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Abstract—In the last years, crowdsourcing is transforming the way classification training sets are obtained. Instead of relying on a
single expert annotator, crowdsourcing shares the labelling effort among a large number of collaborators. For instance, this is being
applied in the laureate Laser Interferometer Gravitational Waves Observatory (LIGO), in order to detect glitches which might hinder the
identification of true gravitational-waves. The crowdsourcing scenario poses new challenging difficulties, as it has to deal with different
opinions from a heterogeneous group of annotators with unknown degrees of expertise. Probabilistic methods, such as Gaussian
Processes (GP), have proven successful in modeling this setting. However, GPs do not scale up well to large data sets, which hampers
their broad adoption in real-world problems (in particular LIGO). This has led to the very recent introduction of deep learning based
crowdsourcing methods, which have become the state-of-the-art for this type of problems. However, the accurate uncertainty
quantification provided by GPs has been partially sacrificed. This is an important aspect for astrophysicists in LIGO, since a glitch
detection system should provide very accurate probability distributions of its predictions. In this work, we first leverage a standard
sparse GP approximation (SVGP) to develop a GP-based crowdsourcing method that factorizes into mini-batches. This makes it able
to cope with previously-prohibitive data sets. This first approach, which we refer to as Scalable Variational Gaussian Processes for
Crowdsourcing (SVGPCR), brings back GP-based methods to a state-of-the-art level, and excels at uncertainty quantification.
SVGPCR is shown to outperform deep learning based methods and previous probabilistic ones when applied to the LIGO data. Its
behavior and main properties are carefully analyzed in a controlled experiment based on the MNIST data set. Moreover, recent GP
inference techniques are also adapted to crowdsourcing and evaluated experimentally.

Index Terms—Crowdsourcing, Citizen Science, Laser Interferometer Gravitational Waves Observatory, Sparse Gaussian Processes,
Scalability, Uncertainty Quantification, Deep Learning.
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1 INTRODUCTION

Crowdsourcing, also known as citizen science, is revolu-
tionizing the way real-world data sets are obtained nowa-
days [1], [2]. Traditionally, the task of labelling has been
accomplished by a single expert annotator in a process
that is time-consuming, expensive and difficult to scale.
The proliferation of web services such as Amazon Me-
chanical Turk (www.mturk.com) and Figure-Eight (www.
figure-eight.com, formerly Crowdflower) allows for out-
sourcing this process to a distributed workforce that can
collaborate virtually, sharing the effort among a huge num-
ber of annotators [3], [4]. This approach is rapidly growing
in popularity, and is being applied to many different fields
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Fig. 1. Two examples of glitches observed by the LIGO detector. The
fifteen types considered in this work will be carefully described in section
3, see also figure 3.

such as medical imaging [5], genetics [6], remote sensing [7],
topic modelling [8], and object segmentation [9].

A very recent application of crowdsourcing in the field
of astrophysics is the GravitySpy project [10], which aims at
detecting glitches in the Laser Interferometer Gravitational
Waves Observatory (LIGO). The LIGO collaboration is one
of the most exciting and recognized scientific international
initiatives [11]. It was awarded the 2017 Physics Nobel Prize
for the first empirical detection of a gravitational-wave in
September 2015 [12]. These waves are ripples in the fabric
of spacetime, their existence was theoretically predicted by
Einstein’s General Relativity theory in 1916, and open a
whole new way to explore the universe (beyond the electro-
magnetic signals available so far) [13]. However, the LIGO
detector is equipped with extremely delicate technology,
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which is sensitive to many different sources of noise. This
produces a wide variety of glitches, see figure 1, which make
the detection of true gravitational-waves difficult. The goal
of GravitySpy is to leverage citizen science to label the large
data set of glitches produced by LIGO, and then develop
a machine learning system (based on crowdsourcing meth-
ods) to help astrophysicists classify them [10].

The crowdsourcing scenario introduces new challenges
in machine learning, such as combining the unknown ex-
pertise of annotators, dealing with disagreements on the
labelled samples, or detecting the existence of spammer
and adversarial annotators [14], [15]. The first approaches
to deal with multiple-annotated data used to rely on some
kind of label aggregation mechanism prior to training. The
most straightforward one is majority voting, which assumes
that every annotator is equally reliable. More elaborated
methods consider the biases of the different annotators,
yielding a better calibrated set of training labels, see [16]
(which is usually considered the first crowdsourcing work)
and [17], [18]. In all these cases, the idea is to obtain a set
of clean true labels, which are then fed to the preferred
standard (no-crowdsourcing) classification algorithm.

However, recent works show that jointly modelling the
classifier and the annotators behavior leads to superior per-
formance, since the features provide information to puzzle
out the true labels [19], [20]. In this joint model, Bayesian
methods based on Gaussian Processes (GPs) have proved
extremely successful to accurately quantify uncertainty [8],
[21], [22]. However, in real-world applications they have
been gradually replaced by deep learning based approaches
[5], [23], [24], since GPs do not scale well to large data sets
[8], [25]. As a result, the sound probabilistic formulation
of GPs has been sacrificed. However, large scale problems
could greatly benefit from such a solid modelling. In partic-
ular, in order to develop a reliable glitch detection system,
astrophysicists with the GravitySpy project are particularly
interested in the Bayesian formulation given by GPs [10].
Therefore, their scalability issues must be addressed.

GP is a popular Bayesian non-parametric model for
supervised learning that excels at uncertainty quantification
[25]. Due to the kernel matrix inversion, its computational
cost at training is O(N3), where N is the size of the training
set. To overcome this problem, different sparse GP approxi-
mations have been proposed in the last years [26]. Many of
them rely on the notion of inducing points, a reduced set
of M (M � N ) instances which condense the information
contained in the whole data set [27], [28]1. One of the most
widespread methods is the Scalable Variational Gaussian
Processes (SVGP) method [31], which uses Variational In-
ference (VI) [32] and is inspired by the earlier regression
method [33]. SVGP can be trained through mini-batches and
yields a training computational cost of O(NbM2), with Nb
the mini-batch size. This allows SVGP to handle data sets
of practically any size [31]. In fact, very interesting rates of
convergence have been obtained recently for sparse GP re-
gression problems [34]. They provide theoretical guarantees
of scalability, showing that the increase of M can be kept

1. There exist other sparse GP approximations which alternatively
rely on Fourier features [29], and which have been already used for
crowdsourcing problems [30]. In the experiments, the proposed method
will be shown to clearly outperform these alternative approaches too.

slower than N , specially for large datasets. Although these
proofs do not directly apply for classification or crowdsourc-
ing problems, in practice we will also observe that a small
value of M can deal with the LIGO problem successfully.

In this work, we we start by extending the well-
established sparse GP approximation behind SVGP to the
multiple-annotated crowdsourcing setting. Importantly, the
form of the Evidence Lower Bound (ELBO) is still suitable
for Stochastic VI [35], which allows for training through
mini-batches. To the best of our knowledge, this allows
GPs to be used for crowdsourcing problems of virtually any
size for the first time. This method is refered to as Scalable
(or Sparse) Variational Gaussian Processes for Crowdsourc-
ing (SVGPCR). The annotators noise model is also fully
Bayesian, described by per-user confusion matrices which
are assigned Dirichlet priors. The underlying true labels are
modelled in a probabilistic manner as well. VI is used to
approximate the posterior distribution of the model.

In order to deal with the LIGO data, SVGPCR is mod-
elled and implemented as a multi-class method. The im-
plementation is based on GPflow, a very popular GP li-
brary that benefits from GPU acceleration through Tensor-
Flow [36]. Three sets of experiments are provided. First,
a controlled crowdsourcing problem specified for MNIST
illustrates the main properties and behavior of SVGPCR.
Among these, we may highlight its accurate identification
of annotators’ expertise degree, reconstruction of the real
underlying label, and how the number of inducing points
influences its performance. Secondly, SVGPCR is compared
against previous probabilistic crowdsourcing methods in a
relevant binary LIGO problem2. SVGPCR stands out as the
best performing approach, thanks to its innovative scala-
bility through mini-batches. Third, SVGPCR is shown to
outperform state-of-the-art DL-based methods in the full
LIGO data set, specially in terms of test likelihood, due to
the more robust uncertainty control.

Once SVGPCR has been successfully developed, we ex-
plore more recent GP inference techniques in the LIGO prob-
lem (beyond the standard SVGP). For instance, GPs can be
combined with inference networks [37] and the amortized
setting of Variational Autoencoders [38]. More expressive
posteriors can be described by Normalizing Flows [39], [40],
and the use of sampling is an alternative to VI [41], [42].
While the number of possibilities is large and worth explor-
ing, here we restrict ourselves to two approaches. First, we
resort to Normalizing Flows to allow for richer posterior
within the SVGPCR model. The results are only slightly bet-
ter than SVGPCR, which suggests that a unimodal Gaussian
posterior might be enough in this application. Then, we
further modify the model by extending to crowdsourcing
the use of inference networks for GPs [37]. In this case, the
results are clearly better for low values of M (measurement
points), which is precisely one of the main benefits of [37].

The rest of the paper is organized as follows. Section
2 describes the proposed model and inference procedure.
Section 3 presents the LIGO data available in the GravitySpy
project. The experimental results for SVGPCR are discussed
in Section 4. More recent inference approaches are explored

2. Most of these previous probabilistic crowdsourcing approaches
were originally proposed for binary problems, and the code is available
accordingly.
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Fig. 2. Probabilistic graphical model for SVGPCR. Observed variables
are depicted in yellow, and those to be estimated in blue. In the latter
case, the intensity indicates whether the estimation is through a poste-
rior distribution (light blue) or a point value (dark).

in Section 5. Finally, Section 6 contains some remarks and
future outlook.

2 PROBABILISTIC MODEL AND INFERENCE

This section introduces the theoretical formulation of the
proposed method. Figure 2 shows a graphical representa-
tion of the proposed model, which will be useful here.

2.1 The model
In a crowdsourcing problem with K classes, we observe
training data D = {(xn,Ya

n) : n = 1, . . . , N ; a ∈ An},
where xn ∈ RD are the training features, and Ya

n is
the set3 of annotations provided by the a-th annotator for
the n-th instance. That is, each y ∈ Ya

n is an one-hot
encoded vector in {e1, . . . , eK} that represents the k-th
class (i.e., all elements of ek are zero but the k-th one,
which is one). There are N data points, A annotators, and
An ⊆ {1, . . . , A} contains the annotators that labelled the
n-th instance. All training instances will be grouped in
X = {xn : n = 1, . . . , N}, and analogously all annotations
in Y = {Ya

n : n = 1, . . . , N ; a ∈ An}.
As with previous approaches [8], [19], [20], [21], [22],

the proposed model assumes an (unknown) real label for
each instance, zn ∈ {e1, . . . , eK}. The actual annotations
depend on this real label and the degree of expertise of
each annotator, which is modelled by the confusion matrix
Ra = (raij)1≤i,j≤K . Each raij ∈ [0, 1] represents the probabil-
ity that the a-th annotator labels as class i an instance whose
real class is j. Notice that this matrix must add up to one by
columns. Mathematically, this is given by

p(Ya
n|zn,Ra) =

∏
y∈Ya

n

yᵀRazn. (1)

If y = ei and zn = ej , the product yᵀRazn yields raij . Other
variants of crowdsourcing likelihoods could be explored.
For instance, the values in Ra could depend on the input x
(i.e. the annotator degree of expertise might vary depending
on the specific features of the input).

Assuming that all annotators label the different instances
independently, we have

p(Y|Z,R) =
N∏
n=1

∏
a∈An

p(Ya
n|zn,Ra), (2)

3. Notice that annotators are allowed to label the same instance more
than once (possibly with different labels). This happens in a few cases
in the LIGO data.

where Z = {zn : n = 1, . . . , N} and R = {Ra : a =
1, . . . , A} group the corresponding individual variables, and
p(Ya

n|zn,Ra) is given by eq. (1).
The prior distribution for the annotators behavior is

modelled through (independent) Dirichlet distributions,
which are conjugate to the categorical one in eq. (1) [43].
This yields

p(R) =
A∏
a=1

K∏
j=1

p(raj ) =
A∏
a=1

K∏
j=1

Dir(raj |αa1j , . . . , αaKj), (3)

where raj = (ra1j , . . . , r
a
Kj)

ᵀ denotes the j-th column of the
confusion matrix Ra. The hyperparameters α = {αaij :
i, j = 1, . . . ,K, a = 1, . . . , A} codify any prior belief on
the behavior of the annotators. The use of a prior protects
from the so-called black swan paradox [44, Section 3.3.4.1], i.e.
when trying to estimate raj for an annotator who provided
no annotations for samples in the j-th class. As we will
see in eq. (15), the prior affects the training through a KL
divergence term that couples it to the posterior. If no prior
knowledge is available, the default choice αaij = 1 corre-
sponds to uniform distributions. This is the most standard
scenario, and the one that is considered here. Yet, notice
that this would not be the optimal choice if there were very
few annotations, since the prior could hide the effect of the
observed data. This is not the case of LIGO, where there
is an average of over 500 annotations per user (see Section
3). Additionally, the prior allows for more informative mod-
elling. For instance, an annotator who is known to mix up
two classes can be modelled by setting the corresponding
values of αaij .

For each instance, the true underlying label zn is mod-
elled through K latent variables fn1, . . . , fnK . Both parts
are related by means of the likelihood model

p(zn|fn1, . . . , fnK) = zᵀ
nν(fn1, . . . , fnK), (4)

where ν(fn1, . . . , fnK) is any vector with K positive com-
ponents that add up to 1. In this work we will use
the popular robust-max likelihood [45]. It is given by
ν(a1, . . . , aK) = (ν1, . . . , νK), with νi = 1 − ε for i =
argmax(a1, . . . , aK) and νj = ε/(K − 1) for j 6= i. The
value of ε is fixed to the default value 10−3. This likelihood
is implemented in the GPflow library [36], and in practice
it can be substituted by any other one available in GPflow.
For instance the soft-max likelihood, which generalizes the
sigmoid likelihood to multi-class, i.e. νi = eai/

∑
j e
aj .

Assuming that the underlying real labels for the different
instances are independent given the latent variables, it is

p(Z|F) =
N∏
n=1

p(zn|fn,:), (5)

where p(zn|fn,:) is given by eq. (4), and F gathers the K
latent variables for the N instances. Specifically, F is a N ×
K matrix, whose (n, k) term is the value of the k-th latent
variable for the n-th instance. As usual, the n-th row of F is
denoted by fn,:, and the k-th column by fk.
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Finally, independent GP priors are utilized for the latent
variables f1, . . . , fK . This yields the joint prior

p(F|Θ,X) =
K∏
k=1

p(fk|θk,X) =
K∏
k=1

N (fk|0,Kθk(X,X)),

(6)
where θk are the kernel hyperparameters for the k-th GP. In
this work we will use the well-known squared exponential
kernel, k(x,y) = γ · exp(−||x− y||2/(2σ2)), which has the
hyperparameters of variance γ and length-scale σ. However,
as before, GPflow allows us to use any other kernel [36].

In summary, the full probabilistic model is given by

p(Y,Z,F,R|Θ) = p(Y|Z,R)p(R)p(Z|F)p(F|Θ), (7)

with the four factors on the right hand side defined through
eqs. (2), (3), (5) and (6), respectively. Here, the dependency
on the observed features X has been omitted for simplicity.

In order to introduce the sparse GP approximation,
let us expand this model by introducing M inducing
points for each GP. Namely, each GP prior p(fk) can be
naively rewritten as the marginal of p(fk,uk), where uk =
(u1k, . . . , uMk) are M inducing points. These represent the
value of the k-th GP on M new locations called inducing
inputs, X̃ = {x̃1, . . . , x̃M}, just like fk does for X, i.e.
p(uk) = N (0,Kθk(X̃, X̃)). 4 Analogously to F, we write
U for the M ×K matrix gathering all the inducing points,
whose rows and columns are denoted by um,: and uk
respectively. The idea is that, in sparse GPs, these inducing
points are used to summarize the information from the
training data. By taking M � N , computational tractability
can be achieved.

Then, if the joint GP p(fk,uk) is factorized as
p(fk|uk)p(uk), the model in eq. (7) can be analogously
rewritten as

p(Y,Z,F,U,R|Θ) = p(Y|Z,R) · p(R) · p(Z|F)

× p(F|U,Θ) · p(U|Θ), (8)

where the Gaussian conditional p(F|U,Θ) is given by∏
kN (fk|Bkuk,Kθk(X,X) − BkKθk(X̃,X)) and Bk =

Kθk(X, X̃)[Kθk(X̃, X̃)]−1.
It is worth stressing that, by marginalizing out U, this

model is equivalent to the one in eq. (7). This is important
because sparse GP approximations are grouped into two big
categories: those which approximate the model and perform
exact inference (like FITC [27]), and those which keep the
model unaltered and introduce the approximation at the
inference step. Our approach, like SVGP, belongs to the
second group, and the approximation is carried out next.

2.2 Variational inference
Given the model in eq. (8), an exact solution would involve
calculating the marginal likelihood p(Y|Θ), in order to esti-
mate the optimal kernel hyperparameters Θ̃ and then obtain
the posterior p(Z,F,U,R|Y, Θ̃). However, integrating out
Z, F, U and R is analytically intractable, and we resort to
variational inference to approximate the computations [32].

4. Notice that the inducing locations X̃ do not depend on k. Although
different inducing locations could be used for each GP, in practice they
are usually considered the same. However, the inducing points uk do
depend on k, as each GP models a different function.

The core of variational inference is the following decom-
position of the log marginal likelihood, which is straightfor-
ward and holds for any distribution q(z,F,U,R)5:

log p(Y|Θ) = KL(q(Z,F,U,R)||p(Z,F,U,R|Y,Θ))

+

∫
q(Z,F,U,R) log

p(Y,Z,F,U,R|Θ)

q(Z,F,U,R)
dZdFdUdR.︸ ︷︷ ︸

ELBO

(9)

This distribution q must be understood as an approximation
to the true posterior p(Z,F,U,R|Y,Θ). The second term
in the right hand side of eq. (9) is called the Evidence Lower
Bound (ELBO), since it is a lower bound for the model
evidence or log marginal likelihood log p(Y|Θ) (recall that
the first term, the KL divergence, is always non-negative,
and is zero if and only if both distributions coincide).

The idea of variational inference is to propose a para-
metric form for q. Then, the ELBO in eq. (9) is maximized
with respect to these new variational parameters, the kernel
hyperparameters Θ, and the inducing locations X̃ (which
are not usually considered fixed). Notice that, by maximiz-
ing the ELBO, we are at the same time considering the
log marginal likelihood log p(Y|Θ) and the KL divergence
between q and the real posterior (just solve for the ELBO in
eq. (9)). Thus, variational inference converts the problem of
posterior distribution approximation into an optimization
one [32], which in practice is addressed through optimiza-
tion algorithms such as Adam Optimizer [46].

Here, the following parametric form is proposed for q:

q(Z,F,U,R) = q(Z)q(F|U,Θ)q(U)q(R), with (10)

q(Z) =
N∏
n=1

q(zn) =
N∏
n=1

zᵀ
nqn, (11)

q(F|U,Θ) = p(F|U,Θ), (12)

q(U) =
K∏
k=1

q(uk) =
K∏
k=1

N (uk|mk,Sk), (13)

q(R) =
A∏
a=1

K∏
k=1

q(rak) =
A∏
a=1

K∏
j=1

Dir(raj |α̃a1j , . . . , α̃aKj). (14)

The proposed posterior on Z factorizes across data points,
and each qn = (qn1, . . . , qnK) ∈ [0, 1]K describes the
probability that K is the real class for xn (i.e.,

∑
k qnk = 1).

The prior conditional F|U does not introduce any new
variational parameter. The posterior on U factorizes across
dimensions, and each one is given by a Gaussian with
mean mk ∈ RM and (positive-definite) covariance matrix
Sk ∈ RM×M . Finally, q(R) factorizes across annotators and
dimensions, and they are assigned Dirichlet distributions
with parameters α̃aij > 0. In the sequel, all these variational
parameters {qn : n = 1, . . . , N}, {mk,Sk : k = 1, . . . ,K},
{α̃aij : i, j = 1, . . . ,K; a = 1, . . . , A} will be denoted by V.

In the proposed form described by eqs. (10)–(14), the
prior conditional p(F|U,Θ) arises in a natural way if the
GP values are assumed conditionally independent on any
other value given the inducing points U. This is the original
assumption of Titsias in [28], and intuitively implies that all

5. Observe that, in order to “lighten” the notation, we use the integral
symbol also for the discrete variable Z.
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TABLE 1
Specifying the dependence of the ELBO on the variational parameters,
the kernel hyperparameters, and the inducing locations through its five

terms in eq. (15).

ELBO term Parameters it depends on∑
qnkEq(rak)

[
log p(y|ek, r

a
k)
]

qnk, α̃
a
ij∑

qnkEq(fn,:) [log p(ek|fn,:)] qnk,mk,Sk,Θ, X̃∑
qnk log qnk qnk∑

KL(q(uk)||p(uk)) mk,Sk,Θ, X̃∑
KL(q(rak)||p(r

a
k)) α̃a

ij

the information is condensed by and propagated through
the inducing points U. This form of F|U, plus that of q(U),
are at the core of the sparse GP approximation that we are
inspired by, SVGP [31]. The distributions q(Z) and q(R)
are given the functional form that would arise if a mean-
field approach was applied [43, Eq. (10.9)]. For that, the
conjugacy between the Dirichlet distribution in p(R) and
the categorical in p(Y|Z,R) is essential.

Now, we can compute the explicit expression for the
ELBO in our case, which must be maximized w.r.t. V, Θ,
and X̃:

ELBO(V,Θ, X̃) =

Eq(Z)p(F|U)q(U)q(R)log
p(Y|Z,R)p(Z|F)����p(F|U)p(U)p(R)

q(Z)����p(F|U)q(U)q(R)

=
N∑
n=1

∑
a∈An

∑
y∈Ya

n

K∑
k=1

qnkEq(rak)
[log p(y|ek, rak)]

+
N∑
n=1

K∑
k=1

qnkEq(fn,:) [log p(ek|fn,:)]−
N∑
n=1

K∑
k=1

qnk log qnk

−
K∑
k=1

KL(q(uk)||p(uk))−
A∑
a=1

K∑
k=1

KL(q(rak)||p(rak)), (15)

A detailed derivation of this expression is provided in the
supplemental material. Notice that the inclusion of the prior
conditional p(F|U) in the approximate posterior makes the
highlighted cancellation possible, which is essential for the
scalability of the method. All these five terms in eq. (15)
but the second one can be expressed in closed-form as a
function of V, Θ, and X̃. Similarly, the second one can be
approximated explicitly through Gaussian-Hermite quadra-
ture [47], which is already implemented in GPflow for many
different likelihoods (like the robust-max used here) [36].
Further details and the specific expressions can be found in
the supplemental material. As a summary, Table 1 shows
which parameters each term in eq. (15) depends on.

Importantly, observe that the expression for the ELBO
factorizes across data points, which allows for stochastic
optimization through mini-batches [35]. To the best of our
knowledge, this allows GP-based crowdsourcing methods
to scale up to previously prohibitive data sets for the first
time. More specifically, the computational complexity to
evaluate the ELBO in eq. (15) in terms of the training set
size is O(Nb(M2 + AbK)), where Nb is the mini-batch
size, M the number of inducing points, K the number of
classes, and Ab the number of annotations per instance in

the mini-batch. Although this is theoretically linear in N ,
the amount of inducing points M might grow with N . An
interesting alternative, which is based on inference networks
and addresses this issue, will be presented in Section 5.2. It
is also interesting to compare eq. (15) with the expression
for the ELBO in SVGP [31, Eq. (19)]. The second and fourth
terms, which come from the prior and the classification
likelihood, are analogous to the two terms in [31]. The
other three terms arise naturally from the crowdsourcing
modelling.

Once the ELBO is maximized w.r.t. V, Θ and X̃, we can
make predictions for previously unseen data points. Given
a new x∗, we have

p(f∗k |x∗,D)=
∫

p(f∗k |uk)p(uk|D)du ≈ Eq(uk)p(f
∗
k |uk)

= N (f∗k |Bx∗X̃mk, kx∗x∗ + Bx∗X̃(Sk −KX̃X̃)BX̃x∗) ,
(16)

where Bx∗X̃ stands for Kx∗X̃K−1
X̃X̃

, and we are using the
values of mk, Sk, Θ, and X̃ estimated after training. The
predictive distribution on the real label z∗ is obtained as
p(z∗) =

∫
p(z∗|f∗)p(f∗)df∗. For classification likelihoods

like ours, this is computed by GPflow through Gaussian-
Hermite quadrature. Moreover, as we will illustrate in the
experiments, the posterior distributions q(Z) and q(R) pro-
vide an estimation for the underlying real label of the train-
ing points and for the annotators degree of expertise, respec-
tively. Finally, in order to exploit GPU acceleration through
TensorFlow, the novel SVGPCR is implemented within the
popular GP framework GPflow [36]. The code will be made
publicly available in GitHub upon acceptance of the paper,
and will be listed in the “projects using GPflow” section of
the GPflow site https://github.com/GPflow/GPflow.

3 LIGO DATA DESCRIPTION

The Laser Interferometer Gravitational-Waves Observatory
(LIGO) is a large-scale physics experiment and observatory
to detect gravitational waves (GWs) [11]. These are ripples
in the space-time produced by non-symmetric movements
of masses, being their energy much higher for events such
as binary black holes or neutron stars mergers. Their ex-
istence is a direct consequence of the General Relativity
theory postulated in 1916. However, Albert Einstein himself
believed they would be extremely difficult to detect by any
technology foreseen at that time [48].

The first direct observation of GWs was made one
hundred years later by LIGO, on September 14th, 2015.
The discovery had a tremendous impact in the scientific
community. Not only as an empirical validation of one of
the most recognized Physics theories, but also as a whole
new way to explore the universe. So far, astrophysicists
could perceive the outer space only through one “sense”
(electromagnetic radiation), but were “deaf” to GWs. This
detection has inaugurated a new era of the so-called GWs
astronomy, and has been awarded the 2017 Physics Nobel
Prize [12].

To identify GWs, LIGO is able to detect changes of
the length of a 4 kilometers arm by a thousandth of the
width of a proton [11]. This is proportionally equivalent

https://github.com/GPflow/GPflow
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to changing the distance to the nearest star outside the
Solar System by one hair’s width. Such precision requires
cutting-edge technology that is also extremely sensitive to
different instrumental and environmental sources of noise.
In the spectrograms that astrophysicists analyze to search
for GWs, this contamination manifests itself in the form of
glitches, which are noisy patterns that adopt many different
morphologies [10]. The presence of these glitches hinders
the detection of true GWs. Figure 3 shows the 15 types
of glitches considered in this work, which will be later
described.

The goal of the GravitySpy project is to develop a
system to accurately classify the different types of glitches
[10]. This would help astrophysicists to gain insights on
their taxonomy and potential causes, enhancing detection
of true GWs. Since LIGO produces a constant stream
of data, GravitySpy leverages crowdsourcing techniques
through the Zooniverse platform in order to label a train-
ing set https://www.zooniverse.org/projects/zooniverse/
gravity-spy. Then, machine learning crowdsourcing algo-
rithms that can learn from this multiple-annotated data
must be applied (like the SVGPCR presented here).

Our training set contains 173565 instances (glitches) and
1828981 annotations (i.e., a mean value of more than 10
labels per instance), which have been provided by 3443
collaborators through the Zooniverse platform. These in-
stances are time-frequency plots (spectrograms) like those
in figures 1 and 3, taken with four time windows. For
each one, we will use 256 relevant features extracted in
[49]. These glitches have been classified into 15 different
classes proposed by astrophysicists (recall figure 3). Next,
we provide a brief description of them (see [49] for a more
detailed explanation).

1080 Line: It appears as a string of short yellow dots,
always around 1080Hz. It was reduced after an update on
2017, although it is still present.

1400 Ripple: Glitches of 0.05s or longer around 1400Hz.
So far, their origin is unknown. They are commonly con-
fused with 1080Line and Violin Mode Harmonic.

Blip: Short glitches with a symmetric “teardrop” shape
in time-frequency. Blips are extremely important since they
hamper the detection of binary black hole mergers [50].

Extremely Loud: These are caused by major distur-
bances, such as an actuator reaching the end of its range
and “railing”, or a photodiode “saturating”. They look very
bright, due to their very high energy.

Koifish: Similar to Blips, but resemble a fish with the
head at the low frequency end, pectoral fins around 30
Hz, and a thin tail around 500Hz. LIGO scientists do not
understand the physical origin of this glitch.

Low Frequency Burst: Resembles a hump with a nearly
triangular shape growing from low frequency to a peak, and
then dying back down in one or two seconds. It is caused
by scattered light driven by motion of the output mirrors.

Low Frequency Lines: These appear as horizontal lines
at low frequencies. Can be confused with Scattered Light
(the latter shows some curvature) and Low Frequency
Bursts (the former continues to look like a line in the 4s
window).

No Glitch: No glitch refers to images that do not have
any glitch visible at all. The spectrograms would appear

dark blue with only small fluctuations.
Other: This category is a catch-all for glitches that do not

fit into the other categories. Therefore, it presents a great
variability in its morphology.

Power-line 60Hz: In US, the mains power is alternating
current at 60Hz. When equipment running on this power
switches on or off, glitches can occur at 60Hz or harmonics
(120, 180...). These glitches usually look narrow in frequency,
centered around 60Hz or harmonics.

Repeating blips: Analogous to blips, but repeat at regu-
lar intervals, usually every 0.125, 0.25 or 0.5 seconds.

Scattered Light: After hitting optical components, some
light from LIGO beam is scattered. It may then reflect off of
other objects and re-enter the beam with a different phase.
It usually looks like upward humps, with frequency below
30 Hz. It hinders searches of binary neutron stars, neutron
star black hole binaries, and binary black holes.

Scratchy: Wide band of mid-frequency signals that looks
like a ripply path through time-frequency space. This glitch
hampers searches for binary black hole mergers.

Violin Mode Harmonic: Test masses in LIGO are sus-
pended from fibers with resonances. These are called violin
modes, as they resemble violin strings resonances. Thermal
excitations of the fibers produce movements at the vio-
lin mode frequencies, centered around 500Hz. Thus, these
glitches are short and located around 500 Hz and harmonics.

Whistle: Usually appear with a characteristic W or V
shape. Caused by radio frequency signals beating with
the LIGO Voltage Controlled Oscillators. Whistles mainly
contaminate searches for binary black hole mergers [51].

For testing purposes, the astrophysicists at GravitySpy
have labelled a set of 9997 instances, including glitches from
all the 15 types explained above.

4 EXPERIMENTAL RESULTS

In this section, the proposed SVGPCR is empirically vali-
dated and compared against current crowdsourcing meth-
ods, with a special focus on the LIGO data introduced in the
previous section. Three blocks of experiments are presented
in sections 4.1, 4.2 and 4.3. Firstly, the behavior of SVGPCR
is thoroughly analyzed in a controlled crowdsourcing exper-
iment based on the popular MNIST set. Secondly, SVGPCR
is compared with previous probabilistic (mainly GP-based)
approaches on the LIGO data. Since most of these methods
were proposed for binary problems, we consider a binary
task relevant to the GravitySpy project. Thirdly, SVGPCR is
compared against state-of-the-art DL-based crowdsourcing
methods in the full LIGO data set.

4.1 Understanding the proposed method
Before comparing against other crowdsourcing methodolo-
gies, let us analyze the behavior and main properties of
SVGPCR. To do so, we simulate five different crowdsourc-
ing annotators for the well-known MNIST data set. The
availability of simulated annotators and real training labels
on this graphic data set constitutes a controlled setting that
allows for a comprehensive analysis.

We use the standard train/test split of MNIST with
60K/10K hand-written digits from 0 to 9 (multi-class prob-
lem with 10 classes) [52]. Notice that 60K training instances

https://www.zooniverse.org/projects/zooniverse/gravity-spy
https://www.zooniverse.org/projects/zooniverse/gravity-spy
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1080LINE 1400RIPPLE BLIP

EXTREMELY LOUD KOIFISH LOW FREQUENCY BURST

LOW FREQUENCY LINES NO GLITCH OTHER

POWER-LINE 60HZ REPEATING BLIPS SCATTERED LIGHT

SCRATCHY VIOLIN MODE HARMONIC WHISTLE

Fig. 3. Representative spectrograms for the 15 different types of glitches considered in this work. Hanford and Livinsgton refer to the two
observatories that LIGO comprises, and ER10/O1 to two different observation runs. A brief description of each glitch is provided in the text.
The goal of the GravitySpy project is to learn a machine learning system to automatically classify these glitches. The labels for the training set are
obtained through crowdsourcing.
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TABLE 2
Per-class and global test performance of SVGPCR and SVGP-gold in

the MNIST problem. In spite of the corrupted labels, the proposed
method almost recovers the golden results.

Test accuracy Test likelihood
SVGP-gold SVGPCR SVGP-gold SVGPCR

0 0.9867 0.9898 0.9777 0.9781
1 0.9885 0.9877 0.9853 0.9845
2 0.9525 0.9535 0.9368 0.9345
3 0.9703 0.9733 0.9475 0.9555
4 0.9715 0.9735 0.9548 0.9570
5 0.9630 0.9540 0.9397 0.9352
6 0.9749 0.9749 0.9604 0.9585
7 0.9591 0.9543 0.9418 0.9432
8 0.9620 0.9620 0.9458 0.9445
9 0.9346 0.9316 0.9217 0.9186

Global 0.9665 0.9657 0.9515 0.9514

is already prohibitive for standard GPs. Five decreasingly
reliable annotators are considered. The first one has a 95%
accuracy for each class, that is, r1jj = 0.95 for j = 0, . . . , 9
(the rest of values, r1ij , i 6= j, are randomly assigned to add
the remaining 0.05 probability by columns). The second and
third ones are defined analogously, but with 90% and 80%
accuracy, respectively. The fourth one is a spammer annota-
tor, that is, r4ij = 0.1 for all i, j = 0, . . . , 9. This implies that,
regardless of the real class, this annotator assigns a random
label. The fifth one is an adversarial annotator. Specifically,
in this case, with a 90% of probability, the annotator labels
as (i + 1)-th class an instance whose real class is the ith
(samples in class 9 are assigned to class 0). The confusion
matrices for these annotators are depicted in the first row of
figure 4. The five annotators label all the instances, which
yields 300K annotations that are used to train SVGPCR.

Since we have available the true labels for the training
instances, let us start by comparing SVGPCR with its the-
oretical upper bound, namely SVGP trained with the true
labels, which we refer to as SVGP-gold. Table 2 shows the
global and per-class test accuracy and test likelihood for
both approaches. Importantly, notice that the results are
very similar for all classes and both metrics, and SVGPCR
almost reaches the same global performance as SVGP-gold
(in spite of the corrupted labels provided by annotators).

This excellent performance of SVGPCR can be explained
by its accurate prediction of the annotators behavior, which
in turn allows SVGPCR to properly reconstruct the underly-
ing true labels from the noisy annotations. Indeed, firstly,
figure 4 shows the exceptional estimations obtained by
SVGPCR for the annotators confusion matrices. Recall from
eq. (14) that the expertise degree of annotators is estimated
through posterior Dirichlet distributions. The bottom row
of figure 4 shows the mean of those distributions. Inter-
estingly, the maximum variance was 0.0016, which implies
a high degree of certainty about the predictions in figure
4. Secondly, as previously mentioned, this allows SVGPCR
to correctly puzzle out the underlying true labels from the
noisy annotations. In fact, table 3 shows the excellent per-
class and global performance of SVGPCR in this sense (recall
that SVGPCR estimates the underlying true labels through
the approximate posterior q(z) in eq. (11)).

More in depth, we have analyzed the 20 examples where
SVGPCR fails to reconstruct the true label, and some of
them can be certainly considered as not-easy ones. Figure 5
shows four of them, along with the probabilities assigned by
SVGPCR for each one. In all cases, the true label is assigned
the second highest probability by SVGPCR, and the digit
presents some feature which certainly leads to confusion
with the class that SVGPCR assigns more probability to.

Another key aspect of SVGPCR is the role of the induc-
ing points. In this example we are using M = 100, and the
next experiment will be devoted to analyze the influence
of M in the performance of SVGPCR. But before, figure 6
shows the locations to which 30 out of the 100 inducing
points have converged after training (recall that the ELBO
in eq. (15) is also maximized w.r.t. the inducing locations
X̃). For instance, the first column shows the locations of
three inducing points which are classified as 0 by SVGPCR
(according to the estimated mk, recall eq. (13)), and analo-
gously for the rest of the columns. It is very interesting to
notice that the inducing point locations comprise different
calligraphic representations (in terms of shape, orientation
and thickness) of the same digit. This is related to their
intuitive role of entities that summarize the training data.

Next, let us study the influence of M (the number of
inducing points) on the behavior of SVGPCR. Figure 7
shows the dependence on M of four different metrics: two
measures of the test performance (accuracy and mean likeli-
hood), and two related to the computational cost (at training
and test steps). As expected from the theoretical formulation
in section 2, a greater number of inducing points implies
a higher performance at test (in both accuracy and mean
likelihood), since the expressiveness of the model is higher.
However, this also leads to heavier train and test costs,
since there are more parameters to be estimated (inducing
locations X̃, mk, and Sk), and the size of several matrices
increase.

Moreover, for a given M , the model is expected to obtain
better test performance as the training time evolves (i.e.,
when more epochs are run). In order to further investigate
this, figure 8 shows the test accuracy of SVGPCR as the
training time evolves, for different values of M . It is inter-
esting to observe that, the more inducing points, the higher
values of test accuracy can be potentially reached, but also a
greater amount of training time is needed to reach that pre-
cision (notice that the steps which take M = 100, 250, 500 to
the level of their final precision happen increasingly later).
The conclusion is that, for a given computational budget,
the M to be selected is the highest one that can reach
convergence in that time (logically, assuming that it allows
for the inversion of the associated kernel matrix, i.e., usually
M < 104).

Finally, since the associated code can leverage GPU accel-
eration through GPflow [36], let us compare CPU and GPU
implementations. Figure 9 shows that, for training, the GPU
is usually the preferred choice, unless the minibatch size is
very small, in which case the amount of memory copies
from CPU to GPU does not compensate the advantage
provided by the latter. In test, the GPU is always faster, since
it involves much less data transfers from CPU to GPU.
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Fig. 4. Estimation of the expertise degree of the simulated annotators in the MNIST problem by SVGPCR. Upper row: true confusion matrices.
Lower row: mean of the estimated distribution for the confusion matrices. Notice that the proposed method perfectly identifies adversarial (fifth) and
spammer (fourth) annotators. Moreover, not only the structure of the matrices is well identified, but also the actual values (the intensity of color is
very similar).

TABLE 3
Per-class and global performance of SVGPCR to reconstruct the underlying true label for training instances in the MNIST problem. An excellent

result is obtained across all the classes, with only 20 (out of the 60000 training examples) not correctly predicted.

0 1 2 3 4 5 6 7 8 9 Global
Accuracy 0.9998 0.9997 1.0000 0.9995 0.9995 0.9993 1.0000 0.9997 0.9997 0.9995 0.9997

Likelihood 0.9997 0.9996 0.9997 0.9992 0.9994 0.9993 0.9999 0.9995 0.9996 0.9991 0.9995
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Fig. 5. Upper row: four (out of the 20) examples for which SVGPCR is
not able to reconstruct the real underlying class in the MNIST problem.
Lower row: the corresponding probabilities assigned by SVGPCR. In all
cases, the proposed method assigns the second highest probability to
the real class. Notice that some of these examples are not easy, and
have some features which might lead to confusion.

Fig. 6. Some of the inducing point locations learned by SVGPCR in the
MNIST problem. They have been arranged by columns based on their
classification. Notice that, for each digit (column), different representa-
tive patterns are learned in terms of shape, orientation and thickness.

4.2 Comparison to classical probabilistic approaches

As explained in section 1, the most popular approaches to
crowdsourcing jointly model a classifier for the underlying
true labels along with the annotators’ behavior. The first
works used basic logistic regression as the classifier, e.g.
Raykar [19] and Yan [20] (the difference between them is the
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Fig. 7. Influence of M (number of inducing points) on the test perfor-
mance (accuracy and likelihood) and computational cost (elapsed time
at training and testing) for SVGPCR in the MNIST problem. As theoret-
ically expected, more inducing points lead to better test performance at
the expense of a higher computational cost.

noise model considered for the annotators). However, they
struggled when dealing with complex non-linear data sets.
Then, Gaussian Processes became the preferred choice, since
their non-parametric form and accurate uncertainty quan-
tification yielded much better results, e.g. Rodr14 [21] and
VGPCR [22] (they differ in the inference procedure used,
Expectation Propagation [53] and Variational Inference [32],
respectively). However, the poor scalability of GPs ham-
pered the wide adoption of these approaches in practice.
This motivated the development of the so-called RFF and
VFF algorithms, which leverage Random Fourier features
approximations to GPs to propose two more scalable GP-
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Fig. 8. Evolution of test accuracy as a function of the training time for
different values of M in the MNIST problem. If there is no limit on the
available training time, then high values of M must be selected (as long
as it allows for the kernel matrix inversion). However, lower values would
be more appropriate for a fast training, since the amount of parameters
to be trained significantly reduces. Moreover, when a certain (problem-
dependent) M has been reached, there is no a significant benefit by
increasing it (observe the difference from M = 250 to M = 500).
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Fig. 9. Comparison between CPU and GPU implementations of SVG-
PCR in terms of computational cost for the MNIST problem. At training,
the time depends on the minibatch size, since a greater minibatch
implies computations with larger matrices and less memory copies,
which benefits the GPU. With a minibatch of size 500 (the default used in
this section), the GPU is around two times faster. These values are per
epoch. At testing (production time), the GPU is over three times faster,
and logically does not depend on the minibatch size. In this case, the
shown values are for the whole test set.

based crowdsourcing methods [30]. These approaches sig-
nificantly improve the scalability, reducing it from cubic
O(N3) to linear O(ND2) (with D the number of Fourier
frequencies used, D � N , see [30]). In practice, this implies
moving from manageable data sets of N ≈ 104 up to
N ≈ 105/106. However, RFF and VFF do not factorize in
mini-batches, which prevents them from reaching data sets
of virtually any size.

In the last few years, these classical (mainly GP-based)
approaches have been replaced by crowdsourcing methods
based on Deep Learning (DL) [5], [23]. These achieve excel-
lent scalability through mini-batches, and can handle data
sets of almost any size. Because of this, they have become
the state of the art approach for real-world crowdsourcing
problems. In the next section 4.3, we will bring GP-based
methods back to a state of the art level. We will show
that SVGPCR is competitive with DL-based methods, and
additionally provides a very accurate control of uncertainty.
But before this, it is worth to analyze here the advances that
SVGPCR introduces over its predecessors classical (mainly
GP-based) crowdsourcing approaches.

More specifically, let us compare SVGPCR with the
aforementioned Raykar, Yan (based on logistic-regression),
Rodr14, VGPCR (based on GPs), and RFF, VFF (based on

scalable approximations to GP). Since most of them were
formulated for binary problems, we consider a binary task
relevant to astrophysicists in GravitySpy. Using the data set
presented in section 3, the goal is to distinguish between the
glitch called “Other” and the rest of types. This is important
in order to identify potential overlaps between that catch-
all class and the rest of glitches. Moreover, it introduces
an imbalanced scenario, since “Other” represents only a
10.12% of the total amount of annotations. We will use
the area under the ROC curve (AUC) as test performance
metric.

Figure 10 compares the scalability of the compared meth-
ods as the training set grows. SVGPCR clearly stands out
as the most scalable approach. This can be attributed to its
training scheme through mini-batches, which considerably
alleviates the dependence on the training set size. The
rest of methods explode at different moments: the heavy
EP inference of Rodr14 only allows for training with up
to N = 2500, the GP-based formulation of VGPCR and
the complex annotators noise model of Yan make them
reach N = 25000 with difficulties. In spite of the GP
approximation, VFF does not go beyond N = 105 in this
problem, because of the expensive optimization of Fourier
features. Finally, Raykar (which is based on cheap logistic
regression) and RFF (which does not optimize over the
Fourier features) can cope with the full data set, although
they are significantly slower than SVGPCR.

Moreover, figure 11 shows that their test performance is
pretty far from that of SVGPCR. Indeed, the logistic regres-
sion model underlying Raykar is not sufficient for the non-
linear problem at hand, and the GP approximation provided
by RFF is known to be poor when the dimensionality of the
problem is high [30] (like here, where we are working with
256 features, recall section 3). The rest of methods are also
clearly outperformed, since their limited scalability prevents
them from processing the full data set. Interestingly, figure
11 shows an intuitive and logical structure: the more simple
logistic-regression based methods are located on the left
(less test AUC), the classical GP-based ones in the central
part, and SVGPCR on the right.

4.3 Comparison with state of the art DL-based methods
In the last years, Deep Learning has emerged as a scalable
alternative to model crowdsourcing problems. Two of the
most popular approaches are AggNet [5] and the various
crowd layers proposed in [23]. The former considers a
deep neural network (DNN) as underlying classifier, and
a probabilistic noise model for annotators based on per-
user confusion matrices. Then, the training step follows an
iterative expectation-maximization (EM) scheme between
both parts of the model [43, Section 9.4]. Alternatively, the
crowd layers in [23] allow for end-to-end training of the
DNN, without the need for the EM scheme. This is sig-
nificantly cheaper in terms of computational cost, although
the probabilistic formulation of AggNet allows for a better
uncertainty quantification. The three crowd layers studied
in [23] will be considered here: CL-VW, CL-VWB and CL-
MW. They differ in the parametric form of the annotator
noise model, which is increasingly complex: a vector of per-
class weights for CL-VW, an additional bias for CL-VWB,
and a whole confusion matrix for CL-MW.
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Fig. 10. Elapsed training time as a function of the training set size N
in the binary LIGO data set. The mean over five independent runs is
shown. Above, a standard linear scale is used for the x-axis. Notice
that SVGPCR exhibits a significantly better scalability than classical
probabilistic methods, which is due to its factorization in mini-batches.
Moreover, among previous approaches, we can distinguish between
those that have already exploded for N = 25000 (Yan, Rodr14, VGPCR,
VFF), and those which have not yet for the full set size (Raykar, RFF). In
order to better appreciate the differences, a logarithmic scale is used for
the x-axis in the figure below. This further shows that Rodr14 shoots up
as early as N = 1000, Yan, VGPCR and VFF do it around N = 10000,
and Raykar and RFF are starting beyond N = 105.
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Fig. 11. Test AUC achieved in the binary LIGO data set by the compared
models (in each case, the largest one that could be trained). The mean
and one standard deviations are shown. SVGPCR clearly outperforms
methods which cannot cope with the full data set (Yan, Rodr14, VGPCR,
VFF). Moreover, RFF and Raykar are also beaten because of their more
limited formulation (see the main text).

These four DL-based methods (AggNet, CL-VW, CL-
VWB, CL-MW) are compared against three increas-
ingly complex SVGPCR models: SVGPCR-10, SVGPCR-50,
SVGPCR-100, where each number represents the amount of
inducing points used. As all these approaches are defined
for multi-class tasks, the full LIGO problem in section 3 can
be addressed now.

Tables 4 and 5 show the global and per-class test per-
formance of the compared methods. Table 4 is devoted to
the test accuracy, which relies only on the mode of the
predictive distribution and is less influenced by the uncer-
tainty quantification of the model. Table 5 shows the test
likelihood, which additionally depends on the uncertainty
of the predictive distribution, and therefore depends more
heavily on its accurate control within the model.

In both tables, SVGPCR stands out as the best-
performing method globally. The difference is greater in
the case of the test likelihood, which is logically explained
by the better uncertainty quantification of GPs. Indeed,
the better control of uncertainty also justifies that AggNet
outperforms CL-based methods in test likelihood (whereas
they are very similar in accuracy). Moreover, observe that
the global superiority of SVGPCR is not due to a great
result in only one or two very populated classes. SVGPCR
performs consistently well across the 15 glitch types in both
tables, winning in few of them (a bit more in test likelihood,
as logically expected), and avoiding dramatic failures on
difficult classes. This will be also observed for the alternative
GP-based methods introduced in Section 5. According to
astrophysicists at GravitySpy, this regularity across classes
is a desirable property for a reliable glitch detection system.

It is also worth to notice that M = 50 inducing points
seem enough for the problem at hand. In both tables 4 and
5, a significant improvement is observed from M = 10 to
M = 50, but M = 100 produces very similar results. This
small value of M = 50 hints at a not very complex internal
structure of the data. It is also interesting to observe that,
in general, the most difficult classes are “Repeating Blips”
and “Other” (recall the 15 types in figure 3). This discovery
is not surprising for astrophysicists in GravitySpy, since the
former is usually confused with “Blips”, and the latter is a
catch-all class to which some conservative annotators resort
too often. The case of “Other” is also related to the interest
of astrophysicists to study it separately in the experiment of
previous section 4.2.

It is also important to highlight that all these methods are
scalable enough so as to cope with the full LIGO data set.
More specifically, figure 12 shows the elapsed time at train-
ing and testing for the compared methods. In general, the
proposed SVGPCR is competitive with DL-based methods
in these aspects. At training, SVGPCR is significantly faster
than AggNet due to the heavy iterative EM scheme of the
latter, and is slower than CL-MW6. Nonetheless, less than
one hour of training is a competitive result for a data set
with 173565 instances (recall section 3). At testing, SVGPCR
is the fastest approach, which is convenient for real-time
applications the system might be used for.

6. Results of CL-VW/CL-VWB being worse than CL-MW in figure
12 might be attributed to implementation inefficiency, since the former
include for loops whereas matrix multiplication is used in the latter.
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TABLE 4
Per-class and global test accuracy for the compared methods in the LIGO experiment. Mean and standard deviation over ten runs are shown.
Globally, SVGPCR with enough inducing points outperforms DL-based methods by 2%. In per-class results, notice the regularity of SVGPCR,

which performs well across all classes without standing out in many of them.

AggNet CL-VW CL-VWB CL-MW SVGPCR (M=10) SVGPCR (M=50) SVGPCR (M=100)
1080LINE .9791(.0045) .9676(.0063) .9732(.0059) .9746(.0063) .9781(.0075) .9720(.0076) .9720(.0069)

1400RIPPLE .9447(.0237) .1666(.3335) .3243(.4001) .0000(.0000) .0000(.0000) .8528(.0203) .8577(.0171)
BLIP .9737(.0078) .9754(.0079) .9741(.0135) .9826(.0062) .8712(.2904) .9643(.0044) .9622(.0052)

EXTR.LOUD .8704(.0566) .7193(.0652) .8034(.0660) .5272(.3502) .3681(.3705) .7261(.0398) .7295(.0427)
KOIFISH .8760(.0634) .8749(.0151) .9043(.0296) .9023(.0203) .8007(.2673) .8844(.0129) .8828(.0115)

L.F.BURST .7649(.0802) .8639(.0299) .9023(.0211) .9146(.0174) .7912(.2638) .8864(.0087) .8861(.0105)
L.F.LINE .8603(.0742) .8603(.0274) .8514(.0293) .8566(.0279) .8354(.2785) .9150(.0105) .9156(.0111)

NOGLITCH .9174(.0354) .8835(.0201) .8887(.0241) .9141(.0274) .7048(.2366) .7941(.0223) .7951(.0162)
OTHER .2786(.0294) .4167(.0348) .3660(.0376) .3503(.0297) .3622(.1213) .3977(.0083) .4011(.0091)

P.L.60HZ .8885(.0676) .8591(.0290) .9468(.0104) .9365(.0179) .7417(.2476) .8438(.0102) .8425(.0127)
REP.BLIPS .5487(.0730) .0470(.1410) .0572(.1717) .0000(.0000) .0000(.0000) .6649(.0215) .6700(.0210)

SCATT.LIGHT .9088(.0492) .9497(.0126) .9601(.0109) .9645(.0053) .8657(.2886) .9600(.0050) .9562(.0056)
SCRATCHY .8980(.0400) .4433(.4437) .4426(.4452) .4440(.4444) .8093(.2702) .8953(.0206) .9000(.0165)

VIOLIN .9755(.0057) .9932(.0032) .9921(.0033) .9930(.0018) .8915(.2971) .9899(.0027) .9914(.0017)
WHISTLE .9175(.0236) .9359(.0136) .9438(.0137) .9377(.0230) .8122(.2712) .9166(.0070) .9201(.0047)
GLOBAL .8957(.0227) .8886(.0126) .8985(.0105) .8956(.0104) .8355(.1919) .9184(.0031) .9183(.0027)

TABLE 5
Per-class and global test likelihood for the compared methods in the LIGO experiment. Mean and standard deviation over ten independent runs
are shown. Globally, SVGPCR with enough inducing points outperforms DL-based methods by almost 3%. It also exhibits a desirable regularity
across the different classes. Moreover, notice that, compared to the accuracy in Table 4, there exists here a greater advantage against methods

that do not quantify uncertainty (i.e. CL-based ones).

AggNet CL-VW CL-WVB CL-MW SVGPCR (M=10) SVGPCR (M=50) SVGPCR (M=100)
1080LINE .9781(.0048) .9515(.0091) .9597(.0076) .9649(.0074) .8811(.2715) .9689(.0082) .9688(.0075)

1400RIPPLE .9416(.0242) .1644(.3290) .3196(.3937) .0118(.4874) .0067(.0199) .8475(.0182) .8509(.0156)
BLIP .9709(.0077) .9753(.0079) .9735(.0123) .9777(.0043) .8746(.2694) .9606(.0044) .9587(.0055)

EXTR.LOUD .8626(.0574) .7214(.0645) .8024(.0684) .5276(.3503) .3651(.3541) .7266(.0435) .7242(.0408)
KOIFISH .8688(.0679) .8752(.0161) .9013(.0300) .8959(.0190) .8022(.2457) .8788(.0109) .8784(.0117)

L.F.BURST .7575(.0799) .7249(.0139) .8035(.0177) .8419(.0207) .7966(.2434) .8851(.0083) .8838(.0098)
L.F.LINE .8502(.0786) .5808(.0192) .6200(.0178) .6917(.0242) .8378(.2571) .9125(.0094) .9118(.0103)

NOGLITCH .9091(.0402) .8109(.0247) .8196(.0342) .8196(.0244) .7062(.2146) .7919(.0238) .7932(.0146)
OTHER .2692(.0285) .4123(.0322) .3439(.0362) .3268(.0275) .3686(.1012) .3959(.0095) .3999(.0091)

P.L.60HZ .8700(.0665) .8565(.0291) .8993(.0108) .8929(.0117) .7435(.2260) .8384(.0107) .8380(.0107)
REP.BLIPS .5323(.0664) .0466(.1400) .0584(.1752) .4878(.8447) .0067(.0199) .6581(.0191) .6651(.0198)

SCATT.LIGHT .8716(.0480) .8782(.0165) .8947(.0196) .9416(.0067) .8683(.2673) .9558(.0047) .9520(.0057)
SCRATCHY .8823(.0399) .4425(.4429) .4411(.4440) .4414(.4419) .7971(.2441) .8911(.0215) .8953(.0176)

VIOLIN .9738(.0058) .9823(.0034) .9815(.0024) .9863(.0022) .8960(.2765) .9875(.0020) .9886(.0014)
WHISTLE .9167(.0215) .9341(.0149) .9427(.0141) .9388(.0213) .8124(.2490) .9155(.0064) .9179(.0046)
GLOBAL .8871(.0240) .8175(.0106) .8387(.0113) .8528(.0101) .8126(.2487) .9154(.0033) .9149(.0027)
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Fig. 12. Train and test times (mean and standard deviation over ten inde-
pendent runs) for the compared methods in the LIGO experiment. Notice
the logarithmic scale in y-axis. The proposed SVGPCR is competitive
with all the DL-based methods in terms of computational cost at both
training and testing.

As already pointed out in Table 5, the underlying GP
model of SVGPCR implies an advantage over DL-based
methods in terms of uncertainty quantification. The test
likelihood metric is a global measure of the quality of
the predictive distribution obtained for each individual
test instance. To clearly understand the benefits of the GP
modelling, figure 13 shows the predictive distributions for

some test instances which are behind the better global
performance of SVGPCR. Only the best method (in terms of
test likelihood) of each type (i.e. CL-based ones, SVGPCR
ones, and AggNet) is considered, which yields the three
columns in figure 13. Each row represents a different test
instance.

Interestingly, we observe that the three approaches cor-
rectly classify the four instances, that is, they assign the
highest probability to the correct class (which is highlighted
in red). In particular, this means that these four instances
contribute equally to the test accuracy of the three methods.
However, notice that the quality of the predictive distribu-
tion worsens from left to right (i.e., from better to worse
uncertainty quantification theoretical properties), since the
methods become less certain about the correct answer and
assign more probability to wrong ones. This is precisely
what is accounted for in the test likelihood metric. From
a practical perspective, this better quality of the predictive
distributions has been particularly appreciated by astro-
physicists at GravitySpy, in addition to the improvement
in test accuracy (recall table 4). We stress that test instances
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Fig. 13. Test predictive distribution obtained by the compared methods
for four different test instances in the LIGO experiment. All the methods
assign the highest probability to the correct class (which is highlighted in
red). However, from left to right, the quality of the predictive distribution
decreases, as greater probability is assigned to wrong classes. This is
related to the uncertainty quantification capabilities of each method, an
aspect at which the GP modelling of SVGPCR stands out. Moreover,
these differences in the predictive distributions are behind the superiority
of SVGPCR in test likelihood (table 5).

in figure 13 are among those that most contribute to the
outperformance in test likelihood. In general, when it is not
certain about the outcome, SVGPCR provides uncertainty
for its estimations. This is illustrated in the third section of
the supplementary material. The figure there is analogous
to this one, but using randomly selected test points.

Finally, a key aspect of crowdsourcing methods is the
identification of the different annotators behavior. Unlike in
section 4.1, where we had simulated annotators to check the
good estimations of SVGPCR, in this real experiment we
do not have available a ground-truth. Nonetheless, let us
compare the predictions obtained by the different methods.
We will see that they capture similar patterns, some of which
can be explained from the experience of astrophysicists.
Figure 14 shows the confusion matrices predicted by the
compared methods for five different annotators. In the CL-
based family we only consider CL-MW, as it is the best in
test likelihood and the only one which provides a confusion
matrix.

One of the most distinctive features for all instances and
methods is the predominance of high values in the diagonal.
This was considered as a positive feedback by astrophysi-
cists, as it means that annotators have been generally well
instructed to distinguish among glitches. Additionally, other
patterns out of the diagonal are worth an analysis. For the

first column (first volunteer), SVGPCR and AggNet detect
that glitches of type 1 (i.e. “1400Ripple”, recall figure 3) are
classified as class 13 (“Violin Mode Harmonic”). This is a
very frequent mistake according to experts, since the general
appearance of both glitches is similar. We also observe that
CL-MW does not agree on this prediction. This discrepancy
of CL-MW for some particular patterns is recurrent across
different annotators, and can be attributed to the different
modelling of the annotators noise (non-probabilistic one,
but through weights in the DNN). The second column
shows a typical conservative annotator, who resorts too
frequently to the catch-all “Other” class. This is reflected
in the persistent high values of the row number 8 in the
matrices, regardless of the column (the real class). For the
third column, the three methods identify the confusion from
“Violin Mode Harmonic” to “1400Ripple”. Notice that this
is the opposite to the first annotator, where the confusion
was the other way round. In the fourth annotator, SVGPCR
detects the same issue with “Violin Mode Harmonic” and
“1400Ripple”, whereas the others are less certain about this.
Moreover, AggNet exhibits a noisy behavior compared to
SVGPCR and CL-MW. Although perhaps less explicitly, this
can be also observed across different annotators, and might
be due to the iterative nature of AggNet, which does not
allow for an end-to-end learning and leaves some extra
noise after training. In the fifth annotator, the three meth-
ods identify a very common confusion, which is labelling
instances whose real class is “Blip” as “Koifish” (classes 2
and 4, respectively). Although these glitches seem pretty
different in the paradigmatic examples shown in figure 3,
wider “Blip” and narrower “Koifish” are frequent in the
data set, and might mislead a non-expert volunteer.

Most importantly, the identification of all these wrong
behaviors allows crowdsourcing methods to take full ad-
vantage of the noisy annotations. It is also worth noticing
that the Bayesian nature of SVGPCR provides uncertainties
for the confusion matrices obtained here (recall the full
posterior Dirichlet distributions in eq. (14)), which is not
available for the DL-based methods.

5 EXPLORING RECENT INFERENCE TECHNIQUES

Once SVGPCR has been successfully developed, this sec-
tion explores modern GP inference approaches beyond the
standard SVGP. As motivated in the introduction, Section
5.1 uses Normalizing Flows [39] to represent more com-
plex posterior distributions for SVGPCR. Then, Section 5.2
adapts the GP-Net model [37] to crowdsourcing.

5.1 Normalizing Flows

Normalizing Flows (NF), originally introduced in [39], see
also the recent review [40], have become a very popu-
lar technique to represent complex distributions that can
be used as approximate posteriors in VI. The idea is to
transform a simple base distribution (typically a Gaussian)
through a sequence of invertible transformations. Sampling
from such a distribution is straightforward, and its density
depends on the determinant of the transformations Jaco-
bian, which must be cheap to compute. Different transfor-
mations yield different NFs, such as planar and radial [39],
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Fig. 14. Confusion matrices estimated by the three families of algorithms (rows) and for five different annotators (columns) in the LIGO experiment.
In each matrix, the real class is represented in the x-axis, and the annotated one in the y-axis (that is, the matrices add up to one by columns). For
every annotator, the general structure of the three estimated matrices is similar. In particular, the highest values are located in the diagonal, which
means that annotators have been correctly instructed in general. Moreover, recall that SVGPCR provides a full probability distribution (in particular
uncertainties) for these predictions.

TABLE 6
Per-class and global test accuracy for recent inference methods on GPs. Mean and standard deviation over ten runs are shown. The best

performing SVGPCR method is shown for comparison. Both NF and GP-Net slightly outperform SVGPCR. Moreover, unlike inducing points based
ones, GP-Net achieves very competitive results for M = 10, as theoretically expected.

SVGPCR SVGPCR-NF SVGPCR-NF SVGPCR-NF GPNETCR GPNETCR GPNETCR
(M=50) (M=10) (M=50) (M=100) (M=10) (M=50) (M=100)

1080LINE .9720(.0076) .9785(.0128) .9725(.0064) .9729(.0078) .9740(.0045) .9732(.0037) .9727(.0042)
1400RIPPLE .8528(.0203) .4065(.4067) .8447(.0220) .8496(.0300) .8398(.0247) .8195(.0272) .8398(.0499)

BLIP .9643(.0044) .7742(.3872) .9622(.0033) .9626(.0060) .9665(.0089) .9679(.0038) .9645(.0066)
EXTR.LOUD .7261(.0398) .4045(.3338) .7114(.0477) .7193(.0627) .7455(.0629) .7420(.0653) .7523(.0794)

KOIFISH .8844(.0129) .7116(.3558) .8837(.0110) .8888(.0129) .8825(.0141) .8845(.0206) .8912(.0130)
L.F.BURST .8864(.0087) .7062(.3532) .8903(.0081) .8840(.0078) .8896(.0162) .8950(.0136) .8864(.0108)

L.F.LINE .9150(.0105) .7380(.3691) .9158(.0094) .9266(.0072) .9096(.0184) .9077(.0178) .9116(.0105)
NOGLITCH .7941(.0223) .6239(.3128) .7958(.0160) .7926(.0195) .7739(.0285) .7797(.0136) .7800(.0240)

OTHER .3977(.0083) .3282(.1644) .4034(.0102) .3962(.0119) .4061(.0253) .4011(.0157) .4069(.0152)
P.L.60HZ .8438(.0102) .6574(.3290) .8472(.0098) .8430(.0120) .8574(.0096) .8634(.0055) .8579(.0127)

REP.BLIPS .6649(.0215) .0000(.0000) .6470(.0331) .6427(.0528) .5812(.0608) .6043(.0465) .6068(.0606)
SCATT.LIGHT .9600(.0050) .7707(.3854) .9598(.0049) .9637(.0049) .9630(.0088) .9606(.0067) .9622(.0068)

SCRATCHY .8953(.0206) .7193(.3604) .9027(.0191) .8880(.0183) .9027(.0191) .8880(.0183) .8947(.0217)
VIOLIN .9899(.0027) .7919(.3959) .9904(.0019) .9898(.0024) .9924(.0028) .9935(.0012) .9921(.0020)

WHISTLE .9166(.0070) .7281(.3642) .9237(.0068) .9202(.0083) .9281(.0156) .9272(.0096) .9254(.0106)
GLOBAL .9184(.0031) .7765(.2584) .9189(.0021) .9197(.0027) .9185(.0021) .9186(.0018) .9184(.0021)

inverse autoregressive flow [54], or masked autoregressive
flow [55]. Also, augmented normalizing flows, which over-
come the constraint on intermediate dimensionality, have
been recently explored in [56].

In our model of SVGPCR, we used an approximate
Gaussian posterior q(U) for the inducing points, recall
eq. (13). This yields a tractable KL term in the ELBO be-
tween two Gaussians (prior and posterior), recall eq. (15).
However, the true posterior might not be Gaussian, since
we are using a non-conjugate likelihood for z|F (in addition
to the crowdsourcing likelihood for Y|z).

In this section, we consider an approximate posterior for
U based on a planar NF with Leaky ReLu (LReLu) non-
linearities. More specifically, each uk is defined through
u0
k → · · · → uLk = uk, where u0

k ∼ N (m0
k,S

0
k) and

ulk = f lk(u
l−1
k ) with f lk(a) = a + v · LReLu(wᵀa + b)

(logically, each v, w and b depend on k and l, but this

is omitted to lighten the notation). As explained in [39,
Section 4.1], the determinant of the Jacobian matrix for
this transformation, ∂f lk/∂a, can be computed in O(M),
where M is the dimensionality of ulk, i.e. the number of
inducing points. Therefore, the new variational parameters
are V = {m0

k,S
0
k,v

l
k,w

l
k, b

l
k}k,l. This approach will be

called SVGPCR-NF.
Following the approach in [39], the new KL term in the

ELBO is as follows:

KL(q(uk)||p(uk)) = Eq(u0
k)
log q(u0

k)−

−
L∑
l=1

Eq(u0
k)
log

∣∣∣∣∣det ∂f lk
∂ul−1k

∣∣∣∣∣− Eq(u0
k)
log p(uLk ). (17)

The first term can be computed in closed form (the entropy
of a Gaussian is well-known), the second term can be
stochastically approximated in O(LM) by sampling from
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TABLE 7
Per-class and global test likelihood for recent inference methods on GPs. Mean and standard deviation over ten runs are shown. The best

performing SVGPCR method is shown for comparison. Both NF and GP-Net slightly outperform SVGPCR. Moreover, unlike inducing points based
ones, GP-Net achieves very competitive results for M = 10, as theoretically expected.

SVGPCR SVGPCR-NF SVGPCR-NF SVGPCR-NF GPNETCR GPNETCR GPNETCR
(M=50) (M=10) (M=50) (M=100) (M=10) (M=50) (M=100)

1080LINE .9689(.0082) .7886(.3611) .9690(.0066) .9698(.0077) .9712(.0043) .9707(.0037) .9704(.0043)
1400RIPPLE .8475(.0182) .4167(.3909) .8399(.0227) .8416(.0275) .8373(.0233) .8167(.0261) .8331(.0490)

BLIP .9606(.0044) .7835(.3585) .9586(.0037) .9583(.0065) .9632(.0089) .9645(.0041) .9615(.0060)
EXTR.LOUD .7266(.0435) .4157(.3160) .7025(.0475) .7027(.0529) .7385(.0659) .7342(.0611) .7447(.0740)

KOIFISH .8788(.0109) .7215(.3275) .8789(.0104) .8814(.0141) .8806(.0145) .8813(.0192) .8839(.0130)
L.F.BURST .8851(.0083) .7186(.3261) .8881(.0082) .8810(.0073) .8877(.0162) .8919(.0136) .8835(.0107)

L.F.LINE .9125(.0094) .7477(.3407) .9120(.0093) .9225(.0079) .9065(.0182) .9045(.0181) .9083(.0104)
NOGLITCH .7919(.0238) .6337(.2844) .7919(.0161) .7854(.0211) .7688(.0283) .7776(.0131) .7799(.0220)

OTHER .3959(.0095) .3376(.1359) .3989(.0088) .3921(.0125) .4056(.0259) .3999(.0153) .4041(.0145)
P.L.60HZ .8384(.0107) .6680(.3010) .8414(.0106) .8384(.0124) .8546(.0115) .8595(.0057) .8542(.0134)

REP.BLIPS .6581(.0191) .0134(.0266) .6406(.0347) .6341(.0568) .5834(.0663) .6031(.0412) .6043(.0596)
SCATT.LIGHT .9558(.0047) .7801(.3568) .9555(.0046) .9590(.0054) .9597(.0080) .9578(.0061) .9593(.0066)

SCRATCHY .8911(.0215) .7187(.3271) .8936(.0190) .8829(.0190) .8985(.0201) .8826(.0163) .8904(.0245)
VIOLIN .9875(.0020) .8027(.3681) .9879(.0018) .9871(.0025) .9898(.0026) .9909(.0011) .9900(.0018)

WHISTLE .9155(.0064) .7362(.3349) .9209(.0062) .9156(.0080) .9297(.0123) .9253(.0076) .9224(.0092)
GLOBAL .9154(.0033) .7346(.3341) .9152(.0022) .9157(.0027) .9157(.0020) .9158(.0019) .9155(.0023)

q(u0
k) and evaluating the known Jacobian, recall [39, Section

4.1], and the same applies for the third one. The rest of
the ELBO is as in eq. (15), where q(fn,:) does not have
a closed-form expression anymore, but it is approximated
by sampling S values from the flow and averaging the S
conditional Gaussians of f given u. The same applies for
predicting. Notice that the computational complexity is still
dominated by the SVGPCR operations.

We apply SVGPCR-NF on the full LIGO dataset with
M = 10, 50, 100, as was done for the standard SVGPCR. To
better understand the dependence on the flow length L, we
assess the performance when moving from L = 2 to L = 11
(when the performance begins to decrease). This is shown
in figure 15, which reveals that L = 9 is the optimal choice
in terms of both accuracy and test likelihood.

Using this value of L, the full results in terms of test
accuracy and likelihood are shown in Tables 6 and 7, re-
spectively. The performance is very similar to SVGPCR,
exhibiting a slight improvement. This suggests that, in this
particular case, the true posterior distribution might be
unimodal and a Gaussian could be enough to represent it
(indeed, Fig. 2 in the supplementary material shows the
distribution obtained for q(U)). Interesting properties of
SVGPCR, such as the regularity across classes and avoid-
ing dramatic failures in difficult ones, are also maintained.
Moreover, just like for SVGPCR, results are clearly improved
when growing from M = 10 to M = 50, but stay similar
for M = 100. This is to be expected, since the underlying
SVGP model is still the same, and it is well-known that few
inducing points limit the expressiveness of the predictive
distribution. Next we explore a recent model that adopts a
different approach.

5.2 Inference Networks for GPs

In this section we adapt GP-Net [37] to the crowdsourcing
scenario. Since the expressiveness of inducing points based
sparse GP approaches is limited by the amount of such
points, GP-Net explores the use of inference networks to
approximate the posterior distribution of GPs. Inference is
performed in the function space directly, see also [57], and

2 3 4 5 6 7 8 9 10 11
Length of NF (L)

0.900

0.905

0.910

0.915

0.920

0.925

0.930
Global Test Accuracy
Global Test Likelihood

Fig. 15. Global test accuracy and global test likelihood for SVGPCR-NF
with different lengths for the flow (L). The amount of inducing points is
M = 100. The results are the mean over ten runs.

the posterior stochastic process q(f) is modelled with a
parametric inference network qγ(f). The joint distribution
must be Gaussian for a finite set of points, see [37, Section 4]
for different choices, such as the random feature expansions
that will be used here. To learn the parameters γ, a stochas-
tic functional mirror-descent algorithm is tracked, which
iteratively adapts the true stochastic posterior [37, Section
3.1]. In each step, the inference network is matched to such
posterior on a measurement set XM of sizeM , which allows
for learning meaningful correlations [37, Section 3.2]. Impor-
tantly, notice that this M does not limit the expressiveness
of the inference network qγ .

In the crowdsourcing scenario, recall that eq. (7) de-
fines the full probabilistic model before inducing points
are introduced. Now, we consider an approximate posterior
q(F,Z,R) = q(F)q(Z)q(R) where q(F) is given by K
inference networks qγ1(f1), . . . , qγK (fK), one for each class.
We use random feature expansions with 100 hidden units,
recall [37, Section 4]. Then, VI can be applied to minimize
KL(q(F,Z,R)||p(F,Z,R|Y,Θ)) in turns. Fixing q(F), and
following the derivation of eq. (15), a gradient step must
be given on {qnk} and {α̃aij} (the variational parameters of
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q(Z) and q(R) respectively) to maximize

F({qnk}, {α̃aij}) =
N∑
n=1

K∑
k=1

qnkEqγ(fn,:) [log p(ek|fn,:)] +

+
N∑
n=1

∑
a∈An

∑
y∈Ya

n

K∑
k=1

qnkEq(rak)
[log p(y|ek, rak)]−

−
N∑
n=1

K∑
k=1

qnk log qnk −
A∑
a=1

K∑
k=1

KL(q(rak)||p(rak)). (18)

This is analogous to eq. (15), but the inducing points term is
not present anymore, and qγ(fn,:) is given by the inference
networks (fixed in this step; γ denotes γ1, . . . , γK jointly).
Then, fixing q(U) and q(R), and following the deriva-
tions in [37, Section 3.2] (non-conjugate likelihood case),
the inference networks parameters γ must be updated by
maximizing

L(γ) = Eqγ(FM ,F)

[
βt

N∑
n=1

K∑
k=1

qnk log p(ek|fn,:)+

+βt log p(FM ,F)+(1−βt) log qγt(FM ,F)−log qγ(FM ,F)

]
.

Here, qγt refers to the previous value of the inference
network, FM denotes the evaluation of the K inference
networks on the measurement set XM (which is randomly
sampled from the training set as in [37]), and βt is the learn-
ing rate of the functional mirror-descent algorithm (which
is set to βt = β0(1 + ξ

√
t)−1 as in [37]). In practice, the first

term is approximated with a mini-batch, as in eqs. (15) and
(18). The GP hyperparameters Θ are optimized as in [37], by
minimizing the KL divergence between qγt and the GP prior
on the current mini-batch. This method is called GPNETCR.

As with SVGPCR and SVGPCR-NF, we apply GPNETCR
on the full LIGO dataset withM = 10, 50, 100 (hereM is the
measurement set size). The results in terms of test accuracy
and likelihood are shown in Table 6 and 7, respectively. The
performance for M = 50, 100 is very similar to SVGPCR-
NF, i.e. just slightly better than SVGPCR. This confirms the
robustness and convenience of the GP-based crowdsourcing
formulations, which show good results across classes and
avoid noticeable failures in difficult ones. However, the
results for M = 10 are very different. Whereas 10 inducing
points do not yield a sufficiently expressive posterior in
SVGPCR(-NF), the GPNETCR inference network capacity is
not constrained by M . In fact, the GPNETCR with M = 10
performs better than SVGPCR for any amount of M . This
confirms that the properties of GP-Net can be extended to
crowdsourcing.

6 CONCLUSIONS AND FUTURE WORK

In this work we have first introduced SVGPCR, an exten-
sion of SVGP to crowdsourcing that can scale up to very
large data sets through its mini-batch training scheme. The
motivation is the problem of glitch classification in the lau-
reate LIGO project, which is addressed with crowdsourcing
techniques in the GravitySpy sub-project. To that end, and in
order to obtain accurate predictive distributions, astrophysi-
cists were interested in combining the excellent uncertainty

quantification of GP-based crowdsourcing methods with
the scalability of those based on deep learning (DL). The
proposed SVGPCR brings back GP-based methods to the
state of the art in crowdsourcing.

SVGPCR is competitive with DL-based approaches in
terms of test accuracy and computational cost, and stands
out in terms of predictive distribution quality. Moreover,
its behavior naturally follows its theoretical formulation:
it provides very accurate estimations for the annotators
expertise degree, and the inducing points influence the test
performance and the computational cost as expected. We
further leveraged recent inference techniques to propose
SVGPCR-NF and GPNETCR.

In the LIGO problem, the glitches were given by relevant
features extracted by astrophysicists. However, in the case
of more complex data such as images, audio or natural
language, DL-based methods can benefit from convolutional
layers in the deep neural network. From a probabilistic
perspective, this could be addresed through Deep Gaussian
Processes [58] and the very recent attempts to introduce
convolutional structure in GPs [59], [60]. Moreover, recent
successful models combining the benefits of GPs and Neural
Networks, such as (Conditional) Neural Processes [61], [62],
could be extended to crowdsourcing. In fact, these can
also be endowed with the aforementioned convolutional
structure [63].
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