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Abstract—Blind image deconvolution involves two key ob-
jectives, latent image and blur estimation. For latent image
estimation, we propose a fast deconvolution algorithm, which
uses an image prior of nondimensional Gaussianity measure
to enforce sparsity and an undetermined boundary condition
methodology to reduce boundary artifacts. For blur estimation,
a linear inverse problem with normalization and nonnegative
constraints must be solved. However, the normalization constraint
is ignored in many blind image deblurring methods, mainly
because it makes the problem less tractable. In this paper, we
show that the normalization constraint can be very naturally
incorporated into the estimation process by using a Dirichlet
distribution to approximate the posterior distribution of the
blur. Making use of variational Dirichlet approximation, we
provide a blur posterior approximation that takes into account
the uncertainty of the estimate and removes noise in the estimated
kernel. Experiments with synthetic and real data demonstrate
that the proposed method is very competitive to state-of-the-art
blind image restoration methods.

Index Terms—Blind Deconvolution, image deblurring, varia-
tional distribution approximations, Dirichlet distribution, con-
strained optimization, point spread function, inverse problem.

I. INTRODUCTION

LIND image deconvolution (BID) refers to the problem
of recovering the source image from a degraded obser-
vation when the blur kernel is unknown, using partial infor-
mation about the imaging system [1]. Primary applications
of BID include astronomical imaging, medical imaging, and
computational photography [2].
Mathematically, the degraded observation y € R can be
approximately modeled as [2]

y=Hx+n (D)

where z € R is the original image, H of size M x N is the
convolution matrix whose row elements are obtained from the
blur kernel h € RX, and n € RM is assumed to be additive
zero-mean Gaussian white noise. BID is a severely ill-posed
inverse problem, since multiple pairs of kernels and original

This work was sponsored in part by National Natural Science Foundation
of China (61233005), Ministerio de Ciencia e Innovacién under Contract
TIN2013-43880-R, the European Regional Development Fund (FEDER), the
CEI BioTic with the Universidad de Granada and the Department of Energy
grant DE-NA0002520.

X. Zhou and F. Zhou are with the Image Processing Center, Bei-
hang University, Beijing 100191, China (e-mail: xuzhou@buaa.edu.cn; zhfu-
gen@buaa.edu.cn). X. Zhou performed the work while at Universidad de
Granada, as a joint-PhD student sponsored by Chinese Scholarship Council.

J. Mateos and R. Molina are with Departamento de Ciencias de la
Computacion e I.A., Universidad de Granada, Granada 18071, Spain (e-mail:
jmd@decsai.ugr.es; rms@decsai.ugr.es).

A. Katsaggelos is with the Department of Electrical Engineering and
Computer Science, Northwestern University, Evanston, IL 60208-3118 USA
(e-mail: aggk @eecs.northwestern.edu).

images can match the model (1) equally well. To overcome the
ill-posed nature of BID, additional constraints or assumptions
on both xz and h must be introduced.

Many earlier works assume that the blur kernel follows
a parametric model [1] [2] or satisfies some additional con-
straints, e.g., centrosymmetric, nonnegative and normalization
constraint [3] [4]. For the latent image, many BID methods
[5]-[23] utilize image sparsity to estimate the image.

Fergus et al. [5] assume that the gradient of the latent
image Vz obeys a heavy-tailed distribution, meaning that
most elements of Vx are zero or very small but a number
of elements are quite large. Specifically, they use a Mixture of
Gaussians (MoG) to approximate a heavy-tailed distribution.
However, as pointed out in [5], [24], and [17], using the
maximum a posteriori (MAP) approach often yields delta
kernels because the cost function favors a blurry explana-
tion over sharp reconstructions. To avoid this problem, the
Variational Bayesian (VB) approach [25] has been adopted
in [5], see also [26] [27] [17]. Using the VB approach, a
general framework based on the Super Gaussian priors is
proposed by Babacan et al. [17]. Instead of using MAP
estimation, Levin et al. [24] [11] suggest a MAP), approach,
namely marginalizing over latent images and then estimating
the kernel alone. The rationale behind MAP, is that estimating
h alone is much better conditioned than estimating h and x
together. Recently, following the MAP;, approach and using
a majorization-minimization approach, Zhang and Wipf [23]
propose a parameter free BID method for removing camera
shake, in which the gradient image is modeled by an inde-
pendent Gaussian distribution with zero mean and spatially
varying variance. Interested readers are referred to [28] for a
review of of Bayesian blind deconvolution methods.

An alternative to enforce image sparsity in the transform
domain is to use the shock filter [29], see [7] and [9]. In fact,
the shock filter not only promotes image sparsity, but also
predicts step edges. Following this idea, Xu and Jia [14] point
out that not all predicted step edges are helpful. Therefore, they
suggest an edge selection strategy for removing texture edges,
which improves the result significantly. Instead of predicting
step edges, a probably better idea is to model step edges
as local minima of a sparsity measure, e.g., [|Vz|1/||Vz]2,
IVello. 3, V(i) /(Va(i)|+ [ Valli /N). see [12], [15] and
[22] for more details. Sun et al. [19] also propose a novel
parameterized patch model to regularize step edges, using
learned image statistics or synthetic structures. Making use of
directional filters, Zhong et al. [20] show that a good kernel
can be estimated from a blurred image with 1% — 10% noise.
Step edge based methods are robust to noise since noise and
small gradients are smoothed out, but may fail if the image is
dominated by textures. By combining step edge prediction [9]
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with covariance image [11] used in kernel estimation, Wang
et al [18] propose a robust BID method.

In this work, a BID algorithm that alternates between the
estimation of image and blur is proposed. For the latent image
estimation, we use the Nondimensional Gaussianity Measure
(NGM) proposed in [22], to promote image sparsity. As the
optimization algorithm of [22] does not make use of the FFT,
we propose a fast deconvolution algorithm with undetermined
boundary condition [30] to estimate the latent sharp image,
which uses the variable splitting [31] and mask decoupling
[32] [33] approaches. For the blur estimation part we propose
a Variational Dirichlet (VD) method. This changes the regular-
ization based approach to a variational Bayes approximation
to estimate the posterior distribution of the blur. The benefit of
using VD is that the resulting optimization problem does not
have any equality constraint but lower bound constraints only,
so that it can be efficiently solved by the gradient projection
method [34]. The other benefit of VD is a new adaptive
sparsity promoting term associated with the image, which is
helpful to remove the kernel noise. Furthermore as we will
later show, the VD approach can be applied to regularization
and variational based BID methods that alternate between
image and blur estimation, where the blur energy function
(either from regularization or blur prior) is quadratic. This is
the case of many state-of-the-art BID methods. In summary,
the main contributions of this paper include a novel efficient
optimization algorithm in the image space for NGM based
deconvolution and a novel VD approach for kernel estimation.

This paper is organized as follows. In Section II, we
introduce the framework to be used in BID. In Section III,
we propose a fast nonblind image deconvolution algorithm
formulated in the image domain for the NGM model in [22].
Section IV contains our blur kernel estimation algorithm.
We derive the VD approximation and show the connection
between VD approximation and MAP estimation. An efficient
gradient projection algorithm is proposed to solve the resulting
optimization problem. This section also discusses the appli-
cations of the proposed VD in kernel estimation when the
blur prior is quadratic. A multiscale implementation of the VD
based BID method is presented in Section IV-D, followed by a
discussion on parameter setting and implementation in Section
IV-E. In Section V, we compare our BID method with state-
of-the-art BID methods. Experimental results on synthetic and
real data show that the proposed method is very competitive
in comparison with state-of-the-art BID algorithms [15], [17],
[19], [20]. Finally, Section VI concludes this paper.

II. REGULARIZATION BASED BLIND IMAGE
DECONVOLUTION

Regularization based BID methods, [3], [4], [7], [10], [21],
[26], [27], just to name a few, alternatively solve the following
two optimization problems,

1
i+t :argminiﬂHkx—yH%—0—/\er($), 2)

1 A
W = argmin o | XEh— g3+ T RA(R), )
h>0 4)
> h(i) =1 ©)
J

subject to

where k denotes iteration index, H* is the convolution matrix
formed by the estimated impulse response of the blur at the
k-th iteration step h¥, X*+1 is the convolution matrix formed
by the restored image z**!, R, and Rj, are regularization
functions, A\, > 0 and A\, > 0 are penalty weights controlling
the tradeoff between the data fitting term and regularization.

Recent published papers, see for instance [9], [11], [15],
[17] have shown, however, that using gradient images leads to
better kernel estimation. Furthermore, the final output image
of (2) is often highly smoothed mainly due to the large
penalty weight )., which is not a desirable result. After kernel
estimation, to reconstruct the final sharp image a nonblind
image deconvolution method is required.

In this work we replace the blur estimation problem defined
in (3)-(5) by the filter space formulation

1 A
k+1 _ . = vEtly 02 h
h = argmin % 2HV1X h—Viylls + 5 Ry, (h),(6)

h>0 @)
> hG) =1 ®)
J

subject to

where now V;X**! is the matrix formed by the gradient of
the image ="' utilizing the i-th filter (details on the filters
used will be provided later).

Note that we are formulating the image estimation in the
spatial domain and the blur estimation in the gradient domain.
Xu et al. [15] indicate that using this spatial/filter formulation
is better than using the same space formulation. One of the
merits of using the gradient domain for kernel estimation is
that the boundary artifacts are reduced significantly since most
of the gradients at the boundaries are zero. This spatial/filter
formulation prevents us from using the same cost function to
be minimized on the image and blur and consequently makes
it harder to establish the convergence of the iterative method,
however, as we will show in the experimental section this dual
formulation produces better image and blur estimates.

The above framework has two steps, namely, the latent
image estimation step according to (2) with a given h, and
the kernel estimation step according to (6)-(8) with a given
. By alternatively solving (2) and (6)-(8), one obtains a
good estimation of the kernel, provided that a good image
regularization R, (z) and a good kernel regularization Ry (h)
are used. It should be noted that both R,(z) and Rj(h)
might evolve during the iterations (e.g., edge-predicting based
method [9] and VB method [17]).

When the uncertainty of the image and blur are not tak-
en into account and R,(z) and Rj(h) do not incorporate
information on the covariance of x and h respectively, this
iterative framework is also known as MAP approach in the
Bayesian formulation. It may not work well depending on the
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initialization of the kernel, images priors/regularizations and
kernel priors/regularizations. As shown in Levin et al. [24], the
MAP approach may suffer from the delta kernel in the case
of I, regularization (R, (z) = >_; |Va(j)|? with p € (0,2]),
since the cost function favors no-blur explanation (h is the
delta kernel and « = y) over other solutions.

III. FAST IMAGE DECONVOLUTION USING NGM

Let us now proceed with the solution of problem (2), that
is, the image estimation part. Let us assume that we have a
blur estimation and face the problem of estimating the latent
image from the blurred observation.

In [22], to enforce sparsity, we proposed a Nondimensional
Gaussianity Measure (NGM), $27_, > IVax(DI/(IViz (5)]+
E[|V;z]|]), where ¢ = 1 and 2 denote horizontal and vertical
filtering respectively and E[|V,z|] denotes the mean value of
the vector ] for details.

Decreasing NGM concentrates the energy at a small number
of elements with most of them being zero or very small values.
In other words, NGM favors sharp step edges over blurry ones.
An example of a 3-D NGM is shown in Fig. 1.

For a given kernel h, we propose here to estimate a sharp
image as the minimizer of

[Viz(j)|
mmeHx yll2 + Ao ZZW )]+ B[Vl )
J

where )\, > 0 is a penalty weight that controls the degree of
sparsity. This model differs from the one in [22], since the
image estimation step in [22] (Eq. (7)) is formulated in the
gradient domain.

To mitigate boundary artifacts, we adopt here undetermined
boundary conditions [30] (see [35] for other boundary condi-
tions). That is to say, H = M,T},, where M, is an M x N
matrix that extracts the Field of View (FOV) of image x and T},
is an N X N circulant matrix that performs circular convolution
with kernel h (see [32], [33] and [35] for more details).

Making use of variable splitting [31] and mask decoupling
[32], [33], we show how (9) can be solved efficiently. As
n [32], [33] and [31], we introduce two auxiliary variables
v = Thpr and v = Vaz (specifically, v; = V,;z). Using
the augmented Lagrangian and penalty approach for the con-
straints v = Tpx and v = Vz, respectively, we obtain the
unconstrained problem

Ay
;n;gfl\M u=yl3+ Sllu = The — dul3
Av [vi (5]
+) Sllvi = Vi3 + As , (10)
% A D G+

where )\, and A, are the penalty weights and du is the
Lagrangian multiplier. To obtain a good approximate solution
to problem (9), A, has to be very large. In practice, a large
penalty weight makes the algorithm very inefficient, so a
continuous strategy, like the one in [31], is adopted for the
penalty weight \,,. We use an alternative minimization scheme,
namely minimizing over one variable with the other two fixed.
Consequently, we have to solve three subproblems as follows.

T _ Y 1—xz—
Fig. 1. 3-D NGM = z+“”1/3 + 53 T 1T +1 5. It is clear that

minimizing NGM pushes (z,y,1 —x —y) away from (1/3,1/3,1/3) and
makes it more sparse, namely the third component increases while the other
two decrease.

A. u-subproblem

Given z, du, and v, we need to solve

1 A
min o [[Myu —yl3 + 5 lu = Thw — dullz, (D

Clearly, problem (11) has a closed form solution, given by

w= (MM, + )" (M]y+ AT + du)),  (12)

where MpT pads y to an image of size N with zeros in both

dimensions. Note that MPT M, is a diagonal matrix and hence,

the inversion (M, M, + A\, I)~" is trivial.
After updating u, we update du by

du = du + Thx — u. (13)
B. x-subproblem
Given u, du and v, we need to solve
min fHu — T — dull3 + Z v - Vizl3. (14)

=1

Again, this problem also has a closed form solution. Assuming
periodic boundary conditions for V,;, the solution can be
efficiently computed with the use of a 2-D FFT.

C. v-subproblem

Given z, du, and u, we need to solve

i)+ Ellva])’

where ¢ = 1,2. The above cost function is nonconvex and
inseparable. However, if we fix EJ|v;|] from the previous
iteration, it can be simplified as a single variable minimization
problem, given by

2|

+)\

1
ming(z) = 5z - (16)
z 2
where A = 32, E = E[|v;|] and w represents a component of
V,;z. Note that the minimizer z* must have the same sign as w,
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Algorithm 1 Fast NGM Deconvolution
Require: y, 2°, Az, A, Ao.
1: precompute the Fourier transform of h, V; and Vg
2: u:ng,m:xo, du =0
3: repeat
update u using (12)
update du using (13)
v; = Viz, s; =sign(Vix), i = 1,2
for j =1 to 2 do
E; = mean(|v;]), i = 1,2
v; = s; max(|V,z| — %,0), i=1,2
10:  end for
11: Ay = min(\,v/2,1)
12:  update x by solving (14) in Fourier domain
13: until convergence
14: return

R AN A

since replacing z by z, = sign(w)|z| we have g(z) > g(zs).
Let us examine the case w > 0, we aim at finding

. 1 9 z
rznzl{)lg(z) = §”z_w”2+)\z+7E' a7
Letting ¢'(z) = 0, we have
A\E
z:max(wf m,o) (18)

This equation implies a fixed point iteration formula 2! =
max(w — AE/(z* + E)?,0). Together with the case w < 0,
we have the ultimate fixed point iteration for (16)

AE

t+1 = O t
(G

2" = sign(w) max(jw| — =0,1,2..

19)
The iterative formula (19) implies |z*| < |w|, which guides
us to use z° = w. Noting that |w| — AE/(|z| + E)? is
monotonically decreasing as |z| decreases, it can be shown
that the sequence {z'} generated by (19) with the initialization
29 = w is also monotonic, and it converges to a stationary
point of g or zero. We observe that only two iterations are
usually needed to obtain a good approximate solution.
Equation (19) can be viewed as a shrinkage operator, since
it always moves the input towards zero. Unlike the shrinkage
operator in (10) of [22], it has a new spatially variant threshold
that better preserves edge and promotes smoothness. More
importantly, we fix only a scalar E[|v;|] in each inner iteration,
whereas in [22] the whole denominator |v;| + E[|v;]] is fixed,
which probably alters the properties of NGM.

D. Algorithm

The alternating minimization algorithm for (10) is presented
in Alg. 1 which achieves state-of-the-art speed, since the
updates for u and v are element-wise operations and the x-
update can be efficiently implemented using a 2-D FFT. The
penalty weight )\, is set to 0.1, more choices can be found
in [32], and )\, is set initially to a small value, i.e., 0.001.
Since the mean value E[|v;|] is not a constant in the whole
iterative process, we can not prove the convergence of Alg. 1
theoretically, but we show its convergence empirically in the
experimental section.

IV. VARIATIONAL DIRICHLET

In this section, we approach the solution of (6) with
constraints (7) and (8) using variational inference, under the
assumption that Ry, (h) = hTQh with Q being a K x K
semidefinite symmetric matrix. This is a regularization model
frequently found in the BID literature where, for instance,
Ry, (h) takes into account the covariance matrix of the image
estimate (see Levin et al. [11] and Babacan et al. [17]).

The solution of (6) without considering the constraints in (7)
and (8) can be rewritten as a quadratic optimization problem
(for simplicity, the iteration index is removed),

1
h* = arg max fe(h) = EhTAh +bTh (20)

where

2
A=) "ViX"ViX +0Q @n
=1
2

b=-> V:X"Vy (22)

i=1

The cost function f,(h) can be derived from the MAP
approach, for the Gaussian conditional probability p(y|h) o
e Yoy VX h=Tayls and the blur Gaussian prior p(h) o
e~ FhTQh A shortcoming of the MAP approach is that the
constraints (7) and (8) cannot be integrated with the cost
function.

The Variational Dirichlet approach we are about to propose
aims at approximating the solution in (20) by finding a Dirich-
let distribution that is the closest one, in the Kullback—Leibler
(KL) divergence sense, to the posterior distribution of the
blur given the observation. The Dirichlet distribution generates
values always greater than zero, with their sum equal to
one. The use of the Dirichlet distribution incorporates in a
natural way the constraints in (7) and (8) without the need to
explicitly include them into the problem. The parameters of
the distribution indicate how sparse the obtained solution will
be.

Let S = {hlh; > 0,i = 1,2,..K,)  h; =1} be the
K —1 dimensional simplex and ¢, (k) the Dirichlet probability
density function (see p. 261 in [36]), defined as

K
1
w(h) = —— T re !, (he Sand oy > 0), 23
Go(h) B(a)i[[lz  (h€Sanda; >0),  (23)
where B(«) is called the multinomial Beta function and has
the form
[T, ()

B(a) = =% 24

with I' denoting the gamma function and S, = Zfil Q.

Then, we aim at finding the Dirichlet distribution

ga(h) = arg min KL(ga(h),p(hly)) (25)

where ) denotes the set of Dirichlet distribution in (23)
with o = (o, ...,ax) and all its components greater than
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a lower bound [b > 0. This is equivalent to finding a factor &
satisfying

a = arg £n>1}ll) KL(ga(h), p(h|y))

_ : qa(h)
—argglzllré/sqa(h)log ( d

p(hly)
. qa(h)
= arg min «(h)log —————dh
smiy a0 tos LIS

- . 9o (h)
= arg (Erlzlﬁ/qua(h) log mdh

= arg min B, log g (h)] + 3 B, [T AR] + By, [b4] 26)
where o > [b should be understood as « having all its
components greater or equal to [b. Theoretically, o > 0 is
adequate. However, in practice, we need a lower bound for «
to avoid numerical instability.

After finding a solution & to (26), one can use the ex-
pectation &/Ss as an estimation of the kernel. However,
preliminary experiments show that model (26) always leads
to very poor kernel estimation. Such failures, as we will show
soon, are indeed caused by the over-weighted negentropy term
E,_ [log ¢o(h)]. To avoid this problem, we introduce a weight
~ on this term. As a result, we obtain a more general model

arg min vy, [log go (h)] + %Eqa (W' Ah) + E, [b"h], (27)

which includes (26) as a special case when v = 1.
The rationale behind the introduction of v is the following.
Eq. (27) is equivalent to minimizing K L(ga(h),p(h|y))

2 N2 Anp T
where p,(hly)) o e 2aica BViXh=Viyl3 - 2hT QR By

making v small we approach a degenerate posterior distribu-
tion on h, py(hly). So gs(h) minimizing (27) will provide a
Dirichlet approximation to a neighbour of the MAP. Further-
more, since we are minimizing the reverse KL, also known
as I-projection or information projection (see [37] for details),
where p (hly) is small g4 (h) will also have to be small.

As shown in [36], the negentropy term has the form

Eq, llog ga(h)] = (a = 1)T (@) = 9(Sa)1) — log(B(a)),
(28)
where ¢ = I"/T is the digamma function. Making use of
the expectation E,_(p[h] = a/S, and covariance matrix ¥,
given in [36], we obtain in a straightforward way

Eq. [WT AR=Tr(AS,) + Eq [T AE, (1) [h]
_SaAdTa —aT Aa " ol Ao
S2(S,+1) S2
7aTAa + Aga

T (Sa+ DS, 29
T
E,, [bTh]:aS—b, (30)

where A, is the vector formed with the diagonal elements of
A, e, Aqg(i) = Aii,t = 1,2, ... K. Together with (28), (29)

and (30), the cost function in (27) has the following form

L(a) = 7[(a = 1)T(¥(a) — ¥(Sa)1) — log(B(a))]

aTAa+ ATa  ba
ECETE o
whose gradient is
o oy 2dat+ Ag
VL(a) =r(a=1)o (@) = ¥/(Sa)1) + 5=
b (@Aa+Afa)(25. +1) bla (32)

S 2(Sa + 1)252 52

where o denotes element-wise product.

Before showing how to optimize L(«), let us discuss the
connection between 7 and S,. As 7y goes to zero, p(h|y)
becomes degenerate and hence, ps will also have to be close
to a degenerate distribution. For a Dirichlet distribution to be
degenerate, we need S,, to be infinity. The larger the value of
S, the closer we are to the MAP solution and therefore the
smaller the approximation of the distribution around the MAP.
As we will see in the experimental section, approximating the
distribution around the MAP rather than finding the MAP leads
to reduced noise in the estimated kernel.

L(«) has three terms, the negentropy, quadratic and linear
terms. Notice that, since ¢’(«) is strictly decreasing, the
negentropy term has a unique stationary point o« = 1 and,
hence, favors the uniform distribution, namely g(h) = const.
Consequently, decreasing the negentropy term will push «
to the point 1. AT« in the quadratic term can be view
_ Ado adaptively promotes
2(Sa+1)5a
sparsity. Since the weights in A4 are formed from V,; X7V, X
and @, sparsity is promoted adaptively regardless of the scale
of V;XTV,X. Of course, if S, goes to infinity, this term will
vanish. %kgjﬁ + bST—f‘ can be viewed as the data fidelity
term with regularization Rp,.

The benefit of the new model is twofold. On one hand, it has
an adaptive sparsity regularization term, which can be useful
in sparse kernel estimation. On the other hand, it does not
have the equality constraint, which allows the optimization
problem to be efficiently solved by the gradient projection
method [34]. Note that, with the equality constraint, we can
not use the gradient projection method. As a disadvantage, the
cost function becomes nonconvex.

as a weighted [; term while

A. Optimization Algorithm

Let us minimize L(«) with lower bound constraint o > [b.
As L(«) is nonconvex, we search for a local minimum. With
the gradient VL(«) defined in (32) at hand, we can use the
gradient projection method [34], which is very suitable for
box constrained optimization problems. Given a current point
o, we need to find a step size s such that the projection «,
(along the direction of negative gradient)

a, = max(a — sVL(«),1b), (33)
satisfies

L(ay) < L(a) + 61 (ap — )T VL(a). (34)
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Algorithm 2 Backtracking Gradient Projection Algorithm
Require: V,y, V,z, ag, Ap, 7, b.

1: precompute A4, b, « = max(«o, lb), s = Zfil Q;

2: repeat

3 s= min(Zfil i, 1.2s)

4 ap =max(o — sVL(w),1b)

5:  while L(a,) > L(a) + 0.01 % (o, — )T VL(c) do
6: 5s=05%s

7 ap = max(a — sVL(«),1b)

8:  end while

9: = Qp,
10: until convergence
11: return o

If (34) does not hold, we shrink the step size by

5= 5% 09, (35)

until (34) holds. Note that, since L(«) is continuous for all
a > 0, we can always find such a small s for (34) to hold. This
line search strategy is the so-called backtracking approach.
It is used in the proposed gradient projection algorithm for
kernel estimation shown in Alg. 2. The parameters [b = 1 and
~ = 1079 are chosen as default.

An important question is how to choose a good initial step
size. If it is too small, then the cost function drops very slowly
at each iteration. If the step is too large, we may need to shrink
the step size many times for (34) to hold. In fact, one can see
that VL is nearly zero when S, is large. However, it is not
the case for S, VL. Based on this fact, we choose S, as the
initial step size. In step 3 of Alg. 2, we choose min(S,, 1.25s)
as initial step size instead of S, because it saves computation
when s is shrunk many times in the last iteration. In many
experiments, we often observe that L(«) drops quickly and
no extra calls to L(«) are needed.

B. VD approximation for other quadratic models

The proposed VD can also be applied with BID methods,
such as Levin et al. [11] and Babacan et al. [17], whose kernel
estimation models are quadratic. For example, in Babacan et
al. [17], the kernel estimation model (see Eq. (14) in [17]) has
the form

1
arg min 5hTAh +bTh (36)

subject to h > 0 and Zh(j) =1,
J
where A(m,n) = 5. > Viz(m + j)Viz(n + j) +
Cy,(m + j,n + j) with C,, being the covariance matrix of
Vizand b(m) = -5 3, >~ Viz(m+37)Viy(j). In practice,
C,, is approximated by the inverse of the diagonal of C;l
(see [17] for more details).

C. Multiscale Blur Kernel Estimation

So far, we have shown how to estimate a blur kernel for
a given image and an image for a given kernel, which are
the two key steps in most BID methods. By alternating the

two steps, we can obtain an estimation of the blur kernel and
the image. Unfortunately, directly applying this strategy to the
input image may not work if the blur has large support.

To handle large blur supports, most of the existing BID
methods use a multiscale scheme which was first applied in
motion deblurring by Fergus et al. [5]. They point out that
single scale BID may suffer from local minimum, particularly
for large blur. At the coarsest level, the blur is reduced
significantly and hence, it is easy to estimate the kernel
from downsampled image. At the next finer level, we can
upsample the estimated kernel and use it as a good initial
guess for single scale BID. Repeating this process until the
finest level, we can obtain a better kernel estimate. In short,
the multiscale approach can alleviate the ill-posed nature of
BID substantially.

After the kernel is estimated, we need to reconstruct the
final sharp image with the estimated kernel using a nonblind
deconvolution method (e.g., [38] and [35]), since the image
estimated by Alg. 1 is rather smooth.

D. Parameter Settings & Implementation Details

For Alg. 2, we set Q = CTC with C being the identity or
the Laplacian operator (see (21) in [2]). We stop the iteration
when the relative variation of cost function is less than 107>
or the number of iterations exceeds 20. We note that the
time and space complexity of computing V; X7V, X in (20)
is O(K2N) and O(KN), respectively, indicating that it is
very time and memory consuming to calculate the matrix A.
In our algorithm, we do not need to compute A, but V; X«
and V; X7V, X« which can be obtained via a concatenation
of 2-D convolutions. If there is no extra call to L(«), each
iteration of Alg. 2 costs four 2-D convolutions. We note that
the most time consuming parts in computing VL, including
V:Xa and aTV;XTV,;Xa, have already been calculated
while computing L(«).

The values for A, and )\, are crucial to obtain good kernel
estimates, since the deblurring model depends on the two
weights. \;, controls the smoothness of the kernel and also
helps avoid delta kernels and over-fitting of the data fidelity
term. As )\, increases, the kernel gets wider and exhibits
more noise. Generally, A\, is proportional to the noise level
and image size. Note that, since the image size is varying
at each scale, \;, must be adjusted accordingly. The choice
of A\, depends on many factors, such as the amount of
edge information, the degree of blur, noise level, etc. Typical
choices for A, are in the range [0.0001, 0.001]. 0.0002 is
chosen as the default value for A\,. To understand how to
choose a suitable ), readers are referred to Section V-C.

V. EXPERIMENTS

In this section we carry out a comprehensive set of ex-
periments to analize the performance of the proposed BID
approach. We begin by showing that formulating the kernel
estimation in the filter space provides better results than using
the image space. Then, assuming that the real underlying
image is known, we analyze the importance of the blur
normalization constraint in Alg. 2. Next, we show how Alg.
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TABLE I
IMAGE SPACE VS. FILTER SPACE FOR KERNEL ESTIMATION

Filter space
1.2257
31.9840

Image space
2.1916
55.8135

Average Error Ratio
Average SSDs

2 can be applied to the quadratic regularization in [17] as an
example of how our method can be applied to other quadratic
regularization methods. Before comparing our method with
state-of-the-art BID algorithms [15], [17], [19] and [20], we
also conduct two additional experiments aimed at analyzing
the numerical performance of the image estimation procedure
and the impact of the regularization parameter.

All results are obtained by the default parameters unless
otherwise specified. All experiments are carried out using
Matlab 7.11 with the Intel Core i5-337U CPU @ 1.8GHz.
The proposed BID method takes about 20 seconds to estimate
a 19 x 19 blur from a 256 x 256 image.

A. Image vs. filter space for kernel estimation

The kernel estimation problem can be formulated either in
the image space (3)-(5) or the filter space, (6)-(8). In this
manuscript, we are formulating the image estimation in the
image space and the kernel estimation in the filter space.
To show the superiority of this formulation, we conducted
experiments on the dataset [24], which consists of 32 blurred
images, corresponding to 4 groundtruth images and 8 motion
blur kernels.

Table I reports the average SSD (sum of squared differences)
and average error ratio (ratio between SSD errors of the
deconvolution with the estimated kernel and the deconvolution
with the groundtruth kernel [24]) of all 32 restorations. It is
clear that using filtered images for kernel estimation provides
better results according to these two criteria. This conclusion
is in agreement with the results obtained by Xu er al. [15].

B. Kernel Estimation with Groundtruth Image

We now evaluate the performance of the backtracking
gradient projection algorithm in Alg. 2 for kernel estimation.
For this purpose, we obtain the degraded image in Fig. 2(a) by
blurring the cameraman image with the kernel A in Fig. 2(b)
and corrupting the blurred image by 5% Gaussian noise. The
MATLAB function quadprog is used to solve the quadratic
model (20) with and without the normalization constraint,
where C' = I. In contrast, Alg. 2 is used to find an approximate
solution to (20) with different initial points.

Table II shows the [5>-norm errors between the true kernel
and the ones estimated by quadprog and Alg. 2 with different
values for Aj,. The kernels obtained with \;, = 1 are presented
in Fig. 2 for visual evaluation. As we can see from Table II,
it is clear that quadprog with normalization constraint yields
more accurate solution than without normalization constraint.
This occurs because the normalization constraint acts as [y
regularization and therefore promotes sparsity. Consequently,
the normalization constraint suppresses noise, see the notice-
able noise in the background of kernel h; in Fig. 2(c) and the

(a) Degraded (b) hg,19 x 19 (©) hy
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Fig. 2. Kernel estimation by solving model (20) with A\j, = 1. (a) Degraded
image. (b) Groundtruth kernel. (¢) quadprog with nonnegative constraints
only. (d) quadprog with nonnegative and normalization constraints. (e) Alg.2
with arg = % (f) Alg.2 with ag = 1. (g) The 12th column vectors of
the 5 kernels. (h) Evolutions of L(«) with different initial points. Plots (b)-(f)
are best viewed on the screen.

TABLE 1T
l2-NORM ERROR OF THE KERNELS ESTIMATED BY SOLVING THE
QUADRATIC MODEL (20) WITH DIFFERENT A, AND OPTIMIZATION

METHODS.
Ah quadprog Alg. 2
with (7) only | with (7) and (8) | ap = 209090 | ag =
0 0.0462 0.0315 0.0311 0.0304
0.01 0.0462 0.0315 0.0311 0.0304
0.1 0.0462 0.0315 0.0311 0.0303
1 0.0463 0.0314 0.0310 0.0303
5 0.0465 0.0312 0.0308 0.0301
10 0.0468 0.0310 0.0306 0.0300
50 0.0502 0.0327 0.0324 0.0321
100 0.0561 0.0397 0.0395 0.0394

little noise in kernel ho in Fig. 2(d) for comparison. As we can
see from Fig. 2(g), kernel hy has larger errors than the others
at many locations, especially at (5,12), where hy has an error
over 0.01 while the errors of the rest kernels are about 0.005.

Table II and Fig. 2 also show that Alg. 2 produces slightly
better results than quadprog with both constraints. This is
because the cost function L(«), derived from the VD ap-
proach, has an adaptive sparsity term, which leads to a more
sparse solution (see kernel ho in Fig. 2(d) and h4 in Fig.
2(f) with less noise). Fig. 2(e) looks slightly more noisy than
Fig. 2(f) because the adaptive sparsity term is diminished by
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(d)

Fig. 3. Variational Dirichlet approximation vs. [ regularization with non-
negative constraints. (a) Cameraman, 256 x 256. (b) Degraded image with
the groundtruth kernel. (c) Restored image with the kernel estimated by [17],
PSNR=24.37 dB, SSIM=0.8268. (d) Restored image with the kernel estimated
by [17] + Alg. 2, PSNR=27.61 dB, SSIM=0.8732.

large S,. To further show that an approximate solution to
model in (20) can be obtained by Alg. 2, we observe that
||h3—h2||2 = 0.0017 and ||h4—h2||2 = 0.0052. ||h3—h2||2 is
3 times smaller than ||h4—h2||2, indicating that large « yields
a better approximate solution to model (20) since the adaptive
sparsity term could be diminished by large S, (see (31)). The
evolution of the cost function L(«), shown in Fig. 2(h), shows
that the proposed backtracking gradient projection algorithm is
quite efficient, especially for small values of o (e.g., ap = 1),
since L(«) drops rapidly in less than 20 iterations.

In summary, this experiment indicates that the normalization
constraint is important for a precise blur estimation and VD
approximation leads to a less noisy kernel than MAP.

C. Application of Alg. 2 to Babacan et al. [17]

Since matrix A in (36) is symmetric and positive definite,
we can use the proposed VD to find an approximate solution
to (36). We just replace the kernel estimation in [17] with Alg.
2 (default parameters) while keeping the rest unchanged, and
compare the resulting BID algorithm with [17]. We use the
synthetic image in Fig. 3(b) obtained by blurring the image in
Fig. 3(a) and adding a 1% Gaussian noise. To handle the noise
in the images, once the kernels are obtained, we reconstruct
the images using [38]. As we can see from Fig. 3(c) and (d),
the proposed VD improves the result significantly, in terms
of ringing artifacts, PSNR and SSIM [39]. Such a remarkable
improvement is mainly due to the normalization constraint and
the adaptive sparsity promoting term, which helps suppress
the noise in kernel (see the kernels in Fig. 3(c) and (d) for

F(x)

()
Ralz) Ri(z)

Fig. 4. The evolutions of F(z) and Rg(z), Az =
continuation. (b) Without continuation.

0.0002. (a) With

comparison). In addition, the method in [17] needs 122.03
seconds to estimate the blur, whereas only 63.29 seconds are
needed when our Alg. 2 is incorporated into [17].

D. Numerical performance of Alg. 1

To show the convergence of Alg. 1, we use the blurred
image in Fig. 2(b) as the input image and test Alg. 1
with the groundtruth kernel and 1000 iterations. The evo-
lutions of F(z) = 3||Hz — y||3 + Ru(z) and Ry(z) =
Ao by L IV (IViz ()] + X2, IViz()I/N) are
shown in Fig. 4. As we can see from Fig. 4(a), where the
continuation scheme \, = min(v/2\,, 1) is applied, the values
of both the objective function and regularization term drop
quickly and converge rapidly, but with a small jump when )\,
reaches 1. In contrast, as shown in Fig. 4(b) where )\, is fixed
to 1, the two functions decrease slower but more smoothly.

E. The Impact of A\, on Kernel Estimation

Az 1s the most important parameter in the proposed BID
method. Increasing A\, makes images smoother. As a result,
less gradient information is used in kernel estimation. To
utilize as much gradient information as possible, we should
use a small \,. However, we do not want the noise to alter
the kernel estimation. Hence, a tradeoff between removing
noise and preserving edge information should be made. In
general, if the noise standard deviation increases, A\, should
also be increased. Fig. 5 shows the impact of A\, on kernel
estimation, where the groundtruth and observation images are
shown in Figs. 3 (a) and (b), respectively. Figs. 5(c) and
5(d) show the corresponding estimation of x obtained by the
proposed method. Figs. 5(c) and 5(d) are highly smoothed and
cartoon like. Fig. 5(d) is more suitable for kernel estimation
than Fig. 5(c) because it has sufficient gradient information
and much less noise. Clearly, A\, determines how much and
which gradient information is allowed to participate in kernel
estimation.

FE. Blind Image Deconvolution on Synthetic Data

We start with the widely used dataset [24], which consists of
32 blurred images, corresponding to 4 groundtruth images and
8 motion blur kernels. We compare the proposed BID method,
using NGM and identity or Laplacian operator, with the state-
of-the-art BID methods Cho and Lee [9], Levin et al. [11],
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Fig. 5. (a) Restored image by A; = 0.0002 and A, = 0.01, PSNR=24.03
dB, SSIM=0.8418. (b) Restored image by A, = 0.0005 and A\, = 0.01,
PSNR=28.01, SSIM=0.8869. (c) The final « that produces the kernel shown
in (a). (d) The final = that produces the kernel shown in (b).

Babacan et al. [17] and Sun et al. [19]. In [19], two image
priors are proposed, i.e., natural and synthetic priors (see [19]
for details). Since the overall performance with both priors
is similar, we report their results obtained by synthetic priors
only. For fair comparison, once the kernel has been estimated
by each method, we use the nonblind deconvolution method
[40] with the same parameters in [11] to reconstruct the final
sharp image. The parameters of the proposed algorithm are
fixed to A\, = 0.00015 and \;, = 0.01 for all input images. Fig.
6(a) shows that the proposed method has the best performance
in terms of error ratio with 93.75% of the results under error
ratio 2 and 96.88% less than 3. One deblurring example, which
is very challenging, is shown in Fig. 6(b-g). To the best of our
knowledge, most of the existing BID methods do not reach an
error ratio below 2 for this blurred image. In what follows, for
simplicity, all of the kernels are obtained by using C' = I.

As the dataset [24] is nearly noise free, we also carry out
a set of experiments on Sun’s dataset [19], which contains
640 images synthesized by blurring 80 natural images with
8 motion blur kernels borrowed from [24]. In this dataset,
1% Gaussian noise is added to every blurred image. Instead
of using the whole dataset, we select 40 images synthesized
from the 5 natural images shown in the top row of Fig. 7.
Again, we fix the parameters A\, = 0.0002 and )\, = 100

——Levin etal
30, Babacan et al
——Cho & Lee
——Sun etal

10 —e—NGM+identity

- - NGM+Laplacian
15 2 25_ 3 35 4 45 5

rrrrrrrrrr

Fig. 6. Quantitative and qualitative evaluation on data set [24]. (a) Cumulative
histograms of the error ratios across the data set [24]. (b) One blurred image
of the data set. (¢) Groundtruth. (d) Babacan et al [17], errorratio =
15.327. (e) Levin et al [11], errorratio = 2.462. (f) NGM+indentity,
error ratio = 1.656. (g) NGM+Laplacian, error ratio = 1.687

for all input images. Note that a much higher value for Ay, is
used to deal with noise and large image size. We compare the
proposed method with Babacan et al. [17], Xu et al. [15] and
Sun et al. [19]. Since [19] provides better results than many
existing methods for this data set, including [9], [14], [11] and
[12], we do not report the results by these methods. For fair
comparison, we use the nonblind deconvolution method [38]
to reconstruct the final sharp image with the PSF estimated
with each method. We choose PSNR, SSIM [39] and error
ratio [24], calculated by using the MATLAB code provided
by [19], to evaluate the recovered images. Table III shows
the overall performance of the four compared methods. The
average error ratio in Table III shows that all methods can
handle 1% Gaussian noise very well, except [17]. The results
obtained by the proposed method are much better than the rest
for the images number 5 and 27, in terms of all measures,
and similar to the results of Sun er al. [19] for the other
images. We present the estimated images and kernels in Fig.
7 for visual comparison. Our kernels are clean and visually
accurate, thanks to the VD approximation, except for image
55 where the kernel is a bit too smooth. All the restored
images by the proposed method are of high quality with fewer
ringing artifacts. For example, for image 5, our result exhibits
fewer ringing artifacts around the gate region than the others,
indicating that our kernel is more accurate. For that particular
image, we report that the PSNR is 30.36 dB, just about 0.8
dB less than the known kernel restoration (PSNR=31.12 dB),
and the SSIM is 0.8439, just about 0.007 below the known
kernel case (SSIM=0.8506).

G. Blind Image Deconvolution on Real Data

First of all, we show that our deblurring algorithm removes
large motion blurs. We select one severely blurred image (see
Fig. 8(a)) from the dataset [41]. For this image, we set [b = 0.1
and A, = 100 to deal with large blur and image, respectively.
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TABLE IIT
QUANTITATIVE EVALUATIONS ON THE DATASET IN [19]
Average PSNR in (dB) Average SSIM Average Error Ratio
Image Index 5 27 41 55 56 5 27 41 55 56 5 27 41 55 56
Groundtruth h | 32.05 | 36.12 | 32.21 | 34.43 | 31.45 | 0.879 | 0.931 | 0.837 | 0.911 | 0.887 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
Sun [19] 28.70 | 33.63 | 30.72 | 31.32 | 29.14 | 0.851 | 0.921 | 0.815 | 0.899 | 0.862 | 1.408 | 1.247 | 1.193 | 1.284 | 1.642
Xu [15] 29.01 | 33.54 | 30.55 | 31.30 | 27.71 | 0.848 | 0.923 | 0.812 | 0.899 | 0.848 | 1.469 | 1.418 | 1.372 | 1.465 | 1.907
Babacan [17] | 28.81 | 31.54 | 25.77 | 29.11 | 27.95 | 0.845 | 0.907 | 0.725 | 0.873 | 0.847 | 1.721 | 2.768 | 4.768 | 2.448 | 2.058
Proposed 29.84 | 34.62 | 30.40 | 31.03 | 29.33 | 0.857 | 0.926 | 0.801 | 0.900 | 0.859 | 1.357 | 1.245 | 1.488 | 1.516 | 1.593

Babacan [17] Input Groundtruth

Xu [15]

Sun [19]

Proposed

Image 5 Image 27 Image 41

Fig. 7.

We should emphasize that the final image is reconstructed by
[35], in which an undetermined boundary condition is used
to reduce boundary ringing artifacts. As we can see from
Fig. 8, our result in Fig. 8(c) is better than Xu’s [15] in Fig.
8(b), which produces a too sharpen image due to noise in the
estimated kernel, see Fig. 8(d). The kernel obtained by [15] is
quite noisy partially because no constraints are used in their
kernel estimation step, whereas ours has less noise thanks to
the VD approximation. Of course, a good image prior is the
key for BID.

Image 56

Image 55

Selected results on Sun’s data set for visual comparison. This figure is best viewed on the screen. Please zoom in for more details.

We also show that the proposed method can handle noise for
real blurry images. Fig. 9(a) presents a blurry and noisy image
borrowed from [20]. For this noisy image, we set A, = 0.0005
and A, = 100. Again, for fair comparison, we use [35] with
the same parameters to recover the final image for the four
methods, Zhong et al. [20], Babacan et al. [17], Xu et al. [15]
and ours. We could not compare with Sun et al. [19] because
their algorithm is not available online. As we can see from
Fig. 9(c) and (e), Xu’s method [15] and ours produce high
quality images, exhibiting a small amount of noise but fewer
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(a) Input (b) Xu et al. [15] (+ [35])

(c) Ours (+ [35])

(d) [15]

(e) Ours

Fig. 8. Removing large motion blur due to camera shake. Please zoom in for more details.

(a) Input (b) Zhong et al. [20]

Fig. 9. Removing motion blur from a real blurry and noisy image.

ringing artifacts. Babacan’s result [17] Fig. 9(d) is satifactory,
but with slightly more ringing artifacts and blur. Noticeable
ringing artifacts are observed in Zhong’s restoration [20] Fig.
9(b). In fact, Zhong’s kernel is not very accurate, compared
with ours and the one obtained by [15].

Finally, we test the proposed method on blurry images de-
graded by atmospheric turbulence [6]. Three atmospherically
blurred images are shown in Fig. 10. We compare our method
with [17] and [15]. The nonblind deconvolution algorithm [38]
is adopted to recover the final sharp image. Fig. 10 shows the
deblurred images of three methods as well as the estimated
kernels. As we can see from the third column of Fig. 10, Xu
et al. [15] fails totally for all images. The results by [17] are
much better than those by Xu et al. [15], but still exhibit some
noticeable ringing artifacts. Our results in the 4th column of
Fig. 10, obtained by setting \;, = 10, are clearly better than
the others, in terms of ringing artifacts and image details. For
example, the 5th row in Fig. 10 shows that our result exhibits
the least amount of ringing artifacts over the car, and the tyres
of car and the soldier on the left, barely visible in the other
images, are better recovered.

In summary, from the above experiments, it is demonstrated
that our proposed method obtains better results not only for
motion blur but also for non-sparse blurs like atmospheric
turbulence blur, compared with state-of-the-art methods.

(c) Xu et al. [15]

(d) Babancan et al. [17] (e) Ours

VI. CONCLUSION

Nonnegative and normalization constraints are important for
blur kernel estimation, especially in the case of noise and
nonuniform blur, such as camera shake and atmospheric blur.
With the constraints, [y regularization on the kernel does not
add extra information on the kernel. For quadratic models
with nonnegative and normalization constraints, we proposed
a VD approach to find an approximate solution. The VD
approach leads to a less noisy kernel estimate than MAP,
thanks to the adaptive sparsity promoting term. For the NGM
based deconvolution problem, we propose a fast nonblind
deconvolution algorithm using mask decoupling and variable
splitting. Combining NGM prior with VD, we show that the
proposed algorithm is a clear competitor to state-of-the-art
BID methods for motion deblurring and outperforms them
when removing atmospheric blur.
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