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In this paper we propose and analyze a globally and locally adaptive super-resolution Bayesian

methodology for pansharpening of multispectral images. The methodology incorporates prior

knowledge on the expected characteristics of the multispectral images uses the sensor character-

istics to model the observation process of both panchromatic and multispectral images and includes

information on the unknown parameters in the model in the form of hyperprior distributions. Using

real and synthetic data, the pansharpened multispectral images are compared with the images

obtained by other pansharpening methods and their quality is assessed both qualitatively and

quantitatively.
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1. INTRODUCTION

Nowadays most remote sensing systems include sensors able

to capture, simultaneously, several low-resolution images of

the same area on different wavelengths, forming a multispec-

tral image, along with a high-resolution panchromatic image.

The main characteristics of such remote sensing systems are

the number of bands of the multispectral image and the resolu-

tion of those bands and the panchromatic image. The main

advantage of multispectral image is that it allows for a better

land type and use recognition but, due to its lower resolution,

information on the objects’ shape and texture may be lost. On

the other hand, the panchromatic image allows for a better

recognition of the objects in the image and their textures but

provides no information about their spectral properties.

The objective, therefore, is to perform multispectral image

reconstruction, that is, to jointly process the multispectral and

panchromatic images in order to obtain a new multispectral

image that, ideally, will exhibit the spectral characteristics

of the observed multispectral images and the resolution and

quality of the panchromatic image. Such an approach, also

named pansharpening, will allow us, for example in the case

of Landsat 7 ETMþ [1] which has a resolution of 30 m per

pixel for the multispectral image and 15 m per pixel for the

panchromatic one, to obtain a multispectral image with a

resolution of 15 m per pixel.

A few approximations to multispectral image reconstruc-

tion have been proposed in the literature (see [2–7] for

instance). Recently a few super-resolution based methods

have also been proposed. Eismann and Hardie [8] proposed

a maximum a posteriori approach that makes use of a stochas-

tic mixing model of the underlying spectral scene content to

achieve resolution enhancement beyond the intensity com-

ponent of the hyperspectral image. Akgun et al. [9] proposed

a projection onto convex sets-based algorithm to reconstruct

hyperspectral images, where the hyperspectral observations

from different wavelengths are represented as weighted

linear combinations of a small number of basis image planes.

In this paper we follow the hierarchical Bayesian approach to

obtain a solution to the super-resolution reconstruction of mul-

tispectral images problem and discuss the utilization of global

and spatially varying image models. This approach provides a

suitable framework for formulating the problem, as well as for

modeling the characteristics of the solution and incorporating

information on the set of parameters required by those

models. Then, applying variational methods to approximate

probability distributions, we estimate the unknown parameters

and the high-resolution multispectral image.

The paper is organized as follows. In Section 2 the Bayesian

modeling and inference for the super-resolution reconstruction

of multispectral images are presented. The required
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probability distributions for the Bayesian modeling of the

super-resolution problem are formulated in Section 3. The

Bayesian analysis and posterior probability approximation to

obtain the parameters and the super resolved image are

performed in Section 4. Experimental results on synthetic

color images and real Landsat 7 ETMþ images are described

in Section 5 and, finally, Section 6 concludes the paper.

2. BAYESIAN PROBLEM FORMULATION

Let us assume that y, the multispectral image we would

observe under ideal conditions with a high-resolution sensor,

has B bands yb, b ¼ 1, . . . , B, that is, y ¼ [y1
t , y2

t , . . . ,yB
t ]t,

where each band is of size p ¼ m � n pixels and the super-

script t denotes the transpose of a vector or matrix. Each

band of this image is expressed as a column vector by lexico-

graphically ordering its pixels. In real applications, this

high-resolution image is not available. Instead, we observe

a low-resolution multispectral image Y with B bands Yb,

b ¼ 1, . . . , B, that is, Y ¼ [Y1
t , Y2

t , . . . ,YB
t ]t, where each band

is of size P ¼ M � N pixels with M , m and N . n. Each

band of this image is also expressed as a column vector by lex-

icographically ordering its pixels. The sensor also provides us

with a panchromatic image x of size p ¼ m � n, obtained by

spectrally averaging the unknown high-resolution images yb.

The objective of the high-resolution multispectral image

reconstruction problem is to obtain an estimate of the

unknown high-resolution multispectral image y given the

panchromatic high-resolution observation x and the low-

resolution multispectral observation Y.

Using the hierarchical Bayesian paradigm (see [10], for

example) the following joint distribution for VM, y, Y and x

is defined p(VM, y, Y, x) ¼ p(VM) p (yjVM) p (Y, xjy, VM),

where VM denotes the set of hyperparameters needed by

these probability density functions, as described next

(obviously, depending on the probability models used in the

problem, the set of hyperparameters will differ).

The Bayesian paradigm dictates that inference on the

unknowns (VM, y) should be based on p(VM, yjY, x) ¼ p

(VM, y, Y, x) / p(Y, x).

3. BAYESIAN MODELING

We assume that Y and x, for a given y and a set of parameters

VM, are independent and consequently write p(Y, xjy, VM) ¼

p(Yjy, VM) p (xjy, VM).

Each low-resolution band, Yb, is related to its corresponding

high-resolution image by

Yb ¼ DHyb þ nb; 8b ¼ 1; . . . ;B; ð1Þ

where H is a p � p blurring matrix, D is a P � p decimation

operator, and nb is the capture noise, assumed to be Gaussian

with zero mean and variance 1/bb.

Given the degradation model of Equation (1) and assuming

independence among the noises observed in the low-resolution

images, the distribution of the observed Y given y and a set of

parameters VM is

pðY jy;VMÞ ¼
YB

b¼1

pðYb jyb;bbÞ

/
YB

b¼1

b
P=2
b exp �

1

2
bbkYb � DHybk

2

� �
:

ð2Þ

Note that this noise model is being used widely in the litera-

ture for multispectral image super-resolution. For applications

for which an independent Poisson noise model within each

band is applicable, Equation (2) has to be rewritten and the

approach in [11] has to be modified to deal with the super-

resolution of multispectral images under this observation

model.

As already mentioned, the panchromatic image x is

obtained by spectral averaging the unknown high-resolution

images yb, modeled as

x ¼
XB

b¼1

lbyb þ v; ð3Þ

where lb � 0, b ¼ 1, 2, . . . , B are known quantities that can be

obtained, as we will see later, from the sensor spectral charac-

teristics, and v is the capture noise that is assumed to be

Gaussian with zero mean and variance g21. Note that,

usually, x does not depend on all the multispectral image

bands but on a subset of them, i. e. some of the lbs are

equal to zero.

Using the degradation model in Equation (3), the dist-

ribution of the panchromatic image x given y, and a set of

parameters VM is given by

pðx j y;VMÞ/ g p=2exp �
1

2
g k x�

XB

b¼1

lbyb k
2

( )
: ð4Þ

From the above definition, the parameter vector (g, b1, . . . ,

bB) is a subset of VM. However, although the estimation of

(g, b1, . . . , bB) can be easily incorporated into the estimation

process, we will assume here that these parameters have

been estimated in advance and concentrate on gaining

insight into the distribution of the prior image parameters, as

described next.

3.1. Global and local image modeling

In this paper we present a global image model, which enforces

the same similarity among all pixels in each image band, and a
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local image model that allows local variations at a pixel level

in each band.

For the global image model, we assume a conditional

auto-regressive (CAR) model [12], that is, (we use M ¼ G to

denote it)

pðy jVGÞ/
YB

b¼1

�a p=2
b exp �

1

2
�ab yt

bCyb

� �� �
; ð5Þ

where C is a Laplacian operator involving the eight nearest

neighbors of each pixel as shown in Fig. 1. The set of hyper-

parameters involved using this model are, then,

VG ¼ �a1; . . . ; �aBð Þ : ð6Þ

Although the model in Equation (5) works well in regions

where pixels have similar values (flat areas), it fails to

capture the boundaries of objects and oversmoothes highly

textured objects. Hence, we define a local model for the high-

resolution multispectral image (M ¼ L will be used to denote

it) which captures the local properties of the image, such as

edges and textures, by defining a different smoothness para-

meter for each pixel and each direction.

For its definition we use the notation i1, i2, . . . , i8 to denote

the eight pixels around pixel i (see Fig. 1). Then, following the

approximation in Ref. [13], which extends conditional auto-

regressions to take into account local variability, we write

(see Ref. [14])

pðy jVLÞ ¼
YB

b¼1

pðyb jabÞ/

YB

b¼1

Yp

i¼1

Y4

l¼1

abði; ilÞ1=8exp �
1

16
abði; ilÞ ybðiÞ � ybðilÞ½ �

2

� �
;

ð7Þ

where ab(i, il) controls the smoothness of the recon-

struction between pixels i and il for the b-band and

ab ¼ (ab(i, il) j i ¼ 1, . . . , p, l ¼ 1, . . . , 4). Note that if

ab(i, il) ¼ āb, 8i ¼ 1, . . . , p, l ¼ 1, . . . , 4, the local image

model becomes the global model previously defined.

The set of hyperparameters now becomes

VL ¼ a1; . . . ;aBð Þ: ð8Þ

In situations when no prior information about the hyper-

parameters VM (M [ fG,Lg) exists, we can use non-

informative prior on them (the term ‘non-informative’ is

meant to imply that no information about the hyperparameters

is contained in the priors). In this case, improper non-

informative priors p(VM)/ const over [0, 1) can be used.

However, it is also possible, as we shall see now, to incorpor-

ate precise prior knowledge about the value of the hyper-

parameters. Let us examine the hyperpriors we shall use.

In general, depending on the hyperpriors p(VM),

M [ fG, Lg, used, p(VM, yjx, Y) may not be easily comput-

able. A large part of the Bayesian literature is devoted to

finding hyperprior distributions p(VM), M [ fG, Lg, for

which p(VM, yjx, Y) can be calculated in a straightforward

way or can be approximated. These are the so-called conjugate

priors [15] that, as we will see later, have the intuitive feature

of allowing one to begin with a certain functional form for the

prior and end up with a posterior of the same functional form,

but with the parameters updated by the sample information.

Taking the above considerations about conjugate priors into

account, we use, for both the global and local models, as

hyperpriors gamma distributions. They represent conjugate

priors which will allow us to incorporate into the reconstruc-

tion process precise prior knowledge about the expected

value of the parameters and, also, about the confidence on

such expected value.

That is, for the hyperparameters of the global model we use

the distribution

pðVGÞ ¼
YB

b¼1

pð �ab j �ao
b; �co

bÞ; ð9Þ

c̄b
o . 0 and āb

o . 0, while, for the local model, we use

pðVLÞ ¼
YB

b¼1

Yp

i¼1

Y4

l¼1

pðabði; ilÞ j ao
b; co

bÞ; ð10Þ

where cb
o . 0 and ab

o . 0 (note that the same hyperprior is

assumed for all the as in the same band).

The gamma distribution has the form

pðv j u; vÞ/ vu�1exp½�vv�; ð11ÞFIGURE 1. Local image model hyperparameters.
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where v . 0, u . 0 and v . 0 with mean and variance

E½v� ¼
u

v
; var½v� ¼

u

v2
ð12Þ

(u and v are referred to as scale and precision parameters,

respectively).

Finally, combining the first and second stage of the problem

modeling we have the global distribution

pðVM; y;Y; xÞ ¼ pðVMÞ pðy jVMÞ pðY jyÞ pðx jyÞ; ð13Þ

for M [ fG, Lg.

4. BAYESIAN INFERENCE AND VARIATIONAL

APPROXIMATION OF THE POSTERIOR

DISTRIBUTION

For our selection of hyperparameters in the previous section,

the set of all unknowns is (VM, y). As already explained, the

Bayesian paradigm dictates that inference on (VM, y) should

be based on p(VM, yjY, x).

Since p(VM, yjY, x) cannot be found in closed form,

because p(Y, x) cannot be calculated analytically, we apply

variational methods to approximate this distribution by the

distribution q(VM, y).

The variational criterion used to find q(VM, y) is the mini-

mization of the Kullback–Leibler (KL) divergence, given by

[16, 17]

CKLðqðVM; yÞk pðVM; y jY; xÞÞ

¼

ð
qðVM; yÞ log

qðVM; yÞ

pðVM; y jY; xÞ

� �
dVM dy

¼

ð
qðVM; yÞ log

qðVM; yÞ

pðVM; y;Y; xÞ

� �
dVM dyþ const;

ð14Þ

which is always non-negative and equal to zero only when

q(VM, y) ¼ p(VM, yjY, x).

We choose to approximate the posterior distribution

p(VM, yjY, x) by the distribution

qðVM; yÞ ¼ qðVMÞqDðyÞ; ð15Þ

where q(VM) denotes a distribution on VM and qD(y) denotes a

degenerate distribution on y.

Note that other distribution approximations are also poss-

ible. However, as we will see later the one used here alleviates

the problem of having to estimate an enormous amount of

hyperparameters. We now proceed to find the best of these

distributions in the divergence sense. Let us assume that yk

is the current estimate of the multispectral image where

qD(y) is degenerate.

Given qD
k (y), the current estimate of qD (y), we can obtain

an estimate of q(V) which reduces the KL-divergence by

solving

qkþ1ðVMÞ ¼

arg min
qðVM Þ

CKLðqðVMÞ; qk
DðyÞk pðVM; y jY; xÞÞ:

ð16Þ

Differentiating the integral on the right-hand side of

Equation (16) with respect to q(VM) and setting it equal to

zero we obtain that for the global image model (M ¼ G) in

Equation (9), qkþ1(VG) satisfies

qkþ1ðVGÞ ¼
YB

b¼1

qkþ1ð �abÞ ; ð17Þ

where

qkþ1ð �abÞ ¼ p �ab j �ao
b þ

p

2
; �co

b þ
1

2
ykt

b Cyk
b

h i� �
: ð18Þ

These distributions have means

E½ �ab�qkþ1ðVGÞ
¼

�ao
b þ ð p=2Þ

�co
b þ ð1=2Þ ykt

b Cyk
b

� � ; ð19Þ

b ¼ 1, . . . , B, which can be rewritten as

1

E½ �ab�qkþ1ðVGÞ

¼ �mb

�co
b

�ao
b

þ ð1� �mbÞ
ykt

b Cyk
b

p
; ð20Þ

with

�mb ¼
�ao

b

p=2þ �ao
b

; b ¼ 1; . . . ;B: ð21Þ

Equations (20) and (21) indicate that, for each hyper-

parameter of the global model, the inverse of the mean of its

posterior distribution approximation is a convex combination

of the inverse of the mean of its hyperprior distribution [see

Equation (12)] and its maximum likelihood estimate. Further-

more, m̄b, b ¼ 1, . . . , B, can be understood as a normalized

confidence parameter taking values in the interval [0, 1).

That is, when it is zero no confidence is placed on the given

hyperparameters, while when the corresponding normalized

confidence parameter is asymptotically equal to one it fully

enforces the prior knowledge on the mean (no estimation of

the hyperparameters is performed).
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For the local image model, that is, for M ¼ L, we have

qkþ1ðVLÞ ¼
YB

b¼1

Yp

i¼1

Y4

l¼1

qkþ1ðabði; ilÞÞ ; ð22Þ

where

qkþ1ðabði; ilÞÞ ¼

p abði; ilÞ j ao
b þ

1

8
;

1

16

h
yk

bðiÞ � yk
bðilÞ

i2

þ co
b

� �
:
ð23Þ

These distributions have means

E½abði; ilÞ�qkþ1ðVLÞ
¼

ao
b þ ð1=8Þ

co
b þ 1=16 ½yk

bðiÞ � yk
bðilÞ�

2
: ð24Þ

Note that Equation (24) can be rewritten as

1

E½abði; ilÞ�qkþ1ðVLÞ

¼mb

co
b

ao
b

þð1�mbÞ
1

2

h
yk

bðiÞ�yk
bðilÞ

i2

; ð25Þ

where

mb¼
ao

b

ao
bþð1=8Þ

: ð26Þ

Again, as for the global model, Equations (25) and (26)

indicate that mb can be understood as a normalized confidence

parameter taking values in the interval [0, 1).

Given now qkþ1(VM) we can obtain an estimate of y kþ1 (the

value where qkþ1
D (y) is degenerate, which obviously will

depend on the image model used) that reduces the

KL-divergence by solving

ykþ1 ¼ arg min
y
�E½log pðVM; y;Y; xÞ�qkþ1ðVM Þ

� 	
: ð27Þ

The convergence of the parameters defining the distri-

butions qkþ1(VM) and ykþ1 can be used as a stopping criterion

for the proposed iterative procedure consisting of Equations

(20), (25) and (27).

Let us now study the asymptotic behavior of the variance of

the distribution in Equation (18). We have that for varying m̄b

with c̄b
o/āb

o constant

var½ �ab�qkþ1ðVGÞ
�! 0; for �mb �! 1 ;

var½ �ab�qkþ1ðVGÞ
�! 1; for �mb �! 0 :

Similarly, for the variance of the distribution in Equation (22),

we have that for varying mb with cb
o/ab

o constant

var½abði; ilÞ�qkþ1ðVLÞ
�! 0; formb �! 1 ;

var½abði; ilÞ�qkþ1ðVLÞ
�! 1; formb �! 0 :

Based on the above expression, the hyperprior distributions

tend to the uniform distribution as the confidence parameters

approach 0, and tend to a degenerate distribution when they

approach 1. That is, the local image model becomes global

when mb approaches 1.

5. EXPERIMENTAL RESULTS

In the preceding sections a variational method for the esti-

mation of the posterior distribution p(VM, yjY, x) has been

described. Let us now study the results obtained by the pro-

posed multispectral image reconstruction algorithm utilizing

both the global (M ¼ G) and local (M ¼ L) image models.

In this paper the values of the parameters g, b1, . . . , bB are

first estimated using the variational approximation method

described in [12] for the CAR global image model described

in Equation (5). This method utilizes the following initial esti-

mates of the hyperparameters g, b1 , . . . ,bB and a1, . . . ,aB,

based on the observed multispectral and panchromatic

images, ab ¼ p/x tCx, bb ¼ P/ k Yb 2 DHx k2, for all

b ¼ 1, . . . , B, and g ¼ P / (4 k DHx 2
P

b¼1
B lbYb k

2). Using

these initial parameters, the iterative procedure in [12] is

used with a flat hyperprior on the hyperparameters to obtain

an estimate of the precision parameters of the low-resolution

and panchromatic observation models, as well as, the global

prior model. The method in [12] also provides a reconstructed

multispectral image that will be used as initial estimate in our

iterative procedure.

The scale and precision hyperparameters of the gamma

hyperpriors, āo
b and c̄o

b, for b ¼ 1, . . . , B, if M ¼ G, and ao
b

and co
b, for b ¼ 1, . . . , B, if M ¼ L, have to be selected. Note

that knowing the scale and precision hyperparameters is

equivalent to knowing the inverse of the means of the hyper-

prior distributions, c̄o
b/āo

b and co
b/ao

b, together with the normal-

ized confidence parameters m̄b and mb, b ¼ 1, . . . , B, for the

global and local image models, respectively.

As we have already mentioned, the super-resolution method

in [12] provides us with an estimate of the inverse of the mean

of the hyperprior distribution, denoted as ab, for b ¼ 1, . . . , B.

This value is used as an approximation of the value of the

hyperparameters of the global and local image models using

the following procedure. We rewrite the inverse of the mean

of the hyperprior distribution on the global and local image
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hyperparameter models as

�co
b

�ao
b

¼ �rb

1

ab

; for b ¼ 1; . . . ;B ; ð28Þ

and

co
b

ao
b

¼ rb

1

ab

; for b ¼ 1; . . . ;B ; ð29Þ

respectively.

Hence, given the estimation of the prior model hyperpara-

meters obtained by the method in [12], the parameters we

need to select are m̄b and r̄b for the global image model and

mb and rb for the local image model.

Our first experiment focuses on understanding the behavior

of the global and local models under controlled conditions. To

this end, synthetic hyperspectral and panchromatic obser-

vations have been obtained from the color images displayed

in Fig. 2 degrading them according to the model in Equation

(2). The original images were convolved with mask 0.25 �

12�2 to simulate sensor integration, and downsampled by a

factor of two by discarding every other pixel in each direction.

Zero mean Gaussian noise with different variances was then

added to obtain a set of observed LR images. Panchromatic

images were obtained from the original HR color

images using the model in Equation (3), with lb ¼ 1/3, for

b ¼ 1, 2, 3. The noise variances used in the experiments are

summarized in Table 1.

We have used three different indices to measure the quality

of the reconstructed images. Spatial improvement of recon-

structed images has been assessed by means of the correlation

of the high-frequency components (COR) [5] which measures

the spatial similarity between each reconstructed multispectral

image band and the panchromatic image. The COR index

takes values between 0 and 1 (the higher the value the better

the quality of the reconstruction). Spectral fidelity was

assessed by means of the peak signal-to-noise ratio (PSNR)

between each band of the reconstructed and original multi-

spectral images, and the standard ERGAS index (from the

French Erreur Relative Globale Adimensionalle de Synthése)

[18], a dimensionless global criterion which considers the ratio

of the root mean squared error and the bandwise mean. The

lower the value of this index the higher the quality of the

multispectral image.

In order to examine the behavior of the set of parameters

āb and ab(i, il) in Equations (20) and (25), respectively, we

used different values for r̄b and rb [see Equations (28) and

(29)] ranging from 0.25 to 6. We also used different values

for m̄b ranging from 0 to 1 and mb ranging from 0.9 to

1. Figure 3 plots the evolution, as a function of rb and mb,

of the mean PSNR, obtained by averaging the PSNR of all

the bands of the multispectral image, for the reconstruction

FIGURE 2. Color images used in the first experiment.

TABLE 1. Noise variances used for the multispectral and

panchromatic images.

Type

Multispectral image noise

variance, s2
nb

, for b ¼ 1, 2, 3

Panchromatic image

noise variance, sv
2

(i) 4 6.25

(ii) 16 25

(iii) 25 49

(iv) 49 100

Page 6 of 15 M. VEGA et al.

THE COMPUTER JOURNAL, 2008



of the image in Fig. 2c using a local image model for the

different noise types in Table 1. Figure 3 also shows

the mean PSNR evolution for the reconstruction using the

global image model, as a function of r̄b and m̄b. From

Fig. 3, the similarity between the behavior of the global

and local image models is remarkable. The higher the

quality of the reconstructions the higher the values of rb

and r̄b, especially for lower noise cases.

FIGURE 3. Mean PSNR evolution for the reconstruction of the image in Fig. 2c degraded with the noise variances described in Table 1.
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Table 2 shows the values for the local model parameters rb

and mb, for b ¼ 1,2,3, and the global model parameters, r̄b and

m̄b, corresponding to the best reconstructions in terms of

PSNR for the images in Fig. 2 and the noise variances in

Table 1. This table shows that, in general, the estimated

value of the prior hyperparameter, ab, is good enough to

obtain good reconstructions, although, close to this value we

can obtain slightly better reconstructions in terms of PSNR.

Tables 3–6 show the resulting PSNR, COR and ERGAS

values for the reconstructions of the images in Fig. 2 for the

noise configurations in Table 1. The results of bicubic inter-

polation and the pansharpening method in [6] have also

been included for comparison. The reconstructed images

corresponding to the figures of merit in Table 3 are displayed

in Figs 4–6.

For all images, the proposed local image model produces

both numerically and visually better results. Note however

that differences between the global and local image model

are small when the parameters are chosen to produce the

best PSNR value. This was expected since the information

provided by the panchromatic image about image edges is

very reliable, as we know exactly the degradation model in

this simulation. Also, since the value of mb is very high for

all the studied cases it does not allow for the local model to

move too much away from the global model behavior. This

is justified by the fact that, if mb is small, the local method

allows for high variations in the values of ab(i, il) and these

produce images with hot and cold pixels, that is, isolated

pixels that have values far away from the value of their neigh-

bors. An example of such an effect is shown in Fig. 7 where

mb ¼ 0.1 and rb ¼ 1 were used. Note the color differences

on the edges of the fence and the isolated spots on the banister,

for instance.

For all the studied cases, the bicubic interpolation produces

over-smoothed reconstructions. The good performance of the

method in [6] is noteworthy, which outperforms bicubic

interpolation. As we will see later, this does not happen

when dealing with real satellite images. This is probably

justified by the degradation model used in [6], that adapts per-

fectly well to this reconstruction method. Note, however, that

the method in [6] produces noisier reconstructions and some

color bleeding at the edges, as can be observed in the center

of the fence in Fig. 4d.

In a second experiment, the global and local image models

are compared on real Landsat ETMþ images. Figure 8 depicts

three 128 � 128 pixels false RGB color regions of interest

composed of bands 3, 4 and 2 of a Landsat ETMþ multispec-

tral image, together with their corresponding 256 � 256

TABLE 2. Global and local image model parameter values

resulting in the best reconstruction in terms of PSNR for the images

in Fig. 2 and the noise variances in Table 1.

Global model Local model

Noise Image r̄b m̄b rb mb

(i) Figure 2a 0.5 1 0.5 1

Figure 2b 1.8 0.9 0.8 0.92

Figure 2c 5.6 1 2 1

(ii) Figure 2a 1 1 1.2 0.98

Figure 2b 1.8 0.9 1 0.9

Figure 2c 1.8 1 1.6 0.98

(iii) Figure 2a 1.8 0.9 1.2 0.91

Figure 2b 1.8 0.6 0.8 0.9

Figure 2c 1.8 1 1.6 0.92

(iv) Figure 2a 1.8 0.9 1.2 0.9

Figure 2b 0.8 0.9 0.6 0.9

Figure 2c 3.2 0.6 1.4 0.9

TABLE 3. Values of PSNR, COR and ERGAS for the reconstructed color images in Fig. 2 with noise type (i).

PSNR COR

Image Band 1 2 3 1 2 3 ERGAS

Figure 2a Bicubic interpolation 23.6 23.4 23.6 0.48 0.48 0.48 6.77

Method in [6] 35.2 36.6 37.4 0.98 0.99 0.99 1.52

Using the global image model 38 38.7 36.3 1 1 0.99 1.38

Using the local image model 38 38.7 36.3 1 1 0.99 1.38

Figure 2b Bicubic interpolation 29.2 29.2 29.2 0.53 0.55 0.55 4.55

Method in [6] 37 38 38 0.95 0.97 0.97 1.73

Using the global image model 38 38.3 38.1 0.98 0.99 0.98 1.61

Using the local image model 38.6 38.8 38.5 0.99 0.99 0.99 1.53

Figure 2c Bicubic interpolation 17.4 17.2 17.2 0.43 0.41 0.42 11.6

Method in [6] 29.4 28.8 34 0.97 0.96 0.99 2.62

Using the global image model 37.4 37.5 37.6 1 1 1 1.13

Using the local image model 37.4 37.5 37.6 1 1 1 1.13
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panchromatic images. The contribution of each multispectral

image band to the panchromatic image, that is, the values of

lb, b ¼ 1, 2, 3, 4, was calculated from the spectral response

of the ETMþ sensor. The obtained values were equal to

0.0078, 0.2420, 0.2239 and 0.5263, for bands one to four,

respectively [12].

Note that, unlike the first experiment, in this one we do not

have access to the true high-resolution images so numerical

comparisons are not feasible.

In order to determine the value of the hyperparameters for

the image model we proceed as follows. First, we simulate a

64 � 64 multispectral image and an 128 � 128 panchromatic

image by convolving the observed multispectral and panchro-

matic images with the mask 0.25 � 12 � 2 and downsampling

them by a factor of two in each direction. Since multispectral

images have different ranges depending on the band, to make

them more similar, we normalized all the bands to have the

same flux, that is, the same sum of the values in the band.

We, then, applied the reconstruction procedure described in

the first experiment to these images to determine which com-

bination of values of r̄b and m̄b and rb and mb, (proportion and

confidence parameters, respectively) for b ¼ 1, 2, 3, 4, pro-

vides the best results. A summary of the obtained values is

shown in Table 7. For reference, Table 8 depicts the resulting

PSNR, COR and ERGAS values for the reconstruction of the

simulated images with the different methods. We select the

proportion and confidence parameters providing the best

PSNR results.

We run the reconstruction procedure described in [12] on

the observed low-resolution and panhcromatic images with

TABLE 5. Values of PSNR, COR and ERGAS for the reconstructed color images in Fig. 2 with noise type (iii).

PSNR COR

Image Band 1 2 3 1 2 3 ERGAS

Figure 2a Bicubic interpolation 23.4 23.2 23.4 0.44 0.44 0.44 6.94

Method in [6] 29 29.6 29.8 0.92 0.93 0.92 3.4

Using the global image model 30.7 30.7 30.5 0.98 0.98 0.97 3.01

Using the local image model 30.7 30.8 30.5 0.98 0.98 0.97 3.01

Figure 2b Bicubic interpolation 28.4 28.4 28.4 0.44 0.46 0.46 4.93

Method in [6] 30.2 30.2 30.2 0.80 0.84 0.83 4

Using the global image model 31.4 31.4 31.4 0.92 0.91 0.91 3.51

Using the local image model 31.7 31.7 31.7 0.89 0.89 0.89 3.39

Figure 2c Bicubic interpolation 17.32 17.12 17.1 0.42 0.41 0.41 11.71

Method in [6] 26.8 26.6 28.8 0.95 0.95 0.98 3.64

Using the global image model 30.3 30.2 30.2 0.99 0.99 0.99 2.60

Using the local image model 30.3 30.2 30.2 0.99 0.99 0.99 2.59

TABLE 4. Values of PSNR, COR and ERGAS for the reconstructed color images in Fig. 2 with noise type (ii).

PSNR COR

Image Band 1 2 3 1 2 3 ERGAS

Figure 2a Bicubic interpolation 23.4 23.4 23.6 0.46 0.46 0.46 6.86

Method in [6] 31.2 31.6 32 0.95 0.96 0.95 2.69

Using the global image model 33.1 33 32.2 0.99 0.99 0.98 2.37

Using the local image model 33 33.1 32.4 0.99 0.99 0.98 2.35

Figure 2b Bicubic interpolation 28.8 28.8 28.8 0.49 0.50 0.51 4.78

Method in [6] 32 32.4 32.2 0.87 0.90 0.89 3.21

Using the global image model 33.4 33.4 33.2 0.96 0.96 0.95 2.81

Using the local image model 33.7 33.5 33.5 0.95 0.94 0.94 2.73

Figure 2c Bicubic interpolation 17.4 17.2 17.2 0.42 0.41 0.42 11.68

Method in [6] 27.8 27.6 30.6 0.96 0.95 0.98 3.2

Using the global image model 32.7 32.6 32.6 0.99 0.99 0.99 1.98

Using the local image model 32.7 32.6 32.6 0.99 0.99 0.99 1.98
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flat hyperpriors to obtain an estimate of the mean parameters

g, b1 , . . . , b4 and a1; . . . ;a4, for the observed 128 � 128

multispectral image.

Note that the rationale behind the approach used is that

the proportion and confidence parameters will be roughly

the same when a downsampling process is performed and

again the observed low-resolution and panchromatic

images with flat hyperpriors and a global image model are

used to determine an initial mean value for the

hyperparameters.

FIGURE 4. A detail of the image in Fig. 2a degrade with noise type (i): (a) observed multispectral image, (b) observed panchromatic image, (c)

bicubic interpolation of (a), (d) reconstruction using the method in [6], (e) reconstruction using proposed the global image model, (f) reconstruc-

tion using the proposed local image model.

TABLE 6. Values of PSNR, COR and ERGAS for the reconstructed color images in Fig. 2 with noise type (iv).

PSNR COR

Image Band 1 2 3 1 2 3 ERGAS

Figure 2a Bicubic interpolation 23.2 23 23.2 0.40 0.41 0.41 7.12

Method in [6] 26.4 26.8 27.2 0.86 0.86 0.85 4.62

Using the global image model 28.1 28.1 27.9 0.96 0.96 0.94 4.06

Using the local image model 28.4 28.3 27.9 0.95 0.94 0.93 4

Figure 2b Bicubic interpolation 27.8 27.8 27.8 0.37 0.38 0.40 5.34

Method in [6] 27.4 27.4 27.2 0.69 0.71 0.73 5.59

Using the global image model 29.5 29.5 29.5 0.80 0.80 0.78 4.38

Using the local image model 29.9 29.8 29.8 0.78 0.78 0.77 4.21

Figure 2c Bicubic interpolation 17.2 17 17 0.41 0.40 0.40 11.78

Method in [6] 25 25 26.2 0.94 0.93 0.96 4.58

Using the global image model 27.4 27.3 27.3 0.99 0.98 0.99 3.65

Using the local image model 27.4 27.3 27.3 0.99 0.99 0.99 3.64
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FIGURE 6. For the image in Fig. 2c degraded with noise type (i): (a) observed multispectral image, (b) observed panchromatic image, (c) bicubic

interpolation of (a), (d) reconstruction using the method in [6], (e) reconstruction using the proposed global image model, (f) reconstruction using

the proposed local image model.

FIGURE 5. For the image in Fig. 2b degraded with noise type (i): (a) observed multispectral image, (b) observed panchromatic image, (c) bicubic

interpolation of (a), (d) reconstruction using the method in [6], (e) reconstruction using the proposed global image model, (f) reconstruction using

the proposed local image model.
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Using the obtained mean values and the values of r̄b and m̄b

and rb and mb, b ¼ 1, 2, 3, 4, previously determined, we

reconstructed the observed 128 � 128 multispectral image

using the proposed methods with the global and local image

models. Figures 9 and 10 show the different reconstructions

of the observed images in Figs. 8b and 8c, respectively.

Although the numerical results in Table 8 are referred to the

low-resolution simulated images, looking at these figures of

merit and the reconstructions in Figs 9 and 10, certain con-

clusions can be drawn.

Both proposed methods using the global and local image

models provide better numerical and visual results than

bicubic interpolation and the Price method in Ref. [6].

Bicubic interpolation results in oversmoothed reconstructions

and with a low correlation of the high frequencies with the

panchromatic image. The method in Ref. [6] produces crisp

images but it introduces artifacts in the form of artificial

blocks around borders (see, for instance, the harbor border

in Fig. 9) and, although it obtains the highest mean COR

value, it also introduces noise in the panchromatic image

and, thus, results in lower PSNR values.

FIGURE 8. False RGB color images composed of the LR bands 3, 4 and 2 and panchromatic image, (a) observed in the region of Huercal-Overa

(Spain), (b) observed in 2002/02/12 for Path/Row 198/35 and (c) observed in 2000/08/08 for Path/Row 199/031.

FIGURE 7. Reconstruction of the image in Fig. 2b degraded with

noise type (i) using the proposed local image model, with mb ¼ 0.1

and rb ¼ 1.0 (note the isolated spots on the fence and banister and

the strong color differences on the fence).

TABLE 7. Local model hyperparameter values giving the best

reconstructions of multispectral images in Fig. 8.

Global model Local model

Noise Image r̄b m̄b rb mb

a 1 0.25 1.0 0.25 0.91

2 0.25 0.3 0.67 0.94

3 0.25 0.4 0.67 0.90

4 0.25 0.1 2.00 0.98

b 1 0.25 1.0 0.25 0.90

2 0.25 1.0 0.33 0.96

3 0.25 0.3 1.00 0.90

4 0.25 0.2 2.00 0.98

c 1 0.25 1.0 0.25 0.90

2 0.25 1.0 0.25 0.99

3 0.25 1.0 0.67 0.90

4 0.25 1.0 2.00 0.99
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The proposed method using the local image model provides

the best numerical and visual results preserving the spectral

properties of the multispectral image while successfully incor-

porating the high frequencies from the panchromatic image

and controlling the noise in the image. For real multispectral

images, the method using the local image model provides

better reconstructions than the method using the global

image model. This may be due to the fact that the modeling

FIGURE 9. (a) Bicubic interpolation of the image in Fig. 8b, (b) reconstruction using the method in [6], (c) reconstruction using the global image

model proposed, (d) reconstruction using the local image model.

TABLE 8. PSNR, COR and ERGAS values for the Landsat ETMþ images reconstructions.

PSNR COR

Image Band 1 2 3 4 1 2 3 4 ERGAS

Figure 8a Bicubic interpolation 32.29 30.72 28.44 35.36 0.58 0.59 0.59 0.59 3.05

Method in [6] 31.14 29.56 27.23 34.10 0.84 0.87 0.86 0.86 3.50

Using the global image model 32.06 31.40 29.03 35.77 0.58 0.75 0.75 0.83 2.91

Using the local image model 32.42 31.80 29.49 35.77 0.58 0.81 0.81 0.90 2.80

Figure 8b Bicubic interpolation 41.20 39.16 35.04 32.32 0.37 0.41 0.41 0.42 5.22

Method in [6] 38.08 36.72 32.91 29.86 0.71 0.82 0.80 0.83 6.84

Using the global image model 40.88 39.58 35.66 32.67 0.36 0.58 0.71 0.88 4.96

Using the local image model 40.96 39.68 35.77 32.67 0.36 0.58 0.72 0.90 4.92

Figure 8c Bicubic interpolation 33.37 30.80 26.65 32.12 0.46 0.48 0.49 0.49 5.04

Method in [6] 31.66 29.46 25.51 30.79 0.86 0.91 0.91 0.91 5.83

Using the global image model 33.40 31.62 27.84 33.66 0.45 0.67 0.79 0.90 4.46

Using the local image model 33.40 32.18 28.31 33.66 0.45 0.75 0.86 0.95 4.41
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of the degradation process is not very accurate, which conse-

quently makes the prior model to play a stronger role in the

reconstruction procedure. Note that the proposed method

using the local image model results in higher PSNR and

COR and a better ERGAS value than the other methods.

Both global and local methods are not very sensitive to vari-

ations on the value of lb if these values approximately reflect

the contribution of each band to the panchromatic image.

However, it seems that having bands with very different

characteristics on range and flux makes the method in Ref.

FIGURE 10. (a) Bicubic interpolation of the image in Fig. 8c, (b) reconstruction using the method in [6], (c) reconstruction using the global

image model, (d) reconstruction using the local image model.

FIGURE 11. Plot of the values of (a)
P

l¼1
4 a3(i, il) and (b)

P
l¼1
4 a4(i, il), obtained for the reconstruction of the image in Fig. 8c, depicted in

Fig. 9c.
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[12] to underestimate the noise parameter of some bands and

overestimate the noise parameter of the panchromatic image,

leading to reconstructions where the information of the pan-

chromatic image is mainly placed on one or two bands.

Figure 11 plots the values of
P

l¼1
4 ab(i, il) for bands 3 and 4

of the reconstruction in Fig. 10d, in which edges are clearly

depicted corresponding to lower values of the regularization

parameters.

We conclude this section by providing some information on

the computing requirements of the algorithms. For our pro-

posed method, the most demanding computational task, both

in terms of processing and memory requirements, is the calcu-

lation of the reconstructed multispectral image. Each iteration

of the algorithm using the global image model took 11.5 s to

execute on a Xeon 3.2 GHz processor, for observed multispec-

tral images of size 128 � 128, while each iteration of the

algorithm using the local image model took 17.5 s. The algor-

ithm using the global image model typically required 10

iterations to converge, while the algorithm using the local

image model required about five iterations.

6. CONCLUSIONS

In this paper the reconstruction of multispectral images has

been formulated from a super-resolution point of view. A hier-

archical Bayesian framework has been presented to incorpor-

ate global and local prior knowledge on the expected

characteristics of the multispectral images, model the obser-

vation process of both panchromatic and low-resolution multi-

spectral images and also include information on the unknown

parameters in the model in the form of hyperprior distri-

butions. The proposed method has been tested experimentally

on synthetic and real images, outperforming other widely used

methods for solving the same problem.
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