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Abstract—Photographs acquired under low-lighting conditions
require long exposure times and therefore exhibit significant blur-
ring due to the shaking of the camera. Using shorter exposure times
results in sharper images but with a very high level of noise. In
this paper, we address the problem of utilizing two such images
in order to obtain an estimate of the original scene and present
a novel blind deconvolution algorithm for solving it. We formu-
late the problem in a hierarchical Bayesian framework by utilizing
prior knowledge on the unknown image and blur, and also on the
dependency between the two observed images. By incorporating a
fully Bayesian analysis, the developed algorithm estimates all nec-
essary model parameters along with the unknown image and blur,
such that no user-intervention is needed. Moreover, we employ a
variational Bayesian inference procedure, which allows for the sta-
tistical compensation of errors occurring at different stages of the
restoration, and also provides uncertainties of the estimates. Ex-
perimental results with synthetic and real images demonstrate that
the proposed method provides very high quality restoration results
and compares favorably to existing methods even though no user
supervision is needed.

Index Terms—Bayesian methods, blind deconvolution, image
stabilization, parameter estimation, variational distribution ap-
proximations.

I. INTRODUCTION

T AKING high-quality photographs under low-lighting
conditions is a major challenge. A longer exposure time

than usual is required to obtain an image with low-noise, but any
motion of the camera during exposure causes blur in the recorded
image. On the other hand, a short exposure time will result in an
image with a very high level of noise. Possible hardware-based
solutions include increasing the light sensitivity (ISO) of the
camera sensor, which increases the noise level; increasing the
aperture, which results in a smaller depth of field in the acquired
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image; and using a tripod to stabilize the camera which is not
practical in many cases. Additionally, many digital cameras in-
corporate optical image stabilizers, either inside the camera body
or inside the lens, that significantly help in reducing degradations
caused by hand-held photography. However, when the exposure
times are too long, as might be required in some conditions, these
hardware based solutions can not provide satisfactory results.
In these cases, digital image stabilization methods, applied at
a postprocessing stage, provide a powerful means to obtain
high-quality images using the low-quality observations.

In case a photograph is taken using a long exposure time under
dim lighting, the resulting blur in the image can be removed
by utilizing a single-image blind deconvolution algorithm. A
number of methods are proposed for blind deconvolution of a
single observation (see, for example, [2] for a recent review), and
the specific case of restoring images degraded by camera shake
is addressed in [3]–[7]. However, due to the challenging nature
of the problem, obtaining a high-quality restoration result is very
hard in most cases and requires significant user-supervision.
Additionally, due to the difficulty in estimating the camera
shake degradation, the restored images generally exhibit de-
convolution artifacts such as ringing.

Another possible approach is to use a short exposure time to
prevent blur at the expense of high noise, and then apply de-
noising algorithms to the sharp short-exposed image to remove
the noise. Many advanced denoising methods are available in
the literature (see, for instance, [8]–[10]). However, the noise
level in such short-exposed images is generally so high that fea-
tures of the underlying image are concealed, and the denoising
algorithms cannot easily separate image and noise. An addi-
tional, and possibly more important problem is that due to the
short exposure time, the images generally have low contrast and
the colors might be partially lost.

Recently, deconvolution methods have been proposed that
utilize an image pair instead of a single observation, where two
images are taken with different exposure times [11]. Some dig-
ital cameras have exposure bracketing features which allow the
user to acquire consecutive photographs with different exposure
settings, which was mainly developed for high dynamic range
applications [12], [13], but can also be used for image stabi-
lization. Utilizing two images reduces the ill-posedness of the
deconvolution problem, and generally results in much higher
quality restorations than methods utilizing single observations
[14]. A wide range of algorithms exists for the general problem
of multiframe blind deconvolution [2], [15], [16]. The specific
case of blind deconvolution from a pair of short- and long-expo-
sure images has been considered in [11], [17], [18]. In [11], the
blur point spread function (PSF) is first identified using the long-
exposure image and the denoised version of the short-exposure
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image, where Tikhonov regularization and hysteresis thresh-
olding is utilized to regularize the solution. This PSF estimate
is then used in a classical image restoration method [19], [20]
in order to obtain an estimate of the original image from the
long-exposure image. A joint identification method is proposed
in [17], where the unknown image and the PSF are estimated
simultaneously. The image is modeled using a total-variation
(TV) based prior, and the blur PSFs are estimated by imposing
the constraint that the blur in the short exposure image is very
small. No explicit blur model is utilized in this work, and de-
noising is applied to the blur estimates by thresholding in an
ad hoc manner to enhance the estimates. Finally, sparsity priors
with continuity constraints on the blurs are utilized in [18], and
the image is modeled using a mixture-of-Gaussians prior on the
image derivatives. However, the model is derived in a somewhat
ad hoc manner, and the resulting algorithm has many parameters
to tune, which makes it hard to apply to a wide range of images.

This paper addresses the problem of blind deconvolution from
a short- and long-exposed image pair. We provide a systematic
modeling of the unknowns within a novel hierarchical Bayesian
formulation and develop a blind deconvolution algorithm which
jointly estimates the unknown image and blur. We utilize a
TV-prior on the image to model natural image statistics and to
achieve robustness in the algorithm. The blur in the long-exposed
image is modeled using a mixture prior which imposes both
sparsity and positivity on the estimated blur PSF. We also model
the coupling between the long- and short-exposed images using
an additional observation model. Moreover, we incorporate a
fully-Bayesian approach, where all required model parameters
are estimated along with the unknowns. As a result, the proposed
algorithm does not require user-intervention and the restoration
process is adaptively steered between the long- and short-ex-
posed images. Finally, we incorporate a variational Bayesian
analysis, which provides estimates of the distributions of the
unknowns. These distributions are implicitly used to incorpo-
rate the uncertainties of the estimates into the algorithm and to
compensate for the estimation errors. We demonstrate with both
synthetic and real image experiments that the proposed method
provides very high quality restoration results and compares
favorably to existing methods.

The rest of this paper is organized as follows. In Section II
we formulate the image acquisition processes mathematically.
The unknown variables in our model are cast into a hierarchical
Bayesian framework as presented in Section III. The variational
inference to estimate the unknowns and the proposed algorithm
are presented in Section IV. Experimental results are presented
in Section IV and conclusions are drawn in Section VII.

II. PROBLEM FORMULATION

The degradations in the image pair can be modeled using a
linear and space invariant degradation model, by assuming that
the blur is mainly caused by the shake of the camera during
the long exposure time. Under this assumption, the observation
processes can mathematically be expressed as follows:

(1)

(2)

where and are the observed images, the unknown orig-
inal image, and the noise components, and the rest of the
quantities are explained in the following. We use matrix-vector
notation throughout the paper, so that the images , , , ,
and are vectors, where is the number of pixels in
each image. The matrix models the blur point spread
function (PSF) , which has support . The selection of
the support of the PSF is important and will be explained in
the experimental results section. Note that the explicit construc-
tion of the matrix is not needed but it is used for notation
purposes only.

Generally, the average luminance levels of the observations
and are significantly different due to the different expo-

sure times, and furthermore the images have to be geometri-
cally registered. These geometric and photometric differences
between the observed images are represented in (2) by the ma-
trix and the parameters and , respectively. The geo-
metric registration (or warping) matrix represents the motion
between the observations and , and the parameters and

represent the illumination differences and therefore, the pho-
tometric registration between the observations, and is an
vector of ones.

In this work we assume that the photometric and geometric
calibration between the images and is calculated in a pre-
processing stage, as is the case with the existing methods [11],
[17], [18], [21]. The geometric registration can be performed
using methods specifically designed for blurred/non-blurred
image pairs (see, for example, [22]). In this work, we performed
the geometric registration using publicly available registration
software [23]. Alternatively, the registration algorithm in [24]
can be used, as suggested by [21]. As demonstrated by our experi-
mental results, crude initial registrationsstill result inhighquality
results due to the blur estimation process, which compensates for
possible misalignments by appropriately shifting the estimated
blur kernels. Photometric registration between the images is per-
formed in a similar fashion by estimating the parameters and

using the least squares solution utilizing the approximation
and the RANSAC algorithm [25], [26].

After the observed images are corrected using the computed
geometric and photometric registration, the observation models
in (1) and (2) can be simplified using , , and

, that is

(3)

(4)

These observation models will be utilized in the rest of the
paper. Using (3) and (4), the blind deconvolution problem is
then to find estimates of and utilizing and and prior
knowledge about , , , and .

III. HIERARCHICAL BAYESIAN MODEL

The proposed hierarchical model is composed of two stages.
In the first stage, prior distributions are utilized on the unknown
image and blur , and conditional distributions are utilized for
the observations and . These distributions in the first stage
depend on certain parameters, called hyperparameters, which
are modeled by hyperprior distributions in the second stage. The
explicit forms of these distributions are presented in the fol-
lowing subsections.
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A. First Stage: Observation Models

The observation model we use in this paper has the Gaussian
form shown in (5) at the bottom of the page, where is the
covariance matrix of the distribution of and given , ,

, , and . Before calculating let us describe the energy
terms in this probability distribution.

The first energy term, , is the energy of
the probability distribution associated with the observation in
(3). The second energy term, , corresponds
to the energy of the probability distribution associated with the
observation in (4). To incorporate the third energy term,

, we make use of the coprimeness condition em-
ployed in some multichannel blind deconvolution methods (see,
for example, [27]). Combining (3) and (4) we obtain

(6)

Note that does not represent a new set of observa-
tions since its conditional distribution has been obtained from
the already observed and . However, provides
additional information to the one provided by and when
the energy is
replaced by , with .

The conditional model in (5) does not exactly result from the
models shown in (3) and (4) but it is still a conditional proba-
bility distribution and so it can be used in combination with the
prior models for image and blur to carry out Bayesian inference
on the dual exposure problem. Note that the third energy term
in the above observation model provides information about the
blurring function only and in some sense helps to decouple the
estimation of from the estimation of (unlike the first energy
term in (5)).

Let us now proceed to calculate the partition function. We
have that

(7)

and consequently

(8)

Then since changes slowly
as changes we write

(9)

Finally, for an observation model produced by three indepen-
dent models and generating a total of observations, each of
them with the same number of observations, , we can write
from (9)

(10)

We have experimentally observed that using this modeling
produces a good restored image and a good estimation of the
blur. Consequently we write (11), shown at the bottom of the
page. It is important to note that the additional observation
model incorporates the strong dependency between the obser-
vations and into the inference procedure (see [28] for
a similar approach). Finally, this model can also potentially
account for small registration errors between the observed
images and .

B. First Stage: Prior Model on the Blur

Since the blur is mainly caused by the shaking of the camera
during the long exposure time, it exhibits the characteristics of
the nonuniform motion blur. Hence, it is expected to be very
sparse, i.e., most of the PSF coefficients being zero or very
small. In order to exploit this information, we utilize a mixture
prior of exponential distributions on each PSF coefficient,
that is

(12)

with the mixture coefficients for each pixel and

if
if

(13)

with the parameters of each exponential distribution.
Note that this blur prior enforces sparsity to a great extent,

and the degree of sparsity is increased by increasing the number
of mixture coefficients [29]. In addition to imposing sparsity,
note that (13) also imposes positivity on the blur coefficients

. This property makes the prior especially useful, since unlike
most previous works the positivity constraint is imposed during
the formulation and subsequent optimization process, and not
artificially after the optimization, which can move the estimates

(5)

(11)



BABACAN et al.: BAYESIAN BLIND DECONVOLUTION FROM DIFFERENTLY EXPOSED IMAGE PAIRS 2877

away from their optimal values. Note that this mixture-of-expo-
nentials prior has also been utilized before for modeling PSFs
resulting from camera shake [3], [29] and in independent com-
ponent analysis [29].

C. First Stage: Prior Model on the Image

The unknown image is expected to be mostly smooth ex-
cept at the locations of discontinuities (e.g., edges). Therefore,
as the prior model on the image , we utilize the total vari-
ation function because it preserves the edges in the image by
not over-penalizing discontinuities while imposing smoothness
[30]. Specifically, we utilize the following approximation of the
TV prior [31]

(14)

where is a constant and

(15)

The operators and correspond to, respectively,
horizontal and vertical first order differences, at pixel , that is,

and , where and
denote the nearest neighbors of , to the left and above,

respectively.

D. Second Stage: Hyperpriors on the Hyperparameters

In the second stage of the hierarchical model, we model the
hyperparameters , , , , and by hyper-
prior distributions. In Bayesian models, hyperprior distributions
are generally chosen to be conjugate distributions, i.e., they have
the same functional form as the product of the conditional dis-
tribution and the priors. This choice of hyperpriors simplifies
the analytical derivation of the inference procedure. Based on

this, we employ conjugate Gamma distributions for the hyper-
priors , , , , , and Dirichlet dis-
tributions on the mixture coefficients , that is shown in
(16)–(21) at the bottom of the page, with shape parameters ,

, , and inverse scale parameters , , , .
The shape and inverse scale parameters of the Gamma distribu-
tions are set to a small common value compared to the range of
intensity values of the image (e.g., 0.001 for in range),
and is set to 1 to obtain vague hyperpriors which make the
estimation process rely more on the observations than on prior
knowledge. Note, however, that these hyperprior distributions
are very flexible in incorporating additional information pro-
vided by the user. If some prior knowledge on the value of some
of the hyperparameters (for instance, about the noise variances
in the observed images) is available, this information can easily
be incorporated into the estimation procedure by choosing the
shape and inverse scale parameters of the corresponding distri-
butions accordingly (see, for example, [31], [32] for such incor-
poration of prior knowledge). Moreover, note that using nonzero
values for the shape and inverse scale parameters aid in avoiding
trivial solutions such as delta PSF estimates. Note also that the
additional observation model in (11) has an important role in
preventing the blur from being estimated as a delta function un-
less can be considered as Gaussian independent noise.

Finally, combining the first and second stage of the hierar-
chical model we obtain (22), shown at the bottom of the page.

IV. VARIATIONAL BAYESIAN INFERENCE

In Bayesian formulations, the inference is based on the
posterior distribution, which in our case is intractable.
Therefore, in this work we utilize variational distribution
approximations. Let us denote by the set of unknowns,
i.e., . The goal
is to approximate the posterior distribution by
another distribution which allows a tractable analysis.
The approximating distribution is found by minimizing

(16)

(17)

(18)

(19)

(20)

(21)

(22)
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the Kullback-Leibler (KL) divergence between and
, which is given by

(23)

(24)

Generally, the only assumption in variational Bayesian anal-
ysis is that the approximating distribution is factorizable.
In this work, we use the following factorization:

(25)

with

(26)

Unfortunately the general results from variational Bayesian
analysis cannot be directly utilized in this work, since the TV
and mixture priors in our model render the calculation of the
KL divergence in (24) not possible. The problems caused by
the TV prior can be avoided by utilizing a majorization-min-
imization approach, whose details are given in [31]. We will
provide a brief overview here as follows. Let us consider the fol-
lowing inequality, derived from the geometric-arithmetic mean
inequality, which states that for any real numbers and

(27)

Let us also define for , , and an dimensional vector
, with components , the following

functional:

(28)

where is the same constant as in (14). Using
and in the inequality (27), it can be seen that

the functional is a lower bound of the image prior
, that is

(29)

The quadratic form of the bounding functional
renders the analytical derivation of the Bayesian inference
tractable. Using the lower bound in (28), a lower bound of the
joint probability distribution in (22) can be found in (30) at the
bottom of the page, which leads to the following upper bound
for the KL divergence in (24):

(31)

The upper bound can be
made tighter by minimizing it with respect to , since

(32)

Therefore, by minimizing the upper bound
with respect to both and , the upper

bound can iteratively be made closer to the KL distance
. Thus, this upper bound can be

used as an approximation to the original KL distance, and
variational Bayesian analysis can be performed using this upper
bound instead (see [31] for details on the theoretical justifica-
tion). For each unknown , the distribution approximation

can then be found by alternating the minimization of
with respect to each by

holding constant, where denotes the set with
removed from the set. This approach results in the following
general solution [33]:

(33)

where denotes the expectation with respect to the dis-
tribution . In order to solve (33), an additional approxi-
mation is needed when using mixture priors. Specifically, we
utilize Jensen’s inequality as follows [29]:

(34)

with . An analysis of the
closeness of this bound can be found in [29]. The aux-
iliary variables need to be computed along with the
unknowns , as will be shown in the next section. Using
(34), we obtain a lower bound of as
follows. Let us denote by the product of

(30)
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the terms in except , that
is, .
Then, (see (35) and (36) at the bottom of the page) with

. Utilizing this lower
bound, we replace the general solution in (33) by

(37)

Applying this general solution (37) to each unknown results
in an iterative procedure, which converges to the best approxi-
mation of the true posterior distribution by distri-
butions of the form in (25). This iterative procedure provides es-
timates to the distributions of the unknowns. In this work,
we utilize the means of these distributions as the point estimates
of the unknowns. Finally, note that in the case of , the so-
lutions provided by (33) and (37) are equal.

V. CALCULATION OF POSTERIOR DISTRIBUTION

APPROXIMATIONS

In this section, we provide the explicit forms of each dis-
tribution. In the following, the means of the distributions will be
denoted by , when the corresponding distribution
is clear from the context.

The distribution is calculated from (37) as a multivariate
Gaussian distribution, that is

(38)

where its mean and covariance are given by

(39)

(40)

with

(41)

(42)

The mean of the distribution is used as the image es-
timate, which is calculated by applying a conjugate gradient
method in (39). It can be seen from (40) that the matrix in
(42) is the spatial adaptivity matrix which controls the amount of
smoothing at each pixel location depending on the intensity vari-
ation at that pixel, as expressed by the vector representing the
total variation of the estimated image. It therefore controls the
trade-off between the data fidelity and image smoothness. Addi-
tionally, the parameters , and control the fidelity
of the image estimate to the observed images and . Since
they are also estimated simultaneously with the image (as shown
below), the estimation process is automatically steered towards
the more reliable observation. The reliability is expressed by the
constraints imposed on the image and blur estimates using their
corresponding prior distributions. For instance, if the noise level
in the short-exposed image is low, the estimation process relies
more on by increasing , as this provides smoother PSF
and image estimates.

Next we find the distribution approximations of the blur
PSF coefficients from (37) as rectified Gaussian distributions,
given by (see the appendix for derivation details)

(43)

with parameters shown in (44) and (45) at the bottom of the
page, where denotes the element of a matrix, and

and are convolution matrices constructed from and ,

(35)

(36)

(44)

(45)
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respectively. The mean and variance of the distri-
butions are given by [29]

(46)

(47)

where is the scaled complementary error function.
In the next step, we calculate the distributions of the hyper-

parameters from (37) as

(48)

(49)

(50)

(51)

(52)

(53)

Note that the posterior distribution approximations have the
same shapes as their corresponding prior distributions due
to the use of conjugate priors. We utilize the means of these
distributions as their estimates, which are given by

(54)

(55)

(56)

(57)

(58)

(59)

(60)

The variances of these distributions can be used to assess the
certainty of the algorithm about the estimated parameters. Fi-

TABLE I
PROPOSED ALGORITHM

nally, the auxiliary variables are computed by first taking the
expectation of (36) with respect to and , and then maxi-
mizing it with respect to the auxiliary variables. This results in
the following update:

(61)

with the condition

(62)

The proposed algorithm is summarized in Table I. The ex-
plicit forms of the expectations in (40),

in (41), and in (55),
in (56), and in (57) are given by (63)–(67),
shown at the bottom of the page, where

(68)

with given in (47).
Note that the explicit calculation of the covariance matrix

is only needed in (64)–(66), which is impractical due to its huge
size of . As mentioned above, the image estimate in (39)
is calculated using a conjugate gradient method, which does not
require to be constructed. In order to avoid the high com-
putational complexity of computing in (64)–(66), in these
equations we approximate as a diagonal matrix using the
inverses of the diagonal elements of in (40). We have con-
ducted extensive experiments with small images which permit
the explicit construction of to verify the validity of this ap-
proximation. We found out empirically that this approximation
results in very similar estimates and has a minor effect in the
estimation process. Note that similar approximations have also
been utilized in other Bayesian recovery methods [34]–[36].

Finally we note the following. In the proposed framework, the
distributions of the latent variables are estimated instead of their
point estimates, which has several advantages. First, the uncer-
tainty of the estimates can be calculated by examining the vari-

(63)

(64)

(65)

(66)

(67)



BABACAN et al.: BAYESIAN BLIND DECONVOLUTION FROM DIFFERENTLY EXPOSED IMAGE PAIRS 2881

ances of the estimated distributions. Second, these uncertainties
are incorporated into the estimation procedure using the expec-
tations given in (63)–(67), so that when estimating an unknown,
the algorithm accounts for the possible errors in the estimates
of other variables. This incorporation of uncertainties signifi-
cantly improves the algorithm performance and it is also very
useful in avoiding the high number of local minima resulting in
low-quality estimates (see [37] for a related discussion). Note
that if lower computational complexity is desired, degenerate
distributions can be assumed for all unknowns, that is, all dis-
tributions are approximated by delta functions placed at their
modes. This results in setting all covariances in the proposed
method equal to zero, and it is equivalent to providing maximum
a posteriori (MAP) estimates of the unknowns. Finally, note that
instead of using the means of the distributions as the estimates
of the unknowns, one can apply a sampling algorithm to draw
different values from the distributions. Although this approach
will lead to a much slower procedure, it can be used to avoid
local minima in cases where initial estimates of the unknowns
are far from the desired solutions and the degradations are ex-
tremely severe, and also to obtain alternative estimates when the
uncertainty values provided by the variational analysis are large
and the obtained image and blur are not satisfactory.

It should also be noted that the proposed framework can easily
be extended to handle a higher number of input images with pos-
sibly more than one blurred image. The proposed framework
provides the main mathematical basis for more general cases
with multiple input images and multiple blur PSFs, and the re-
sulting algorithms are very similar to the one presented in this
work.

VI. EXPERIMENTAL RESULTS

In this section, we demonstrate the performance of the pro-
posed method with experiments with synthetic and real images.
We first present experiments with synthetically generated de-
graded image pairs, to demonstrate the accuracy of the estima-
tion of the unknown image and blur. We then show the appli-
cation of the proposed method to real degraded image pairs and
compare it with existing methods.

The following algorithm and experimental setup is utilized in
all experiments. The observed image is used as the initial es-
timate of . The initial estimate of is obtained from (44) with
the covariance matrix set equal to zero. This initial estimate
corresponds to the maximum likelihood estimate of , and it
can be obtained efficiently in the frequency domain by taking
the ratio of the Fourier transforms of the observations and

. Although the initial PSF calculated in this fashion is a very
crude estimate of the true PSF, it provides a very fast initial-
ization of the algorithm. The algorithm is able to provide very
accurate results even with this crude initialization. The blur sup-
port is chosen as the smallest support that covers the most
significant entries of the initial PSF estimate. This operation
can be performed manually or by simple thresholding followed
by a convex hull algorithm. The blur support chosen in this
fashion is generally much smaller than the image support ,
which improves the computational complexity of the method.
Note that similar methods have been utilized by existing decon-
volution methods, where the blur support is generally selected
manually.

Fig. 1. (a) Original Ephesus image, (b) observed noisy image simulating a
short-exposure acquisition.

In all experiments, the number of mixture distributions is
set to , but other values ( or ) gave
similar results. Utilizing single exponential distributions per
pixel generally resulted in less sparse PSF esti-
mates with higher estimation noise. All other parameters
are calculated using (54)–(61). Note that except possibly the
PSF support , all required parameters of the algorithm are
initialized automatically. As convergence criterion we use

, where
and are the image estimates at iterations and ,
respectively. The convergence is generally achieved within 20
iterations, where each iteration takes approximately 20 seconds
using our nonoptimized Matlab code running on a Pentium
Core2 CPU at 2.66 GHz, depending on the severity of the
degradations in the input images.

For the synthetic image degradations, the image shown in
Fig. 1(a) is used to create the observed images and . The
range of the image is . The observed image , shown in
Fig. 1(b), is obtained by adding white Gaussian noise of variance
220 to the original image . This image suffers
from a very high level of noise: the mean-squared-error (MSE)
between this image and the original image is 196.20. We create
five different observations by blurring the original image
by five different blur PSFs shown at the bottom row of Fig. 2,
which are typical examples of PSFs resulting from the motion of
the camera during long exposures. White Gaussian noise with
a variance of 0.16 is added to the blurred images to obtain the
final observed images with signal-to-noise-ratios (SNR) of
40 dB, which are shown at the top row of Fig. 2. Note that al-
though the noise level is low, as is typically the case in long-ex-
posure images, the images are severely degraded by PSFs with
large-supports compared to the image size. The MSEs between
the original image and the observed images are given in Table II.
The support of the PSFs used in this experiment are 21 21, and
the original image is of size 430 270.

Each observed image in Fig. 2 along with the observed
image in Fig. 1(b) is provided to the proposed algorithm as
an image pair. The restored images obtained by the proposed
method corresponding to different PSFs are shown at the top



2882 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 19, NO. 11, NOVEMBER 2010

Fig. 2. Blurred images simulating long-exposure photographs. The point spread function (PSF) used to generate each image is shown below the corresponding
image. All PSFs have support 21� 21 pixels and the images are of size 430� 270 pixels. The values of the PSFs are linearly mapped to the ��� ���� range for
visualization purposes.

Fig. 3. Restoration results using the proposed algorithm. The restored images are shown in the top row, and the corresponding recovered PSFs are shown below
the images. The values of the PSFs are linearly mapped to the ��� ���� range for visualization purposes.

row of Fig. 3, and the recovered PSF for each case is shown at
the bottom row of Fig. 3. By comparing with the original image
in Fig. 1(a), it is clear that the proposed algorithm provides re-
stored images with very high visual quality in all cases. The
MSEs between the original image and the restored images are
given in Table II. It is clear that the restored images are very
close to the original image. The corresponding MSEs between
the original and recovered PSFs are , , ,

and . Both quantitative MSE results and visual
inspection of the recovered PSFs suggest that the algorithm is
very successful in estimating the original PSFs. Moreover, note
that the recovered images do not exhibit any deconvolution ar-
tifacts such as ringing or noise amplification, due to the accu-
rate estimation of the PSFs and the spatially-varying smoothing
due to the total variation prior. The image and blur estimates
during the iterative procedure in the proposed method for the

TABLE II
MEAN-SQUARED ERRORS (MSES) FOR THE SYNTHETIC EXPERIMENTS

blur shown in Fig. 2(b) are shown in Fig. 4. The estimated vari-
ances of the hyperparameters , and are provided in
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Fig. 4. Restoration results during the iterative procedure for the case shown in Fig. 2(b). The restored images are shown in the top row, and the corresponding
recovered PSFs are shown below the images. (a) Initial estimates, estimates at (b) iteration 3, (c) iteration 7, (d) iteration 15, and (e) iteration 20. The values of the
PSFs are linearly mapped to the ��� ���� range for visualization purposes.

Fig. 5. Restoration results using the deconvblind routine in MATLAB.

TABLE III
ESTIMATED VARIANCES OF THE HYPERPARAMETERS � , � , AND �

Table III, which, as mentioned above, can be used to evaluate the
certainty of the algorithm about the estimated hyperparameters.

We also compare the results of the proposed algorithm with
the classical single-image blind deconvolution algorithm im-
plemented by the deconvblind routine in MATLAB, which uti-
lizes a modified form of the Richardson-Lucy algorithm [19],
[20]. To achieve the best possible restoration results we provided
the algorithm with the PSF estimates obtained by the proposed
method shown at the bottom row of Fig. 3, to be used as initial
PSF estimates. Even with this unrealistic scenario, the quality

of the resulting restored images, shown in Fig. 5, is much lower
than that of the proposed method. The corresponding MSEs be-
tween the original and restored images are given in Table II.
Note also that in most cases the blur is not completely removed,
and significant ringing artifacts are present in the restored im-
ages. On the other hand, the proposed algorithm provides re-
stored images of very high quality.

Finally, we compare the proposed algorithm with a state-of-
the-art single image deblurring algorithm presented in [4]. Since
this method is utilizing a single image, to provide a fair compar-
ison, we provided the algorithm the original PSFs and applied it
to the long-exposure image shown in Fig. 2. Note that this sce-
nario is again not realistic, but presents the best possible results
that can be obtained by [4]. The restored images are shown in
Fig. 6 and the corresponding MSE values are given in Table II.
Notice that the proposed method results in lower MSE values
for all blur PSFs, and it can be observed by comparing Figs. 3
and 6 that it provides sharper images than [4]. The restored im-
ages by the proposed algorithm are also closer to the original
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Fig. 6. Non-blind restoration results using the method in [4].

Fig. 7. Outdoor image pair. (a) Short exposure image (brightness level is corrected), (b) long exposure image, (c) denoised short exposure image, (d) restored
image using the algorithm [4], (e) recovered PSF using the proposed method (support: 51� 51), and (f) restored image using the proposed algorithm.

image than the ones provided by [4], although the original PSF
is provided to this method. Overall, these results show that the

proposed method is more effective in preserving the image char-
acteristics in the restoration process.
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Fig. 8. Center regions of the images shown in Fig. 7. (a) Short exposure image, (b) long exposure image, (c) denoised short exposure image, (d) result of the
proposed algorithm.

Next we apply the proposed method to a real image pair
acquired by a compact digital camera. Figs. 7(a) and 7(b) show
an image pair acquired outdoors at with exposure
times 1/100 and 1/3 s, respectively. Due to low light conditions
the noise level in the short exposure image is quite high.
Moreover, it can be observed from Fig. 7(a) that the noise in the
short exposure image is colored and therefore does not follow
the assumed observation model in (4). In addition, certain parts
of the images are highly saturated (e.g., part of the window
above the door), which introduces an additional difficulty in
blur estimation due to its nonlinearity. The application of the
denoising algorithm in [8] to the short exposure image is shown
in Fig. 7(c). We manually tuned the parameters of the denoising
algorithm for each color channel, and show the result with the
highest visual quality. The image and blur estimates provided
by the proposed algorithm are shown in Fig. 7(e) and (f). The
support of the PSF estimate is 51 51. The center regions of
the images are shown in their original size in Fig. 8 for a closer
inspection. It can be observed that despite the challenging
nature of the input images, the algorithm provides significant
improvement both in removing the blur and revealing sharp
details in the image, as well as, in correcting the color loss
apparent in the short-exposure image. Although the denoising
method is also successful in removing the acquisition noise,
it can not correct the color loss in the short exposure image,
and its result is softer than the one provided by the proposed
method. Finally, as an additional reference, we applied the
algorithm in [4] to the long-exposure image and initialized
the algorithm with the PSF estimate shown in Fig. 7(e). The
corresponding restored image is shown in Fig. 7(d). Notice
that this image suffers from a high level of ringing artifacts,
especially around the saturated areas. Additionally, the blur is

not completely removed and the edges are much softer than
the image provided by the proposed method.

Finally, we present a comparison of the proposed method with
the image stabilization method proposed in [17] and the de-
noising algorithm in [8] on a real image set. The images shown
in Figs. 9(a) and 9(b) (published in [17]) are taken with exposure
times 1/100 sec and 1 sec, respectively. The result of applying
the denoising algorithm in [8] to the short exposure image is
shown in Fig. 9(c). It is clear that although the noise level is sig-
nificantly reduced, the contrast is very low, and there is a signifi-
cant red color cast. The restored image in Fig. 9(d) is obtained by
the algorithm in [17], which requires knowledge of the variances
of the noise in the observations. Next, we applied the method [4]
to the long exposure image where the PSF estimated by the pro-
posed method (shown in Fig. 9(g)) is provided to this method.
The restored image is shown in Fig. 9(e). Finally, the image and
PSF estimates provided by the proposed algorithm are shown in
Figs. 9(f) and 9(g), respectively, where the estimated support of
the PSF is 41 41. Note that although the proposed method is
fully-automated, the restored image is clearly sharper than that
of [17] with almost no ringing artifacts. This is especially evi-
dent in the area around the letters. Moreover, the restored image
by the proposed method is sharper than the denoised image and
has a higher contrast with correctly restored colors. Finally, the
image estimated by [4] exhibits a high level of ringing artifacts,
and therefore the proposed method clearly provides an image
with higher visual quality.

In summary, experimental results with both synthetic and
real image sets demonstrate that the proposed algorithm is very
effective in providing high quality restored images, although
no image- and observation-specific parameter tuning has been
performed.
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Fig. 9. Real image example (courtesy of [17]). (a) Short exposure image, (b) long exposure image, (c) denoised short exposure image, (d) restored image using
[17], (e) restored image using the algorithm [4], (f) restored image using the proposed algorithm, and (g) recovered PSF using the proposed algorithm (support :
41� 41).

VII. CONCLUSION

In this paper we presented a novel Bayesian formulation for
blind deconvolution from image pairs acquired using long- and
short-exposure times. The unknown image, blur and all model
parameters, including the noise variances, are estimated solely
from the observations without prior knowledge or user interven-
tion. On the other hand, the proposed framework is very flex-
ible so that when some prior knowledge about the unknowns
is available, it can easily be incorporated into the algorithm.
The developed algorithm simultaneously estimates the distri-
butions of the unknowns which allows for the computation of
the estimation uncertainties and also incorporates these uncer-
tainties into the restoration procedure. The algorithm does not
rely on nonrobust and input-dependent ad hoc methods (such
as blur thresholding or blur denoising). Moreover, although the
proposed method does not require user-intervention but instead
provides a fully automated estimation of the algorithmic param-
eters, experimental results demonstrate that it results in very
high quality restored images even with high degradations in both
synthetic and real image cases, and compares favorably with ex-
isting methods.

Future work includes the incorporation of the geometric and
photometric registration in the Bayesian framework. This will
allow simultaneous estimation of the registration parameters
along with the unknown image and the blur, which has the po-
tential of providing more accurate registration estimates then
preprocessing methods.

APPENDIX

CALCULATION OF THE APPROXIMATION TO THE BLUR PSF
POSTERIOR DISTRIBUTION

In this section we show the calculation of the distribution in
(43) with parameters (44) and (45). Using (36) and (37), we have

(A-1)

The first and second terms in the exponent can be written as
shown in (A-2) and (A-3) shown at the top of the next page.
Substituting these identities in (A-1) and ignoring the terms not
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(A-2)

(A-3)

(A-4)

containing , we obtain (A-4) shown at the top of the page.
Note that (A-4) is in standard form of the rectified Gaussian
distribution (see [29, App. A.3]. The explicit forms of the dis-
tribution parameters can be easily calculated from (A-4) to ob-
tain (44) and (45). The mean and variance of this distribution
given in (46) and (47) follow from the properties of the rectified
Gaussian distribution.
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