term involves the expectation of the log-likelihood over a Gaussian. If the likelihood
is also defined through a Gaussian (like in most regression problems) then this can be obtained
in closed-form. However, this is not possible for the classification likelihoods that are used in
crowdsourcing. In this case, Gaussian-Hermite quadrature is applied in order to approximate the
result [Olver et al., 2010b]. For the particular case of our RobustMax likelihood, the approximation
is already integrated within the GPflow library, see the variational expectations method of
the Multiclass likelihood class [Matthews et al., 2017]. As summarized in table 1 in the main
paper, this second term depends on {qnk}, {mk,Sk}, Θ, and X̃. The third term is already expressed
in terms of {qnk} in eq. (19).

For the fourth term, only the well-known expression of the KL divergence between (multivariate)
Gaussians is needed [Rasmussen and Williams, 2006]:

KL(q(uk)||p(uk)) = KL (N (µk,Sk)||N (0,K)) =
1

2

(
tr
(
K−1Sk

)
+

+µᵀ
kK
−1µk −M + log

(
det K

det Sk

))
,

where K = KX̃X̃ is the prior covariance matrix for the inducing points, and M is the dimension
of the variable uk (i.e. the amount of inducing points). This expression depends on {mk,Sk}, Θ,
and X̃ (the last two through K).

In the fifth term, it is straightforward to obtain a closed-form expression for the KL divergence
between Dirichlet distributions:

KL(q(rak)||p(rak)) = logB(αa
k)− logB(α̃a

k) +
K∑

i=1

(α̃aik − αaik) ·
(
ψ(α̃aik)− ψ

(
K∑

j=1

α̃ajk

))
.

Here, ψ is the aforementioned digamma function, and B is the beta function, which is also imple-
mented in TensorFlow and is defined as B(α) = B(α1, . . . , αK) = (

∏
i Γ(αi))/Γ(

∑
i αi), with Γ

the Gamma function. This term only depends on {α̃aij}.

A.3 Predictive distribution for SVGPCR

In the full LIGO experiment, Section 4.3 of the paper, Figure 13 shows the predictive distribution
for the test instances that most contribute to the outperformance in test likelihood. The goal is to
illustrate this global metric through some specific examples, showing that SVGPCR can be very
confident about straightforward decisions. However, it may lead one to think that SVGPCR cannot
provide uncertainty if needed. Figure 15 shows that this is not the case, and SVGPCR also provides
uncertainty when it is not sure about the decision.
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Figure 15: Test predictive distribution obtained by the compared methods for five different test
instances in the LIGO experiment. As a Bayesian method, SVGPCR provides uncertainty in the
predictions when it is not confident about the outcome.
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CHAPTER 7

Integrating expert knowledge in Gaussian Processes based
crowdsourcing
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7.2 Main contributions

• In this work we propose SVGPCR-Mix, a novel methodology to integrate expert
labels into the GP-based crowdsourcing model presented in Chapter 6 (the one
based on inducing points). The resulting training objective is a natural combi-
nation of crowdsourcing and standard classification ones. Desirable theoretical
properties of crowdsourcing, such as scalability and sound estimation of annota-
tor behavior and ground truth, translate straightforwardly into this setting. More-
over, the expert labels play the role of anchor points to disclose the underlying
truth and the annotators’ behavior.

• The proposed approach is evaluated on two types of datasets. First, a synthetic
experiment provides a controlled setting to analyze the behavior of the method.
Second, it is applied on the LIGO dataset (recall Chapter 6), which contains a
golden set of expert labels that motivated the development of this new method.
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We show that the combination of both sources of information yields better results
than when used separately.
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ABSTRACT

The acquisition of labels provided by experts (expert labels) in real-world classi-
fication problems is expensive. In the last years, crowdsourcing has emerged as
a popular alternative to label a training set. However, in many real applications,
a limited number of expert labels can still be collected to complement the crowd-
sourced ones. This is precisely the setting in the GravitySpy project, which searches
for gravitational waves using millions of crowdsourcing annotations and only a few
expert labels. In this work, we extend a state-of-the-art probabilistic crowdsourc-
ing model to allow for the integration of expert labels. The resulting objective (the
Evidence Lower Bound) is a natural fusion of crowdsourcing and standard classifi-
cation ones. Desirable theoretical properties of crowdsourcing, such as scalability
and sound estimation of annotator behavior and ground truth, translate straightfor-
wardly into this setting. Moreover, the expert labels play the role of anchor points to
disclose the underlying truth and the annotators’ behavior. A controlled experiment
illustrates the properties and behavior of the method. The application to GravitySpy
shows that this fusion also benefits a challenging real-world astrophysics problem.

1 Introduction

Crowdsourcing, also known as citizen science, has become a popular approach to label real-world
data sets [1, 2]. Instead of relying on a single expert, it shares the labeling effort among a large
number of annotators with different degrees of expertise. Many crowdsourcing algorithms have
been developed to extract knowledge from such a heterogeneous scenario [3, 4, 5].
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Figure 1: Two examples of glitches observed by the LIGO detector. More details about the problem are provided in Section 4.2.

However, both paradigms (crowdsourcing vs expert labels) should not be regarded as mutually
exclusive, and some expert labels can still be collected to complement the crowdsourcing annota-
tions. In fact, one of the main limitations of crowdsourcing methods, their identifiability, can be
alleviated by adding some expert labels. As already stressed in the founding work [6], a majority
of unreliable annotators would make crowdsourcing methods learn an incorrect concept, and in
practice it is assumed that most annotators are reliable. Intuitively, the addition of some expert
labels is expected to guide crowdsourcing algorithms to identify the underlying truth.

Interestingly, this is the setting available within the GravitySpy project [7]. GravitySpy aims at
classifying glitches produced in the laureate Laser Interferometer Gravitational-Waves Observa-
tory (LIGO), see Fig. 1. Whereas the labeling process has been crowdsourced, astrophysicists
have also labeled a (smaller) training set. The best results with the expert labels were obtained
by Convolutional Neural Networks [8]. Then, crowdsourcing methods leveraged the larger crowd-
sourcing set to establish a new state-of-the-art [5]. We will show here that a probabilistic fusion of
both settings outperforms the results achieved separately.

The proposed model, which is named SVGPCR-Mix, extends the probabilistic crowdsourcing
method SVGPCR in [5] to integrate expert labels. It is based on (sparse) Gaussian Processes (GPs)
[9], which were shown to outperform deep learning crowdsourcing approaches in the GravitySpy
data, see [5]. The expertise of annotators to label the different classes is modeled through confu-
sion matrices, which are estimated, along with the rest of model parameters, following a variational
inference scheme [10]. The derived variational objective (the Evidence Lower Bound, ELBO) is a
natural fusion of those in [9] (i.e. if sparse GPs were applied on the expert labels only) and [5] (i.e.
if the crowdsourcing labels were used only).

Synthetic and real data are used to analyse the proposed approach in depth. First, a controlled
experiment illustrates the behavior of the method as the amount of expert labels increase. Then,
the probabilistic fusion of crowdsourcing and expert labels is shown to establish a new state-of-
the-art in the challenging real-world astrophysics application of GravitySpy. Different properties of
the model will be demonstrated along the experiments. Many of them generalize straightforwardly
from SVGPCR, such as the scalability to large datasets, the estimation of annotators confusion
matrices (i.e. their degree of expertise), and the estimation of the ground truth for the crowdsourced
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samples. Some others are specific to SVGPCR-Mix, such as the role of anchor points for the expert
labels, the relevance of the coupling term in the ELBO, and the role of the initialization.

The proposed model and inference are included in sections 2 and 3, respectively. Sections 4.1 and
4.2 contain the controlled experiment and the application to LIGO data, respectively. Section 5
concludes the paper.

2 Probabilistic Modeling

Let X ∈ RN×D be an (observed) training set of N D-dimensional samples. The (mostly non-
observed) true labels are denoted as Z ∈ {0, 1}N×K , where each K-class label is expressed with
one-hot encoding. Two types of information are available: a few expert (i.e. true) labels and
crowdsourcing ones. For the expert labels, let O ⊆ {1, . . . , N} be the samples having expert label
(and let U = {1, . . . , N}\O refer to the rest). We split Z into ZO (the observed true labels) and ZU
(the non-observed, most of them). For the crowdsourcing ones, let A be the number of annotators,
An ⊆ {1, . . . , A} the subset of annotators who labeled the n-th sample, and Ya

n the set of labels
provided by the a-th annotator for that sample1. All crowdsourcing labels (for all samples and
annotators) are jointly denoted as Y. Notice that Ya

n may be available for n ∈ ZO and n ∈ ZU .

Each annotator, a, is modeled using a confusion matrix Ra = (raij)1≤i,j≤K , where raij is the proba-
bility that annotator a provides the label i for a sample whose real class is j. This is mathematically
expressed as p(y|z,Ra) = yᵀRaz. Assuming that annotators label samples independently, we
have

p(Y|Z,R) =
N∏

n=1

∏

a∈An

∏

y∈Ya
n

p(y|zn,R
a). (1)

Prior knowledge on annotators is modeled with a (conjugate) Dirichlet distribution:

p(R) =
A∏

a=1

K∏

k=1

p(rak) =
A∏

a=1

K∏

k=1

Dir(rak|αa
1k, . . . , α

a
Kk), (2)

where rak = (ra1k, . . . , r
a
Kk)

ᵀ is the k-th column of Ra (this column will also be denoted by
raek , where ek is the k-th K-dimensional one-hot encoding vector), and α = {αa

ij : i, j =
1, . . . , K, a = 1, . . . , A} are hyperparameters. If there is no prior information on annotator a,
we set αa

ij = 1, i, j = 1, . . . , K, which produces a uniform prior.

To connect true labels Z with observed features X, we resort to GPs [11]. We introduce latent
variables F = [f1, . . . , fK ] ∈ RN×K , for which the following prior is considered:

p(F|X,Ω) =
K∏

k=1

p(fk|X,ωk) =
K∏

k=1

N (fk|0,Kωk
(X)). (3)

A standard RBF kernel is used for the GP, whose parameters Ω are estimated during training (see
next section).

1Although Ya
n typically contains only one label, it is straightforward to model the case when an annotator provides more than

one label for the same sample, which happens in the GravitySpy data.
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Figure 2: Probabilistic graphical model for SVGPCR-Mix. Yellow nodes are observed, light blue nodes are estimated through a
posterior distribution, and dark blue nodes are inferred with point estimates.

The relationship between true labels Z and latent variables F is modeled through the Robust-Max
likelihood [12]. We have

p(Z|F) =
N∏

n=1

p(zn|fn,:) = p(ZO|F)p(ZU |F). (4)

Here we explicitly split Z both terms are conceptually different: whereas ZO is observed (along
with Y), ZU is unknown and will be estimated during inference (next section).

One of the main limitations of GPs is their scalability [13]. Their training cost is O(N3), which
hampers their application beyond a few thousand samples (typically 10K). Since the GravitySpy
set is much larger, we sparsify our GP based on standard inducing points approaches, e.g. [9].
Namely, latent variables F are extended with U = [u1, . . . ,uK ] ∈ RM×K with M << N . These
variables are called inducing points, and represent the values of the GP at different M inducing
locations X̃ = [x̃1, . . . , x̃M ]T ∈ RM×D.

To sum up, the full model (with inducing points) is

p(Y,ZO,ZU ,F,U,R|Ω) = p(Y|Z,R)p(ZO|F)p(ZU |F)p(F|U,Ω)p(U|Ω)p(R). (5)

The probabilistic graphical model is shown in Fig. 2.

3 Variational Inference

The proposed probabilistic model, eq. (5), is not mathematically tractable. We resort to the vari-
ational approach [14] to cast inference as an optimization problem. Specifically, the following
posterior is proposed:

q(ZU ,F,U,R) = q(ZU)q(F|U,Ω)q(U)q(R), (6)

with

q(ZU) =
∏

n∈U
q(zn) =

∏

n∈U
zᵀ
nqn,

q(F|U,Ω) = p(F|U,Ω),

q(U) =
K∏

k=1

q(uk) =
K∏

k=1

N (uk|mk,Sk),

q(R) =
A∏

a=1

K∏

k=1

q(rak) =
A∏

a=1

K∏

k=1

Dir(rak|α̃a
1k, . . . , α̃

a
Kk).
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The variational parameters of this posterior, which will be jointly denoted as Θ, are: 1) the ground
truth estimation for ZU , i.e. qn = (qn1, . . . , qnK), qnk ≥ 0,

∑
k qnk = 1, n ∈ U ; 2) the means

and covariances in the inducing points, i.e. {mk,Sk : k = 1, . . . , K}; 3) the posterior Dirichlet
parameters, i.e. {α̃a

ij > 0, i, j = 1, . . . , K, a = 1, . . . , A}. Notice that the posterior of F|U is
equal to the prior, which is a common assumption to achieve tractability when using variational
inference with GPs [15].

With this posterior, the Evidence Lower Bound (ELBO) is:

ELBO(Ω, X̃,Θ) =
∑

n∈U

∑

a∈An

∑

y∈Ya
n

K∑

k=1

qnkEq(rak)
log p(y|ek, r

a
k)+

∑

n∈U

K∑

k=1

qnkEq(fn,:) log p(ek|fn,:)−
A∑

a=1

K∑

k=1

KL(q(rak)‖p(rak))−

∑

n∈U

K∑

k=1

qnk log qnk −
K∑

k=1

KL(q(uk)‖p(uk))+ (7)
∑

n∈O
Eq(fn,:) log p(zn|fn,:)+

∑

n∈O

∑

a∈An

∑

y∈Ya
n

Eq(razn ) log p(y|zn, razn
).

This objective function is maximized w.r.t. the variational parameters Θ and the model parameters
that are inferred through point estimate, i.e. X̃, Ω. As optimizer we use Adam with default settings
[16].

Interestingly, the first five terms of the ELBO are those obtained in SVGPCR [5], i.e. when only
crowdsourcing labels are available. The fifth and sixth terms coincide with the ELBO of SVGP
[9], i.e. if a sparse GP was used only on the true labels. The seventh term is new, and couples both
parts in the presence of samples that have both expert and crowdsourcing labels. It contributes to
learn the behavior of annotators by comparing both types of labels, and its role will be analyzed in
the experiments.

As in the case of SVGPCR and SVGP, the ELBO in eq. (7) allows for training in mini-batches (the
seventh term also factorizes across data points). The computational cost is the same as in SVGPCR,
i.e. O(Nb(M

2+AbK)), where Nb is the number of samples in the minibatch and Ab is the average
number of annotations per instance (in the minibatch).

Let us discuss the initialization of the model. In crowdsourcing methods, the ground truth q(Z)
is typically initialized relying on the majority opinion from the crowd (this will be referred to as
MO initialization). This implicitly assumes a majority of reliable annotators, which circumvents
the well-known identifiability issues of crowdsourcing [6, section 3]. However we will see in
the experiments that, if this hypothesis is not satisfied in practice, crowdsourcing methods fail
catastrophically. In our setting, an alternative initialization is provided by the true labels (which is
referred to as TL). Namely, these can be used to estimate the initial ground truth (e.g. by training
a standard SVGP). Therefore, this initialization does not rely on the quality of annotators, and will
be used by default in the experiments (unless otherwise stated).

Once the ELBO is maximized, the estimated values for Ω, X̃ and Θ are plugged in eq. (6) to fully
determine the approximating posterior q(ZU ,F,U,R). This distribution summarizes all the infor-
mation extracted from the observed data {Y,ZO,X}. Specifically, the ground truth for the samples
without true labels is contained in q(ZU). Annotators behavior is encoded in q(R). Finally, q(U)
allows for predicting on new samples x∗ by conditioning on the inducing points [9, 5].
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Sensitivities Specificities
Annotators 1 2 3 4 5 1 2 3 4 5

good 0.9 0.7 0.8 0.9 0.1 0.6 0.8 0.5 0.8 0.2
adversarial 0.1 0.3 0.2 0.1 0.9 0.4 0.2 0.5 0.2 0.8
spammer 0.5 0.57 0.48 0.49 0.9 0.45 0.51 0.5 0.51 0.8

Table 1: Sensitivity and specificity values in the three different scenarios: majority of good, adversarial or spammer annotators.

4 Experimental Results

Here we first include a controlled experiment to illustrate the behavior and properties of the pro-
posed method. Then, we show it also benefits a challenging real-world astrophysics problem:
glitch classification in signals acquired by the Laser Interferometer Gravitational-wave Observa-
tory (LIGO).

4.1 Controlled experiment

A two-class synthetic data set is considered on (−π, π). For each x ∈ (−π, π), its class is given
by the sign of cos(3x), i.e., x ∈ C1 if cos(3x) > 0 and x ∈ C0 otherwise. The ground truth can be
seen in Fig. 4) (GT curve). Notice that both classes are not linearly separable.

Crowdsourcing annotations are simulated on 100 randomly distributed samples on (−π, π).
Specifically, to analyze identifiability issues, three different scenarios are considered with majority
of good, adversarial, or spammers annotators. In each scenario, five annotators are simulated.
Annotators are modeled by their sensitivity and specificity (i.e. the entries r11 and r00 of their con-
fusion matrix, respectively)2. The used values are reported in table 1. Notice that each annotator
labels the 100 samples.

First, we illustrate the performance of SVGPCR-Mix as the amount of expert labels grows from 2%
(so that there is at least one sample of each class) to 100%3. It is compared to three closely related
methods. The first two separately rely on the two sources of available information: SVGPCR (if
the crowdsourcing labels were available only), and GPSubset (if a GP was applied on the true
labels only). The third, GPFull, represents the ideal case when expert labels are available for all
the training points and a GP is trained on them (this must be understood as a golden reference).
Results are shown in Fig. 3, for the three different scenarios, and averaged over 10 independent
runs (a test set of size 1000 is used).

Several aspects are highlighted. First, SVGPCR-Mix performance improves with the amount of
expert labels, approaching the golden reference GPFull. Moreover, the curves saturate quickly
(earlier than 20%), which supports the idea that just a few expert labels are needed to comple-
ment the crowdsourcing ones. Second, notice that SVGPCR exhibits difficulties when annotators
become less reliable (due to the identifiability issues of crowdsourcing methods). Interestingly,
SVGPCR-Mix requires just a small percentage of expert labels to fix this. Third, as theoretically

2Good annotators’ values of sensitivity and specificity are high, adversarial’s are low (i.e. they learned the wrong concept), and
spammers’ are around 0.5 (i.e. they provide a random label).

3Every two expert labels, one is obtained for a sample that also has crowdsourcing labels and the other for a new sample. The
relevance of this is analyzed in Fig. 6.
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Figure 3: Performance of SVGPCR-Mix and related methods as the amount of expert labels increases in the three different scenarios
considered. The proposed fusion of expert labels improves the results, and this is more significant as the annotators are less reliable.
The leftmost plot includes a dotted red line which corresponds to SVGPCR-Mix with MO initialization (more details in the text).
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Figure 4: Predictive distribution of SVGPCR-Mix as the amount of expert labels increases. These play the role of anchor points to
unravel the ground truth.

expected, SVGPCR-Mix stays above SVGPCR and GPSubset (which use only one of the sources
of information)4.

The second experiment analyzes how the expert labels improve the performance of SVGPCR-Mix.
Fig. 4 shows the predictive distribution of the model as the amount of expert labels grows (a
majority of spammers scenario is considered). If crowdsourcing labels are used only (0% curve),
the information is so noisy that kernel parameters converge to zero and the predictive distribution is
constant (recall we are in the majority-of-spammers scenario). The first significant change happens
when 5% of expert labels are added (these labels are depicted as orange dots). The accuracy
(threshold=0.5) is close to the one provided by the GT model, but the actual posterior probability
values are not. The second change occurs with 11% (blue crosses). Now, the predictive distribution
approximates the ground truth very accurately. Interestingly, notice that no true labels were added
in the connected component containing -1; however, the model learned the connection between
true and crowdsourcing labels in other regions, and used it to its benefit also here.

The third experiment studies how SVGPCR-Mix exploits the expert labels to learn the annotators
behavior. Fig. 5 shows the sensitivity and specificity estimations as the amount of expert labels
increases (in the majority of spammers scenario). For annotators 1-4, the estimations keep close to

4The only exception is at the beginning of the good annotators case, where SVGPCR outperforms SVGPCR-Mix. This is a
consequence of the TL initialization being used with very few expert labels (notice that the MO initialization bypasses the issue),
and is not representative for larger real sets.
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Figure 5: sensitivities and specificities estimated by the proposed model in the majority of spammers scenario. SVGPCR-Mix
leverages expert labels to learn the behavior of annotators.
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Figure 6: Performance of SVGPCR-Mix as expert labels are added following three different schemes (more details on the text). The
best results are obtained when the ELBO seventh term is considered.

0.5 (recall from table 1 that all of them are spammers). For annotator 5, who has high sensitivity
and specificity, the estimation evolves. In the beginning, SVGPCR-Mix cannot distinguish this
annotator from the spammers. However, as the percentage of expert labels increases, it is able to
make a better estimation.

The last experiment studies the influence of the ELBO seventh term (the new one introduced by
this model). Such term appears if there are samples with both expert and crowdsourcing labels.
Therefore, Fig. 6 shows the performance of SVGPCR-Mix as expert labels are added following
three different schemes: full (they are added on samples that also have crowdsourcing labels), null
(they are added on new samples), and middle (every two, one is of the full-type and the other of
the null-type). The results are significantly better for the full and middle cases, that is, when the
seventh term of the ELBO is being actually used.

4.2 Glitch detection in LIGO

In this section, we evaluate the proposed model on the real problem that motivated its development:
glitch detection in signals acquired by LIGO.

LIGO is a large-scale physics experiment to detect gravitational waves (GWs) [17]. GWs are
ripples in the space-time produced by massive astronomical events (such as binary black holes or
neutron stars mergers). Although their existence is a theoretical consequence of General Relativity,
their first direct observation was made on 2015 by LIGO. The discovery had a tremendous impact
in the scientific community, and was awarded the 2017 Physics Nobel.

To identify GWs, LIGO deploys cutting-edge technology that is sensitive to different sources of
noise. This contamination appears as glitches in the spectrograms that astrophysicists analyze to



A PREPRINT

search for GWs (see Fig. 1). The goal of the GravitySpy project5 is to classify different types
of glitches. Since LIGO produces a constant stream of data, GravitySpy leverages the Zooniverse
platform6 to obtain crowdsourcing labels. Moreover, to complement these, some expert labels have
been provided by astrophysicists.

Namely, our training set contains 173565 samples (glitches) and 1828981 crowdsourcing annota-
tions (i.e., a mean value of more than 10 labels per sample), which have been provided by 3443
collaborators through Zooniverse. For each glitch, we use 256 relevant features extracted in [8].
The glitches have been classified into 15 different classes proposed by astrophysicists (they all are
shown in [5, Figure 3]). Moreover, there are 7901 samples with expert labels (2593 of them also
have crowdsourcing annotations; this ensures that the seventh term of the ELBO is used, recall
Fig. 6). GravitySpy test set is made up of 9997 samples.

Two methods have addressed this problem so far. The first one, which will be referred to as DL,
uses the expert labels to train a Convolutional Neural Network [8]. The second one is SVGPCR
[5], which uses a GP-based crowdsourcing model to train with all the crowdsourcing labels. Recall
that each of these method leverages one type of labels, whereas the proposed SVGPCR-Mix is able
to train with both. Since SVGPCR-Mix is a generalization of both SVGPCR and SVGP [9] (recall
section 3), we also include the later in the comparison for completeness.

Table 2 shows the overall accuracy (OA) and test likelihood (TL) for the four compared methods
across the different classes. Whereas the former considers just the predictive mode, the latter also
takes into account the quality of the uncertainties. SVGPCR-Mix consistently obtains the best
results in both metrics, which justifies the proposed fusion of expert and crowdsourcing labels.
Notice also that the samples with expert labels are only 5% of the samples with crowdsourcing
labels. This supports the idea illustrated in the synthetic experiment that just a few expert labels
are enough to complement the crowdsourcing ones.

Let us analyze several aspects more in-depth. The good performance of SVGP and DL (which only
use 7901 samples) is due to 1) the quality of the expert labels and 2) (for DL) the representation
power of Convolutional Neural Nets for the spectrograms (images). Notice also that the results
of SVGPCR are not far from those of SVGPCR-Mix. This implies that there exists a majority of
reliable annotators (otherwise, the identifiability issues would severely harm the performance of
SVGPCR, recall Fig. 3). This is interesting for astrophysicists, since it validates the training system
designed for the volunteers. We further verify this by empirically estimating the overall accuracy
of annotators. We do it based on the 2593 samples that have both expert and crowdsourcing labels.
Indeed, results in Fig. 7 show an estimated OA greater than 0.9 for almost all the annotators.
Finally, we also stress the scalability of SVGPCR-Mix, which is able to cope with 173565 training
samples and 1828981 crowdsourcing labels (far beyond the standard GPs limit).
Finally, let us illustrate the ability of SVGPCR-Mix to estimate the annotators confusion matrices.
We consider annotator #80, which has annotated 927 samples that also have expert labels. This
allows us to empirically calculate its confusion matrix through a frequentist analysis of its annota-
tions. Additionally, we only consider the classes for which the selected annotator provided more
than 100 annotations. The confusion matrices estimated by SVGPCR-Mix (and also by SVGPCR)
are shown at the top of Fig. 8. Both matrices are very similar, and have values close to the empirical

5https://ciera.northwestern.edu/programs/gravityspy/
6https://www.zooniverse.org/projects/zooniverse/gravity-spy
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Overall Accuracies Test likelihood
Classes DL SVGP SVGPCR SVGPCR-Mix DL SVGP SVGPCR SVGPCR-Mix
1080LINE .9759 (.0025) .9697 (.0064) .9720 (.0069) .9883 (.0023) .9727 (.0023) .9209 (.0088) .9688 (.0075) .9853 (.0021)
1400RIPPLE .7569 (.0106) .6642 (.0416) .8577 (.0171) .7967 (.0267) .7541 (.0064) .5884 (.0363) .8509 (.0156) .7975 (.0275)
BLIP .9603 (.0018) .9592 (.0032) .9622 (.0052) .9715 (.0028) .9587 (.0012) .9481 (.0057) .9587 (.0055) .9685 (.0024)
EXTR.LOUD .8136 (.0185) .8784 (.0283) .7295 (.0427) .8273 (.0422) .7993 (.0156) .7835 (.0225) .7242 (.0408) .8146 (.0435)
KOIFISH .7797 (.0132) .7992 (.0125) .8828 (.0115) .8522 (.0127) .7711 (.0112) .7788 (.0130) .8784 (.0117) .8484 (.0138)
L.F.BURST .8996 (.0052) .8904 (.0115) .8861 (.0105) .8983 (.0057) .8988 (.0056) .8787 (.0128) .8838 (.0098) .8959 (.0053)
L.F.LINE .8490 (.0152) .8693 (.0304) .9156 (.0111) .8785 (.0132) .8403 (.0144) .8304 (.0326) .9118 (.0103) .8752 (.0135)
NOGLITCH .9290 (.0025) .9400 (.0068) .7951 (.0162) .9506 (.0071) .9272 (.0019) .8791 (.0139) .7932 (.0146) .9461 (.0055)
OTHER .4859 (.0141) .4954 (.0212) .4011 (.0091) .3870 (.0132) .4800 (.0119) .4571 (.0137) .3999 (.0091) .3854 (.0155)
P.L.60HZ .7983 (.0165) .9264 (.0076) .8425 (.0127) .9396 (.0037) .7937 (.0181) .8720 (.0135) .8380 (.0107) .9374 (.0055)
REP.BLIPS .5197 (.0137) .5581 (.0509) .6700 (.0210) .6641 (.0289) .5227 (.0087) .5094 (.0432) .6651 (.0198) .6493 (.0223)
SCATT.LIGHT .9585 (.0016) .9580 (.0071) .9562 (.0056) .9667 (.0024) .9581 (.0011) .9302 (.0107) .9520 (.0057) .9640 (.0024)
SCRATCHY .9220 (.0060) .9013 (.0148) .9000 (.0165) .8847 (.0166) .9194 (.0055) .8419 (.0107) .8953 (.0176) .8819 (.0204)
VIOLIN .9769 (.0013) .9700 (.0032) .9914 (.0017) .9758 (.0016) .9764 (.0006) .9574 (.0045) .9886 (.0014) .9738 (.0011)
WHISTLE .9535 (.0069) .9649 (.0000) .9201 (.0047) .9535 (.0111) .9528 (.0019) .9370 (.0037) .9179 (.0046) .9483 (.0060)
GLOBAL .9113 (.0020) .9145 (.0043) .9183 (.0027) .9258 (.0019) .9081 (.0018) .8813 (.0045) .9149 (.0027) .9227 (.0073)

Table 2: Performance (accuracy and test likelihood) for the four compared methods in the LIGO problem. DL is the Convolutional
Neural Network introduced in [8], SVGP refers to the Scalable Variational GP introduced in [9], and SVGPCR denotes the recent
crowdsourcing method in [5]. The proposed SVGPCR-Mix obtains the best global results in terms of OA and TL.
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Figure 7: Histogram of the annotators according to their Overall Accuracy evaluated on ZO . In this problem there exists a majority
of good annotators.

estimation. Notice also that the annotator is a reliable one (matrices do not look diagonal because
only classes with at least 100 annotations are shown). Recall from section 3 that annotator con-
fusion matrices are estimated through a posterior Dirichlet distribution q(R). The value reported
here is the expectation of this distribution.

In the second row of Fig. 8, we compare the confusion vectors for classes 3 (BLIP) and 12 (SCAT-
TERED LIGHT). By confusion vector we refer to a column of the confusion matrix, i.e. the prob-
abilities assigned by the annotator for a certain class. Here we chose these two classes for being
those where SVGPCR-Mix and Empirical confusion vectors are most similar and different (square
error sense), respectively. However, in both cases we observe that SVGPCR and SVGPCR-Mix al-
most match the empirical value, which confirms the accuracy of their estimations. In addition to the
discussed case of annotator #80, the global examination of SVGPCR and SVGPCR-Mix confusion
matrices yields very similar results. This makes us conclude that the improvement in performance
is due to the proposed fusion of expert labels, which obtains a better underlying classifier.

5 Conclusions

In this work we have proposed a new probabilistic model for detecting glitches in signals acquired
by LIGO. The data set collected by GravitySpy project motivated the development, by combining
the quality of labels provided by experts with the ability of the crowds to label huge data sets. The
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Figure 8: First row, from left to right: for certain annotator, Empirical confusion matrix and those estimated by SVGPCR and
SVGPCR-Mix, respectively. Second row: for the same annotator, detail of the assigned classes for two different true classes
(BLIP and SCATTERED LIGHT). These are commonly referred to as confusion vectors. The estimations by both SVGPCR and
SVGPCR-Mix are very similar to the empirical values.

proposed method is a natural generalization of SVGPCR and SVGP. We have demonstrated that
the use of true labels makes our method robust in scenarios where the majority of annotators are
not reliable, whereas previous crowdsourcing methods in the literature catastrophically fail in that
case. Furthermore, we have seen that only a small percentage of samples with true labels suffices
for SVGPCR-Mix to recognize the behavior of annotators and extract all the useful knowledge from
the crowdsourcing data. Then, we have applied SVGPCR-Mix to the GravitySpy data, outperform-
ing all the previous results in the literature. Finally, we have illustrated the differences between
SVGPCR and SVGPCR-Mix when estimating the confusion matrices of GravitySpy annotators.
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[10] P. Ruiz, P. Morales-Álvarez, R. Molina, and A. Katsaggelos, “Learning from crowds with
variational gaussian processes,” Pattern Recognition, vol. 88, pp. 298 – 311, 2019.

[11] C. Rasmussen and C. Williams, Gaussian Processes for Machine Learning. MIT, 2006.

[12] D. Hernández-Lobato, J. Hernández-Lobato, and P. Dupont, “Robust multi-class gaussian
process classification,” in Advances in Neural Information Processing Systems (NIPS), 2011,
pp. 280–288.
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Activation-level uncertainty in deep neural networks
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8.2 Main contributions

• In this work we introduce a new approach to model uncertainty in Deep Neu-
ral Networks. It is based on deterministic weights and simple stochastic non-
linearities (as opposed to the more classical formulation based on stochastic weights).

• We propose the use of non-parametric one-dimensional GPs as the prior for the
activation functions, including the triangular kernel inspired by the Rectified Lin-
ear Unit (ReLu).

• Our algorithm addresses well-known limitations of Bayesian Neural Networks
(BNN) and functional BNNs. These are the uncertainty underestimation for in-
between data (i.e. data that lies in-between two cluster of training points), and the
extrapolation to out-of-distribution data. Moreover, it is competitive or superior
in standard prediction benchmarks.
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• An interesting connection with deep GPs is also established: our approach re-
quires fewer inducing points and is better suited for deep architectures, achieving
superior performance.
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ABSTRACT

Current approaches for uncertainty estimation in deep learning often produce too
confident results. Bayesian Neural Networks (BNNs) model uncertainty in the space
of weights, which is usually high-dimensional and limits the quality of variational
approximations. The more recent functional BNNs (fBNNs) address this only par-
tially because, although the prior is specified in the space of functions, the posterior
approximation is still defined in terms of stochastic weights. In this work we propose
to move uncertainty from the weights (which are deterministic) to the activation func-
tion. Specifically, the activations are modelled with simple 1D Gaussian Processes
(GP), for which a triangular kernel inspired by the ReLu non-linearity is explored.
Our experiments show that activation-level stochasticity provides more reliable
uncertainty estimates than BNN and fBNN, whereas it performs competitively or
favorably in standard prediction tasks. We also study the connection with deep GPs,
both theoretically and empirically. More precisely, we show that activation-level
uncertainty requires fewer inducing points and is better suited for deep architectures.

1 Introduction

Deep Neural Networks (DNNs) have achieved state-of-the-art performance in many different tasks,
such as speech recognition [Hinton et al., 2012], natural language processing [Mikolov et al., 2013]
or computer vision [Krizhevsky et al., 2012]. In spite of their predictive power, DNNs are limited in
terms of calibration and uncertainty estimation [Wenzel et al., 2020, Lakshminarayanan et al., 2017,
Guo et al., 2017]. This ability to “know what is not known” is essential for critical applications such
as medical diagnosis [Esteva et al., 2017, Filos et al., 2019, Mobiny et al., 2019] or autonomous
driving [Kendall and Gal, 2017, Gal, 2016]. This has led to a growing interest in uncertainty
estimation for deep learning [Blundell et al., 2015, Gal and Ghahramani, 2016, Sun et al., 2019,
Foong et al., 2019b].
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Bayesian Neural Networks (BNNs) address this problem through a Bayesian treatment in
the network weights1 [MacKay, 1992, Neal, 1995]. This will be also refered to as weight-
space stochasticity. However, dealing with uncertainty in weight space is challenging, since
it contains many symmetries and is highly dimensional [Wenzel et al., 2020, Sun et al., 2019,
Snoek et al., 2019, Fort et al., 2019]. Here we focus on two specific limitations. First, it has
been recently shown that BNNs with well-established inference methods such as Bayes by
Backprop (BBP) [Blundell et al., 2015] and MC-Dropout [Gal and Ghahramani, 2016] underes-
timate the predictive uncertainty for instances located in-between two clusters of training points
[Foong et al., 2019a, Foong et al., 2019b]. Second, BNNs do not extrapolate sensibly to out-of-
distribution (OOD) data [Sun et al., 2019, Nguyen et al., 2015, Ren et al., 2019]. Both issues will
be analyzed in Fig. 3.

As an alternative, Functional Bayesian Neural Nets (fBNN) specify the prior in the space of
functions [Sun et al., 2019]. This provides a mechanism to guide the extrapolation in OOD data,
e.g. predictions can be encouraged to reverse to the prior in regions of no observed data. However,
the posterior stochastic process is still defined by a factorized Gaussian on the network weights
(i.e. as in BBP), see [Sun et al., 2019, Sec. 3.1]. This makes fBNN inherit the underestimation of
predictive uncertainty for in-between data.

In this work, we adopt a different approach by moving stochasticity from the weights to the activation
function, see Fig. 1. This will be referred to as auNN (activation-level uncertainty for Neural
Networks). The activation functions are modelled with (one-dimensional) GP priors, for which a
triangular kernel inspired by the ReLu non-linearity [Nair and Hinton, 2010, Glorot et al., 2011] is
used. Since non-linearities are typically simple functions (e.g. ReLu, sigmoid, tanh), our GPs are
sparsified with few inducing points. The network weights are deterministic parameters which are
estimated to maximize the likelihood of the observed data. The motivation behind auNN is to avoid
inference in the complex space of weights. We hypothesise that it could be enough to introduce
stochasticity in the activation functions that follow the linear projections. Importantly, we show
that auNN obtains well-calibrated estimations for in-between data, and its prior allows for sensible
extrapolation to OOD data by reversing to the empirical mean. This will be visualized in a simple
1D example (see Fig. 3 and Tab. 1). Moreover, auNN obtains competitive or superior predictive
performance in standard benchmarks, is scalable (datasets of up to ten millions training points are
used), and can be readily used for classification.

The use of GPs for the activations establishes an interesting connection with deep GPs (DGPs)
[Damianou and Lawrence, 2013, Salimbeni and Deisenroth, 2017]. The main difference is the lin-
ear projection before the GP, recall Fig. 1(c-d). This allows auNN units to model simpler mappings
between layers, which are defined along one direction of the input space, similarly to neural net-
works. However, DGP units model more complex mappings defined on the whole input space, see
also Fig. 2a. We will show that auNN units require fewer inducing points and are better suited for
deep architectures, achieving superior performance.

In summary, the main contributions of this paper are: (1) a new approach to model uncertainty
in DNNs, based on deterministic weights and simple stochastic non-linearities (in principle, not
necessarily modelled by GPs); (2) the specific use of non-parametric GPs as a prior, including the
triangular kernel inspired by the ReLu; (3) auNN addresses well-known limitations of BNNs and

1The bias term will be absorbed within the weights throughout the work.
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Figure 1: Graphical representation of the artificial neurons for closely related methods. (a) In standard Neural Networks (NN),
both the weights and the activation function are deterministic. (b) In Bayesian NNs, weights are stochastic and the activation is
deterministic. (c) In auNN (this work), weights are deterministic and the activation is stochastic. (d) Deep GPs do not have a linear
projection through weights, and the output is modelled directly with a GP defined on the Dl−1-dimensional input space.

fBNNs (uncertainty underestimation for in-between data and extrapolation to OOD data), and is
competitive or superior in standard prediction tasks; (4) auNN units require fewer inducing points
and are better suited for deep architectures than DGP ones, achieving superior performance.

2 Probabilistic Model and Inference

We focus on a supervised task (e.g. regression or classification) with training data2 {xn,:,yn,:}Nn=1.
The graphical model in Fig. 2b will be useful throughout this section. We assume a model of L
layers, each one with Dl units as in Fig. 1c. Each activation is modelled with a (1D) GP prior, i.e.
f l
d(a

l
d) ∼ GP(µl

d, k
l
d), with µl

d : R→ R and kld : R× R→ R the mean and covariance functions,
respectively. The GP hyperparameters θl

d will be omitted for clarity (for the kernels considered
here, θl

d includes the amplitude and the lengthscale). Assuming independence between units, each
layer depends on the previous one as:

p(Fl|Fl−1,Wl) = p(Fl|Al) =
Dl∏

d=1

p(f ld|al
d), (1)

where Fl is the N × Dl matrix of outputs of the l-th layer for N inputs, Wl is the Dl−1 × Dl

matrix of weights in that layer, and Al is the N ×Dl matrix of pre-activations, i.e. Al = Fl−1 ·Wl.
As usual, the columns and rows of Fl are denoted as f ld and f ln,:, respectively (and analo-
gously for the other matrices). Since it is defined by a GP, we have p(f ld|al

d) = N (f ld|µl
d,K

l
d),

with µl
d (resp. Kl

d) the result of evaluating µl
d (resp. kld) on al

d. To fully specify the
model, the output Y is defined from the last layer with a likelihood that factorizes across
data points, i.e. p(Y|FL) =

∏N
n=1 p(yn,:|fLn,:). This formulation resembles that of DGPs

[Damianou and Lawrence, 2013, Salimbeni and Deisenroth, 2017]. The main difference is that
we model Fl|Fl−1 through Dl 1D GPs evaluated on the pre-activations Al (i.e. the projections of
Fl−1 through Wl), whereas DGPs use Dl GPs of dimension Dl−1 evaluated directly on Fl−1, recall
Fig. 1(c-d).

Inference in the proposed model is intractable. To address this, we follow standard sparse variational
GP approaches [Titsias, 2009, Hensman et al., 2013, Hensman et al., 2015], similarly to the Doubly
Stochastic Variational Inference (DSVI) for DGPs [Salimbeni and Deisenroth, 2017]. Specifically,
in each unit of each layer we introduce M l inducing values ul

d, which are the result of evaluating the
2The output is represented as a vector since all the derivations apply for the multi-output case.
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DGP auNN
(a) (b) (c)

Figure 2: (a) Type of mappings modelled by DGP and auNN units (colours represent different values). Whereas DGP units describe
complex functions defined on the whole Dl−1 dimensional input space, the linear projection through wl

d in auNN yields simpler
functions defined on just one direction. This is closer in spirit to NNs, requires fewer inducing points, and is better suited for deep
architectures. The inducing points are shown in black (for auNN, these correspond to (hyper)planes in the input space before the
projection). (b) Probabilistic graphical model for an auNN layer. Yellow variables are to be estimated (light ones through point
estimates and the dark one through a posterior distribution). The box highlights the auxiliary variables (inducing points and their
values). (c) Graphical representation of the UCI in-between splits. In red, a segment that crosses the gap joining two training points
from different components, which will be used in the experiments.

GP on the one-dimensional inducing points zl
d. We naturally write Ul and Zl for the corresponding

M l ×Dl matrices. Following eq. (1), the augmented model for one layer is

p(Fl,Ul|Fl−1,Wl,Zl) = p(Fl|Ul,Al,Zl)p(Ul|Zl) =
Dl∏

d=1

p(f ld|ul
d, a

l
d, z

l
d)p(u

l
d|zl

d). (2)

Variational inference (VI) involves the approximation of the true posterior p({Fl,Ul}l|Y). Fol-
lowing [Hensman et al., 2013, Salimbeni and Deisenroth, 2017], we propose a posterior given by
p(F|U) and a parametric Gaussian on U:

q({Fl,Ul}l) =
L∏

l=1

p(Fl|Ul,Al,Zl)q(Ul) =
L∏

l=1

Dl∏

d=1

p(f ld|ul
d, a

l
d, z

l
d)q(u

l
d), (3)

where q(ul
d) = N (ul

d|ml
d,S

l
d), with ml

d ∈ RM l and Sl
d ∈ RM l×M l variational parameters to be

estimated. Minimizing the KL divergence between q({Fl,Ul}l) and the true posterior is equivalent
to maximizing the following evidence lower bound (ELBO):

log p(Y|{Wl,Zl}l) ≥ ELBO =
N∑

n=1

Eq(fLn,:)

[
log p(yn,:|fLn,:)

]
−

L∑

l=1

Dl∑

d=1

KL
(
q(ul

d)||p(ul
d)
)
. (4)

In the ELBO, the KL term can be computed in closed-form, as both q(ul
d) and p(ul

d) are Gaussians.
The log likelihood term can be approximated by sampling from the marginal posterior q(fLn,:), which
can be done efficiently through univariate Gaussians as in [Salimbeni and Deisenroth, 2017]. Specif-
ically, Ul can be analytically marginalized in eq. (3), which yields q({Fl}l) =∏l q(F

l|Fl−1,Wl) =∏
l,dN (f ld|µ̃l

d, Σ̃
l

d), with:

[µ̃l
d]i = µl

d(a
l
id) +αl

d(a
l
id)

ᵀ(ml
d − µl

d(z
l
d)), (5)

[Σ̃
l

d]ij = kld(a
l
id, a

l
jd)−αl

d(a
l
id)

ᵀ(kld(z
l
d)− Sl

d)α
l
d(a

l
jd), (6)

where αl
d(x) = kld(x, z

l
d)[k

l
d(z

l
d)]
−1 and al

n,: = Wlf l−1n,: . Importantly, the marginal posterior
q(f ln,:) is a Gaussian that depends only on al

n,:, which in turn only depends on q(f l−1n,: ). Therefore,
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sampling from f ln,: is straightforward using the reparametrization trick [Kingma and Welling, 2013,
Rezende et al., 2014]:

f l
nd = [µ̃l

d]n + ε · [Σ̃l

d]
1/2
nn , with ε ∼ N (0, 1), and f0n,: = xn,:. (7)

Training consists on maximizing the ELBO, eq. (4), w.r.t. the variational parameters {ml
d,S

l
d}, the

inducing points {zl
d}, and the model parameters (i.e. weights {wl

d} and kernel parameters {θl
d}).

This can be done through mini-batches, which allows for scalability to very large datasets. The
complexity to evaluate the ELBO is O(NM2(D1 + · · · + DL)), the same as DGPs with DSVI
[Salimbeni and Deisenroth, 2017].3

Predictions. Given a new x∗,:, we want to compute4 p(fL∗,:|X,Y) ≈ Eq({Ul})
[
p(fL∗,:|{Ul})

]
. As

in [Salimbeni and Deisenroth, 2017], this can be approximated by sampling S values up to the
(L − 1)-th layer with the same eq. (7), but starting with x∗,:. Then, p(fL∗,:|X,Y) is given by the
mixture of the S Gaussians distributions obtained with eqs. (5)-(6).

Triangular kernel. One of the most popular kernels in GPs is the RBF
[Williams and Rasmussen, 2006], which produces very smooth functions. However, the ReLu non-
linearity led to a general boost in performance in DNNs [Nair and Hinton, 2010, Glorot et al., 2011],
and we aim to model similar activations. Therefore, we introduce the use of the triangular (TRI)
kernel. Just like RBF, TRI is an isotropic kernel, i.e. it depends on the distance between the inputs,
k(x, y) = γ · g(|x− y|/`), with γ and ` the amplitude and lengthscale. For RBF, g(t) = e−t

2/2. For
TRI, g(t) = max(1− t, 0). This is a valid kernel, see [Williams and Rasmussen, 2006, Sec. 4.2.1].
Similarly to the ReLu, the functions modelled by TRI are piecewise linear, see Fig. 6a, and Fig. 2 in
the Appendix.

Comparison with DGP. The difference between auNN and DGP units is graphically illustrated in
Fig. 2a. Whereas DGP mappings from one layer to the next are complex functions defined on Dl−1

dimensions (Dl−1 = 2 in the figure), auNN mappings are defined just along one direction via the
weight projection. This is closer in spirit to NNs, whose mappings are also simpler and better suited
for feature extraction and learning more abstract concepts. Moreover, since the GP is defined on a
1D space, auNN requires fewer inducing points than DGP (which, intuitively, can be regarded as
inducing (hyper)planes in the Dl−1-dimensional space before the projection). The benefits of auNN
units will be experimentally assessed in the next section.

3 Experiments

In this section, auNN is compared to BNN, fBNN [Sun et al., 2019] and DSVI DGP
[Salimbeni and Deisenroth, 2017]. BNNs are trained with BBP [Blundell et al., 2015], since auNN
also leverages a simple VI-based inference approach. In each section we will highlight the most
relevant experimental aspects, and all the details can be found at the Appendix. In the sequel, NLL
stands for Negative Log Likelihood. Anonymized code for auNN is provided in the supplementary
material, along with a script to run it for the 1D illustrative example of Sec. 3.1.

3As in [Salimbeni and Deisenroth, 2017], there exists also a cubic term O(M3(D1 + · · · + DL)) that is assumed to be
dominated by the former (since the mini-batch size N is typically larger than M ). Moreover, in auNN we have the multiplication by
weights, with complexity O(NDl−1Dl) for each layer. This is also typically dominated by the former.

4The distribution p(yL
∗,:|X,Y) is obtained as the expectation of the likelihood over p(fL∗,:|X,Y). A Gaussian likelihood will

be used for regression, whereas the Robust-Max [Hernández-Lobato et al., 2011] will be considered for classification.
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Figure 3: Predictive distribution (mean and one standard deviation)
after training on a 1D dataset with two clusters of points. This simple
example illustrates the main limitations of NN, BNN and fBNN, which
are overcome by the novel auNN. See Tab. 1 for a summary and the text
for details.

Table 1: Visual overview of conclusions from the 1D
experiment in Fig. 3. This shows that NN, BNN, fBNN
and the novel auNN increasingly expand their capabilities.

Epistemic
uncertainty

Reverses
to mean

In-between
uncertainty Reference

NN 7 7 7 -
BNN 3 7 7 [Blundell et al., 2015]

fBNN 3 3 7 [Sun et al., 2019]
auNN 3 3 3 This work

3.1 An illustrative example

Here we illustrate the two issues that were highlighted in the introduction: the extrapolation to OOD
data and the underestimation of predictive uncertainty for instances located in-between two clusters
of training points. Fig. 3 shows the predictive distribution of NN, BNN, fBNN and auNN (with
RBF and TRI kernels) after training on a simple 1D dataset with two clusters of points. All the
methods have one hidden layer with 25 units, and 5 inducing points are used for auNN.

In Fig. 3, the deterministic nature of NNs prevents them from providing epistemic uncertainty
(i.e. the one originating from the model [Kendall and Gal, 2017]). Moreover, there is no prior to
guide the extrapolation to OOD data. For example, in absence of additional information, it could
be desirable that the predictions reverse to the empirical mean of the observed data as x → ±∞
(however, the predictions of NN diverge). BNNs provide epistemic uncertainty. However, the
prior in the complex space of weights is not expressive enough to produce sensible extrapolations.
Moreover, note that BNNs underestimate the predictive uncertainty in the region between the two
clusters, where there is no observed data (this region is usually called the gap). More specifically, as
shown in [Foong et al., 2019b], the predictive uncertainty for data points in the gap is limited by that
on the extremes. By specifying the prior in function space, fBNN can induce properties in the output,
such as reversing to the empirical mean for OOD data through a zero-mean GP prior. However,
the underestimation of in-between uncertainty persists, since the posterior stochastic process for
fBNN is based on a weight-space factorized Gaussian (as BNN with BBP), recall [Sun et al., 2019,
Sec. 3.1]. Finally, auNN (either with RBF or TRI kernel) bypasses both issues through the novel
activation-level modelling of uncertainty, which utilizes a zero-mean GP prior for the activations.
Tab. 1 summarizes the main characteristics of each method. Next, a more comprehensive experiment
with deeper architectures and a wider variety of datasets is provided.

3.2 UCI regression datasets with in-between splits

Standard splits are not appropriate to evaluate the quality of uncertainty estimates for in-between
data, since both train and test sets may cover the space equally. This motivated the introduction of
in-between splits [Foong et al., 2019a]. Namely, a set with D dimensions admits D such train-test
partitions by considering each dimension, sorting the points according to its value, and selecting the
middle 1/3 for test (and the outer 2/3 for training), see Fig. 2c. With these partitions, overconfident
predictions for data points in the gap manifest as very high values of test negative log likelihood.

We train BNN, fBNN, auNN-RBF and auNN-TRI for L = 2, 3 layers (i.e. one and two hidden
layers, respectively) on six UCI datasets using in-between splits (namely, Boston, Concrete, Energy,
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Table 2: Ranks in terms of NLL and RMSE for the UCI in-between splits. The lower the better. Per-group average rank is provided
too (weight vs activation stochasticity). Activation stochasticity achieves superior performance in both metrics. The reported values
are the mean and standard error over all the datasets and splits.

BNN-2 BNN-3 fBNN-2 fBNN-3 auNN-RBF-2 auNN-RBF-3 auNN-TRI-2 auNN-TRI-3

NLL Rank 3.92±0.79 4.98±0.70 5.04±0.36 5.36±0.50 4.69±0.61 5.29±0.89 3.25±0.57 3.47±0.80

Average 4.83±0.32 4.17±0.40

RMSE Rank 4.09±0.67 6.15±0.91 4.70±0.54 4.71±0.53 4.32±0.47 4.27±0.55 3.90±0.33 3.85±0.46

Average 4.91±0.37 4.09±0.23
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Figure 4: Test NLL and RMSE for the in-between splits in Energy and Naval datasets (mean and one standard error, the lower
the better). Activation-level uncertainty, specially through the triangular kernel, avoids the dramatic failure of BNN and fBNN in
terms of NLL (see the scale). The similar values in RMSE reveal that this failure actually comes from an extremely overconfident
estimation by BNN and fBNN, see also Fig. 5.

Naval, Wine and Yacht). In all cases,D = 50 hidden units are used, and auNN usesM = 5 inducing
points. Two groups of models are distinguished in terms of posterior stochasticity: those based on
stochastic weights (BNN and fBNN), and those based on stochastic activations (auNN-RBF and
auNN-TRI).

As a summary, Tab. 2 shows the individual and per-group ranks for test NLL and RMSE, which
are the average over all the datasets and splits. The full results are provided in Tab. 1 and 2 in the
Appendix. It can be observed that activation-level uncertainty obtains superior performance in both
metrics. Moreover, it is important to analyze the different behavior in some datasets. Namely, Fig. 4
shows the complete results for Energy and Naval (Fig. 1 in the Appendix provides analogous plots
for the rest of datasets). Interestingly, we observe that BNN and fBNN severely underestimate the
predictive uncertainty. Namely, whereas very high NLL is obtained (see the scale), the RMSE is
closer to that of the best method. Therefore, the problem does not come from the predictive mean,
but from an extremely overconfident prediction. Notice that this behavior is improved by auNN,
specially with the triangular kernel, which achieves top calibration for in-between data.

To further understand the different results, Fig. 5 shows the predictive distribution over a segment
that crosses the gap, recall Fig. 2c. We observe that activation-level approaches obtain more sensitive
(less confident) uncertainties in the gap, where there is no observed data. In particular, BNN and
fBNN predictions in Naval are unjustifiably overconfident, since the output in that dataset ranges
from 0.95 to 1. Finally, to illustrate the internal mechanism of auNN, Fig. 6a shows one example
of the activations learned when using each kernel. Although it is just one example, it allows for
visualising the different nature: smoother for RBF and piecewise linear for TRI. All the activation
functions for a particular network and for both kernels are shown in Fig. 2 in the Appendix.

3.3 UCI regression datasets with standard splits

Here, the previous section is complemented with results for standard (random) train-test splits on
the same UCI datasets. This shows that, in addition to the enhanced uncertainty estimation, auNN
is a competitive alternative in general practice. As a summary, Tab. 3 shows the individual and
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Figure 5: Predictive distribution (mean and one standard deviation) over a segment that crosses the gap, joining two training points
from different connected components. The two most challenging datasets in terms of uncertainty estimation for in-between data are
shown (Energy, upper row, and Naval, lower row; recall Fig. 4). auNN achieves better calibrated uncertainty in the gap, where there
is no observed data.

Table 3: Ranks in terms of NLL and RMSE for the UCI standard splits. The lower the better. Per-group average rank is provided too
(weight vs activation stochasticity). Activation stochasticity achieves competitive or slightly superior performance. The reported
values are the mean and standard error over all the datasets and splits.

BNN-2 BNN-3 fBNN-2 fBNN-3 auNN-RBF-2 auNN-RBF-3 auNN-TRI-2 auNN-TRI-3

NLL Rank 3.78±0.41 6.25±0.70 4.13±0.57 3.83±0.85 3.97±0.60 4.42±0.85 4.78±0.92 4.83±1.01

Average 4.50±0.39 4.50±0.43

RMSE Rank 4.70±0.48 6.50±0.64 3.70±0.61 3.45±0.88 4.25±0.35 3.35±0.77 5.40±0.80 4.65±1.00

Average 4.59±0.41 4.41±0.41

per-group (activation vs weight uncertainty) ranks in terms of NLL and RMSE, when using the
same datasets but with 10 random 90%-10% train-test splits. The same experimental setup is used
too. We observe that activation-level approaches are competitive or slightly superior in both metrics.
The reported values are the mean over all the datasets and splits. Full results are in Tab. 3 and 4 in
the Appendix.

3.4 Comparison with DGPs

As explained in Sec. 2, the choice of a GP prior for activation stochasticity establishes a strong
connection with DGPs. The main difference is that auNN performs a linear projection from Dl−1

to Dl dimensions before applying Dl 1D GPs, whereas DGPs define Dl GPs directly on the Dl−1

dimensional space. This means that auNN units are simpler than those of DGP, recall Fig. 2a. Here
we show two practical implications of this.

First, it is reasonable to hypothesise that DGP units may require a higher number of inducing points
M than auNN, since they need to cover a multi-dimensional input space. By contrast, auNN may
require a higher number of hidden units D, since these are simpler. Importantly, the computational
cost is not symmetric in M and D, but significantly cheaper on D, recall Sec. 2. Fig. 6b shows
the performance of auNN and DGP for different values of M and D on the UCI Kin8 set (with
one hidden layer; depth will be analyzed next). As expected, note the different influence by M and
D: whereas auNN improves “horizontally” (i.e. as D grows), DGP does it “vertically” (i.e. as M
grows)5. In the next section, we will see that this makes auNN faster than DGP in practice. An
analogous figure for RMSE and full numeric results are in Fig. 3 and Tabs. 6-7 in the Appendix.

5Interestingly, the fact that DGP is not greatly influenced by D could be appreciated in the recommended value in
[Salimbeni and Deisenroth, 2017]. They set D = min(30, D0), where D0 is the input dimension.
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Figure 6: (a) One example of activation function (mean and standard deviation) learned by auNN with each kernel. RBF’s one
is smoother, whereas TRI’s is piecewise linear, inspired by ReLu. Black dots represent (the mean of) the inducing point values.
Green dots are the locations of input data when propagated to the corresponding unit. (b) Test NLL of auNN and DGP for different
values of M (number of inducing points) and D (number of hidden units). The lower the better. The results are the average over
five independent runs with different splits. Whereas DGP improves vertically (i.e. with M ), auNN does it horizontally (i.e. with
D). This is as hypothesized, and is convenient from a scalability viewpoint. (c) Test NLL with increasing depth (L = 2, 3, 4). This
supports that auNN might benefit more than DGP from deeper networks. Moreover, the aforementioned different influence of M and
D on DGP and auNN is confirmed here.

Second, auNN simpler units might be better suited for deeper architectures. Fig. 6c shows the
performance on the UCI Power dataset when depth is additionally considered. It can be observed
that auNN is able to take greater advantage of depth, which translates into significantly better overall
performance. Moreover, the aforementioned different influence of D and M on DGP and auNN is
also confirmed here. The results on RMSE are similar, see Fig. 4 and Tabs. 8-9 in Appendix.

3.5 Large scale experiments

So far, we experimented with small to medium regression datasets. However, as explained in Sec. 2,
the computational cost of auNN is similar to DSVI DGP, which is scalable to millions of instances
[Salimbeni and Deisenroth, 2017]. Here we experiment with datasets of that size (up to N = 107),
achieving superior performance to DGP. Moreover, we also demonstrate that auNN can be readily
used for classification. 6

Classification. We use the well-known particle physics binary classification sets HIGGS (N =
11M, D = 28) and SUSY (N = 5M, D = 18) [Baldi et al., 2014]. The Robust-Max likelihood is
used for classification [Hernández-Lobato et al., 2011]. We compare the performance of auNN and
DGP, which obtained state-of-the-art results on these problems [Salimbeni and Deisenroth, 2017].
Tab. 4 shows the results for different depths in terms of AUC (the metric used in both
[Salimbeni and Deisenroth, 2017] and the original work [Baldi et al., 2014]). The novel auNN
clearly outperforms DGP7. Moreover, we observe that auNN results consistently improve as depth
increases, which is not always the case for DGP (see DGP-4). Regarding both kernels (RBF and
TRI), differences are not significant.

6In this section, both DGP and auNN are trained with one hidden layer and their optimal configuration according to the previous
experiment: large M for DGP (M = 100, D is set as recommended by the authors, i.e. D = min(30, D0)), and large D for auNN
(D = 50, M is set to an intermediate value of M = 25).

7DGP results reported in [Salimbeni and Deisenroth, 2017] are better than here (but still worse than those obtained by auNN).
Since we have used the same code, training and initializations, the difference must be due to the different train-test splits.
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Table 4: Performance of auNN and DGP in two large scale classification datasets. AUC is shown (the higher the better). The
proposed method outperforms DGP for both kernels, and the results steadily improve with depth. The standard deviation (on three
splits) is close to zero in all cases, see Tab. 5 in the Appendix.

auNN DGP

N D RBF-2 RBF-3 RBF-4 TRI-2 TRI-3 TRI-4 DGP-2 DGP-3 DGP-4

HIGGS 11M 28 0.8294 0.8494 0.8551 0.8288 0.8483 0.8533 0.8159 0.8176 0.8031
SUSY 5M 18 0.8779 0.8785 0.8787 0.8776 0.8783 0.8786 0.8237 0.8316 0.8263
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Figure 7: Performance in the extended airline dataset (2M training points) as training time
goes on. Although a bit slower in the beginning, the proposed method achieves superior
performance, specially with TRI kernel.

Table 5: Elapsed time to predict on
airline test set (127068 instances). All
the methods use 100 test samples.

Algorithm Test time

BNN 0.20±0.01
DGP 7.35±0.06

auNN-RBF 3.78±0.06
auNN-TRI 3.15±0.06

Regression. Finally, we use an extended version of airline dataset as an example of large-scale
regression [Hernández-Lobato and Hernández-Lobato, 2016]. After removing missing values,N =
2127068 instances remain. From these, 2M are used for train, and the rest for test. Fig. 7 shows
the test performance (NLL and RMSE) as the training time goes on, and Tab. 5 shows the time
required to predict on the whole test set. Although it takes a bit longer to converge to their optimal
configuration, the proposed method, specially with the novel TRI kernel, achieves significantly
better results. Test time results are as theoretically expected: auNN is faster than DGP (because
lower values of M are required, recall footnote 6), but both are clearly slower than BNN (which
does not involve GPs). Faster inference would be possible in activation-level uncertainty if the GPs
were substituted by a different method (e.g. a Bayesian parametric model).

4 Related Work

Activation-level uncertainty is introduced here as an alternative to weight-space stochasticity.
The expressiveness of the latter has been recently analyzed in [Wenzel et al., 2020], where
the authors advocate a modified BNN objective that has proven successful in the context
of MCMC [Zhang et al., 2020, Heek and Kalchbrenner, 2019, Leimkuhler et al., 2019] and VI
[Ashukha et al., 2020, Osawa et al., 2019, Zhang et al., 2018]. Likewise, different prior specifi-
cations are studied in [Hafner et al., 2019, Pearce et al., 2019, Flam-Shepherd et al., 2017], in ad-
dition to the fBNN discussed here [Sun et al., 2019]. However, none of these works consider
stochasticity on the activations.

Since we present a straightforward use of VI for auNN, in this work we have compared empirically
with the well-known VI-based BBP for BNNs. Yet, we expect auNN to benefit from independent in-
ference refinements like those proposed over the last years for BNNs. For instance, natural-gradient
VI allows for leveraging techniques such as BatchNorm or data augmentation [Osawa et al., 2019],
the information contained in the SGD trajectory can be used [Maddox et al., 2019], and MCMC
approaches can benefit from a cyclical time stepping as well as Langevin dynamics defined by the
corresponding SDE [Zhang et al., 2020, Särkkä and Solin, 2019].
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A key aspect of auNN is the modelling of the activation function. This element of neural nets
has been analyzed before. For instance, self-normalizing neural nets [Klambauer et al., 2017]
induce the normalization that is explicitly performed in related approaches such as Batch-
Norm [Ioffe and Szegedy, 2015], and weight and layer normalization [Salimans and Kingma, 2016,
Ba et al., 2016]. Learnable deterministic activations have been explored too, e.g. [He et al., 2015,
Agostinelli et al., 2014]. However, as opposed to auNN, in all these cases the activations are
deterministic.

A very preliminary study on GP-based activation functions is proposed in
[Urban and van der Smagt, 2018]. However, the method is not empirically evaluated, no
connection with deep GPs is provided, and the inference approach is limited. Namely, the output of
each unit is approximated with a Gaussian whose mean and covariance are computed in closed-form,
as was done in [Bui et al., 2016] for DGPs. However, this is only tractable for the RBF kernel
(in particular, it cannot leverage the more convenient TRI kernel studied here), and the Gaussian
approximation typically yields worse results than Monte Carlo approximations to the ELBO as used
here (indeed, DSVI [Salimbeni and Deisenroth, 2017] substantially improved the results for DGPs
compared to [Bui et al., 2016]).

5 Conclusions and Future Work

We proposed a novel approach for uncertainty estimation in neural network architectures. Whereas
previous methods are mostly based on a Bayesian treatment of the weights, here we move the
stochasticity to the activation functions, which are modelled with a simple 1D GP and a triangular
kernel inspired by the ReLu. Our experiments show that the proposed method obtains better cali-
brated uncertainty estimates, and is competitive or superior in standard prediction tasks. Moreover,
the connection with deep GPs is analyzed. Namely, our approach requires fewer inducing points
and is better suited for deep architectures, achieving superior performance.

We hope this work raises interest on alternative approaches to model uncertainty in neural networks.
For instance, activation-level uncertainty introduces the prior in the space of features or representa-
tions. In addition to the extrapolation to OOD data, it would be interesting to study how this prior
influences other properties of the output functions. Also, the GP-based activation model could be
substituted by a simpler Bayesian parametric one. Finally, since only the activation function is
modified, important deep learning elements such as convolutional layers can be still incorporated.

A Statement of Broader Impact

Uncertainty estimation in deep learning is an important challenge that is typically motivated by
critical applications of AI, such as autonomous driving and medical diagnosis. If better uncertainty
estimates were available, expert advice could be required for challenging situations in the medical
case. Likewise, additional data could be collected for autonomous driving scenarios in which the
uncertainty is high. Although the positive impact for society can be enormous, technology must be
analyzed from a critical viewpoint in order to disclose potentially negative outcomes.

For instance, we have studied that activation-level uncertainty allows for specifying properties of
the output function (such us the extrapolation to OOD data). However, activation-level uncertainty
is far from being fully interpretable. Indeed, although meaningful, the space of features (or
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representations) is difficult to visualize and understand in a systematic way. We believe that
interpretability is a very important property for the technology to be deployed in real-world systems
in a fair, transparent and safe way. Therefore, it would be extremely interesting to further study the
global effects of uncertainty in the space of features or representations.

B Supplementary Material

B.1 Practical specifications for auNN

Whitening transformation for q(ul
d). The proposed parametric posterior for each unit is given by

the Gaussian q(ul
d) = N (ul

d|ml
d,S

l
d). The GP prior on ul

d is p(ul
d) = N (ul

d|µl
d,K

l
d), with µl

d =
µl
d(z

l
d) and Kl

d = kld(z
l
d, z

l
d). For numerical stability and to reduce the amount of operations, we use

a white representation for q(ul
d), as is common practice in (D)GPs [De G. Matthews et al., 2017,

Salimbeni and Deisenroth, 2017]. That is, we consider the variable vl
d ∼ N (m̃l

d, S̃
l
d), with ul

d =
µl

d + (Kl
d)

1/2vl
d. Specifically, in the code the variable m̃l

d is denoted as q_mu, and S̃l
d is represented

through its Cholesky factorization (S̃l
d)

1/2, which is named q_sqrt.

Initialization of the variational parameters {ml
d}. These are the mean of the posterior distribu-

tion on the inducing points. Therefore, their value determines the initialization of the activation
function. If the RBF kernel is used, {ml

d} are initialized to the prior µl
d = µl

d(z
l
d) (since we are

using the aforementioned white representation, q_mu is initialized to zero). This is the most standard
initialization in GP literature. For the TRI kernel, {ml

d} are initialized according to the ReLu which
TRI is inspired by, i.e. ml

d = ReLu(zl
d).

Initialization of the variational parameters {Sl
d}. The posterior distribution covariance matrices

are initialized to the prior Kl
d = kld(z

l
d, z

l
d) (that is, q_sqrt is initialized to the identity matrix).

Following common practise for DGPs [Salimbeni and Deisenroth, 2017], the covariance matrices
of inner layers are scaled by 10−5.

Initialization of the weights. The Glorot uniform initializer [Glorot and Bengio, 2010], also called
Xavier uniform initializer, is used for the weights. The biases are initialized to zero.

Initialization of the kernel hyperparameters. The kernels used (RBF and TRI) have two hyper-
parameters: the variance γ and the lengthscale `. Both are always initialized to 1 (except for the
lengthscale in the 1D example, where ` is initialized to 0.1).

Initialization of the inducing points. In order to initialize zl
d, the N input data points are propa-

gated through the network with the aforementioned initial weights, biases, and activation function.
Then, in each layer and unit, zl

d is initialized with a linspace between the minimum and maximum
of the N values there (the minimum (resp. the maximum) is decreased (resp. increased) by 0.1 to
strictly contain the interval of interest).

Initialization of the regression likelihood noise. In the regression problems, we use a Gaussian
likelihood p(y|f) = N (y|f, σ2). The standard deviation of the noise is initialized to σ = 0.1.

Mean function. We always use a zero mean function. Since data is normalized to have zero mean
(and standard deviation equal to one), a zero mean function allows for sensible extrapolation to
OOD data, as explained in the paper.
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Optimizer and learning rate. Throughout the work, we use the Adam Optimizer
[Kingma and Ba, 2014] with default parameters and learning rate of 0.001.

B.2 Experimental details for the experiments

All the experiments were run on a NVIDIA Tesla P100. In order to predict, all the methods utilize
100 test samples in all the experiments. Details for each section are provided below.

An illustrative example (Sec. 3.1 in the paper). All the methods use two layers (i.e. one hidden
layer). The hidden layer has D = 25 units in all cases. BNN and fBNN use ReLu activations.
The auNN methods use M = 5 inducing points in each unit (the rest of methods do not have
such inducing points). The methods are trained during 5000 epochs with the whole dataset (no
mini-batches). The dataset is synthetically generated to have two clusters of points around x = ±1.
More specifically, 30 points are sampled uniformly in each interval (x− 0.3, x+ 0.3) for x = ±1,
and the output is given by the sin function plus a Gaussian noise of standard deviation 0.1.

UCI regression datasets with in-between splits (Sec. 3.2 in the paper). The methods use
L = 2, 3 layers. In all cases, the hidden layers have D = 50 units. BNN and fBNN use ReLu
activations. The methods are trained during 10000 epochs, with a mini-batch size that depends on
the size of the dataset. For those with fewer than 5000 instances (i.e. Boston, Concrete, Energy,
Wine and Yacht), the mini-batch size is 500. For those with more than 5000 (i.e. Naval), the
mini-batch size is 5000. Recall from the paper that each dataset has as many in-between splits as
dimensionality, with 2/3 for train and 1/3 for test. Regarding the segment used in the last experiment,
each extreme of the segment is a point from a different connected component of the training set.
These are chosen so that the function is well-known in the extremes (but not along the segment,
which crosses the gap). Namely, the extremes are chosen as the training points who have minimum
average distance to the closest five points in its connected component.

UCI regression datasets with standard splits (Sec. 3.3 in the paper). The details are exactly the
same as in the previous experiment. The only difference is in the splits. Here, each dataset has 10
random 90%-10% train-test splits.

Comparison with DGPs (Sec. 3.4). Here, different values of depth L, number of inducing points
M and number of hidden layers D are studied (see the paper). auNN is trained during 5000
epochs, with a mini-batch size of 5000 (20000 epochs are used for DGP, as proposed by the authors
[Salimbeni and Deisenroth, 2017]). Each experiment is repeated on five random 90%-10% train-test
splits.

Large scale experiments (Sec. 3.5). In the classification datasets, a RobustMax likelihood is used
in all cases [Hernández-Lobato et al., 2011]. The values of D and M are chosen following the
conclusions from Sec. 3.4. That is, DGP needs large M (the largest M = 100 is used), but is less
influenced by D (this is chosen as recommended by the authors [Salimbeni and Deisenroth, 2017]:
D = min(30, D0), with D0 the dimensionality of the input data). auNN needs large D (the largest
D = 50 is used), but is less influenced by M (an intermediate value M = 25 is chosen). All the
methods are trained during 100 epochs, with a mini-batch size of 5000. Three random train-test
splits are used. In both datasets, 500000 instances are used for test (which leaves 10.5M and 4.5M
training instances for HIGGS and SUSY, respectively).
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Figure 8: Performance of the compared methods in the UCI in-between splits for the six datasets. Mean and one standard error of
NLL (upper row) and RMSE (lower row) are shown, the lower the better.

Table 6: Test NLL for the in-between splits of the UCI datasets (mean and one standard error, the lower the better). Last column is
the per-group (weight-space stochasticity vs activation-level stochasticity) average rank.

Boston Concrete Energy Naval Wine Yacht Rank Rank (group)

BNN-2 3.29±0.10 3.58±0.09 114.84±70.69 2186.30±464.32 0.96±0.01 1.54±0.09 3.92±0.79

4.83±0.32BNN-3 3.54±0.03 4.23±0.04 30.91±19.97 618.44±147.99 0.98±0.02 4.10±0.03 4.98±0.70
fBNN-2 3.67±0.25 4.60±0.39 111.65±69.68 1050.65±192.61 2.80±0.31 1.77±0.12 5.04±0.36
fBNN-3 3.69±0.24 4.49±0.34 93.92±56.45 1060.54±247.21 198.76±30.24 1.47±0.15 5.36±0.50

auNN-RBF-2 5.19±0.47 4.27±0.26 39.93±20.89 379.55±67.74 1.44±0.05 1.68±0.35 4.69±0.61

4.17±0.40auNN-RBF-3 5.68±0.75 5.54±0.40 50.48±28.26 352.94±72.13 16.05±1.13 1.28±0.23 5.29±0.89
auNN-TRI-2 2.77±0.06 3.45±0.06 3.99±1.14 30.47±5.54 1.06±0.03 2.34±0.03 3.25±0.57
auNN-TRI-3 2.70±0.04 3.39±0.06 5.50±2.45 2.38±3.23 1.23±0.04 2.68±0.30 3.47±0.80

In the regression experiment, the depth for all methods is also L = 2, and the values of M and D
for auNN and DGP are as in the classification experiment. BNN also uses D = 50 hidden units,
and ReLu activations. All the methods are trained during 10000 seconds with a mini-batch size of
500. One single train-test split is considered.

B.3 Additional figures and tables

Finally, additional material is provided here. Every figure and table is referred from the paper.

Table 7: Test RMSE for the in-between splits of the UCI datasets (mean and one standard error, the lower the better). Last column is
the per-group (weight-space stochasticity vs activation-level stochasticity) average rank.

Boston Concrete Energy Naval Wine Yacht Rank Rank (group)

BNN-2 6.54±0.56 7.62±0.35 4.23±1.91 0.03±0.00 0.63±0.01 1.18±0.11 4.09±0.67

4.91±0.37BNN-3 7.77±0.40 16.33±0.67 5.27±1.41 0.02±0.00 0.64±0.01 14.31±0.76 6.15±0.91
fBNN-2 3.75±0.21 7.58±0.41 3.95±1.82 0.03±0.00 0.78±0.02 1.25±0.08 4.70±0.54
fBNN-3 3.81±0.20 7.52±0.36 4.48±1.79 0.03±0.00 0.87±0.04 1.13±0.12 4.71±0.53

auNN-RBF-2 4.90±0.47 7.81±0.47 3.41±1.46 0.03±0.00 0.72±0.01 0.99±0.18 4.32±0.47

4.09±0.23auNN-RBF-3 4.27±0.29 7.74±0.21 2.72±1.03 0.03±0.00 0.82±0.01 1.03±0.14 4.27±0.55
auNN-TRI-2 4.01±0.30 7.44±0.38 2.72±0.79 0.02±0.00 0.67±0.01 1.51±0.20 3.90±0.33
auNN-TRI-3 3.78±0.19 7.03±0.23 3.36±1.23 0.02±0.00 0.68±0.01 3.80±2.41 3.85±0.46
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Figure 9: A complete example of the activation functions learned by auNN with RBF and TRI kernels. These were obtained for the
Energy dataset with the first in-between split, using three layers, 10 hidden units per (hidden) layer, and 5 inducing points in each
unit. Whereas auNN-RBF learns smoother activations, auNN-TRI ones are piece-wise linear, inspired by the ReLu. Notice that
auNN allows units to switch off if they are not required. Black dots represent the five inducing points in each unit. Green points are
the locations of the input data when propagated to the corresponding unit.
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Table 8: Test NLL for the standard splits of the UCI datasets (mean and one standard error, the lower the better). Last column is the
per-group (weight-space stochasticity vs activation-level stochasticity) average rank.

test NLL Boston Concrete Energy Naval Wine Yacht Rank Rank (group)

BNN-2 2.71±0.07 3.12±0.02 0.65±0.04 -5.38±0.59 0.99±0.02 1.01±0.07 3.78±0.41

4.5±0.39BNN-3 3.62±0.05 4.24±0.01 0.80±0.03 -5.02±0.33 1.01±0.02 4.06±0.05 6.25±0.70
fBNN-2 2.83±0.20 3.20±0.04 0.67±0.04 -6.17±0.02 1.55±0.08 0.77±0.02 4.13±0.57
fBNN-3 2.75±0.14 3.13±0.05 0.65±0.03 -6.26±0.00 207.43±9.12 0.79±0.02 3.83±0.85

auNN-RBF-2 3.38±0.30 3.14±0.05 0.63±0.03 -5.40±0.08 1.16±0.06 0.52±0.04 3.97±0.60

4.5±0.43auNN-RBF-3 3.89±0.47 3.25±0.13 0.53±0.07 -5.69±0.03 8.98±1.51 0.54±0.03 4.42±0.85
auNN-TRI-2 2.56±0.05 3.08±0.02 1.47±0.04 -4.81±0.07 0.96±0.03 2.25±0.02 4.78±0.92
auNN-TRI-3 2.50±0.02 2.98±0.02 1.42±0.02 -3.43±0.32 1.10±0.07 2.26±0.01 4.83±1.01

Table 9: Test RMSE for the standard splits of the UCI datasets (mean and one standard error, the lower the better). Last column is
the per-group (weight-space stochasticity vs activation-level stochasticity) average rank.

test RMSE Boston Concrete Energy Naval Wine Yacht Rank Rank (group)

BNN-2 3.47±0.34 5.49±0.13 0.45±0.02 0.00±0.00 0.65±0.01 0.68±0.08 4.70±0.48

4.59±0.41BNN-3 8.89±0.45 16.71±0.20 0.51±0.02 0.00±0.00 0.67±0.02 13.49±0.94 6.50±0.64
fBNN-2 2.80±0.21 5.34±0.13 0.47±0.02 0.00±0.00 0.70±0.02 0.33±0.04 3.70±0.61
fBNN-3 2.74±0.16 5.07±0.12 0.46±0.02 0.00±0.00 0.83±0.02 0.36±0.04 3.45±0.88

auNN-RBF-2 3.16±0.23 5.13±0.16 0.45±0.02 0.00±0.00 0.67±0.02 0.41±0.04 4.25±0.35

4.41±0.41auNN-RBF-3 3.01±0.25 4.51±0.18 0.41±0.03 0.00±0.00 0.76±0.02 0.38±0.03 3.35±0.77
auNN-TRI-2 3.00±0.26 5.21±0.10 0.72±0.02 0.00±0.00 0.62±0.02 1.15±0.14 5.40±0.80
auNN-TRI-3 2.81±0.17 4.67±0.15 0.65±0.03 0.01±0.00 0.62±0.02 1.16±0.15 4.65±1.00
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Figure 10: Test RMSE of auNN and DGP for different values of M (number of inducing points) and D (number of hidden units).
Results are the average over 5 independent runs on the UCI Kin8 dataset. The lower the better. Whereas DGP improves vertically (i.e.
with M ), auNN does it horizontally (i.e. with D). This is as theoretically expected, and it is convenient from a scalability viewpoint.
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Figure 11: Test RMSE with increasing depth (L = 2, 3, 4). This supports that auNN might benefit more than DGP from deeper
networks. Moreover, the aforementioned different influence of M and D on DGP and auNN is confirmed here.

Table 10: Standard error obtained by auNN and DGP in three splits of the large scale classification datasets.
auNN DGP

N D RBF-2 RBF-3 RBF-4 TRI-2 TRI-3 TRI-4 DGP-2 DGP-3 DGP-4

HIGGS 11M 28 0.0001 0.0006 0.0007 0.0003 0.0004 0.0008 0.0005 0.0009 0.0010
SUSY 5M 18 0.0004 0.0005 0.0005 0.0005 0.0005 0.0004 0.0005 0.0027 0.0035
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CHAPTER 9

Concluding remarks

The main global conclusion of this PhD thesis is the versatility of Gaussian Processes to
model different scenarios (regression, classification, crowdsourcing) and target various
applications (remote sensing, security, astrophysics), either as the central algorithm to
perform the task at hand (Chapters 2-7) or as an auxiliary tool to be integrated within a
larger model (Chapter 8). This can be specified through six specific conclusions:

• Scalability in GP classification can be achieved through the use of Fourier fea-
tures. These can be sampled and fixed from the beginning or learned during the
training step. This provides an alternative to the inducing point based approach.

• Local variational methods outperform Expectation Propagation when doing in-
ference in GP based crowdsourcing. The benefit is both in terms of accuracy and
computational cost.

• Scalability in GP based crowdsourcing can be also achieved through the use of
Fourier features. As in the classification case, higher efficiency can be obtained
if Fourier features are sampled and fixed from the beginning, whereas higher
accuracy can be reached if they are estimated during training.

• Popular techniques for GP classification such as inducing point based scalabil-
ity, Normalizing Flows, and inference networks can be extended to the crowd-
sourcing scenario. The adapted algorithms inherit the main properties of their
classification counterparts.

• Expert knowledge can be incorporated within the inducing point based method
for GP crowdsourcing. This allows for obtaining state-of-the-art results for glitch
detection in the search for gravitational waves in the LIGO project.

• GPs can be used to model the activation function of deep neural networks, leading
to the novel notion of activation-level uncertainty.

177



REFERENCES

Alaa, A. M. and van der Schaar, M. (2017), Bayesian inference of individualized treat-
ment effects using multi-task gaussian processes, in ‘Advances in Neural Information
Processing Systems’, pp. 3424–3432.

Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S. and Navab, N.
(2016), ‘Aggnet: deep learning from crowds for mitosis detection in breast cancer his-
tology images’, IEEE transactions on medical imaging 35(5), 1313–1321.

Bishop, C. M. (2006), Pattern recognition and machine learning, springer.

Buhrmester, M., Kwang, T. and Gosling, S. D. (2011), ‘Amazon’s mechanical turk:
A new source of inexpensive, yet high-quality, data?’, Perspectives on Psychological

Science 6(1), 3–5.

Burt, D., Rasmussen, C. E. and Van Der Wilk, M. (2019), Rates of convergence for
sparse variational gaussian process regression, in ‘International Conference on Machine
Learning’, pp. 862–871.

Cheng, C. A. and Boots, B. (2016), Incremental variational sparse gaussian process
regression, in ‘Advances in Neural Information Processing Systems’, pp. 4410–4418.

Dai, B., He, N., Dai, H. and Song, L. (2016), Provable bayesian inference via particle
mirror descent, in ‘Artificial Intelligence and Statistics’, pp. 985–994.

Dai, J. and Krems, R. V. (2020), ‘Interpolation and extrapolation of global potential
energy surfaces for polyatomic systems by gaussian processes with composite kernels’,
Journal of Chemical Theory and Computation 16(3), 1386–1395.

Desai, A., Warner, J., Kuderer, N., Thompson, M., Painter, C., Lyman, G. and Lopes,
G. (2020), ‘Crowdsourcing a crisis response for covid-19 in oncology’, Nature Cancer

1(5), 473–476.

Filos, A., Farquhar, S., Gomez, A. N., Rudner, T. G., Kenton, Z., Smith, L., Alizadeh,
M., de Kroon, A. and Gal, Y. (2019), ‘A systematic comparison of bayesian deep learn-
ing robustness in diabetic retinopathy tasks’, arXiv preprint arXiv:1912.10481 .

178



Fritz, S., See, L., Perger, C., McCallum, I., Schill, C., Schepaschenko, D., Duerauer,
M., Karner, M., Dresel, C., Laso-Bayas, J.-C. et al. (2017), ‘A global dataset of crowd-
sourced land cover and land use reference data’, Scientific data 4, 170075.

Gal, Y. (2016), Uncertainty in Deep Learning, PhD thesis, University of Cambridge.

Heim, E., Seitel, A., Andrulis, J., Isensee, F., Stock, C., Ross, T. and Maier-Hein, L.
(2017), ‘Clickstream analysis for crowd-based object segmentation with confidence’,
IEEE transactions on pattern analysis and machine intelligence 40(12), 2814–2826.

Hensman, J., Fusi, N. and Lawrence, N. D. (2013), Gaussian processes for big data, in

‘Proceedings of the Twenty-Ninth Conference on Uncertainty in Artificial Intelligence’,
pp. 282–290.

Hensman, J., Matthews, A. and Ghahramani, Z. (2015), Scalable variational Gaussian
process classification, in ‘Artificial Intelligence and Statistics’, pp. 351–360.

Howe, J. (2006), ‘The rise of crowdsourcing’, Wired magazine 14(6), 1–4.

Kendall, A. and Gal, Y. (2017), What uncertainties do we need in Bayesian deep
learning for computer vision?, in ‘Advances in neural information processing systems’,
pp. 5574–5584.
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