
326 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 3, MARCH 2008

Parameter Estimation in TV Image Restoration
Using Variational Distribution Approximation

S. Derin Babacan, Student Member, IEEE, Rafael Molina, Member, IEEE, and Aggelos K. Katsaggelos, Fellow, IEEE

Abstract—In this paper, we propose novel algorithms for total
variation (TV) based image restoration and parameter estimation
utilizing variational distribution approximations. Within the hier-
archical Bayesian formulation, the reconstructed image and the
unknown hyperparameters for the image prior and the noise are si-
multaneously estimated. The proposed algorithms provide approx-
imations to the posterior distributions of the latent variables using
variational methods. We show that some of the current approaches
to TV-based image restoration are special cases of our framework.
Experimental results show that the proposed approaches provide
competitive performance without any assumptions about unknown
hyperparameters and clearly outperform existing methods when
additional information is included.

Index Terms—Bayesian methods, image restoration, parameter
estimation, total variation (TV), variational methods.

I. INTRODUCTION

I N MOST applications, the acquired images represent a
degraded version of the original scene. These applica-

tions include astronomical imaging (e.g., using ground-based
imaging systems or extraterrestrial observations of the earth and
the planets), commercial photography, medical imaging (e.g.,
X-rays, digital angiograms, autoradiographs), and molecular
and cellular bioimaging [2]–[4]. The degradation can be due
to the atmospheric turbulence, the relative motion between the
camera and the scene, and the finite resolution of the acquisition
instrument.

A standard formulation of the image degradation model is
given in matrix-vector form by

(1)

where the vectors , , and represent, respectively, the
original image, the available noisy and blurred image, and the
noise with independent elements of variance , and
represents the known blurring matrix. The images are assumed
to be of size , and they are lexicographically ordered
into vectors. The restoration problem calls for finding an
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estimate of given , , and knowledge about and possibly
[2].
A number of approaches have been developed in providing

solutions to the restoration problem (see, for example, [2], [3],
[5], and references therein). A straightforward approach to the
restoration problem is to use least squares estimation and select

, an estimate of the original image, as

(2)

where . However, as is well known, this
approach does not lead to useful restorations in most cases. Use
of prior knowledge about the original image can improve the
restoration results. Within the Bayesian framework this knowl-
edge is encapsulated as a prior distribution .

A general model for the prior distribution is a Markov
random field (MRF) which is characterized by its Gibbs distri-
bution given by

(3)

where is the partition function with a constant and
is the energy function of the form , where

denotes a set of cliques (i.e., set of connected pixels) for the
MRF, and is a potential function defined on a clique.

A critical issue is the choice of the energy function. In this
paper we use the total variation (TV) image prior [6] whose en-
ergy function is the discrete version of the total variation integral
defined as

(4)

We will explicitly write the form of the prior model in the next
section.

If the hyperparameters and are known, following the
Bayesian paradigm (see [7] for the unification of probabilistic
and variational estimation), it is customary to select, as the
restoration of , the image defined by

(5)

Not much work has been reported in the literature on the
joint parameter and image estimation when the parameters
and are not known (see [5], [8] for recent developments in
variational modeling and inference). Rudin et al. [6] consider
the minimization of constrained by

, where represents an estimate of the noise variance,
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and then proceed to estimate both the image and the associated
Lagrange multiplier to this constrained optimization problem.
Bertalmio et al. [9] make the Lagrange multiplier region depen-
dent. Bioucas-Dias et al. [10], using their majorization-mini-
mization approach [11], propose a Bayesian method to estimate
the original image and assuming that an estimate of the noise
variance is available. To our knowledge no work has been re-
ported on the simultaneous estimation of the parameters and

and the image and also on the estimation of the uncertainty
of those estimates (only point estimates of the parameters and
image have been provided).

In this paper, we use the Bayesian paradigm to jointly es-
timate the image and unknown hyperparameters ( and ) in
image restoration when the TV image prior is used. The esti-
mation procedure will not provide only point estimates of the
image and the hyperparameters but also the probability distri-
butions that approximate the posterior distribution of the hyper-
parameters and the original image given the observation.

This paper is organized as follows. Section II presents a gen-
eral description of the Bayesian modeling and inference of the
TV restoration problem, which includes a brief discussion on
estimation procedures (inference methods) that provide point
or probability distribution estimates. The actual parameter
hyperpriors, image prior, and observation models used in this
paper are then presented in Section III. Section IV describes
the variational approach to distribution approximation for
TV image restoration and how inference is performed. We
propose different approximations of the posterior distribution
of the image and the unknown hyperparameters, and compare
them to other approaches reported in the literature. Finally, in
Section V, experimental results and comparisons with other
methods are shown, and Section VI concludes the paper.

II. BAYESIAN MODELING AND INFERENCE

The Bayesian modeling of the TV restoration problem re-
quires first the definition of a joint distribution of
the observation, , the unknown image, , and the hyperpa-
rameters and . To model the joint distribution, we utilize in
this paper the hierarchical Bayesian paradigm (see, for example,
[12]–[15]). In the hierarchical approach to image restoration, we
have at least two stages. In the first stage, knowledge about the
structural form of the observation noise and the structural be-
havior of the image is used in forming and ,
respectively. These noise and image models depend on the un-
known hyperparameters and . In the second stage, a hyper-
prior on the hyperparameters is defined, thus allowing for the
incorporation of information about these hyperparameters into
the process.

For , , , , the following joint distribution is defined:

(6)

and inference is based on .
Three crucial questions have to be addressed when modeling

and performing inference for image restoration problems using
the hierarchical Bayesian paradigm. The first one relates to the
definition of and . We should be able to deal with the
case of known hyperparameters which correspond to degenerate

distributions for and , but also with more realistic sit-
uations including the cases when some knowledge about these
parameters is available or when only the observation is avail-
able to estimate them.

The second crucial problem to be considered is to decide how
inference will be carried out. A commonly used approach in
image restoration (called the Evidence analysis [12]) consists
of estimating the hyperparameters , by using

(7)

and then estimating the image by solving

(8)

Another approach, also commonly used in image restoration,
is the so called empirical analysis [16], which consists of calcu-
lating the restoration by solving

(9)

These inference procedures aim at optimizing a given func-
tion and not at obtaining posterior distributions that can be an-
alyzed or simulated to obtain additional information about the
quality of the estimates. Instead of having a distribution over all
possible values of the parameters and the image, the above infer-
ence procedures choose a specific set of values. This means that
we have neglected many other interpretations of the data. If the
posterior is sharply peaked, other values of the hyperparameters
and the image will have a much lower posterior probability but,
if the posterior is broad, choosing a unique value will neglect
many other choices of them with similar posterior probabilities.

The third crucial problem to be solved when using the
Bayesian paradigm on TV image restoration is to decide how
to calculate , which is in general a challenging
task. An approach is provided by the variational distribution
approximation. This approximation can be thought of as being
between the Laplace approximation (see, for instance, [14]
and [17]) and sampling methods [18]. The basic underlying
idea, as will be explained later, is to approximate
with a simpler distribution. See the very interesting [19], [20]
books [21], [22] and book chapter [23] for a comprehensive
introduction to variational methods.

The last few years have seen a growing interest in the appli-
cation of variational methods [19], [23] to inference problems.
These methods attempt to approximate posterior distributions
with the use of the Kullback–Leibler cross-entropy [24]. Appli-
cation of variational methods to Bayesian inference problems
include graphical models and neural networks [23], independent
component analysis [19], mixtures of factor analyzers, linear
dynamic systems, hidden Markov models [20], support vector
machines [25] and blind deconvolution problems (see [15], [26],
and [27]).
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In this paper, we use a TV prior distribution for the image,
and gamma distributions for the unknown parameter (hyperpa-
rameter) of the prior and the image formation noise. We apply
variational methods to approximate the posterior probability of
the unknown image and hyperparameters and propose two dif-
ferent approximations of the posterior distribution. We use the
obtained posterior approximation to gain additional insight into
the estimated hyperparameters and image.

III. HYPERPRIORS, PRIOR, AND OBSERVATION MODEL

USED IN TV IMAGE DECONVOLUTION

We first describe the TV prior model as well as the observa-
tion model we use in the first stage of the hierarchical Bayesian
paradigm. Then, since the prior and observation models depend
on unknown hyperparameters, we proceed to explain the hyper-
prior distributions we utilize for these hyperparameters.

A. First Stage: Prior Models on Images

As image model we use the TV prior, given by

(10)

where is the partition function and

(11)

where the operators and correspond to, respec-
tively, the horizontal and vertical first order differences, at pixel
, that is, and , with

and denoting the nearest neighbors of , to the left and
above, respectively.

Unless we want to use very simple estimation procedures for
the hyperparameter , we need to calculate (approximate) the
partition function . Using

(12)

we can utilize the following approximation of in (10)
proposed in [11]:

(13)

where again is the size of the original image , and is a
constant. Note that the idea of approximating partition functions
in image priors to be able to estimate distribution parameters has
also been used in [27].

The probability distribution corresponding to the observation
model in (1) is given by

(14)

B. Second Stage: Hyperpriors on the Hyperparameters

A large part of the Bayesian literature is devoted to finding
hyperprior distributions for which can be
either calculated in a straightforward way or be closely approxi-
mated. These are the so called conjugate priors [28] which have

Fig. 1. Graphical model showing relationships between variables.

the intuitive feature of allowing one to begin with a certain func-
tional form for the prior and end up with a posterior of the same
functional form, but with the parameters updated by the sample
information.

We will assume that each of the hyperparameters
has as hyperprior the gamma distribution, , defined
by

(15)

where and are, respectively, the scale and shape
parameters, which are assumed to be known. We will discuss
their calculation in Section V. The gamma distribution has the
following mean, variance, and mode

(16)
There are several important reasons for selecting Gamma dis-

tributions for the hyperpriors. First, the Gamma distribution is
conjugate for the variance of the Gaussian, and, therefore, the
posteriors will also have Gamma distributions in the Bayesian
formulation. Second, as will be shown later, their update equa-
tions will exhibit interesting similarities to some previously de-
rived results in the literature.

Finally, combining the first and second stages of the problem
modeling we have the following global distribution:

(17)

where , , , and have been defined in
(13)–(15). The joint probability model is shown in graphical
form in Fig. 1 using a directed acyclic graph.

IV. BAYESIAN INFERENCE AND VARIATIONAL APPROXIMATION

OF THE POSTERIOR DISTRIBUTION FOR

TV IMAGE RESTORATION

The Bayesian paradigm dictates that inference on
should be based on

(18)

where is given by (17).
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Because cannot be found in closed form, since

(19)

cannot be calculated analytically, we apply variational methods
to approximate this distribution by the distribution .
We utilize a mean field approximation for the posterior distri-
butions of , , and so that these posterior distributions are
assumed to be independent given the observations. We will later
show that particular selections of the distributions and

lead to the hyperparameters and image point estimates pro-
vided by the evidence and empirical analysis described in Sec-
tion II. Notice, however, that unless the distributions
and are degenerate, the variational approximation provides
us with additional information that goes beyond simple point
estimates.

The variational criterion used to find is the mini-
mization of the Kullback–Leibler divergence, given by

(20)

which is always non-negative and equal to zero only when
.

Due to the form of the TV prior, the above integral is difficult
to evaluate (note that also for the same reason the evidence and
empirical estimates described in Section II are difficult to cal-
culate). We can, however, majorize the TV prior by a function
which renders the integral easier to calculate. Let us consider
the following inequality, also used in [11], which states that, for
any and

(21)

Let us also define for , , and any -dimensional vector
, with components , , the following

functional:

(22)

Now, using inequality (21) with and
and comparing (22) with (13), we obtain

(23)

As will be shown later, vector is a quantity that needs to be
computed and has an intuitive interpretation related to the un-
known image . Inequality (23) leads to the following lower
bound for the joint probability distribution:

(24)

By defining

(25)

and utilizing inequality (24), we obtain

(26)

Therefore, by finding a sequence of distributions
that monotonically decreases

for a fixed a sequence of an ever decreasing upper bound
of is also obtained due to
(20). However, also minimizing with respect
to generates a sequence of vectors that tightens the
upper-bound for each distribution . Therefore,
the two sequences and are coupled. We
develop an iterative algorithm (Algorithm 1) to find such
sequences.

Inequality (21) provides a local quadratic approximation to
the TV prior. Had a fixed with same elements been used
a global conditional auto-regression model approximating
the TV prior would have been obtained. Clearly, the proce-
dure which updates will provide a tighter upper bound for

, since we are using
instead of .

Finally, we note that the process to find the best posterior dis-
tribution approximation of the image in combination with is
a very natural extension of the majorization-minimization ap-
proach to function optimization (see [29]) and that local ma-
jorization has also been applied to variational logistic regres-
sion [30], as well as, to the inference of its parameters (see [31]
and [32]).

The following algorithm can, therefore, be used for calcu-
lating the approximating posteriors .

Algorithm 1

Posterior parameter and image distributions estimation in TV
restoration using .

Given and , an initial estimate of the
distribution , for until a stopping criterion
is met.

1) Find

(27)

2) Find

(28)
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3) Find

(29)

Set

(30)

Let us now further develop each of the steps of the above
algorithm. To calculate , we observe that differentiating
the integral on the right-hand side of (27) with respect to
and setting it equal to zero, we obtain

(31)

which represents an -dimensional Gaussian distribution with
parameters

(32)

and

(33)

where is an diagonal matrix of the form

(34)

and and represent the convolution matrices as-
sociated to the first order horizontal and vertical differences, re-
spectively.

To calculate , we have from (28) that

(35)
and, consequently

(36)
Notice that is not required in calculating . It is
clear from (36) that the vector is a function of the spa-
tial first order differences of the unknown image under the
distribution and represents the local spatial activity of .
Therefore, matrix in (34) can be interpreted as the spa-
tial adaptivity matrix, since it controls the amount of smoothing
at each pixel location depending on the strength of the inten-
sity variation at that pixel, as expressed by the horizontal and
vertical intensity gradients. That is, for the pixels with high spa-
tial activity the corresponding entries of are very small
or zero, which means that no smoothness is enforced, while for
the pixels in a flat region the corresponding entries of
are very large, which means that smoothness is enforced. This

matrix has also been referred to as the visibility matrix
[33] since it describes the masking property of the human visual
system, according to which noise is not visible in high spatial
activity regions (its high frequencies are masked by the edges),
while it is visible in the low spatial frequency (flat) regions. The
visibility matrix and its complementary matrix have
been used in iterative image restoration in [34].

By differentiating the integral on the right hand side of (29)
with respect to and setting it equal to zero, we obtain

(37)

and thus

(38)

where and are gamma distributions given re-
spectively by

(39)

(40)

The means of these gamma distributions are given by

(41)

The calculation of , ,
, and is

carried out in Appendices I and II.
Note that we have

(42)

(43)

and thus

(44)

(45)
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where , , and

(46)

Equation (46) indicates that and , both taking values in
the interval [0,1), can be understood as normalized confidence
parameters. As can be seen from (44) and (45), the inverses of
the means of the hyperpriors are represented as convex com-
binations of their initial values and their maximum likelihood
(ML) estimates. These ML estimates have been derived before
either empirically or by using regularization formulations [34],
[35]. According to (44) and (45), when they are equal to zero, no
confidence is placed on the initial values of the hyperparameters
and ML estimates are used, while when they are asymptotically
equal to one, the prior knowledge of the mean is fully enforced,
i.e., no estimation of the hyperparameters is performed.

Case of particular interest is when

(47)

which corresponds to a flat hyperprior distribution. This type of
hyperprior modeling makes the observation responsible for the
whole estimation process.

In the proposed model, for estimating the posterior distribu-
tion of the image and the unknown hyperparameters no assump-
tions were made about and . We study now the case
when is a degenerate distribution, that is, a distribution
which takes one value with probability one and the rest with
probability zero. In the iterative procedure we describe next, we
use to denote the value takes with probability one. We
then have the following procedure.

Algorithm 2

Posterior parameter and image distributions estimation in
TV restoration using with a
degenerate distribution.

Given , an initial estimate of the distribution
and , for until a stopping criterion
is met.

1) Calculate

(48)

2) Calculate

(49)

3) Calculate

(50)

where and are gamma distributions
given, respectively, by

(51)

(52)

Set

(53)

Two additional factorizations of the distribution
can be used. The first one corresponds to assuming that
is a degenerate distribution. In this case, selecting as image es-
timate the mean value of the limiting distribution in the
corresponding algorithm is equivalent to performing the evi-
dence analysis for the TV restoration problem. The second one
corresponds to assuming that both and are degen-
erate distributions. The corresponding algorithm is equivalent
to maximizing alternatively in the hyperparameters and image
the lower bound of given in (24). In other words, the
estimation procedure is an iterated conditional mode (ICM) al-
gorithm [36].

To end this section, we comment on two particular hyperpa-
rameter distributions . The first one is obtained when
both and are known quantities. Then Algorithm 2 with

, , and , provides the same so-
lution with

(54)

If with , the estimate of (54) is the one used
in [11], and referred to as algorithm BFO1 in Section V.

The second hyperparameter distribution is obtained
when only is known, that is, , , and when

and . Then Algorithm 2 at convergence
provides [see (44)]

(55)

and the solution for the image in (48) satisfies

(56)

with

(57)

Now, regularizing by using where is
a small positive constant to obtain a differentiable TV norm, we
have

(58)
Therefore, (56) can be rewritten as

(59)
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That is, for this particular selection of , Algorithm 2 pro-
vides the solution of

(60)

Interestingly, this image estimate coincides with the image es-
timate proposed in [10], and referred to as algorithm BFO2 in
Section V, which is obtained as

(61)

Clearly, Algorithm 2 is a generalization of the algorithms pre-
sented in [11] and [10].

V. EXPERIMENTAL RESULTS

We performed a number of experiments to evaluate the
performance of the proposed algorithms and also to compare
them with other image restoration methods in the literature. We
present results with Algorithm 1 (denoted by ALG1), Algorithm
2 (denoted by ALG2) and the TV-based approaches in [11] and
[10], denoted (see the end of the previous section) by BFO1
and BFO2, respectively. As already shown algorithms BFO1
and BFO2 are special cases of ALG2. We will elaborate on the
differences and similarities of the methods in conjunction with
the results. As in [11] and [10] we use a conjugate gradient
algorithm (CG) to find the BFO1 and BFO2 image estimates.

We also included results obtained with the use of the algo-
rithm in [16] which models the image distribution by a simulta-
neous autoregression (SAR) model [37] instead of a TV model
and simultaneously estimates the prior and image hyperparame-
ters. This algorithm will be denoted by MOL in the results. Com-
paring TV-based algorithms with this method provided useful
insights about the proposed approaches.

In evaluating the upper bound of the performance of the pro-
posed algorithms, we also provide results obtained by the al-
gorithms denoted by ALG1-TrueU, ALG2-TrueU, ALG1-True,
and ALG2-True. For the ALG1-TrueU and ALG2-TrueU algo-
rithms, the noise variance is known (since we are dealing
with synthetic experiments), and and are calculated using
the original image [ from the equation
and from (36) and (49)].

All three parameters are computed once, and, thus, they are
not updated during the iterations. For the ALG1-True and ALG2-
True algorithms and are treated as in ALG1-TrueU and
ALG2-TrueU, but is evaluated iteratively.

In our results, we provided the improvement in signal-to-
noise ratio (ISNR) as an objective measure of the quality.
The ISNR is defined as , where

, and are the original, observed, and estimated images,
respectively. In the tables we present in this section, we report
the ISNR values, number of iterations, and estimated noise
variances using a conjugate gradient (CG) approach [values
in parentheses are obtained using a gradient descent (GD)

Fig. 2. (a) Lena image; degraded with a Gaussian shaped PSF with variance 9
and Gaussian noise of variance: (b) 0.16 (BSNR = 40 dB), (c) 1.6 (BSNR =
30 dB), (d) 1 (BSNR = 20 dB).

approach to solve (33) and (48), as further discussed in Ap-
pendix I]. Note that since the parameter is not estimated by
the algorithms BFO1 and BFO2, but it is assumed known, the
corresponding entries are denoted by “-”. For all experiments,

(or instead of ) is used to
terminate the algorithms, and a threshold of is used to
terminate the CG and GD iterations.

For the first set of experiments, we synthetically degraded
the “Lena” and “Cameraman” images and the “Shepp–Logan”
phantom with a Gaussian blur with variance 9 and additive
Gaussian noise. We experimented with three noise levels, cor-
responding to blurred signal-to-noise ratios (BSNR) of 40, 30,
and 20 dB. The original Lena image is shown in Fig. 2(a) and the
degraded versions with the three noise levels in Fig. 2(b)–(d) (the
corresponding noise variances are equal to 0.16, 1.6, and 16).

Flat hyperpriors on the hyperparameters are used as initial
conditions, i.e., and . The initially
selected values for and for both ALG1 and
ALG2 methods were equal to

(62)

that is, we used the observations to initialize the hyperprior
means. The observed image is used as the initial value of , and
the initial value of is calculated from this observed image.
Note that the algorithms are initialized automatically without
any manual input.

The ISNR values, the number of iterations, and the estimates
of the noise variance are shown in Table I (it is noted that
the true value of the noise variance is reported for the algorithms
with the “True” suffix). In the second set of experiments, the
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Fig. 3. Restorations of the Lena image blurred with a Gaussian PSF with
variance 9 and 40-dB BSNR using the (a) MOL method (ISNR = 3:90 dB),
(b) BFO1 method (ISNR = 4:72 dB), (c) BFO2 method (ISNR = 4:5 dB),
(d) ALG1 method (ISNR = 4:84 dB), and (e) ALG2 method (ISNR =
4:64 dB).

same images are degraded by a 9 9 uniform blur and additive
Gaussian noise. The corresponding results are shown in Table II.

It is clear that knowledge of the noise and image parameters
provides an advantage for BFO1; this method outperforms other
methods in nearly all noise levels. However, both ALG1 and
ALG2 result in comparable, in some cases even higher ISNR
values, despite the fact that no prior information is assumed
about the degradation process. We will later show that with
the use of hyperpriors on the unknown hyperparameters higher
ISNR values to the ones obtained by BFO1 can be achieved by
the ALG1 and ALG2 algorithms.

The important point to note here is that ALG1 and ALG2
generally perform better that BFO2 and MOL. The proposed
methods generally result in higher ISNR values than BFO2, al-
though the noise variance is assumed to be known in BFO2. The
MOL algorithm is outperformed by other methods in all experi-
ments, although the noise variance is very accurately estimated.

Fig. 4. Restorations of the Lena image blurred with a Gaussian PSF with
variance 9 and 20-dB BSNR using the (a) MOL method (ISNR = 2:45 dB),
(b) BFO1 method (ISNR = 3:02 dB), (c) BFO2 method (ISNR = 2:47 dB),
(d) ALG1 method (ISNR = 3:06 dB), and (e) ALG2 method (ISNR =
2:58 dB).

This comparison clearly shows that the spatially adaptive de-
convolution and noise removal achieved by TV-based restora-
tion methods provides a significant improvement over methods
like MOL which do not incorporate spatial adaptivity in the es-
timation procedure.

We also note that the proposed methods are robust to the ini-
tial values of the hyperparameters. For instance, when the algo-
rithms are initialized using and , as in
[11], the resulting ISNR values are similar to the ones reported
in Table I. For instance, for the 40-dB BSNR case with the Lena
image, the ISNR values are 4.64 (4.75) dB and 4.34 (4.42) dB,
and for the 20-dB BSNR case, the ISNR values are 2.88 (3.06)
dB and 2.45 (2.51) dB for the ALG1 and ALG2 methods, re-
spectively. These results show the robustness of the methods to
parameter initialization.

Although the results in Table II are similar to the Gaussian
blur case, we note some interesting differences. It is clear that
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TABLE I
ISNR VALUES AND NUMBER OF ITERATIONS FOR THE LENA, CAMERAMAN, AND SHEPP–LOGAN IMAGES DEGRADED BY A GAUSSIAN BLUR WITH VARIANCE 9

ALG2 outperforms ALG1 in high BSNRs, but it results in a
lower ISNR in the low BSNR case. We can conclude that in the
high BSNR case, where the noise level is low, exploiting addi-
tional information using the full variational formulation actually
results in lower performance. However, using the full variational
algorithm, i.e., ALG1, provides better image estimates in the low
BSNR case. Another remark is that both algorithms fail to ac-
curately estimate the noise variance when the noise level is very
low at 40-dB BSNR, although the estimated noise variance is
very close to the true value at high noise levels.

The results obtained with the use of GD and CG are compa-
rable, although in most cases GD results in fewer iterations.

A fair comparison between BFO1 and the proposed ap-
proaches can be made by looking at the performances of
ALG1-True and ALG2-True. In most cases ALG1-True and
ALG2-True outperform BFO1, while a smaller number of iter-
ations is adequate for convergence. Additionally, ALG1-TrueU
and ALG2-TrueU provide the upper bound in ISNR that can be
achieved by TV-based restoration methods represented here.

Clearly, knowledge of the true value of the matrix provides a
significant advantage to the methods.

We next examine the effect of the introduction of additional
information about the unknown hyperparameters through the
use of the confidence parameters and on the performance
of the algorithms. As we have already explained before, in the
case of , no information about the hyperparam-
eters is available, and the observed image is responsible for
the estimation of the hyperparameters and the image. However,
one usually has some information about the original image and
the degradation process. For example, off-line estimates of the
image and noise variance can be computed, and provided to the
algorithms. In our experiments, we provided the true image and
noise variance to the algorithms and run the algorithms while
varying the confidence parameters and from 0 to 1 in 0.1
intervals.

Table III shows the means of the posterior distributions of
the hyperparameters, ISNR values, and the number of iterations
obtained using ALG1 for selected values of the confidence pa-
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TABLE II
ISNR VALUES AND NUMBER OF ITERATIONS FOR THE LENA, CAMERAMAN, AND SHEPP–LOGAN IMAGES DEGRADED BY A 9 � 9 UNIFORM BLUR

TABLE III
POSTERIOR MEANS OF THE DISTRIBUTIONS OF THE HYPERPARAMETERS, ISNR,

AND NUMBER OF ITERATIONS USING ALG1 FOR THE LENA IMAGE WITH

40-dB AND 20-dB BSNR USING � = 1=23:84, AND � = 1=0:16 AND

� = 1=16, RESPECTIVELY, FOR DIFFERENT VALUES OF  AND 

rameters. The confidence values are selected to demonstrate the
behavior of the algorithm in the following cases: 1) when full

information about the image and noise variance is available,
2) when no information is provided, i.e., the observation is fully
responsible for the restoration, 3) when some information about
the image prior variance is provided, and 4) when some in-
formation about the noise variance is provided. Moreover, the
evolution of ISNR for the full set of confidence parameters is de-
picted in Fig. 5. A similar ISNR evolution is obtained for ALG2
so its corresponding plot is not shown. It can be observed that
the noise level changes the effect of the confidence parameters.
In the low-noise case dB , information about the
noise variance affects the final ISNR more than the informa-
tion about the image variance; there is almost no ISNR variance
when and changes from 0 to 1. However, in the
20-dB BSNR case information about the image variance is more
valuable than the noise variance. For a fixed , the ISNR value
remains fixed for varying , whereas increasing the image vari-
ance confidence increases the obtained ISNR. It can be stated as
a final remark that the algorithm is less successful at estimating
the noise variance in low noise conditions, and less successful at
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Fig. 5. Evolution of ISNR using ALG1 for different values of  and  for the restoration of the Lena image blurred with a Gaussian with variance 9, and
(a) BSNR = 40 dB; (b)BSNR = 20 dB.

Fig. 6. Evolution of ISNR with varying  and � for Lena image degraded with Gaussian blur with variance 9 at (a) 40-dB BSNR and (b) 20-dB BSNR (note
that � = d � �̂).

estimating the image variance in high noise conditions. There-
fore, information about the poorly estimated parameter helps to
further increase the ISNR values. However, we should also state
that the ISNR variation in these plots is small compared to the
ISNR values (difference between the maximum and minimum
ISNR values are 0.13 dB at 40-dB BSNR and 0.19 dB at 20-dB
BSNR); therefore, we can see that the algorithm is robust to the
estimated hyperparameter values in terms of the final restored
image quality.

We will now examine the additional information provided by
the variational approach and study how the distributions on the
hyperparameters can be used to improve the results already ob-
tained. We start our experiments by assuming flat hyperpriors,
and applied algorithm ALG2 to the Lena image degraded by
a Gaussian blur of variance 9 and additive Gaussian noise at
40- and 20-dB BSNR, as we had before. This provides esti-
mates of the noise and image variance, denoted by and ,
respectively. Next we run algorithm ALG2 multiple times on
the same degraded image with different initial hyperparame-
ters: The final estimated noise variance of the algorithm is used
without update, i.e., and . By moving in

[0,1] and selecting the hyperprior mean as , where
is in the range , we obtain the ISNR evolution

graphs shown in Fig. 6(a) for the 40-dB BSNR case and Fig. 6(b)
for the 20-dB BSNR case. It should be noted that the range
of ISNR values obtained by this experiment includes the best
ISNR achieved with known hyperparameter values, depicted in
Table I, corresponding to ALG2-True. Thus, as expected, the
results by ALG1-True and ALG2-True are included in the case
when different selections of the gamma hyperpriors on the hy-
perparameters are used. A few remarks can be made by exam-
ining at Fig. 6. First, the algorithms are very robust with respect
to the parameter , since even in the case the re-
sulting ISNR value is very close to the highest achievable value.
Second, one can conclude that the distribution of is not sharply
peaked at one value, and, therefore, multiple values of this pa-
rameter can be used in the restoration process without greatly
affecting the performance of the algorithm.

Overall, the experimental results demonstrate that algorithms
ALG1 and ALG2 provide comparable performance to the ex-
isting TV-based approaches even though no prior knowledge
about the image and degradation process is assumed, and out-
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perform them if prior knowledge is utilized. It is also clear that
TV-based approaches result in higher quality restorations than
nonspatially adaptive restoration methods. Another important
point to be made is that with the developed framework, we can
draw different estimates for the unknown hyperparameters from
their estimated distributions and, thus, assign a degree of trust to
the results and potentially achieve improved restoration results.
The major distinction between the proposed algorithms ALG1
and ALG2 is that ALG1 provides the approximation to the pos-
terior distribution of the unknown image. For scientific applica-
tions for which a confidence value for a restoration is important
(i.e., restoration of astronomical or medical images), ALG1 can
provide such information through the use of this posterior dis-
tribution. On the other hand, when images are restored for, for
example, consumer applications ALG2 can be the algorithm of
choice.

The proposed algorithms are computationally more intensive
than nonspatially adaptive restoration methods since (33) and
(48) cannot be solved by direct inversion in the frequency
domain and numerical approaches are utilized. Typically, the
MATLAB implementations of our algorithms required on the
average about 2–5 min on a 3.20-GHz Xeon PC for 256
256 images. Note that the running time of the algorithms can
be improved by utilizing preconditioning methods (see, for
example, [38]–[41]).

VI. CONCLUSION

We have presented two new methods for the simultaneous
estimation of the image and the unknown hyperparameters in
TV-based image restoration problems. We adopt a variational
approach to provide approximations to the posterior distribu-
tions of the unknown variables. Utilizing this variational frame-
work, different values from the posterior distributions can be
drawn as estimates to the latent variables and prior information
about the degradation process and the unknowns can be incor-
porated into the estimation process to increase the performance
of the algorithms. We have analyzed the proposed methods and
demonstrated that some of the current methods in TV-based
image restoration are special cases of our formulation. Exper-
imental results are provided to show the performance of the
methods in the case where information about the degradation
process and the unknown variables is not available, and when
some information can be provided for improved performance.

APPENDIX I
CALCULATION OF THE IMAGE ESTIMATES

IN ALGORITHMS 1 AND 2

To obtain the image estimates, the mean of the distribution
in (33) is used in Algorithm 1 and the point estimate in

(48) is used in Algorithm 2. The estimation of the quantities can
be carried out by the gradient descent (GD) or the conjugate
gradient (CG) methods. Note that by using the GD or the CG
methods we avoid the calculation of the inverse of the covari-
ance matrix. Our descriptions will be specifically for Algorithm
1. However, the same results apply to Algorithm 2. We next de-
scribe the specific GD steps applied to the solution of

(A1)

where

(A2)

In the description that follows, we use the notation ,
, , to denote the four pixels around pixel (if

they correspond to , , ,
and , respectively).

We now expand the matrix
and calculate at position ,

. We have

(A3)

Let us now define

(A4)

Using this, we obtain

(A5)

Combining with (A1), we obtain

(A6)

Adding to both sides of the above equation, we have

(A7)

Let

(A8)

Finally, using this, we have to find the solution of

(A9)
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from which the GD iteration is obtained, that is

(A10)

Alternatively, a CG method can be applied. In our experi-
ments we used the basic CG version shown in [42] to solve
(A1). Note that several methods can be used (see, for instance,
[38]–[40]) to calculate the TV image estimate without the use
of the majorization of the TV prior.

APPENDIX II
CALCULATION OF REQUIRED EXPECTED

VALUES IN ALGORITHM 1

In this section we show how the calculations of in (36)
and in (41) are carried out. We first expand (36) to
obtain

(A11)

For (41), we have

(A12)

Therefore, is explicitly needed to calculate these
quantities. However, since the calculation of is very
intense, we propose the following approximation of the covari-
ance matrix. We first approximate using

(A13)

where is calculated as the mean value of the diagonal
values in , that is

(A14)

We then approximate using

(A15)

(A16)

Note that the matrix is a block circulant matrix with circulant
blocks (BCCB); thus, computing its inverse can be performed
in Fourier domain, which is very efficient [35].

Using this approximation, the last two terms in (A11) can be
expressed as

(A17)

Finally, we can approximate the last term in (A12) as follows:

(A18)
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