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Variational Bayesian Image Restoration with a
Product of Spatially Weighted Total Variation Image

Priors
Giannis Chantas, Nikolaos Galatsanos, Rafael Molina, and Aggelos Katsaggelos

Abstract—In this paper a new image prior is introduced and
used in image restoration. This prior is based on products of
spatially weighted Total Variations (TV). These spatial weights
provide this prior with the flexibility to better capture local image
features than previous TV based priors. Bayesian inference is
used for image restoration with this prior via the variational
approximation. The proposed restoration algorithm is fully au-
tomatic in the sense that all necessary parameters are estimated
from the data and is faster than previous similar algorithms.
Numerical experiments are shown which demonstrate that image
restoration based on this prior compares favorably with previous
state-of-the-art restoration algorithms.

I. INTRODUCTION

IMage restoration is a mature image processing topic with
an over 30 year long history. This problem is well known

to be ill-posed and consequently it requires regularization [1].
The field of image restoration is very broad. Thus an attempt

to survey it and do justice to all its contributors is outside the
scope of this paper. Therefore in what follows we reference
only image restoration methods directly related to the proposed
work.

Total Variation (TV) is a powerful concept for robust
estimation [2]. It was first introduced as a regularizer for image
restoration in [5]. Since then it has been used extensively and
with great success for inverse problems because TV has the
ability to smooth noise in flat areas of the image and at the
same time preserve edges. For certain recent developments on
TV based image recovery the interested reader is referred to
[4] and [3].

Nevertheless, TV-based image restoration has certain short-
comings. One of them is the selection of the regularization
parameter which to a large extent until recently has been
ad-hoc. Rudin et al. [5] consider the minimization of the
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TV energy function constrained by the sum of the square
of the observation errors being equal to Nσ̂2, where σ̂2

represents an estimate of the noise variance, and N is the
number of observations, and then proceed to estimate both
the image and the associated Lagrange multiplier to this
constrained optimization problem. Bertalmio et al. [24] make
the Lagrange multiplier region dependent. Bioucas-Dias et
al. [12], using their majorization-minimization approach [13],
propose a Bayesian method to estimate the original image and
regularization parameter assuming that an estimate of the noise
variance is available. Recently, a Bayesian inference frame-
work which requires the approximation of the prior partition
function and is based on the variational approximation was
proposed to handle the simultaneous parameter and image
estimation [14].

An alternative image model has recently been proposed
based on the combination of several image priors [11], [23]
and [16]. It combines in product form multiple probabilistic
models. Each individual model gives high probability to data
vectors that satisfy just one constraint. Vectors that satisfy
only this constraint but violate others are ruled out by their
low probability under the other terms of the product model.
Such priors were learned in [11] and [23] using a large
training set of images and stochastic sampling methods, in
contrast to the approach proposed in [16] where the product
prior is learnt only from the observations. Each term in the
product defining the prior in [16] corresponds to the output
of a high-pass linear filter and is Student’s-t distributed. The
main contribution of [16] is the introduction of a Bayesian
inference methodology based on the constrained variational
approximation that bypasses the difficulty of evaluating the
normalization constant of product type priors.

Variational based Bayesian inference using TV and
Student’t-t priors for the image has been used with success
for blind image deconvolution (BID) problems also. In [17] a
TV prior was used for the image while Gaussian priors were
used for the point spread function (PSF). In [18] a Student’s-t
prior in product form was used for the image. However, the
normalization constant for this prior was approximated. In [18]
also a kernel based sparse Student’s-t prior was used for the
PSF. This prior provides a mechanism, for the first time, to
estimate the spatial support of the PSF also.

In this paper we contribute to the field of prior image
modeling by combining the advantages of TV image mod-
eling in [14] and Student’s-t Product of Experts (PoE) image
modeling in [16]. The new image model has a number of
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novel features. First, unlike [14] and [12], it uses a spatially
weighted version of the TV. These spatial weights provide the
prior with the flexibility to model explicitly the local salient
features of the image. Second, as in [16], it is in product
form, it is spatially weighted and it has the ability to enforce
simultaneously a number of different properties on the image.
This new prior can use arbitrary linear operators, not just
first order differences as in TV and can combine them, in
contrast to [16], in a non-linear manner. In order to avoid
the over parameterization due to the spatially varying nature
of the herein proposed prior, a model with two layers of
hidden variables is proposed, which extends the one used in
[15] and [16]. If the hidden variables of the second layer are
marginalized the resulting density function has similar form
to a Student’s-t pdf thus we refer to it as Modified Student’s-t.

Due to the complexity of this model we resort to the varia-
tional approximation for Bayesian inference [6]. Specifically,
we develop several extensions of the methodologies used in
[14] and [16]. First, to bypass the difficulties due to the non-
quadratic nature of the new prior, we find a quadratic bound
to the variational bound [14]. However, the bound used here,
unlike the one in [14] is explicitly locally adaptive. Second, we
use the constrained variational framework [16] (but tailored
explicitly to locally adaptive filters) in order to bypass the
problem of computing the partition function of the new prior.

Finally, we also propose a new iterative method to compute
the diagonal elements of very large inverse matrices that
are necessary for the herein proposed Bayesian inference
algorithm. Similar computations are also required in [14].
However, in this work these matrices were approximated by
circulants that can be explicitly inverted. The herein method is
conjugate-gradient based and results in a significant improve-
ment in the speed of the overall restoration algorithm as com-
pared to the algorithm in [16]. Furthermore, the computation
of the diagonal elements of the inverses of similar matrices
required in sparse Bayesian models is a problem that has
been known for a while in the machine learning community
[7]. However, the recursive approach proposed in [8] cannot
be applied to imaging problems due to their extremely large
dimensionality [9].

The rest of this paper is organized as follows. In section II
we present the imaging and image models. In section III we
present the variational algorithm for Bayesian inference. In
Section IV a brief discussion is presented of the mechanisms
that introduce spatially adaptive regularization when TV and
Student’s-t based priors are used. In section V we present the
details of the computational implementation of our algorithm.
In section VI we present numerical experiments, and in section
VII conclusions and future work.

II. IMAGING AND IMAGE MODEL

In what follows we use one dimensional notation for sim-
plicity. Let f be the original image represented as an N × 1
vector, blurred by a convolutional operator H, of size N ×N .
The degraded observation is given by

g = Hf + n, (1)

where n is the noise N×1 vector modeled as white Gaussian,
i.e., n ∼ N(0, β−1I), where 0 and I are the N × 1 zero and
N ×N identity matrices, respectively, and β−1 represents the
noise variance.

A. Modified Student’s-t image prior

Image priors in product form are very attractive since they
have the ability to enforce simultaneously many properties on
an image; see for example [16]. For this purpose we propose
herein a prior in product form for the image. To define such
a prior we introduce P pairs of linear convolutional operators
(filters) (Q1,Q2, ), (Q3,Q4), . . . , (Q2P−1,Q2P ) of size N×
N and assume that the filter outputs ε = (ε1, . . . , ε2P ) are
produced according to

εl = Qlf , l = 1, . . . , 2P. (2)

Then, for each pixel location i, it is assumed that each pair
ε2k(i) and ε2k−1(i) is jointly distributed with probability
density function

p(ε2k(i), ε2k−1(i)|ak(i)) =
λ2
kak(i)2

2π
exp

(
−λkak(i)

√
ε2k(i)2 + ε2k−1(i)2

)
. (3)

with k = 1, . . . , P and i = 1, . . . , N where N is the number
of pixels in the image.

Notice that for P = 1 and Q1 and Q2 the first order
horizontal and vertical difference operators and ak(i) = a,
the prior becomes identical in form to the total-variation (TV)
based prior proposed in [12] and [14]. However, the prior
proposed herein is more general because it can use any linear
operator not just first order differences. Notice also that ak(i)
varies for every pixel i which makes it, in contrast to the model
used in [14], [12], explicitly spatially adaptive.

In other words, in the herein prior the outputs ε2k(i) and
ε2k−1(i) of the pairs of the operators Q2k and Q2k−1 in
Eq. (3) are assumed to be differently distributed per pixel i.
This is captured by the spatially varying weights ak(i) which
conceptually play the role of the precision (inverse variance)
of the ”local TV” given by

√
ε2k(i)2 + ε2k−1(i)2. In contrast

previous TV priors in [14], [12] are of the form

p(ε2k(i), ε2k−1(i)|ak) =
λ2
ka

2
k

2π
exp

(
−λkak

√
ε2k(i)2 + ε2k−1(i)2

)
, (4)

with k = 1, . . . , P and i = 1, . . . , N . Thus, ε2k(i), ε2k−1(i)
are assumed to be identically distributed over the entire image.
Clearly, the herein spatially weighted TV prior in Eq. (3)
provides more flexibility in capturing the local properties of
the image than the previous ones in [12], [14].

Finally notice also that when the energy term in Eq. (3)
is used without the square root and ε2k(i) = ε2k−1(i), this
prior simplifies to the one used in [16]. However, as it has
been extensively reported in the literature non-quadratic energy
priors produce better results than quadratic ones.

One drawback of the herein prior is the over-
parameterization problem since PN unknowns ak(i) have to
be estimated from N data points. In order to ameliorate this
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problem we assume that each ak(i) is a Gamma distributed
hidden random variable [15], [16] according to:

p(ak(i)) = Gamma(ak(i); νk/2, νk/2) (5)
k = 1, . . . , P, i = 1, . . . , N.

Note that this distribution on ak(i) is flexible enough to
provide a range of restrictions on ak(i): from very vague
information, which would be modeled when νk → 0, to very
precise information which is obtained when νk → ∞. Note
also that from the definition in (5), for a given k, all the ak(i)
coefficients come from the same distribution with variance
moving from infinity to zero, as νk changes from zero to
infinity.

The marginal distribution of ε2k(i) and ε2k−1(i) can be
computed in closed form and is given by

p(ε2k(i), ε2k−1(i))

=
∫
ak(i)

p(ε2k(i), ε2k−1(i)|ak(i))p(ak(i))dak(i)

=
Γ(νk/2 + 1/2)

Γ(νk/2)

(
λk
πνk

)1/2

×

(
1 +

λk
√
ε2k(i)2 + ε2k−1(i)2

νk

)−νk/2−1/2

(6)

for k = 1, 2, . . . , P and i = 1, 2, . . . , N .
This density function is very similar in form to the

Student’s-t pdf which is given by [6]

p(x) =
Γ(ν/2 + 1/2)

Γ(ν/2)

(
λ

πν

)1/2(
1 +

λx2

ν
,

)−ν/2−1/2

(7)

thus, in the rest of this paper we label it as Modified Student’s-
t. It is important to note that this prior combines the advantages
of both TV-based and Student’s-t based priors. The former
being the ability to suppress noise and maintain edges in an
image beyond the capabilities of linear filters [12], [14] and the
latter being the ability to explicitly introduce spatial adaptivity
through the hidden random variables ak(i), which improves
the prior modeling used in [15], [16].

At this point we note that we have not provided a prior
for the image, p(f). This was intentional, because we cannot
compute it in closed form. More specifically, it is difficult to
define a prior for the image f based on the prior in Eq. (3)
because we cannot compute the partition function for such
prior. First, the non-quadratic exponent in the pdf in Eq. (3)
makes this calculation intractable even if our prior was not
in product form (P = 1). Furthermore, if we want to use a
prior in product form (P > 1) even with a quadratic exponent
it is not possible to compute the partition function [16].
Consequently, in the next section we bypass the calculation
of the partition function when the prior is defined on f by
working in the domain of the filter outputs ε [16], where the
prior in (3) can be used directly and there is no need to define
a prior for f . The downside of this choice is that it is not
obvious how to merge the estimates of all the εl, l = 1, . . . 2P ,
to generate one estimate for f . To handle this problem we will
propose the use of the constrained variational approach in the
next section.

In order to define the observation model in terms of
εl, l = 1, . . . , 2P , let us examine in some detail the prior
model we are using. Let us consider the image model in (3).
If we remove one component from it, for instance ε2k−1(i),
we have a Laplace distribution with parameter λkak(i). Since
we consider jointly ε2k(i) and ε2k−1(i) its partition function is
proportional to 1/(λkak(i))2. Consequently, given k we have
two possible explanations for the data, one associated with ε2k
and the other with ε2k−1.

We thus introduce an alternative observation model, which
is derived by applying the operators Ql to the original imaging
model in (1). This yields:

yl = Hεl + nl, l = 1, . . . , 2P, (8)

where yl = Qlg, nl = Qln and thus nl ∼ N(0, β−1QlQT
l ).

We finally arrive at the Bayesian modeling of our problem,
that is,

p(y, ε,a; θ) = p(y|ε)p(ε|a; θ)p(a; θ), (9)

where y = (y1, . . . ,y2P ), ε = (ε1, . . . , ε2P ), with
εl = (εl(1), . . . , εl(N)), a = (a1, . . . ,aP ), with
ak = (ak(1), . . . , ak(N)) k = 1, . . . , P , and θ =
(λ1, . . . , λP , ν1, . . . , νP ), with the above probability distribu-
tions defined by

p(y|ε) =
2P∏
l=1

p(yl|εl), p(yl|εl) = N(εl, β−1QlQT
l ),

(10)

p(ε|a; θ) =
P∏
k=1

N∏
i=1

p(ε2k(i), ε2k−1(i)|ak(i)), (11)

and

p(a; θ) =
P∏
k=1

N∏
i=1

p(ak(i); θ). (12)

This Bayesian model will be used for inference in the next
section where we treat ε and a as hidden variables and θ as
a parameter vector to be estimated. Observe that we use the
notation p(.; θ) to denote that θ is a set of hyperparameters
which are not treated as random variables. We could also have
used pθ(.). Notice also that we assume that the noise precision
parameter β is assumed to have been previously estimated.

III. VARIATIONAL INFERENCE WITH THE MODIFIED
STUDENT’S-T PRIOR

According to Bayesian inference we have to find the poste-
rior distributions for the hidden variables ε and a given y
and the parameter vector θ. However, the marginal of the
observations which is required to find the posteriors of the
hidden variables is hard to compute [6]. More specifically, the
integral

p(y; θ) =
∫

ε,a

p(y, ε,a; θ)dεda (13)

is intractable.
The variational algorithm that we describe in what follows,

bypasses this difficulty and maximizes a lower bound that
can be found instead of the log-likelihood of the observations
log p(y; θ) [6], [10]. This bound is obtained by subtracting
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from log p(y; θ) the Kullback-Leibler divergence, which is
always positive, between an arbitrary q(ε,a) and p(ε,a|y; θ),
that is,

L(q(ε,a), θ) = log p(y; θ)−KL(q(ε,a)||p(ε,a|y; θ)), (14)

and is equal to

L(q(ε,a); θ) =
∫

ε,a

q(ε,a) log p(ε,a,y; θ)dεda

−
∫

ε,a

q(ε,a) log q(ε,a)dεda. (15)

When q(ε,a) = p(ε,a|y; θ), this bound is maximized
and L(q(ε,a); θ) = log p(y; θ). Because the exact posterior
p(ε,a|y; θ) = p(ε,a,y;θ)

p(y;θ) cannot be found we use an ap-
proximation of the posterior. The mean-field approximation
is a commonly used approach to maximize the variational
bound w.r.t. q(ε,a); θ [6], [10]. According to this approach
the hidden variables are assumed to be independent, i.e.,
q(ε,a) = q(ε)q(a). However, for the herein model this is
still not sufficient to obtain a closed form for q(ε) which is
necessary for inference using this approach. More specifically,
the square root in the joint p(ε,a,y; θ) which originates from
the prior p(ε|a) makes the definition of q(ε) intractable.

A. A Lower Bound for L(q(ε,a), θ)
For this purpose we also introduce a lower bound on L [14].

More specifically, we use the inequality
√
w ≤ w + u

2
√
u
, (16)

which holds for w ≥ 0 and u > 0. Notice that equality holds
when w = u. This inequality is used at every pixel i by setting
wk(i) = ε2k(i)2 +ε2k−1(i)2, for k = 1, 2, . . . , P , where uk(i)
are auxiliary variables used for this approximation. Using this
and the prior in Eq. (3) we have

p(ε2k(i), ε2k−1(i)|ak(i)) ≥M(ε2k(i), ε2k−1(i), uk(i), ak(i))
(17)

where

M(ε2k(i), ε2k−1(i), uk(i), ak(i)) =

λ2
kak(i)2

2π
exp

(
−λkak(i)

2
ε2k(i)2 + ε2k−1(i)2 + uk(i)√

uk(i)

)
,

(18)

for k = 1, . . . , P .
We also define uk = (uk(1), . . . , uk(N)) and u =

(u1,u2, . . . ,uP ). Let us now define

Lb(q(ε), q(a),u, θ) =
∫

ε,a

q(ε)q(a) log
F (y, ε,a; u, θ)
q(ε)q(a)

dεda,

(19)
where

F (y, ε,a; u, θ) = p(y|ε)

×

[
P∏
k=1

N∏
i=1

M(ε2k(i), ε2k−1(i), uk(i), ak(i))

]
p(a; θ).

(20)

Then, since F (y, ε,a; u, θ) ≤ p(y, ε,a) we have

Lb(q(ε), q(a),u, θ) ≤ L(q(ε,a), θ), (21)

and consequently the bound becomes tight when

max
u

Lb(q(ε), q(a),u, θ) ≤ L(q(ε,a), θ). (22)

Notice that the new lower bound Lb is quadratic in the hid-
den variables ε, thus it is possible to find q(ε) that maximizes
it. In contrast, the original bound L was not quadratic in ε.

B. A Constrained Variational Inference Algorithm

As we have already explained, εl, l = 1, . . . , 2P , are used
instead of f to avoid the computation of the normalization
constant of the prior on f . Thus, a question that needs to be
addressed is how one finds f given the different q(εl).

Unconstrained maximization of the bound
Lb(q(ε), q(a),u, θ) results in q(εl) = N(ml,Rl),

where Rl = Ql

(
βHTH + QT

l λk〈A〉lU
−1/2
l Ql

)−1

QT
l ,

ml = βRlQl
−THTg, with l = 1, . . . , 2P ,

Ul = diag{ul(1), . . . , ul(N)}, k = dl/2e, and
〈A〉l = diag{〈al(1)〉a, . . . , 〈al(N)〉a}, where 〈.〉a denotes
the expectation w.r.t the distribution of a.

Clearly each ml suggests a different estimate for f given
by f̂ = Ql

−1ml. Thus, one needs to find a methodology to
merge the information from all q(εl) into one estimate of f .

For this purpose the constrained variational approximation
first proposed in [16] is applied. According to this approach,
each q(εl) is constrained to have the form:

q(εl) = N(Qlm,QlRQT
l ), (23)

where m is a N × 1 vector, taken as the mean of
the image, and R the N × N image covariance ma-
trix. This form is consistent with the equation εl =
Qlf for which ε̄l = E [εl] = QlE [f ] = Qlm and
E
[
(εl − ε̄l)(εl − ε̄l)T

]
= QlE

[
(f −m)(f −m)T

]
QT
l =

QlRQT
l with R = E

[
(f −m)(f −m)T

]
. Using this approx-

imation the parameters m and R are learned instead of q(εl)
according to the herein constrained variational methodology.

We now present the maximization method by giving the
updates for the variables of the bound Lb in the j-th iteration.
In the VE-step, the maximization of Lb(q(ε), q(a),u, θ) is per-
formed with respect to q(a), m and R keeping u and θ fixed,
while in the VM-step, the maximization of Lb(q(ε), q(a),u, θ)
is performed with respect to u and θ keeping q(a), m, and R
fixed. We have,

VE-step:

[mj ,Rj , qj(a)] = arg max
m,R,q(a)

Lb(q(ε), q(a),uj−1, θj−1)

(24)
VM-step:

[uj , θj ] = argmax
u,θ

Lb(qj(ε), qj(a),u, θ) (25)

The updates for the VE-Step are derived in the Appendix.
These are

qj(εl) = N(Qlmj ,QlRjQT
l ), (26)
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where

mj = βRjHTg, (27)

Rj = (βHTH

+
1

2P

P∑
k=1

1∑
i=0

λk
j−1QT

2k−i〈Ak〉j−1(U−1/2
k )j−1Q2k−i)−1.

(28)

From the above equations it is clear that m merges infor-
mation from all filters Ql and is used as the estimate of f .

Finally, the approximate posterior of a in the VE-step is
given by

qj(ak(i)) =

Gamma

(
ak(i);

νj−1
k

2
+ 2,

νj−1
k

2
+ λj−1

k

√
uj−1
k (i)

)
for i = 1, . . . , N and k = 1, 2, . . . , P . Thus, the expectation
of ak(i) w.r.t qj(ak(i)) is

〈ak(i)〉qj(a) =
νj−1
k + 4

νj−1
k + 2λj−1

k

√
uj−1
k (i)

(29)

In the VM-step, the bound is maximized w.r.t to the param-
eters. To find uj we have to solve

ujk(i) = arg min
uk(i)

〈ε2k(i)2 + ε2k−1(i)2〉qj(ε) + uk(i)√
uk(i)

(30)

where 〈.〉qj(ε) represents the expectation w.r.t. qj(ε), which
produces

ujk(i) = 〈ε2k(i)2 + ε2k−1(i)2〉qj(ε)

=
1∑
r=0

((mj
2k−r(i))

2 + Cj
2k−r(i, i)) (31)

for i = 1, . . . , N and k = 1, 2, . . . , P , where

mj
2k−r = Q2k−rmj , Cj

2k−r = Q2k−rRjQT
2k−r. (32)

For λk we have that

Lb(qj(ε), qj(a),u, θ) = 2N
P∑
k=1

log λk

−
P∑
k=1

N∑
i=1

λk〈ak(i)〉qj(a)

√
ujk(i) + constant (33)

when this function is considered to be as a function of λk
only. Thus, the update formula is

λjk =
2N∑N

i=1〈ak(i)〉qj(a)

√
ujk(i)

. (34)

Similarly, for νk, k = 1, 2, . . . , P , we have that

Lb(qj(ε), qj(a),u, θ) =
νk
2

N∑
i=1

〈log ak(i)〉qj(a)

− νk
2

N∑
i=1

〈ak(i)〉qj(a) −NΓ
(νk

2

)
+ N

νk
2

log
(νk

2

)
+ constant (35)

when this function is considered as a function of νk only. Then
νjk is the root of the function φ which is proportional to the
derivative of Lb(qj(ε), qj(a),u, θ) with respect to νk

φ(νk) =
1
N

N∑
i=1

log〈ak(i)〉qj(a) −
1
N

N∑
i=1

〈ak(i)〉qj(a)

+ ψ

(
νj−1
k

2
+ 2

)
− log

(
νj−1
k

2
+ 2

)
− ψ

(νk
2

)
+ log

(νk
2

)
+ 1, (36)

where ψ is the digamma function. We find φ(νjk) = 0
numerically using the bisection method.

IV. SPATIAL ADAPTIVITY WITH TV AND STUDENT’S-T
BASED PRIORS

At this point it is worth commenting on the spatial adaptivity
properties of the restoration filter provided by the combination
of the TV and Student’s-t priors as compared to those that use
only Student’s-t and TV priors in [16] and [14], respectively.

When a TV prior is used within the Bayesian framework
in [14] the prior introduces an automatic mechanism for
spatially adaptive regularization in the restoration filter. This
mechanism is manifested by the diagonal spatial adaptivity
matrix [W(uk)]ii = 1√

uki
(Eq. (34) in [14]) which is used in

the restoration filter defined in Eq. (48) in [14]. The elements
of this matrix are inversely proportional to the square root of
the local spatial activity of the pixels of the image. In other
words, the value of uki = 〈(∆h

i (x))2 + (∆v
i (x))2〉q(x) in Eq.

(36) of [14] captures the local activity at location i when the
”traditional” TV prior model is used.

Very interestingly, this term is the same as the term com-
puted herein as uk(i) in Eq. (31). The difference between
the herein and the [14] approaches lies in the computation
of the second term Cj

2k−r(i, i) in Eq. (31). This term reg-
ularizes the local spatial activity, obtained by the first term
((mj

2k−r(i))
2 of Eq. (31) which in flat areas of the image

can be zero yielding a spatial adaptivity matrix with infinite
valued elements. The exact calculation of the term Cj

2k−r(i, i)
is hard. As evidenced from Eq. (32), it requires the evaluation
of the diagonal elements of a product of square N × N
matrices which is of the form QR−1Qt where N is the
number of pixels of the image and Q a convolutional operator.
However, R does not have a form which is amenable to
easy inversion. In this work this term is computed by an
iterative algorithm which converges to the exact result and
gives a Cj

2k−r(i, i) which is spatial variant. This algorithm is
explained in more detail in the next section. In [14] this term
is approximated by assuming a block-circulant covariance for
q(x). This approximation yields a regularization term for the
visibility weights which is constant for the entire image.

When a Student’s-t prior is used in the Bayesian framework
in [16] spatial adaptivity is again automatically introduced in
the restoration filter. The diagonal matrices Âl in Eq. (3.11)
with elements al(i) for l = 1, 2, . . . , 2P given by Eq. (3.13)
(both equations in [16]) play this role. Specifically, the al(i)
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are the local precisions of the filter outputs εl(i) according to
p(εl(i)/al(i)) = N(0, (al(i))−1).

Notice that now the spatial adaptivity matrix does not con-
tain a square root, it is just inversely proportional to the local
spatial activity captured by the second term of the denominator
of Eq. (3.13) in [16]. However, in this case the weights of the
spatial adaptivity matrix contain two regularization terms that
stabilize it in smooth areas of the image. The first one comes
from the Gamma hyper-prior and is the νk term (degrees of
freedom of Student’s-t). The second one is identical to the one
also found in the TV prior.

Observe, from the discussion above, that when the herein
spatially weighted TV prior is used in combination with the
marginalization of the spatial adaptivity weights ak(i) we
obtain the Modified Student’s-t used in this work, and so, with
this combined prior modeling, both previously encountered
spatial adaptivity mechanisms co-exist. Indeed, the restoration
filter in Eq. (27) contains a spatial adaptivity diagonal matrix
given by the product 〈Ak〉j−1(U−1/2

k )j−1. The first term of
this product stems from the Student’s-t nature of our prior
while the second one is provided by the TV model. In
other words, the spatial adaptivity matrix presented in this
paper contains, as expected, both regularization mechanisms
explained above. Furthermore, due to their TV origin the

weights contain the term
√
uj−1
k (i) in Eq. (29) which unlike

the ”regular” (linear) Student’s-t case contains a square root.
In section VI in order to visualize the nature of the above

spatial adaptivity weights we show images of these weights (in
logarithmic scale) for the herein restoration filter and compare
them with the corresponding ones in [14] and [16].

V. COMPUTATIONAL IMPLEMENTATION

Before analyzing the performance of the proposed image
restoration algorithm, let us discuss important implementation
issues. One iteration of the proposed algorithm consists of
Eqs. (27)-(36). The image estimate is taken to be equal to m
which is obtained by solving the linear system in Eq. (27). The
dimensions of the matrices involved in Eq. (27) are N × N ,
with N the number of pixels in the image. We solve this
system iteratively using the conjugate-gradient algorithm [22].
We also utilized this method to evaluate the diagonal elements
of matrix Ck in Eq. (29). More specifically, we utilized the
R−1-conjugate vectors pi, i = 1, . . . , L, L < N, for which
(pTi R−1pi = δij). Then according to the conjugate-gradient
algorithm the image estimate is updated at every iteration as

mi = mi−1 + api,

where a is a scalar [22]. If the method is allowed to iterate
N times we have PTR−1P = I , where P = [p1 . . . pN ]
with pi, i = 1, . . . , N, all the R−1-conjugate vectors. Then,
R = PPT and the diagonal elements of Ck = QkRQT

k can
be computed by the formula

(QkRQT
k )(i, i) =

N∑
j=1

p′j(i)
2 ≈

L∑
j=1

p′j(i)
2, (37)

where p′j = Qkpj . In practice the number of iterations L
required for convergence of the conjugate-gradient method is

much smaller than N (L << N ). We found out that for 256×
256 images N = 65, 536, the conjugate-gradient algorithm
gives satisfactory results in terms of image restoration with
L ≈ 100 − 200. An increase of L ≈ 1000 − 2000 did not
provide much benefit. At this point it is worth also noting
that the Lanczos-based approach which was proposed in [16]
required for similar size images L ≈ 1000− 2000 to provide
similar restoration results. Thus, the herein proposed algorithm
is faster than the algorithm in [16].

In [14] where the diagonal elements of matrices of similar
structure appear in the computation of the restored image a
circulant approximation was used. This approximation implies
that all diagonal elements have the same value. In [14] this
value was set in a trial and error manner. We found out that
the obtained restoration results using the values of Ck(i, i) as
computed by the herein proposed conjugate-gradient approach
are noticeable better than using a circulant approximation for
R or omitting the elements Ck(i, i) from Eq. (31).

The termination criterion we chose is given by

|(Rj)−1mj − βHTg| > |(Rj−1)−1mj−1 − βHTg|, (38)

where m is the image estimate at the j − th iteration and
it is the solution of the linear system (Rj)−1m = βHTg
that the conjugate-gradients algorithm solves. This termination
criterion is heuristic. We observed that as the residual of the
conjugate gradient algorithm increased the restoration quality
decreased.

The algorithm is initialized by the resulting image estimate
of a Bayesian algorithm that uses a spatially invariant simulta-
neously autoregressive image prior [19]. In other words, we set
the initial image estimate m0 equal to the restored image by
this algorithm. The noise precision β is also estimated by the
algorithm in [19] and we fix it to this value for the remaining of
our algorithm. Thus, the overall algorithm can be summarized
in the following steps:
• Initialize m0 and β with the algorithm using a stationary

prior
• Until convergence do

1. Update the parameters u, λ and ν from equations
(31), (34) and (36), respectively
2. Update the image estimate mj from equation (27)
along with the diagonal elements of (QkRjQT

k ) in
equation (37)
3. Check for convergence using (38)

VI. NUMERICAL EXPERIMENTS

We demonstrate the value of the proposed restoration ap-
proach by testing it in experiments with three well known
256× 256 input images: Lena, Cameraman and Barbara and
one 512× 512 image USC-man. Every image is blurred with
two types of blur; the first blur has the shape of a Gaussian
function with shape parameter 9, and the second is uniform
with support a rectangular region of dimensions 9 × 9. The
blurred signal to noise ratio (BSNR) was used to quantify
the noise level:

BSNR = 10 log10

‖Hf‖22
Nσ2

,
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where σ2 is the variance of the additive white Gaussian noise
(AWGN). Three levels of AWGN were added to the blurred
images resulting in BSNR = 40, 30 and 20 dB. Thus in total
24 image restoration experiments are presnted.

As performance metric, the improvement in Signal to Noise
Ratio (ISNR) was used, given by

ISNR = 10 log10

‖f − g‖22
‖f − f̂‖22

,

where f , g and f̂ are the original, observed degraded and
restored images, respectively.

In the implementation of our proposed restoration algorithm
P = 2 was used. In other words, four filter outputs were
used for the prior and it is a product with two terms. The
operators Q1 and Q2 correspond to the horizontal and vertical
first order differences. Thus, these filters are used to model
the vertical and horizontal image edge structure, respectively.
The output of the Laplacian operator used frequently as a
regularizer in stationary regularization approaches [1] and
[19]is not appropriate in the context of Student’s-t prior models
for the image. Such models assume that local differences
follow a zero mean Gaussian pdf with a different precision per
pixel. When first order differences are used the explanation of
this precision is very intuitive. When small (large variance)
it implies a discontinuity (edge) between these two pixels.
If higher order differences are used the explanation is not
as clear since the difference contains contributions from a
neighborhood of pixels and the location of the edge now is
not obvious. We have verified this observation by extensive
numerical experiments.

The other two operators Q3 and Q4 are used to model
the diagonal edge component contained in the vertical and
horizontal directions, respectively. These filters are obtained
by convolving the previous horizontal and vertical first order
differences filters with fan filters with vertical and horizontal
pass-bands, respectively. In our experiments the fan filters in
[21] were used. We show the magnitude of the frequency
responses of filters Q1, . . . ,Q4 in Fig. 1. The fan filters
combined with the difference filters were found empirically
to provide better results than the use of the horizontal and
vertical difference filters alone. To explain the choice of the
fan filters we note that ideally we expect from a filter when
applied to an image to produce outputs as close to zero as
possible. The first order differences filters have to some extent
this property, but at the edges of the image this property is
canceled. Thus, more filters are needed that produce outputs
closer to zero. The motivation to incorporate the fan filters to
our algorithm is the use of them in the contourlet transform
[21], which is shown to have more close to zero coefficients
than the classical wavelet transform. Their ability to provide
closer to zero outputs is interpreted as the ability to capture
the correlations of the image edges. Hence, this renders the
model more accurate. We must also note a key difference in
our model with respect to [21]; in the contourlet transform the
Laplacian pyramid is used as a first filter and the fan filters are
applied on its output. Here, we have first order differences in
the horizontal and vertical direction. For this reason, the filters

Q3 and Q4 are the result of the vertical and horizontal fan
filter applied to Q1 (horizontal) and Q2 (vertical), respectively.

We compared the herein proposed restoration method, ab-
breviated as CGMK from the first letter of each author’s
last name, with the Lena and Cameraman images with four
recent TV-based algorithms: the algorithms in [12] and [13]
abbreviated by BFO1 and BFO2, respectively, and the algo-
rithms in [14] abbreviated as BMK1 and BMK2. We also
compared it with the variational Bayesian algorithm in [16]
which is abbreviated as CGLS. This algorithm uses a product
of Student’s-t image prior and the same four Ql as the ones
described above.

The ISNR results of this comparison are shown in Tables I
and II for the experiments with uniform, and Gaussian blurs,
respectively. The ISNR results with algorithms abbreviated as
BMK1, BMK2, BFO1 and BFO2 in Tables I and II are taken
directly from [14]. This comparison is limited only to the Lena
and the Cameraman images because in [14] the other two
images (Barbara, USC-man) were not used. We also show
an example of the restored images for these 2 experiments
in Figure 2. Looking carefully at the restored image by the
herein proposed algorithm and comparing them to the one by
the approach in [16] we observe that it seem less ”blurry”.
Specifically, it better preserves the edges of the image.

We also present ISNR results for similar experiments for
the Barbara and the USC man images in Tables III and IV.
These images were selected because they contain large texture
areas. In these experiments the herein proposed methodology
was tested with the approach in [16] and a Bayesian approach
which uses a TV prior with identical spatial weights across
the entire image. This approach was obtained by applying
the herein proposed Bayesian inference via the constrained
variational approximation methodology to a model that uses
the prior in Eq. (4).This approach is not identical to the
methodology used in [14] since it does not resort to an
approximation of the normalization constant of the prior and
is labeled as ”Bayesian-TV”. The purpose of this experiment
was to test the proposed restoration method for images with
large texture areas. We also show an example of the restored
USC-man, BSNR=20dB, uniform 9 × 9 blur image for this
experiments in Figure 3. Apart from the ISNR metric visually
the image in Figure 3(b) (Bayesian-TV restored) is not as
sharp as the image in Figure 3(d). Furthermore, the image is
Figure 3(c) (restored using Student’s-t prior) is ”cartoon-like”.
Thus, the restored image by the herein algorithm in Figure 3(d)
apart from being better in terms of ISNR is also visually more
pleasing.

From the ISNR results in Tables I-IV one can say that the
proposed method works consistently better for mid-low BSNRs
(20 and 30 dB) for images with large texture areas. Also for
certain images and experiments USC-man, 9 × 9 blur and
BSNR = 20 dB the proposed approach provided up 0.44
dB improvement in ISNR as compared to its best predecessor.
Overall out of the 24 experiments presented in this paper in 18
of them the herein proposed algorithm provided better ISNR
from all other tested methods.

For 256× 256 images the proposed algorithm implemented
in Matlab requires 3-5 minutes on a Pentium 4 3.40GHz per-
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(a) (b) (c) (d)

Fig. 1: Magnitude of frequency responses of the filters used
in the prior: (a) and (b) the horizontal and vertical differences
Q1,Q2, (c) Q3 and (d) Q4

sonal computer. This is 2-5 times faster than the algorithm in
[16]. This difference in speed is attributed to the significantly
smaller number of iterations required by the new conjugate-
gradient algorithm used to compute the diagonal elements of
matrix Ck in Eq. (31) introduced herein.

VII. CONCLUSIONS AND FUTURE WORK

We presented a new promising image prior that is based
on the Modified Student’s-t pdf and a variational algorithm
that estimates all the parameters of this model automatically
and also the restored image. We compared this restoration
approach with previous state-of-the-art methods and found
out that it compares favorably to them. We also presented
a new fast iterative conjugate-gradient-based algorithm to
compute the diagonal elements of inverses of very large
matrices that cannot be found explicitly. The computation
of elements of such matrices is required in many sparse
Bayesian models. The herein proposed prior can be used
in a Bayesian setting for a variety of other image recovery
problems, such as, super-resolution, blind-deconvolution, and
tomographic reconstruction. Furthermore, it can be used in
other imaging applications where a statistical model for the
image is necessary, for example, detection of watermarks in
images and image retrieval.

In the future we also plan to extend this prior in a number of
ways. First more operators can be used in order to better cap-
ture directional dependencies at different scales of the image.
Furthermore, we plan to investigate relaxing the independence
assumption between the different filter outputs and the adjacent
pixels in our image model. Although the relaxation of this
assumption seems quite simple and natural it will increase the
computational requirements of the proposed approach by at
least an order of magnitude. Thus, new computational tech-
nologies have to be used such as the use of graphics processors
in order to perform these iterative restoration algorithms [25].

APPENDIX A
DERIVATION OF THE VE-STEP

In the VE-step the bound must be optimized with respect to
R, m and q (a). The mean field approximation and Eq. (19)
yield

TABLE I: ISNR’s for the Lena and Cameraman images.
Experiments using uniform 9× 9 blur

Uniform blur 9× 9 Lena Cameraman
BSNR(dB) Method ISNR(dB)

BSNR = 40

CGMK 8.52 9.61
CGLS 8.49 9.53
BMK1 8.34 8.55
BMK2 8.35 8.25
BFO1 8.42 8.57
BFO2 8.37 8.46

BSNR = 30

CGMK 6.25 6.55
CGLS 6.10 6.29
BMK1 6.08 5.68
BMK2 5.64 4.65
BFO1 5.89 5.41
BFO2 5.58 4.38

BSNR = 20

CGMK 4.24 3.55
CGLS 3.98 3.33
BMK1 4.09 3.31
BMK2 4.14 2.12
BFO1 3.72 2.42
BFO2 3.15 1.94

TABLE II: ISNR’s for the Lena and Cameraman images.
Experiments using Gaussian blur (variance 9)

Gaussian blur variance 9 Lena Cameraman
BSNR(dB) Method ISNR(dB)

BSNR = 40

CGMK 4.64 3.49
CGLS 4.86 3.45
BMK1 4.72 3.51
BMK2 4.50 3.27
BFO1 4.78 3.39
BFO2 4.49 3.26

BSNR = 30

CGMK 4.08 2.81
CGLS 3.89 2.74
BMK1 3.87 2.89
BMK2 3.56 2.47
BFO1 3.87 2.63
BFO2 3.55 2.41

BSNR = 20

CGMK 3.09 2.07
CGLS 2.76 1.86
BMK1 3.02 2.13
BMK2 2.47 2.23
BFO1 2.87 1.72
BFO2 2.42 1.42

TABLE III: ISNR’s for the Barbara and USC-man images.
Experiments using Gaussian blur (variance 9)

Gaussian blur Barbara USC-man
BSNR(dB) Method ISNR(dB)

BSNR = 40
CGMK 1.59 4.15
CGLS 1.53 3.91

Bayesian− TV 1.58 3.95

BSNR = 30
CGMK 1.36 3.19
CGLS 1.30 2.95

Bayesian− TV 1.33 2.91

BSNR = 20
CGMK 1.16 2.20
CGLS 1.00 1.92

Bayesian− TV 1.12 1.72
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(a) (b)

(c) (d)

Fig. 2: Experiment on Lena image with Gaussian blur (variance 9) and BSNR = 20dB; ISNR comparison: (a) Degraded image,
(b) Restored with spatially invariant prior, [19], ISNR = 2.32dB, (c) restored image with method in [16], ISNR = 2.76dB,
(d) restored image with the proposed algorithm, ISNR = 3.09dB.

TABLE IV: ISNR’s for the Barbara and USC-man images.
Experiments using uniform 9× 9 blur

Uniform blur Barbara USC-man
BSNR(dB) Method ISNR(dB)

BSNR = 40
CGMK 6.17 7.12
CGLS 6.23 7.70

Bayesian− TV 6.29 7.50

BSNR = 30
CGMK 3.86 5.26
CGLS 3.75 4.86

Bayesian− TV 3.75 4.89

BSNR = 20
CGMK 1.37 3.13
CGLS 1.17 2.69

Bayesian− TV 1.20 2.63

Lb (q (a) , θ1, θ2) =∫ 2P∏
k=1

q (εk; θ1)
P∏
k=1

q (ak) logF (y, ε,a; θ2) dεda

−
∫ 2P∏

k=1

q (εk; θ1)
P∏
k=1

q (ak)

× log

(
2P∏
k=1

q (εk; θ1)
P∏
k=1

q (ak)

)
dεda, (39)

where θ1 = [R,m]T and θ2 = [u, λ1, . . . , λP , ν1, . . . , νP ]T.
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(a) (b)

(c) (d)

Fig. 3: Experiment on USC-man image with uniform 9 × 9 blur and BSNR = 20dB; ISNR comparisons: (a) Degraded
image, (b) Restored with Bayesian-TV using the prior in (4), ISNR = 2.63dB, (c) restored image with method in [16],
ISNR = 2.69dB , (d) restored image with the proposed algorithm, ISNR = 3.13dB.

To optimize the above function with respect to θ1, we
operate on the function L′(θ1), which includes the terms of
Lb (q (a) , θ1, θ2) that depend only on θ1, that is,

L′ (θ1) = A(θ1)−B(θ1)

where

A(θ1) =
P∑
k=1

∫
q (ε2k−1; θ1) q (ε2k; θ1) q (ak)

× log

[
2k∏

l=2k−1

p (yl|εl; θ2)
N∏
i=1

M (ε2k(i), ε2k−1(i), ak(i); θ2)

]
2k∏

l=2k−1

dεldak
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B(θ1) =
2P∑
k=1

∫
q (εk; θ1) log q (εk; θ1) dεk.

We now have

A(θ1) =
2P∑
k=1

〈
−β

2
(Hεk − yk)T Q−T

k Q−1
k (Hεk − yk)

−
λd k2 e

2
εT
kΛd k2 eεk

〉
q(εk;θ1)q(ak)

+ const

= −βP ‖Hm− g‖22 −
2P∑
k=1

λd k2 e

2
mTQT

k Λ̂d k2 eQkm

− trace

{(
βPHTH +

2P∑
k=1

λd k2 e

2
QT
k Λ̂d k2 eQk

)
R

}
+ const, (40)

where d.e denotes the ’ceiling’ of a real number and Λk, Λ̂k

are diagonal matrices with elements

Λk(i, i) =
ak(i)√
uk(i)

, Λ̂k(i, i) =
〈ak(i)〉q(ak(i))√

uk(i)
, i = 1, ..., N.

We also have

B(θ1) = −P log det |R| . (41)

Setting the derivative of L′ w.r.t R and m equal to zero and
using Eqs. (40) and (41) yields

∂L′ (θ1)
∂R

= 0⇒

0 =
∂trace

{
βPHTHR +

∑2P
k=1

λd k2 e

2 QT
k Λ̂d k2 eQkR

}
∂R

− P∂ log det |R|
∂R

⇒ βPHTH +
2P∑
k=1

λd k2 e

2
QT
k Λ̂d k2 eQk − PR−1 = 0⇒

R =

(
βHTH +

1
2P

2P∑
k=1

λd k2 e
QT
k Λ̂d k2 eQk

)−1

.

and
∂L′ (θ1)
∂m

= 0⇒m = βRHTg.

The final part of the VE-step is the optimization w.r.t.
the function q (a). It is straightforward to verify that this is
achieved when

q (a) =
exp

(
〈logF (y, ε,a)〉q(ε)

)
∫

exp
(
〈logF (y, ε,a)〉q(ε)

)
da

=
P∏
κ=1

N∏
i=1

q (ak(i)) .

The product form is due to

exp 〈logF (y, ε,a)〉q(ε) ∝
P∏
k=1

N∏
i=1

(ak(i))
νk
2 +2−1

× exp
{
−νk

2
ak(i)− λk

√
uk(i)ak(i)

}
.

Hence, each q (ak(i)) is a Gamma distribution:

q (ak(i)) = Gamma
(
ak(i);

νk
2

+ 2,
νk
2

+ λk
√
uk(i)

)
.
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