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Abstract 
In this paper, we address the problem of obtaining a high resolution (HR) image 

from a compressed low resolution (LR) video sequence. Motion information plays a 
critical role in solving this problem and we determine which pixels in the sequence 
provide useful information for calculating the high resolution image. The bit-stream of 
hybrid motion compensated video compression methods includes low resolution 
motion compensated images; we therefore also study which pixels in these images 
should be used to increase the quality of the reconstructed image. Once the useful 
(observable) pixels in the low resolution and motion compensated sequences have 
been detected, we modify the acquisition model to only account for these observations. 
The proposed approach is tested on real compressed video sequences and the improved 
performance is reported. 

 

 

1.  Introduction 
 

Super resolution or resolution enhancement algorithms increase the resolution of an image 
utilizing multiple misregistered still images or a segment of a video sequence without 
changing the resolution of the image sensor (see [1], [2], [3], [4] for reviews). This is 
accomplished by exploiting the underlying sub-pixel shifts or motion among images of 
frames to provide multiple observations for each frame, and it mitigates the requirements for 
transporting and storing a high resolution (HR) sequence. 
The high resolution image reconstruction problem is further complicated when the available 
low resolution (LR) video is compressed [5], [6].  Algorithms that attenuate the error due to 
compression of still images or video sequences belong to the field of post-processing 
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methods. As an example, filtering a decoded image with a spatially invariant kernel for 
removing blocking artifacts is proposed in [7].  Unfortunately such an approach also 
attenuates semantically meaningful edge features. Addressing this flaw is the goal of many 
subsequent enhancement approaches, such as [8-10], that reduce the amount of smoothing in 
the vicinity of edges. 
Recovery methods can also be utilized for post-processing in super resolution from 
compressed video. These methods lead to a more rigorous approach to the problem, as prior 
knowledge about both the original image and the compression system are considered. In [11] 
this information is derived numerically, and the recovery procedure takes the form of a 
lookup table operation. In the majority of approaches though, explicit models are utilized. For 
example, distributions for the transform coefficients and original intensities are defined in 
[12-14]. These distributions lead to a maximum a posteriori (MAP) estimate for the post-
processed image. In [15, 16], the available information is utilized to define convex sets the 
solution should belong to. The theory of projecting onto convex sets provides a feasible 
solution. As a third approach, constrained least squares solutions incorporate deterministic 
models and are considered in [17-19]. 
Post-processing and super resolution methods developed for uncompressed sequences have 
also been combined to tackle the super resolution from compressed video problem.  In [20, 
21], the quantization operator is incorporated into a super resolution procedure. The resulting 
algorithms consider the spatially varying noise process and treat the interpolation, restoration 
and post-processing problems. All necessary displacement values are assumed known. As a 
second example, motion vectors within the bit-stream influence the registration problem in 
[22, 23]. The post-processing problem is ignored though, and estimates for the motion and 
HR data are computed sequentially. 
Building on our previous post-processing and super resolution work [24-29] a novel 
algorithm that solves the registration, interpolation, restoration, and post-processing problem 
simultaneously has been proposed in [6]. 
Accurate motion estimation and determination of the pixels in the LR sequence observable 
from the HR image under reconstruction are essential tasks in super resolution problems. 
Pixels in the LR data which cannot be predicted from the HR image under estimation or 
pixels associated with poor and conflicting motion estimates are of little or no use and 
therefore should not be taken into account. Not much work has been reported in the literature 
on this problem with the exception of Schultz and Stevenson [23]. 
In hybrid motion-compensated video compression a sparse vector field along with the 
transformed and quantized displaced frame difference (DFD) form the bit-stream. Both 
pieces of information can prove to be useful when estimating the HR image; in this case 
again we are faced with the problem of determining which pixels in the LR and/or DFD 
images are observable from the HR image under estimation. 
Once these LR valid pixels have been detected the modeling of the observation process needs 
to be modified appropriately, so as to take into account only such pixels. 
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Fig. 1. (a)-(c): Three consecutive compressed LR frames.;(d),(e): Motion fields between the 
HR frame corresponding to (b) and the HR frames  corresponding to (a) and (c), respectively; 
(f),(g): Black pixels represent pixels in (a) and (c) that are not observable or poorly predicted 
via motion compensation from the HR image under estimation.  
 
 
To our knowledge, no work has been reported on how to determine the observable 
(predictable) pixels in an LR compressed sequence.  This is a very important problem since 
super resolution algorithms assume that every frame in the sequence can be obtained by 
motion compensating a single HR frame. However, this is not the case in most dynamic 
sequences where objects move in front of a (moving) background thus uncovering areas that 
are not observable from the HR frame under estimation. Additionally, poor motion estimates 
may render data in the LR observed images unusable. 
Figure 1 illustrates these problems. Figure 1(a)-(c) displays three consecutive compressed 
low resolution frames of a sequence where the background is moving three pixels up and to 
the  left in each frame and the text is moving three pixels up and to the right in each frame. 
The objective is to obtain an HR estimate of the frame in Fig. 1(b).  Estimated with a block 
matching technique motion vectors that relate the HR frame corresponding to Fig. 1(b) to the 
HR frames corresponding to Figs. 1(a) and 1(c) are plotted in Figs. 1(d) and 1(e), 
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respectively. Clearly the accuracy of these vectors is determined by the specific motion 
estimation algorithm used, as well as the accuracy of the HR estimates. Figures 1(f) and 1(g) 
show, in black, the pixels of Figs. 1(a) and 1(c) that are not observable or well predicted from 
the HR image via motion compensation. These pixels form regions around moving 
boundaries.  There are also such not observable pixels in smooth areas of the objects (inside 
the letters), due probably to the aperture effect.  The pixels shown in Figs. 1(f) and 1(g) 
should not be utilized in the resolution enhancement process because most probably they will 
lead to erroneous results.  In this paper we examine how to determine which pixels provide 
useful information to the estimation of the HR image and modify the acquisition model to 
take into account only those observations. 
The paper is organized as follows. The process to obtain a compressed low resolution video 
sequence from high resolution images is described in section 2. Prior information on the high 
resolution image and motion vectors under estimation is described in section 3. In section 4 
we describe how to determine the low resolution and DFD pixels which are observable or 
predictable from the high resolution image under estimation. This process will lead to the 
modification of the observation model discussed in section 2. In section 5 the Bayesian 
paradigm to calculate the maximum a posteriori (MAP) high resolution image and motion 
vectors is described. Experimental results are presented in section 6 and section 7 concludes 
the paper. 
 
 
2.  Obtaining Low Resolution Compressed Observations from High 
Resolution Images 
 
Let us denote the underlying high resolution (HR) video sequence in vector form by 

, where the size of each high resolution image , l=1,…,L is 

(PM×PN)×1, with P>1 being the magnification factor. Each image vector resulting from the 
lexicographical ordering of a PM×PN image f

{ Lk ffff ,,,,1 ……= } lf

l(a, b), 1 ≤ a ≤ M, 1 ≤ b ≤ N, that is, frames 
within the HR sequence are related through time, 

( ) ( ) ( )( ) ( )banbadbbadafbaf kl
y
kl

x
klkl ,,,,, ,,, +++=    (1) 

where  and  denote, respectively, the horizontal and vertical components of 

the displacement between the l-th and the k-th frames, 

( bad x
kl ,, ) )( bad y

kl ,,

( ) ( ) ( )( )badbadbad y
kl

x
klkl ,,,, ,,, = , and 

 represents the noise introduced due to motion compensation or registration. The 

above equation maps a gray level pixel value at location 

( ban kl ,, )
( )ba,  at time l to a gray level pixel 

value at location ( ) ( )( )badbbada y
kl

x
kl ,,, ,, ++  at time k. 

We rewrite (1) in matrix-vector notation as 
( ) klkkll ,, nfdCf +=      (2) 
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where ( )kl ,dC  is the (PM×PN)×(PM×PN) matrix that maps frame  to frame , and  the 

registration noise. 
lf kf kl ,n

The HR sequence, through filtering and downsampling, produces an (unobserved) 
uncompressed low resolution (LR) sequence, denoted by { }Lggg ,,1 …= , of size M×N×1. 

Each LR image , l=1, …, L is related to the corresponding HR image  by  lg lf

…,3,2,1, =+= llll νAHfg     (3) 

where  of size (PM×PN)×(PM×PN) describes the filtering of the HR image,  of size 
MN×(PM×PN) denotes the downsampling matrix, and ν

H A

l the noise process. Matrices  and 
 are both assumed to be known. We assume here for simplicity that all blurring matrices  

are the same, although they can be time dependent.  

A
H H

Combining (3) and (2) we obtain the equation describing the acquisition system, that is, 
( ) klkkll ,, efdAHCg +=     (4) 

where  is the acquisition noise representing the combination of the registration and 

filtering and downsampling noise processes. The problem at hand is to estimate the HR 
image frame f

kl ,e

k, given A, H and a set of LR images gl. In providing a solution to this 
estimation problem the motion vectors dl,k are required and therefore need to also be 
estimated. 
Let us now briefly describe the compression process. The LR frames are compressed with a 
hybrid motion compensated compression system resulting in { }Lyyy ,,1 …= , also of size 

M×N. During compression, frames are divided into blocks that are encoded with one or two 
available methods, intracoding or intercoding. For the first one, a linear transform such as the  
Discrete Cosine Transform (DCT) is applied to the block. The operator decorrelates the 
intensity data, and the resulting transform coefficients are independently quantized and 
transmitted to the decoder. For the second method, predictions for the blocks are first 
generated by motion compensating previously transmitted image frames. The compensation 
is controlled by motion vectors  that predict pixel ( jiv ml ,, ) ( )jiyl ,  from the previously coded 

frame . These motion vectors that predicts  from  are represented by the (2×M×N)×1 

vector  that is formed by stacking the transmitted horizontal and vertical offsets. The 

transformed by a linear transformation (such as DCT) and quantized prediction error along 
with the motion vectors form the bit-stream generated by the encoder, which in turn is used 
by the decoder to provide an estimate of the original video.   

my ly my

ml ,v

Using all this information, the relationship between the acquired low resolution frame and 

its compressed observation becomes 
lg

ly

( )[ ]{ } LlTQT llll ,,11 …=+−= − mmgy     (5) 

where  represents the quantization procedure, [ ]Q T  and 1−T  are the forward and inverse-

transform operations, respectively, and  is the motion compensated prediction of  lm lg

 6



formed by motion compensating the appropriate previously decoded frame/frames depending 
on whether the current frame at l is an I, P or B frame (see [30]). Note that, to be precise, we 
should make clear that  depends on  and only a subset of ; however we will 

keep the above notation for simplicity and generality. 
lm lv Lyy ,,1 …

To model the compression error, we assume that the quantization noise is dominant and 
approach the quantity  in (5) by ([ llTQT mg −−1 )] lQll ,εmg +− , where ( )lQlQ N ,, ,0~ Kε   and 

 is the covariance matrix of the quantization noise in the spatial domain at frame l. Using 

(4) , we then have in (5) 
lQ ,K

( ) lQkkll ,, εfdAHCy +=  .     (6) 

Estimates for  can be derived from the compressed bit-stream. For example, the noise 

variance  for transform index l is defined as 

lQ ,K

2
lσ 12

2
2 l
l

q=σ  when the quantization interval is 

uniform with step-size ql. Since errors in the spatial domain are related to errors in the 
transform domain by the inverse-transform operation, the needed covariance matrix is 
therefore expressed as 

( )TlTransformlQ TT 1
,

1
,

−−= KK      (7) 

where  is the covariance matrix describing the noise in the transform domain. Of 

course, other definitions could also be constructed. When additional noise is present in the 
observation though, the compressed bit-stream does not completely specify . Instead, the 

information about these other corrupting processes must also be included.  

lTransform ,K

lQ,K

From the above discussion we finally rewrite (6) as (see [5], [6], [31]), 

( ) ( )( ) (( )⎥⎦
⎤

⎢⎣
⎡ −−−∝ −

kklllQ
T

kkllklklP fdAHCyKfdAHCydfy ,
1
,,, 2

1exp,| )           (8) 

where  is the covariance matrix that describes the noise as defined in (7). lQ,K

As already mentioned  is the motion compensated prediction of  formed by motion 

compensating the appropriate previously decoded frame/frames. We then expect that given 
 and  

lm lg

kl ,d kf

( ) lMVkkll ,, ηfdAHCm +=  ,    (9) 

where 
   ( )lMVlMV N ,, ,0~ Kη      (10) 

and  is the covariance matrix describing the error between the uncompressed low 

resolution image and its motion compensated estimate. 
lMV ,K

Like the previous covariance matrix, an estimate for  can be extracted from the 

compressed bit-stream. This covariance matrix describes the transmitted displaced frame 

difference, and the variance at each transform index l could be defined as 

lMV ,K

12
2

22 l
ll

qc +=σ  , 

 7



where  is the decoded transform coefficient and  is the width of the quantization interval.  

The relationship in (7) then maps the variance information to the spatial domain. So, from the 
above discussion we can write (see [6], [31]) 

lc lq

( ) ( )( ) (( ⎥⎦
⎤

⎢⎣
⎡ −−−∝ −

kklllMV
T

kkllklklP fdAHCmKfdAHCmdfm ,
1

,,, 2
1exp,| ) )   (11) 

where  is the covariance matrix for the prediction error between the original LR frame lMV ,K

( )( )kkl fdAHC ,  and its motion compensation estimate . lm

We can now write the joint acquisition model of the low resolution compressed and motion 
compensated images given the high resolution image and motion vectors as  

( ) ( ) ( )∏ ==
l

klklklklk LlPPP ,,1       ,,|,|,|, ,, …dfmdfydfmy    (12) 

where  and { }Lmmm ,,1 …= { }kLkk ,,2,1 ,, dddd …= . 

In examining equations (8) and (11) it should be clear that there are pixels in the LR frame 
 that are unobservable in frame . These pixels represent, for instance, uncovered 

background or pixels entering the scene in . Analogously, since  is a prediction of  

(which may not be the same as the one obtained from ) there are pixels in the LR frame 

 that are unobservable in frame . As a consequence, either (8) or (11) or both are not 

applicable acquisition models for some low resolution pixels. Furthermore, even being 
observable, due to the inaccuracies of the motion estimator, there are additional pixels in  

and/or  which are not predictable from  and , to which models (8) and/or (11) are 

also not applicable. We examine in section 4 how such low resolution pixels can be detected 
and removed from the observation model. 

ly kf

kf lm ly

kf

lm kf

ly

lm kf kl ,d

 
 

3.  Regularization in High Resolution Estimation from Compressed Low 
Resolution Video 
 

The distribution  we use for , reflects the facts that we expect the images to be 

smooth within homogeneous regions and free of blocking artifacts; that is 

( )kP f kf

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ +−∝ 2

2
22

1
1

22
exp kkkP AHfQfQf λλ     (13) 

where  represents a linear high-pass operator that penalizes non-smooth,  represents a 

linear high-pass operator that penalizes estimates with block boundaries, and 
1Q 2Q

1λ  and 2λ  
control the relative contribution of the two terms. For a complete study of all the prior models 
used for this problem see Segall et al. [5]. 
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Constraints are also imposed on the high resolution motion vectors. Assuming that the 
displacements are independent between frames, an assumption that should be reviewed in the 
future, we can write 

( ) ( )∏=
l

klPP ,dd  .     (14) 

In addition, we can enforce  to be smooth within each frame, that is, kl ,d

( ) ⎥⎦
⎤

⎢⎣
⎡−∝

2
,3

3
, 2

exp klklP dQd λ     (15) 

where  represents a linear high-pass operator that, once again, penalizes the displacement 

estimates that are not smooth and 
3Q

3λ  controls the variance of the distribution (see again 

Segall et al. [5] for details). 
 
 

4.  Observable and Predictable Pixels from the High Resolution Image 
 
In order to determine which low resolution pixels will be used to reconstruct the high 
resolution image we make use of a fixed estimate, lf , of the high resolution image , 

l=1,…,L. Following [32] and [33] we calculate 
lf

lf  as  

( )22minarg AHxyQxf
x

−+= ll βα    (16) 

where Q  denotes the Laplacian operator and α  and β  are calculated following the approach 

in [32], [33]. We note here that since  is a blurred image, its bilinearly interpolated version 

could not serve as 
ly

lf . 

Let us now assume that kl ,
~d  and kf

~  are the current estimates of the high resolution motion 

vectors and image. The absolute value of the DFD is then given by 

( )( ) ( ) ( )( )( )nmCnmnmDFD kkllkkll ,~~,,~,~, ,, fdffdf −=    (17) 

will serve as a criterion for determining whether ( )nml ,f  is also observable or predictable by 

the current estimates kf
~  and kl ,

~d  (and eventually by the original  and  at convergence). kf kl ,d

A large value of the DFD detects a pixel in the HR image lf  that is either not present in the 

HR image kf
~  or is represented by a poor motion estimate. If ( )nml ,f  is detected as an 

unobservable or unpredictable pixel in kf
~  then all the observations in  that depend on it 

using the model defined in (3) should not be taken into account, in estimating the HR image 
. From now on we will use the term observable to denote both, observable and predictable 

pixels, but it is important to take into account that they correspond to two different scenarios. 

ly

kf
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To remove these LR pixels, we first note that  in (8) is a block matrix, consisting of 

64×64 sub-matrices, which they either represent the covariance of the 8×8 image blocks used 
by the Discrete Cosine Transform or they are zero representing the zero correlation of motion 
compensating errors in different blocks.  

lQ ,K

Let  be the  sub-matrix of the covariance matrix  corresponding to the image 

block where the unobservable low resolution pixel 

vu
lQ

,
,K ( vu, ) lQ ,K

( )qp,  in  is located. In order not to take 

into account this observation when estimating the high resolution image, we remove the row 
r and column r of , where 

ly

vu
lQ

,
,K qpr +⋅−= 8)1( . We apply the same procedure to all 

covariance sub-matrices corresponding to blocks with unobservable low resolution pixels. 

We then obtain new covariance sub-matrices ( )ovu
lQ

,
,K  and consequently a new covariance 

matrix, , for the compensating errors of all the low resolution pixels in  observable or 

predictable from . 

o
lQ,K ly

kf

We can now write the conditional distribution of the LR observation given the HR image we 
want to estimate as (updated form of (8)) 

( ) ( )( ) ( ) ( )( ⎥⎦
⎤

⎢⎣
⎡ −−−∝

−

kkl
o
l

o
l

o
lQ

T
kkl

o
l

o
lklk

o
lP fdHCAyKfdHCAydfy ,

1
,,, 2

1exp,| )  (18) 

where  is the LR image consisting of all the pixels in  observable from , and  and 

are, respectively, the covariance matrix and the downsampling matrix that are formed 

taking into account only observable pixels. 

o
ly ly kf o

lQ,K
o
lA

The image  is determined utilizing a threshold T for the DFD in (17), and represent the 

observable pixel map for T. 

o
ly

The same ideas are applied to the LR motion compensated observations in (11). We first 
upsample  by replacing  by  in (16) to obtain lm ly lm lm . We then use 

( ) ( ) ( )( )( )nmnmnmDFD kkllkkll ,,),(~,~, ,, fdCmfdm −=    (19) 

to detect unobservable pixels and following the same steps as with the LR compressed 
observation define 

( ) ( )( ) ( ) ( )( )⎥⎦
⎤

⎢⎣
⎡ −−−∝

−

kkl
o
l

o
l

o
lMV

T
kkl

o
l

o
lklk

o
lP fdHCAmKfdHCAmdfm ,

1
,,, 2

1exp,|      (20) 

where  is the LR image consisting of all the pixels in  observable from ,  is 

the covariance matrix from  in a similar fashion of obtaining  from , and  

is the downsampling matrix formed as before (the set of pixels resulting from (17) and (19) 
need not be the same). As before the image  represents the observable pixel map for T. 

o
lm lm kf o

lMV ,K

lMV ,K o
lQ,K lQ,K o

lA

o
lm

Note that in this section we have defined two observable pixel maps. One corresponding to 
the compressed LR observations and the other to the LR motion compensated observations. 
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5.  Estimating High Resolution Images 
 
Having described in the previous sections the HR image prior and the acquisition model, we 
turn now our attention to computing the HR frame and motion vectors. Our goal is then to 

find  and  that satisfy kf̂ d̂

( ) ( )[ ]dfmydfdf
df

,|,,maxargˆ,ˆ
,

k
oo

kk PP
k

=    (21) 

where the distribution of HR intensities is given in section 3 and the acquisition model is 
described in section 2 and modified in section 4 to consider only the LR pixels in y  and m  

observable from  and . kf d

Following [5], given  and equation (21) is solved with the use of the cyclic coordinate 
descent procedure [34]. An estimate for the displacements is first found by assuming that the 
HR image is known, so that 

oy om

( ) ( )[ ]dfmydd
d

,ˆ|,maxargˆ 1 q
k

ooq PP=+         (22) 

where q is the iteration index for the joint estimate.  
Treating the high resolution image as a known parameter, the estimate for the motion field in 
(22) can be found by the method of successive approximations 

( ) ( ) ( ) ( )( )[

( ) ( )( )]
⎪
⎭

⎪
⎬

⎫
+−+

⎪⎩

⎪
⎨
⎧

−
∂

∂
−=

−

−

=

+

)(
,333

)(
,

1
,

)(
,

1
,

,

,,)(
,

)1(
,

ˆ

ˆ
ˆ

)(
,,

i
kl

Tq
k

i
kl

o
l

o
l

o
lMV

q
k

i
kl

o
l

o
l

o
lQ

To
l

T

kl

q
kklkl

d
i
kl

i
kl

i
klkl

dQQfdHCAmK

fdHCAyKAH
d

fdC
dd

dd

λ

α

  (23) 

where, given , q
kf̂ )1(

,
+i
kld  and )(

,
i
kld  are respectively the (i+1)-th and i-th estimates of the 

displacement between frame k and l, ( )To
lA  defines the up-sampling operation, and  

controls the convergence and rate of convergence of the algorithm. At convergence, i=end, 

 is set to 

kl
d
,α

1
,

ˆ +q
kld )(

,
end
kld . 

The intensity information is then estimated by assuming that the displacement estimates are 
exact, that is 

( ) ( )[ ]11 ˆ,|,maxargˆ ++ = q
k

oo
k

q
k PP

k

dfmyff
f

.   (24) 

Once the estimate for the motion field is found, then the high resolution image is computed, 
the solution of (24) is found by using 
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( )( ) ( ) ( ) ( )( )[
( ) ( )( )] ( )

⎭
⎬
⎫

++−+

⎩
⎨
⎧

−−=

+−

+−

=

++ ∑

)(
222

)(
111

)(1
,

1
,

)(1
,

1
,

1

1
,

)()1(

ˆ

ˆˆ

i
k

o
l

TTo
l

Ti
k

Ti
k

q
kl

o
l

o
l

o
lMV

i
k

q
kl

o
l

o
l

o
lQ

L

l

To
l

TTq
klf

i
k

i
k

fHAQQAHfQQfdHCAmK

fdHCAyKAHdCff

λλ

α
    (25) 

where, given , 1
,

ˆ +q
kld )1( +i

kf  and )(i
kf  are respectively the (i+1)-th and i-th estimates of the HR 

image , kf fα  is a relaxation parameter that determines the convergence and rate of 

convergence of the algorithm, and ( )( )Tq
kl
1

,
ˆ +dC  compensates an image backwards along the 

motion vectors. At convergence, i=end,  is set to 1ˆ +q
kf )(end

kf . 

The displacement information is re-estimated with the result from equation (23) and the 
process iterates until convergence. 
In our experiments we have found that the initial estimate of the HR image is quite important 
in determining the quality of the final solution. In the experimental section we will compare 
the use of the bilinear interpolation of  and the solution of (16) for . ky ky

The process of finding the HR image and motion vectors is summarized as follows: 

Let  and be the initial estimates of the HR image and motion vectors. Find  and 

 following the procedure described in section 4 for the estimates  and 

0ˆ
kf 0d̂ oy

om 0ˆ~
kk ff = 0ˆ~ dd = , 

For q=0,…, and until a convergence criterion is met 

1.Find  by solving (23). 1ˆ +qd

2.Find  by solving (25). 1ˆ +q
kf

3.Following the procedure described in section 4, use  and 1ˆ~ += q
kk ff 1ˆ~ += qdd  to find the 

new observable pixels  and . oy om
 
 
6.  Experimental Results 
 
In order to illustrate the performance of the proposed method to obtain an HR image from a 
compressed LR sequence, a sequence of experiments has been performed on the 352x288 
central part of the “mobile” sequence. Figures 2(a)-(c) show three original HR frames of this 
sequence. Each frame in the sequence is blurred with a 2x2 mean filter and downsampled by 
a factor of two, thus obtaining a sequence of images of size 176x144. This LR sequence was 
then compressed using the MPEG-4 coder. The sequence was encoded at 30 frames per 
second using an IPPP... strategy so that all frames, but the first one which is intra-coded, are 
inter-coded as P-frames. The VM5+ rate control was used to achieve a bit rate of 1024 kbps. 
Once decoded, the reconstructed frames and the information from the decoder were used as 
inputs to the resolution enhancement method. The resulting decoded frames corresponding to 
the frames shown in figures 2(a)-(c) are depicted in figures 2(d)-(f). 
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(a)      (b) 

 

   
(c)      (d) 

 

   
(e)      (f) 

 
Fig. 2. (a)-(c) Three consecutive frames (numbers 8, 9 and 10) of the original “mobile” 
sequence. (d)-(f) Their corresponding compressed low resolution frames. The frames have 
been scaled by zero-order hold to the high resolution image size. 
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(a)      (b) 

 

  
(c)      (d) 

 

Fig. 3. Both, compressed low resolution and motion compensated images are considered in 
the observation model with  and yy =o mm =o . (a) Initial high resolution image obtained by 

bilinear interpolation of image . (b) Initial high resolution image obtained by the solution 

of (16) for (Method II). (c) Reconstruction using bilinear interpolation as initial image 

estimation. (d) High resolution estimate using the image provided by method II as initial high 
resolution image estimate. 

ky

ky

 
 
In order to reconstruct frame 9, two previous and two frames after frame 9 were considered. 
Following [6], for all the tests, the covariance matrices  and  were calculated using 

the parameters from the bit-stream. Matrices  and  correspond to the Laplacian 

operator while matrix  performs the difference between pixels on the 8x8 block 

boundaries. Parameters for the prior models were empirically chosen to be 

lQ ,K lMV ,K

1Q 3Q

2Q

01.01 =λ , 

023.02 =λ  and . 5
3 10=λ
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Fig. 4. PSNR evolution with threshold values for the observable pixel map for { }, when 

compressed low resolution motion compensated images { } are not used in the observation 

model. 

ly

lm

 
 
The initial motion estimates were obtained using the motion estimation method described in 
section 5 with four resolution levels. A gradient descent algorithm was used to solve (22) in 

an iterative fashion until two consecutive motion estimates,  and , satisfy new
kl ,d̂ old

kl ,d̂

92

,

2

,, 10ˆ/ˆˆ −<− old
kl

old
kl

new
kl ddd , obtaining then the new high resolution displacements 

. Using the new motion estimate , the gradient descent method used to solve 

(24) iterates until 

new
kl

q
kl ,
1

,
ˆˆ dd =+ 1ˆ +qd

622
10ˆ/ˆˆ −<− old

k
old
k

new
k fff . The new estimate of the high resolution image, 

, is set to . The whole coordinate descent iterative procedure stops when 1ˆ +q
kf new

kf̂

7221 10/ −+ <− q
k

q
k

q
k fff  or a maximum number of 25 iterations is reached. 

In order to test the influence of the initial image estimate on the estimation process we chose 
two different initial images. First, the decoded low resolution image was bilinearly 
interpolated (Method I) to the size of the high resolution image (figure 3(a)), resulting in a 
PSNR of 29.19dB. As described in section 5, we also used as initial high resolution image 
estimate the solution of (16) for  (Method II) resulting in a PSNR of 30.63dB (figure 3(b)). ky
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(a)      (b) 

 

Fig. 5. (a) High resolution estimate with a threshold of 255 for the DFD defined in (17). (b) 
High resolution estimate with a threshold of 15 in (17). The compressed low resolution 
motion compensated images { } are not taken into account in the observation model. lm

 
 
The algorithm summarized at the end of section 5 was first executed using both compressed 
low resolution and motion compensated images and  and yy =o mm =o . Using as initial HR 
images the ones provided by Methods I and II above. The resulting HR reconstructed images 
are displayed in figures 3(c) and 3(d), respectively. Their corresponding PSNRs are 31.95dB 
(after 25 iterations) and 32.20dB (after 17 iterations), respectively. These figures support the 
intuitive idea that the initial point should not drastically condition the result of the estimation 
algorithm. In fact, both resulting images are visually indistinguishable. The solution obtained 
by starting with the image provided by Method II seems to provide slightly better results with 
a lower number of iterations since it was already closer to the real solution. The remaining 
results will be presented using as initial high resolution estimate the one provided by Method 
II. 
We also tested the influence of the observable pixel maps on the solution, as well as, the 
importance of the use of the conditional distribution ( )klklP .,| dfm  in the observation model. 

First, we did not use this conditional distribution and executed the algorithm with different 
thresholds for the DFD defined in (17). The obtained PSNRs are plotted in figure 4. From this 
plot we note that the PSNR for a threshold of 255 in (17), that is, when all pixels are 
observable, is 32.08dB while the maximum obtained PSNR is 32.52dB which is achieved for 
a threshold of 15. Figure 5 shows the corresponding reconstructed images where this 
improvement is also visible, especially in the upper right part of the image. 
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Fig. 6. In white, observable pixels  in  in frames 7, 8, 10 and 11 for a threshold of 15 in 

(17). 

o
ly ly

 

 
Fig. 7. PSNR evolution with the value of the thresholds in (17) and (19) for the observable 
pixel maps. 
 
 
The observable pixel maps for frames 7, 8, 10 and 11 for a threshold T=15 are depicted in 
figure 6. These figures show that the best PSNR is obtained  by considering as unobservable 
not only the pixels that have no prediction from the reference frame, that is, the borders of the 
image that appear or disappear but also the pixels where the predicted value via motion 
compensation is not very close to the current frame value.  
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Fig. 8. Upper figures, observable pixel maps for the compressed low resolution frames 7, 8, 9 
and 10 for a threshold in (17) of 16;  Lower figures, observable pixel maps for the low 
resolution motion compensated frames 7, 8, 9 and 10 for a threshold in (19) of 7. 
 
 
When we include both  and ( )klklP .,| dfm ( )klklP .,| dfy  in the observation model, the 

results are slightly better. As in the previous experiment, we consider different thresholds for 
the DFDs in (17) and (19). Since we have two different DFDs we combined the values of the 
thresholds for both of them obtaining the PSNR values plotted in figure 7. A threshold of 
T=255 for both compressed low resolution observations and motion compensated images 
produces  and  and a PSNR of 32.20dB. The highest PSNR is obtained when 
the thresholds in (17) and (19) are set to 16 and 7, respectively, obtaining a PSNR value of 
32.61dB. Figure 8 shows the observable pixel maps for thresholds 16 and 7 in (17) and (19), 
respectively. Figure 9 depicts the reconstructed image for these thresholds values. The image 
corresponding to a threshold value of 255 for both compressed low resolution and motion 
compensated observations has already been shown in figure 3(d). 

yy =o mm =o

Note that the proposed algorithm clearly improves the quality of the reconstruction when 
using appropriate thresholds for the observable pixel maps since it removes the prediction 
errors that introduce inaccurate information in the HR image. Note also that most of the 
removed pixels correspond to frame 7, a frame at distance 2 from the objective frame under 
reconstruction, where the motion estimate is not very accurate. Note also that most of the 
pixels around edges are removed from  when using the maps in figure 8. This is expected 

since, in general, prediction errors in  are concentrated in zones with high spatial activity 

and contours of image objects. Figure 10 shows two zoomed up portions of Fig. 3(d) and Fig. 
9 where it is clearly appreciated how the incorporation of the observable pixel maps helps to 
reduce artifacts around edges while obtaining a crisp and well resolved high resolution 
estimation, see however the number 4 in figure 10(a) and 10(b). 

lm

lm
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Fig. 9. High resolution image reconstruction with observable pixel maps corresponding to 
thresholds 16 and 7 for compressed low resolution and motion compensated observations 
respectively. 
 

  
(a) 

 

  
(b) 

 

Fig. 10. (a) Two details of the image in Fig. 3(d). (b) Two details of the image in Fig. 9. 
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7.  Conclusions 
 
In this paper we have examined which pixels in a compressed low resolution sequence 
provide useful information in calculating the high resolution image we are trying to estimate. 
We have also studied which low resolution motion compensated pixels should be used to 
increase the quality of image we are reconstructing. The process to remove unobservable or 
poorly predicted pixels has led to modify the acquisition model in order not to take into 
account those observations. The proposed approach was tested on real compressed video 
sequences with satisfactory results. 
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