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Abstract—In this paper we present an introduction to Vari-
ational Bayesian (VB) methods in the context of probabilistic
graphical models, and discuss their application in multimedia
related problems. VB is a family of deterministic probability
distribution approximation procedures that offer distinct advan-
tages over alternative approaches based on stochastic sampling
and those providing only point estimates. VB inference is flex-
ible to be applied in different practical problems, yet is broad
enough to subsume as its special cases several alternative infer-
ence approaches including Maximum A Posteriori (MAP) and
the Expectation-Maximization (EM) algorithm. In this paper
we also show the connections between VB and other posterior
approximation methods such as the marginalization-based Loopy
Belief Propagation (LBP) and the Expectation Propagation (EP)
algorithms. Specifically, both VB and EP are variational methods
that minimize functionals based on the Kullback-Leibler (KL)
divergence. LBP, traditionally developed using graphical models,
can also be viewed as a VB inference procedure. We present
several multimedia related applications illustrating the use and
effectiveness of the VB algorithms discussed herein. We hope
that by reading this tutorial the readers will obtain a general
understanding of Bayesian methods and establish connections
among popular algorithms used in practice.

Index Terms—Bayes methods, graphical models, multimedia
signal processing, variational Bayes, inverse problems.

I. INTRODUCTION

A GOOD part of the research and applications covered by
the IEEE Transactions on Multimedia deal with inverse

problems, that is, moving from known events back to their most
probable causes. Although solutions to inverse problems have
been originally derived using numerous approaches, many of
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them can be developed and formulated in a systematic fashion
within the Bayesian framework.
Multimedia data processing tasks have made extensive use of

probabilistic machine learning models in domains such as con-
tent-based image and video retrieval, biometrics, semantic la-
beling, human-computer interaction, and data mining in text and
music documents (see for instance [1]–[3]). Multimedia data,
such as digital images, audio streams, motion video programs,
etc., exhibit much richer structures than simple, isolated data
items. Probabilistic machine learning techniques can explicitly
exploit the spatial and temporal structures, and model the cor-
relations among different elements of the inverse problems.
Among the wide range of multimedia related applications

of diverse origins, recently there has been a significant interest
in problems involving the estimation of low-rank matrices. A
typical example is the matrix completion problem, where an
unknown (approximately) low-rank matrix is estimated from
its limited set of observed entries. Matrix completion finds
application in many areas of engineering, including computer
vision [4], [5], medical imaging [6], machine learning [7],
system identification [8], sensor networks [9], video compres-
sion [10], image denoising [11], and video error concealment
[12] (see [13] and the references therein). A related and im-
portant problem is Robust Principal Component Analysis
(RPCA), where the high dimensional data is assumed to lie in
a lower dimensional subspace with some data points corrupted
with (arbitrarily) large errors. Widely used classical methods,
such as Principal Component Analysis (PCA), often fail to
provide meaningful results in these cases. Robust PCA has
many important multimedia related applications, such as video
surveillance (foreground/background separation in video) [13],
face recognition [14], [15], latent semantic indexing [16],
image alignment [17], voice separation [18], error concealment
[19], motion segmentation [20] and network monitoring [21]
among many others.
All of the problems above can be approached by using

Bayesian modeling and inference. A fundamental principle
of the Bayesian philosophy is to regard all parameters and
unobservable variables of a given problem as unknown sto-
chastic quantities, assigning probability distributions based on
beliefs. Thus, for instance, in the notationally simple image
recovery problem, the original image(s), the observation noise,
and even the function(s) defining the acquisition process are
all treated as samples of random variables, with corresponding
prior Probability Density Functions (PDFs) that model our
knowledge about the nature of images and the imaging process.
The recently developed VB methods have attracted a lot of

interest in Bayesian statistics, machine learning and related
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areas. A major disadvantage of traditional methods (such as
EM) is that they generally require exact knowledge of the pos-
terior distributions of the unknowns, or poor approximations of
them are used. Variational Bayesian methods [22]–[27] over-
come this limitation by approximating the unknown posterior
distributions with simpler, analytically tractable distributions,
which allow for the computation of the needed expectations,
and therefore extend the applicability of Bayesian inference
to a much wider range of modeling options: More complex
priors (which are very often needed in multimedia problems)
modeling the unknowns can be utilized with ease, resulting in
improved estimation accuracy.
It is highly advantageous to augment the aforementioned

probabilistic framework with diagrammatic representations of
probability distributions called probabilistic graphical models,
since they provide a simple way to visualize the structure of the
probabilistic model. Furthermore, the required inference can be
expressed in terms of graphical manipulations.
In this paper, we provide an overview of Bayesian modeling

and inference methods for multimedia and related areas based
on the use of graphical models. Emphasis will be placed on the
pros and cons of variational posterior distribution approxima-
tions, and their connections to other inference methods.
The rest of the paper is structured as follows. In Section II

we provide a preliminary introduction to Bayesian modeling
and graphical models. The inference of the unknown quantities
within the Bayesian framework is treated in Section III, with
the focus on variational methods and their relations to alter-
native approaches. Section IV discusses local bounds on prob-
ability distributions and their application in facilitating varia-
tional analysis. The concepts of factor graphs and LBP are intro-
duced in Section V and its connection with variational inference
is analyzed. In Section VI we present the EP algorithm as an al-
ternative variational approach to inference. Finally, the paper is
concluded in Section VII. In addition to the main text, we in-
clude at the end of the paper four appendices, which exemplify
the variational analysis applied to solve multimedia problems.
Notation: We use lowercase boldface letters to denote vectors

or sets of items, whose specific meanings will be clear from the
context. Matrices are in general represented by uppercase bold-
face letters, unless otherwise noted. is the trace operator
on a square matrix. Given a matrix , we denote as , and

its th row, th column, and th element, respectively.

II. BAYESIAN MODELING

A. Notations and Preliminaries

As mentioned above, in many multimedia applications, the
solution to an inverse problem is sought. In general, the under-
lying system generates a set of observed variables, and the goal
is to infer a set of latent/hidden variables from these observa-
tions. For instance, in blind deconvolution for image recovery,
the camera provides a blurred and noisy version of the scene,
and an estimate of the original sharp and noiseless image is de-
sired. As another example, in audio-visual speech recognition
multiple related data streams of different modalities are used si-
multaneously to recognize the uttered words [28], [29].
To facilitate the exposition below, we introduce a uni-

fied set of notations for the inverse problem as follows. Let

denote the set of observed variables, where
each is in general a vector (or a scalar as a degenerated
vector). Examples of can be vectorized image frames
in image processing, binary class labels for classification,
recorded speech sequence for speech recognition, etc. Note
that two observed variables, e.g., and do not have to be
of the same size, although in many practical scenarios they do.
In addition to the observed variables, a set of hidden variables
are denoted by , which can be considered as driving the data
generation process. Other parameters, such as the observation
noise variance, that affect the modeling are grouped and de-
noted as .
Since is assumed to be stochastic, its probability condi-

tioned on the hidden variables and parameters is known as
the data likelihood . If the data are independently
observed, it follows that

(1)

The prior distribution is employed to model our knowl-
edge about the hidden variables prior to seeing the observation
, and

(2)

is the set of all unknown variables. Note that can be treated
as either deterministic or stochastic. In a fully Bayesian model,
is treated as stochastic and it is assigned a hyperprior distri-

bution .
As a concrete example of the notations introduced above, let

us consider a simple linear logistic regression problem. In this
case, the set of -dimensional feature vectors
are assumed to be fixed. The observed data are the associated
binary class labels and are denoted as . The logistic
regression expresses the class likelihood as a function
of the weight vector , i.e.,

(3)

where is the logistic sigmoid function. Under the assump-
tion that the data are independent of each other, the complete
observation model can then be expressed using (1) and (3) by

(4)

To estimate , we use the prior distribution based on the
-quasinorm

(5)
where and . This type of prior has been
shown to enforce sparsity in estimation problems like logistic
regression (see [30] and [31] for a regularization point of view).
Finally, we assume that has a Gamma hyperprior

, where the hyperparameters and
are assumed to be deterministic and fixed. In this classification
example, , and , respectively.
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With the definition above, the global modeling of the inverse
problem can be expressed as the joint distribution

(6)

The objective of Bayesian analysis in general is to infer the un-
known given the observed .

B. Graphical Models

Effective estimation of the unknown variables is
possible only through the utilization of models that accurately
represent the nature of these variables and their relationships.
In this regard, graphical models provide a systematic method
for expressing the relationship between the unknown and ob-
served quantities, which is embedded in the structure of a graph.
Graphical models are especially useful for incorporating prob-
abilistic conditional independencies into the modeling and esti-
mation procedures [32]. In the following paragraphs we intro-
duce two types of graphical models, namely directed graphical
models and undirected graphical models, and describe their ap-
plications in Bayesian analysis.
A directed graphical model, also called a Bayesian network

[33] represents a joint probability distribution as the product
of conditional distributions in the form of a Directed Acyclic
Graph (DAG):

(7)

where is the set of all random variables involved in
the joint distribution, and represents the set of ’s
parents. Although we use non-boldface lowercase letters to
denote the random variables involved, the reader is advised that
they are not restricted to be scalar-valued and can represent gen-
eral random quantities of arbitrary dimensions. In the inverse
problem introduced above, usually corresponds to ,
or to when is considered observed and fixed.
To visualize the factorization in (7) as a directed graph we

add one node per and draw to a directed link from each
. Conversely, to obtain the probability distribution

factorization from its graphical representation, we introduce a
factor for every node in the graph. If the node has no parents
the factor is simply , otherwise it is where the
parents are all the nodes that point to .
As two illustrative examples, Fig. 1 depicts the DAG corre-

sponding to the distribution

(8)

and Fig. 2 depicts the DAG corresponding to the Hidden
Markov Model (HMM)

(9)

A directed graphical model (or its equivalent probability fac-
torization) implies a set of independence and conditional inde-
pendence relations between the variables, see [32] for details.

Fig. 1. DAG representing .

Fig. 2. DAG representing .

Fig. 3. Undirected graph representing and
.

Consequently we can think about the structure of a joint dis-
tribution in three different ways, that is, its factorization, its
directed graphical model or the conditional independence re-
lations. There is a one-to-one mapping between factorizations
and directed acyclic graphs. Unfortunately there are conditional
independence relations that cannot be represented by directed
acyclic graphs.
Let us return to the inverse problem discussed above. For

the joint probability distribution in (6), the associated directed
graphical model can be constructed in a straightforward way.
Note, however, that the relationship between the parameters,
hidden variables and observed variables leads in general
to much richer representations. While in our classification
problem in (5) and in (4) are products of
independent distributions, in many real world problems some
of the conditional distributions themselves may also be mod-
eled naturally using directed or very often using undirected
graphical models, as we describe next.
Let be a set of random variables whose distribution takes the

form of the product of positive potential functions ,
where each operates on a subset of called a clique
and denoted as . The joint distribution can therefore be
expressed as

(10)

where is the normalization constant that makes the probability
distribution integrate to 1. To visualize the associated undirected
graphical model, also called Markov Random Field (MRF), we
draw one node per random variable and for every clique we
draw an undirected link between every pair of nodes in it.
Fig. 3 depicts the undirected graph corresponding to the

distribution

(11)
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which is also the representation of

(12)

Notice that, for clarity, we have replaced in (10) by the indices
of the variables in the corresponding potential function.
Given an undirected graph we build a probability factoriza-

tion by adding one term to the factorization per maximal clique
(a subset of nodes which are fully connected and no additional
node can be added to the subset so that the subset remains fully
connected).
Notice that, as is the case for DAGs, the undirected graph-

ical model (or the probability factorization) implies a set of in-
dependence and conditional independence relations among the
variables [32]. Consequently we can think about the structure of
a joint distribution as its factorization, its undirected graphical
model or the conditional independence relations.
Let us complete this section by considering a simple image

denoising problem. Our goal is to recover the original image
pixels from the observed noisy image

(13)

where . This gives rise to the data like-
lihood

(14)

For the noiseless image we assume a prior based on the Con-
ditional Auto-Regressive (CAR) model, that is,

(15)

which captures the smoothness property of natural images ac-
cording to which the intensities of neighboring pixels are ex-
pected to be close to each other. The parameter controls the
level of smoothness imposed by the prior, e.g., a larger im-
poses a heavier penalty to image discontinuities and hence pro-
motes smoothness in a stronger way. Note plays a similar
role as the regularization parameter in regularized optimization
problems.
The Bayesian modeling of our problem has the form in (6)

with . Notice that corresponds to
an undirected graphical model. Furthermore

(16)

is an MRF known as conditional random field, where
and .

III. BAYESIAN INFERENCE

Recall from the description above that denotes
the set of all unknown variables (i.e., hidden variables and un-
known parameters). In the Bayesian framework, the inference

on the unknowns is performed using the posterior distribution
, expressed using Bayes’ rule as

(17)

where is called the model evidence.
In many applications the posterior is intractable since
cannot be computed analytically. In these situations, one

has to resort to approximation methods. In the following we will
briefly review the most common ones.
Stochastic sampling methods such as Markov Chain Monte

Carlo (MCMC) represent the most general approaches to per-
forming inference. These methods generate a sequence of sam-
ples from the intractable posterior distribution using tractable
conditional or joint distributions. These samples are then used
to approximate the intractable posterior distribution. In theory,
sampling methods can find the exact form of the posterior distri-
bution, but in practice they are computationally intensive (espe-
cially for multidimensional signals such as images and videos)
and their convergence is hard to establish. Among the MCMC
methods, the Gibbs sampler is probably the best known one for
fitting a Bayesian model [34], which aims at obtaining a suffi-
cient number of samples from the posterior distribution to ac-
curately characterize it. The assessment of the convergence of
the chain and the compulsory use of burn-in iterations are two
important problems to be faced, especially in complex models
applied to large data sets, which is the case of multimedia appli-
cations. See [35] for a comparison of sampling and variational
methods in the context of political analysis.
In addition to sampling-based approaches, most methods in

the literature seek point estimates of the unknowns, which are
generally obtained by maximizing the posterior distribution

(18)

MAP solutions, or Maximum Likelihood (ML) solutions when
flat priors are used, fall in this category. These methods reduce
the inference problem to an optimization problem. From the
deterministic perspective, these methods can be considered as
regularized data fitting problems, which are extensively studied
in the literature. Methods providing point estimates to the
unknowns are computationally very efficient, but they might
exhibit in some cases a number of disadvantages. Common
problems include over-fitting in the presence of high noise,
error propagation among the estimates of different unknowns,
and lack of uncertainties of the estimates. Another fundamental
problem with the MAP method is that the maximum might
not represent the data well in some cases. For instance, in
multimodal data, some of the modes might have very high
magnitudes but very limited support, while most data points
are represented by other modes with much larger support but
lower peaks. In this case, the MAP method will provide the
largest mode which has almost no representation of the data.
In extreme cases, these methods might result in a trivial global
maximum [36]. Bayesian methods, on the other hand, seek the
full posterior distributions of the data, from which not only
representative statistics such as means but also uncertainty
information associated with the estimates can be obtained.
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Let us illustrate this problem of MAP estimation with
a simple example. Assume that the observed signal is the
convolution of a sparse signal with a known blurring kernel
plus additive Gaussian noise with known variance . The
observation model can then be written as

(19)

where is the matrix constructed from the known blurring
kernel.
To promote sparsity we use the following hierarchical model

as in [37]

(20)

(21)

Then the MAP approach would lead to

(22)

which produces a trivial solution when all ’s are equal to zero.
This is not alleviated by integrating over since

(23)

also leads to a trivial solution. This behavior of MAP has also
been reported in problems such as blind image restoration [36]
and centralized and distributed processing [38].
The Bayesian framework also provides other methodologies

for estimating the distributions of the unknowns (i.e., more than
merely point estimates), which provide more information about
the uncertainties. A commonly used method is marginalization,
where some of the unknowns are integrated/summed out from
the joint distribution to obtain a marginal distribution, and the
remaining unknowns are estimated by maximizing this distribu-
tion. Evidence-based (or Laplace) and empirical approaches fall
into this category, where the marginalized variables are some-
times called hidden variables. The EM algorithm, first described
in [39], is a very popular method in signal processing for itera-
tively solving ML and MAP problems that include hidden vari-
ables, and it is also based on the marginalization principle. In
all methods based on marginalization, the prior distributions of
the hidden variables are chosen such that the marginalization
is tractable. In most cases, however, this limits the form of the
prior models to simple or even unrealistic ones.
As mentioned above, one would like to use realistic models

for the unknowns and meanwhile have an efficient inference
procedure. However, arbitrarily complex models render fully
Bayesian treatment impossible in most cases, and limit the in-
ference options to point-estimation methods such as MAP or
sampling approaches. Variational Bayes is a powerful alterna-
tive to these methods, as it provides more accurate approxima-
tions to the posterior distribution than point estimation methods,
and is computationally much more efficient than sampling ap-
proaches. In the following, we will present a general outline of
the variational methods.
VB methods provide analytically tractable approximations

to the true posterior distribution by assuming

has specific parametric or factorized forms. In the fol-
lowing, we show how this approximating distribution
can be found. Let us first consider the following decomposition
of the logarithm of the model evidence (see, e.g., [24] for a
reference)

(24)

where

(25)

and

(26)

is the (reverse) Kullback-Leibler (KL) divergence between
and the true posterior .

Since with equality if and only if
, we have that . So, for

any distribution , the quantity represents a lower
bound of . We can then maximize this lower bound with
respect to to obtain an approximation of .
Equivalently, we can minimize , which

represents a variational problem. Variational methods have
their origins in the 18th century with the work of Euler, La-
grange, and others on the calculus of variations. To obtain
some insight into the kind of VB distributions that minimiza-
tion of provides, consider the following
cases. If is small in a given area, then is
large and so will assign low mass to that area to avoid
large values of the KL divergence. In particular, minimizing

will lead to distributions that assign
zero probability mass to areas outside the support of ,
hence is “zero-forcing” for . Notice
that other functionals can also be used to measure the similarity
between and . In particular, we can minimize

, which leads to a that covers the
support of . The variational posterior approximation
method based on the minimization of is
known as Expectation Propagation, the details of which will be
presented in Section VI.
Since the minimum of the KL divergence is achieved at

, which can not be calculated, some assump-
tions on have to be made. Before discussing several
possible assumptions on , we notice from (24) that

(27)

and therefore minimizing the KL divergence with respect to
does not require knowledge of (otherwise we end

up in a loop).
One possible assumption on is that it assumes specific

parametric forms, for instance a Gaussian distribution. Another
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(very commonly used) assumption is that factorizes into
disjoint groups, i.e.,

(28)

where each factor depends on a subset . This factor-
ized form of variational inference is called mean field theory in
physics [40].
Using (28), the KL divergence can be minimized with respect

to each of the factors separately while holding the other fac-
tors fixed. The optimal solution for each of the factors can then
be derived as [24]

(29)

where is the normalization constant, and denotes the
expectation taken with respect to all the approximating factors

. Note that (29) defines a system of nonlinear equa-
tions in . One way to solve this system of equations is
via an alternating optimization procedure, where the distribu-
tion of each factor is iteratively updated using the most
recent distributions of all the other factors. This update process
is cyclic and is repeated until convergence. Since the KL diver-
gence (26) is convex with respect to [41], the conver-
gence is guaranteed.
Let us now examine how the MAP solution in (18) can be

obtained as a particular variational distribution approximation.
First we use the same distribution factorization as in (28) with
the additional assumption that all the factors are degen-
erate at the peak , i.e.,

otherwise
(30)

Note that by imposing this constraint we ignore the uncertainty
information provided by non-degenerate distributions. It then
follows from (27)

(31)

where . By iterating theminimization
of in (31) through all distributions
we obtain the MAP estimates.
Let us now examine how the EM algorithm is another partic-

ular case of the variational approximation to posterior distribu-
tion. We consider here the partition of the unknown variables as
in (2), and assume that the posterior distribution approximation
has the form

(32)

where we have removed the subscripts and on the right hand
side of the above equation for simplicity. Then we have

(33)

TABLE I
COMPARISON OF INFERENCE ALGORITHMS

In addition, we impose the constraint that is a degenerate
distribution at and denote by the set of such distributions.
Note, again, that this constraint will prevent us from obtaining
uncertainty information on the posterior distribution approxi-
mation of .
With the above assumptions we have that

(34)

and therefore, given , the distribution minimizing the
KL divergence in (34) is given by

(35)

If a point estimate of is required, representative statistics of
such as the mean can be used. In addition, we have

other information made available by the approximate posterior
distribution.
Now, the new estimate of , denoted by , where the

distribution is degenerate, is determined by

(36)

Notice that the expectation (the E-step in EM) in (36) depends
on our ability to calculate . If is intractable,
the EM algorithm can not be applied, but VB methods can still
be used. Moreover, as already pointed out, the EM algorithm
does not provide uncertainty information on since this dis-
tribution is forced to be degenerate.
From the presentation above we see that variational methods

provide general solutions to inference problems and provide ap-
proximate distributions (rather than merely point estimates) of
the unknown variables. The comparison among the various in-
ference algorithms described above is summarized in Table I.
Examples of the application of VB algorithms in multimedia
related problems are presented in the appendices.

IV. LOCAL VARIATIONAL BOUNDS FOR JOINT AND
CONDITIONAL PROBABILITIES IN VARIATIONAL INFERENCE

The VB distribution approximation discussed so far can be
considered as a global method since it approximates the poste-
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rior distribution by bounding below with (see
(24) and (25)). An alternative local approach involves finding
bounds on individual or groups of distributions in the joint prob-
ability model in (6). The general principle in local variational
methods is to convert a complex quantity to a simpler one by
expanding it with additional variational parameters. This sim-
pler quantity is either a lower or an upper bound of the original
quantity, and is utilized as its surrogate. Using this expansion
results in optimization problems that are in turn tractable as op-
posed to the original ones.
The application of local variational methods to Bayesian in-

ference relies on the approximations of the priors, the condi-
tional distributions or the joint distribution. In this discussion
we focus on the general formulation presented in Section III for
consistency. Let us assume that the KL divergence in (27) and
therefore the general solution in (29) can not be computed ana-
lytically for all unknowns , due, for instance, to the form
of the prior model or the conditional distribution .
The goal therefore is to replace these complex distributions by
their simplified bounds, which makes the computation in (27)
and (29) tractable.
As an example illustrating the concept introduced above, con-

sider again the classification problem given in Section II-A. In
this example, both the -quasinorm prior in (5) and the
logistic sigmoid data likelihood in (4) make the com-
putation of the KL divergence analytically intractable. In the
following we give lower bounds for and , re-
spectively, and show how they can be used to resolve the in-
tractability issue.
To find a lower bound on , consider the following gen-

eral relationship between weighted arithmetic and geometric
means of two non-negative numbers and

(37)

with . Applying this inequality to the exponent in (5),
we have

(38)

where is a non-negative number.
Using this inequality, can be bounded variationally as

follows

(39)

where we have introduced the additional positive variational pa-
rameters . Note that with the lower bound approx-
imation, the exponent in (39) is quadratic in and the prior be-
comes a Gaussian.
To obtain a lower bound approximation to we make

use of the following inequality [24]

(40)

where , are arbitrary real numbers, and .

Using (40), a lower bound of the observation model in (4) is
found as

(41)

where are real-valued variational parameters.
Using the lower bounds in (39) and (41) we finally have

(42)
which can be used to find an upper bound of the KL divergence
in (26), that is

(43)

Instead of minimizing the KL divergence itself, we can min-
imize this upper bound to obtain the following general result
instead of (29)

(44)

Note that since the bound is quadratic in , (44)
can be calculated analytically as opposed to (29). An important
question within this approach is the tightness of the bound in
(39). Clearly, the tightness of this bound is determined by the
selection of the variational parameters and . By minimizing
the bound in (43) with respect to the variational parameters
and along with the unknowns and , one can obtain esti-
mates of the unknowns sequentially approaching the ones that
minimize the original KL divergence. In theory, exact values
of the unknowns that minimize the original KL divergence can
be obtained through the solution of this expanded optimization
problem.
In general, it is hard to find bounds like the ones described

above for arbitrary functions. However, a systematic method
exists for finding variational transformations of certain distribu-
tions through the principle of convex duality [41], [42]. Due to
limited space we skip the details and refer the interested readers
to [43] for more information on this topic.

V. VARIATIONAL LOOPY BELIEF PROPAGATION

In the previous sections we have discussed VB methods
for approximating the posterior distributions. In this section
we present an alternative approach for approximate inference,
known as Loopy Belief Propagation. We start by introducing
the sum-product algorithm, based on which LBP was devel-
oped. Then we show that for pairwise MRFs the LBP algorithm
can be derived from a VB inference procedure.
Let us consider the joint probability distribution in (6) and as-

sume that the model parameters are fixed to known values or
to values calculated in an iterative procedure. To simplify no-
tation, define as the set of fixed (estimated or ob-
served) variables. We are interested in estimating the posterior

. We define

(45)
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Fig. 4. Factor graph of the distribution in (8).

where we use capital letter to denote that the dependence on
fixed variables has been suppressed.
Our goal is to calculate . However, since in many real

world problems this task is intractable we concentrate here on
the calculation of the marginals (with respect to the elements in
) and mode of .

A. Factor Graphs and Message-Passing Algorithms

Let us follow [44] in the process to find the marginals and the
mode. Using the directed or undirected graphical representation
of we can write

(46)

where the factor is a function of a subset and
is the normalization constant.
For functions factorized in the form of (46) and their graph-

ical representations, we can create the corresponding factor
graphs. In a factor graph each variable is represented as
a circle, and each factor is represented as a square. An edge
between the variable and the factor exists if and only if

.
As one example of converting directed graphs into factor

graphs, Fig. 4 depicts the factor graph corresponding to the dis-
tribution on in (8), where the following fac-
tors are defined

(47)

Note that, for clarity, again we have replaced in (46) by the
indices of the variables in the corresponding factor.
Similarly, Fig. 5 depicts the factor graph corresponding to the

HMM in (9), where the following factors are defined

(48)
Note that we have suppressed the dependence on in
(48) since they are observed and fixed.
For undirected graphs, Figs. 6 and 7 depict the factor graphs

corresponding to the distributions in (11) and (12), respectively.

Fig. 5. Factor graph of the distribution in (9).

Fig. 6. Factor graph of the distribution in (11).

Fig. 7. Factor graph of the distribution in (12).

Notice that the factor graphs in Figs. 4, 5, and 7 are all trees (i.e.,
connected graphs without cycles), while the one in Fig. 6 is not.
The introduction of factor graphs as well as the conversion

from directed/undirected graphs to factor graphs allows us
to calculate the marginal distributions from (46). The
method we present to calculate these marginals is called the
sum-product algorithm and it is a generalization of the mes-
sage-passing or belief propagation (BP) method proposed in
[45]. It is important to note that it will exactly recover the
marginal distributions if the factor graph is a tree [2]. When the
factor graph is not a tree there is no guarantee that the algorithm
will recover the marginals. Note that in order to simplify the
presentation, we assume that the variables in are discrete such
that marginalization is performed by a summation.
We denote by the index set of variables that factor

depends on, i.e., is the set of indices for variables in .
Analogously denotes the index set of factors in which
variable is present, i.e., for . We will
use to remove a variable index or a factor index from a set,
whose meaning will be clear from the context.
The sum-product algorithm defines two types of messages,

namely those from variables to factors and those from factors
to variables. Specifically, denotes the message sent by
variable and received by factor , and denotes the
message sent by factor and received by variable . Both
types of messages are functions of the value of .
There are two rules to update the messages
• From variable to factor

(49)
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• From factor to variable

(50)
A factor node which is connected to only one variable node
will always broadcast . Similarly a
variable node that is connected to only one factor node will
always broadcast .

Intuitively, a message can be considered as the sender’s be-
lief of the involved variable taking the specified value. For ex-
ample, represents “how much” variable believes
in itself taking the specified value, and represents the
factor ’s belief on variable taking the specified value. Note
that from (49) and (50) it is clear that message updates are per-
formed in an interlocked fashion. A variable summarizes (by
taking products of) the incoming messages from neighboring
factors other than the destination factor and sends the mes-
sage to . A factor summarizes the incoming messages
from neighboring variables other than the destination variable
, multiplies them with itself, marginalizes variables other

than , and sends the message to . Note that a factor can send
a message to a variable once it has received incoming messages
from all other neighboring variables, and the same applies when
a variable has to send a message to a neighboring factor.
To find the marginal for each variable we proceed as follows

[24]: pick any node and designate it as the root, propagate mes-
sages from all the leaves up to the root using (49) and (50), then
propagate messages back from the root to all the leaves. After
this two-pass message passing every variable has received mes-
sages from all its neighboring factors. The marginals are then
found as

(51)

To find the mode of in a tree-structured factor graph the
max-product method can be employed, which replaces all the
summations in (50) with maximization operations in the process
of propagating messages from the leaves to the root. During
this “bottom-up” message passing, a record of the variables in

that have given rise to the maximum is kept at each
factor. After the root receives all the incoming messages, the al-
gorithm back tracks down to the leaves to find the maximizing
values of the variables, following the records kept at the factors
[24].

B. LBP on Pairwise MRFs

We have just described a method to find the marginals from
joint distributions representable as tree-structured factor graphs.
The initial broadcasting has been defined from variable nodes to
factor nodes as well as from factor nodes to variable nodes. As
an alternative, we can also start by initializing all variable-to-
factor messages to one, that is,

for all (52)

and then proceed with both types of message updates in parallel.
The main difference between this initialization and the one de-
scribed above is that this can be applied to factor graphs which

are not trees. See [2] for the convergence of this method and the
different message scheduling.
In the rest of this section (for notational simplicity) we will

assume that in (46) is a pairwise MRF, that is,

(53)

where is the local evidence (notice that it will very
likely contain information on a set of observed variables, which
have been considered fixed and hence suppressed in notation),

is the potential for edge and is the set
of undirected edges. In the prior and conditional distribution
terminology models the observation process and

corresponds to the prior distribution.
For the pairwise MRF described in (53) there are two types

of factors: unary factors associated with and binary fac-
tors associated with . With the initialization in (52),
the original two types of message updates reduce to one: the
message passing between variables. Denote the message passed
from to as and the belief at as . We de-
note the index set of the neighboring variables of as .
The pseudocode for LBP on a pairwise MRF is given in Algo-
rithm 1.

Algorithm 1 Loopy Belief Propagation on a pairwise MRF [2]

Initialize messages for all edges ;

Initialize beliefs for all nodes ;

repeat

Send message on each node

nbrs

Update belief of each node

until beliefs don’t change significantly

Return marginal probabilities

C. Connection Between LBP and VB Inference

Let us now interpret the LBP algorithm from a variational
perspective. First we note that our goal in Bayesian analysis is
to find an approximate posterior distribution via

(54)

Observe that the unnormalized distribution of in (53) can be
written as

(55)
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where is the number of neighbors of variable minus 1.
To reveal the connection between LBP and VB, consider the
following form of approximation to

(56)

where and are the approximate marginal bi-
nary and unary distributions, respectively.
It is shown in [1] and [2] that utilizing (56) in the minimiza-

tion of the KL divergence in (26) leads to

(57)

which is the belief update rule in Algorithm 1. Finally, the pair-
wise distribution in (56) can be written as

(58)

From the discussion above, we see that by adopting the form of
approximation in (56), the message update rules in belief prop-
agation can be derived within the variational Bayesian frame-
work.

VI. EXPECTATION PROPAGATION

In our presentation of the VB analysis in Section III,
the inference procedure was based on the minimization of

in (26). As is pointed out, the KL di-
vergence is not symmetric, that is,

. Therefore, another set of approximation
methods can be obtained by minimizing the forward KL di-
vergence , giving rise to the Expectation
Propagation algorithm [46], [47]. EP methods are less mature
than the VB methods presented above, but they also have the
potential of accurately approximating the posterior distributions
in certain inverse problems [24], [48].
EP methods result from the modification of another method

for approximating the posterior distribution, referred to as
Assumed Density Filtering (ADF) (see [46] and references
therein). We therefore present ADF first, followed by the EP
presentation. ADF was independently proposed in the statistics
and control literature. Its name was coined in control; other
names include online Bayesian learning, moment matching,
and weak marginalization.
As an introductory case, let us assume that the model param-

eters have been fixed at their known or estimated values, simi-
larly to the assumption made in Section V. Also assume that the
observations have been taken independently of
each other, such that the joint distribution factorizes as follows

(59)

Note that this assumption is valid in many practical scenarios.
A more general distribution represented by a factor graph will
be considered later.
To motivate the EP algorithm, let us consider a cluttering

problem [24]. In this example, each observation is a Gaussian
mixture consisting of a signal component with mean and a
background clutter with mean 0. Moreover, is modeled as a
zero-mean Gaussian distribution. Given these definitions, the
joint distribution involving observations and the unknown
mean is expressed as

(60)
where the weights and the variance levels and are all fixed
and assumed known. The posterior distribution of is propor-
tional to and hence involves terms, which makes
exact inference infeasible for large values of . Therefore, we
need to approximate the posterior distribution of .
By defining we have an (exact) approxima-

tion of the posterior distribution of (which is also the joint
distribution) when no observations are available. We now take
into account the first observation . If approximates the
distribution , where ,
then

(61)

As more observations are added, we have

(62)

where

(63)

and

(64)

The left hand side of (62) is the joint distribution, and on
the right hand side is an approximation to the posterior distri-
bution given observations. Therefore, is an approx-
imation to the model evidence . Finally, after all
observations are taken, will provide an approximation

of and .
To complete the ADF method description we need to define

how the proximity between two distributions is measured and
the type of distribution used. The distribution is
selected as

(65)

where is a given class of probability distributions.
For the mixture example described above it is clear that a

good choice for is a multivariate Gaussian distribution.
In general, members of the exponential family are used. Note
that if is from the exponential family, the minimization of
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the KL divergence (65) reduces to the estimation of a set of suf-
ficient statistics. In the particular case when is a Gaussian
distribution, this is simply to match the mean and covariance
of with those of , giving rise to the
name of moment matching.
A modification of ADF is obtained by approximating each

(as a function of ) by an unnormalized density func-
tion and then use the product of the unnormalized densities (and
the prior) to approximate . As already mentioned, this re-
finement of ADF leads to EP.
To provide an algorithmic description of EP, we first note that

for a given set of observations we can write

(66)

where and for .
The factor graph notation in (66) is very

general and can be used to represent both directed and undi-
rected graphs. Since , our goal is to find an
approximate posterior distribution in the form of

(67)

where is an approximate of , and provide an estimate
of the model evidence . The model evidence can be
used to estimate the model parameters if needed.
The EP algorithm for the approximation of the posterior dis-

tribution of for the joint representation in (66) is summarized
in Algorithm 2.

Algorithm 2 Expectation Propagation-1 From in (66),
approximate by in (67) and estimate

Let be a given class of probability distributions.

Initialize the approximating factors

Initialize the approximate posterior

repeat

Select a factor to refine

Remove from the approximate posterior by
division

Compute and denote the normalization constant
by

Find

Update the factor .

until convergence

Calculate the approximate model evidence

(68)

Fig. 8. Factor graph of the EP approximation of the distribution in (9) by the
distribution in (72).

In the above EP description we have assumed that all the fac-
tors and approximations are functions of the entire
. We consider now the case where the factors depend only on
a subset of the variables in . Similarly to the discussion above,
the objective is, given the factorized joint distribution

(69)

to obtain an approximate posterior

(70)

In the description that follows we assume that

(71)

where , that is, denotes the variables in . Note
that it would have been more appropriate to use to denote
the set of variables in , however it will always be clear from
the context the variables and factors we refer to.
Let us illustrate this factorized approximation with the HMM

example in (9) and (48). For the factor graph in Fig. 5, we seek
an approximate posterior distribution of the form

(72)

Note that, for clarity, in the subscripts of factors coming from
two variables, we have made explicit the variables involved.
Graphically we are converting the graphical model in Fig. 5 to
the one in Fig. 8.
The EP algorithm to approximate the posterior distribution

for the model in (69) is presented in Algorithm 3. An example of
the application of this model in Gaussian Process Classification
(GPC) is presented in Appendix D.
In Algorithm 3 the approximate factor components are ex-

pressed as

(73)

This is the sum-product rule in which messages from variable
nodes to factor have been eliminated and all the -terms
are updated simultaneously. This suggests, as explained in [46],
that more flexible approximating distributions, which could in-
volve the grouping of several factors or different partitions of
the variables in , could be used to achieve higher accuracy.
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Algorithm 3 Expectation propagation-2 From in (69),
approximate by in (70) and estimate

Initialize the approximating factors

Initialize the approximate posterior

repeat

Select a product of factors to refine

Remove from the approximate posterior by
division

Compute and denote the normalization
constant by .

Find

where is the set of probability distributions for which

Update the product of factors

until convergence

Calculate the approximation of the model evidence

(74)

VII. CONCLUSIONS

In this paper we have provided an overview of variational
Bayesian modeling and inference methods for multimedia
and related areas based on the use of probabilistic graphical
models. We have elaborated on the principles of VB inference
as well as discussed its relative merits and limitations com-
pared with various other inference algorithms including MAP,
EM and MCMC. VB provides (approximate) full posterior
distribution to a wider range of problems at medium cost of
computation. The use of local variational bounds and several
distribution representations have been discussed and shown to
lead to tractable variational inference. We have also shown the
connection between VB and LBP, as well as the connection
with other posterior approximation methods such as the global
and local EP algorithms. Examples of VB algorithms applied
to representative multimedia problems have been included as
appendices.

APPENDIX A
IMAGE BLIND DECONVOLUTION USING VB ANALYSIS

Consider the application of VB analysis to the image blind
deconvolution problem.We describe here a simple yet powerful
VB model, and refer the reader to [36], [49] for the omitted
algorithmic details.

Consider the following model utilized for the generation of
observations from unknown variables ,

A.1

where is the additive noise and represents
the systemmatrix. In image blind deconvolution the systemma-
trix is constructed using the unknown blur Point Spread Func-
tion (PSF) . The goal of blind deconvolution is to pro-
vide an estimate of the original image and the blur PSF ,
given the observations and the prior knowledge.
One crucial design component in blind deconvolution is accu-

rate modeling of natural image characteristics. It is well known
that when high-pass filters are applied to natural images, the re-
sulting coefficients are sparse. This property is expressed via
the use of sparse image priors. Specifically, we consider the fol-
lowing general form of super-Gaussian image priors on

A.2

where is the normalization constant, is a penalty function,
and denotes the output of a high-pass filter output at pixel
. A variety of functions that can be represented using A.2 is
discussed in [36].
Sparsity is achieved with sub-quadratic forms of , which

do not lead to straightforward application of Bayesian infer-
ence. However, with some acceptable restrictions on its form,
the function can bounded as follows [36]

A.3

where is a variational parameter and denotes the con-
cave conjugate of . Notice that only the first, quadratic term
depends on and hence the image prior in A.2 can be lower
bounded by a Gaussian distribution, which is more amenable
for Bayesian inference. As an alternative, the prior in (A.2) can
be represented as

A.4

where is a Gaussian distribution with precision and
therefore (A.4) is known as the Scale Mixture of Gaussians
(SMG) model. The SMG is a bit more restrictive than varia-
tional lower bounding in terms of the class of priors that can be
represented.
Using the above representations, the super-Gaussia priors are

transformed to Gaussian forms. VB inference can be applied
then for the inference of the unknowns [36], [43]. Fig. 9 presents
an example of applying the prior in (A.2) with being a
logarithm function. Fig. 9(b) shows the restored image along
with the estimated blur kernel. As can be seen, most part of the
restored image is sharp, corroborating the effectiveness of the
model and the VB algorithm.

APPENDIX B
VIDEO FOREGROUND/BACKGROUND SEPARATION AND
NETWORK ANOMALY DETECTION USING VB ANALYSIS

As two additional examples of application of VB algorithms
in multimedia problems, we consider foreground/background
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Fig. 9. Blind image deconvolution using VB analysis.

separation in video analysis [50], [51] and anomaly detection in
the field of network security [52], [53], which share a common
data model as we will see. The algorithmic details are based on
[13], [21].
Consider the measurement system expressed as

B.1

where the signal of interest undergoes a transfor-
mation and is corrupted by both noise and a
smooth background . The signal is assumed to be column-
wise sparse, i.e., for , where is
the -(pseudo)norm. The smooth background is a low-rank
matrix consisting of linearly dependent columns. The transfor-
mation in general has the effect of compression, i.e., .
In video analysis, denotes the moving objects in the fore-

ground, is a known matrix representing measurement distor-
tion such as blurring and resolution scaling, and is the mea-
sured background. In network anomaly detection, consists of
the temporal snapshots of flow anomalies, represents the net-
work routing operation, and contains the smooth link mea-
surements resulting from the normal traffic flows.
The model in (B.1) subsumes Compressive Sensing (CS) and

Robust Principal Component Analysis as its two special cases.
For CS, the low-rank component is not present, is random,
while for RPCA, the measurement matrix reduces to an iden-
tity matrix.
Hierarchical Bayesian model has been employed to capture

the low-rank and sparse properties of the corresponding terms
as well as the data observation process. Specifically, is mod-
eled as the sum of outer products ,
where Gaussian priors with Gamma precisions are
used such that most of the terms in the summation are annihi-
lated during the inference procedure and is rendered low rank.
The sparse term consists of i.i.d. Gaussian entries, whose pre-
cisions are assumed to have Jeffreys prior. The ob-
servation noise is assumed to be white Gaussian with precision
. The joint distribution involving all variables is expressed as

B.2

Using the notation in (2), we have that ,
, and . Mean field approximation in (28)

Fig. 10. Foreground detection from blurred and noisy video.

Fig. 11. Detection of network anomalies from Internet2 data.

is employed to the unknowns and (29) is applied to find the
estimates. Since the prior model is conjugate to the observation
model, VB analysis can be carried out directly without invoking
local variational bounds. The omitted technical details can be
found in [21].
The algorithm described above is termed VB Sparse Esti-

mator (VBSE), whose performance is tested on real life datasets.

A. Video Foreground/Background Separation

In this experiment, the CAVIAR test video sequence was
used. A sample video frame is presented in Fig. 10(a), showing
the hallway in a shopping mall with people moving in the
foreground. The original video frames were blurred using
a radius-2 out-of-focus kernel. Dense Gaussian noise was
added to the blurred video resulting in the observation with a
Signal-to-Noise-Ratio (SNR) value at 23.5 dB. A blurred and
noisy sample frame is shown in Fig. 10(b).
The presented VBSE algorithm was then applied on the

blurred and noisy observation, and a result is shown in
Figs. 10(c). From the figure we see that VBSE produces a clean
foreground map that highlights the moving shoppers and their
reflections on the ground. Also note that the VBSE approach is
free of input parameters and is hence amenable to automated
deployment.

B. Network Anomaly Detection

In this example, we use the dataset of Internet2 backbone
network, which consists of origin-destination flows
and links. The routing matrix is provided along with
the data set.
Fig. 11(a) illustrates the zoom-in view of the anomalies de-

tected across the flows and time snapshots by VBSE. The re-
gions not shown in the plots are all estimated to be zeros, in
agreement with the ground truth. As can be seen in the figures,
VBSE successfully detects the OD flow anomalies given the
link measurements and accurately estimates their amplitudes.
To further investigate the algorithmic performance, we arti-

ficially added dense Gaussian noise to the link measurements.
The performance of VBSE at various SNR levels is shown in
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Fig. 11(b), where the estimation error and the estimated number
of anomalies are plotted against the SNR levels. As can be seen,
VBSE is able to precisely identify the number of anomalies as
well as yields low estimation errors, even when significant noise
is present.

APPENDIX C
IMAGE CLASSIFICATION AND ANNOTATION
WITH HIERARCHICAL BAYESIAN MODEL

AND VARIATIONAL INFERENCE

In this section we discuss an image classification and anno-
tation problem, where the variational inference techniques pre-
sented in Section III and IV are applied. The data model and
the algorithm presented in the following have been originally
proposed in [54]. Here we paraphrase the problem and focus on
the part where variational approximation is essential. Readers
interested in more technical details are referred to [54] and the
references therein.

A. Latent Dirichlet Allocation

In this subsection we present a hierarchical Bayesian model
known as Latent Dirichlet Allocation (LDA) [55], [56], which
is widely used for modeling the relationships among the ob-
served “codewords” and the latent “topics” in “articles”. Be-
sides the classification problem presented herein, LDA mod-
eling is widely utilized in multimedia problems (see, for in-
stance, [57] for an application in text mining, and [58] for an
application in video abnormal event detection).
In this example we focus on the supervised variant of LDA,

known as supervised LDA. For image-based applications, an
article is an image represented as a bag of codewords

, where each is assumed to be drawn from a fixed
codeword vocabulary. Similarly, each image is associated with
annotation terms drawn from a fixed anno-

tation vocabulary. In supervised LDA adopted for image clas-
sification, each image is assigned a class label .
For notational convenience, we denote as the set
of observations.
Besides the observation , consider latent topics that

govern the distributions of codewords and annotation terms.
Specifically, and parameterize the multi-
nomial codeword and annotation distributions, respectively.
Moreover, each image has a -dimensional topic prior
drawn from the Dirichlet distribution . Within an image,
each region is independently associated with
a topic , which determines the multinomial
codeword likelihood . For each annotation term

of an image, it is associated with a randomly
chosen image region , whose topic assign-
ment determines the multinomial annotation distribution

. Again for notational convenience, we denote the
set of all latent variables as , where
and .
In addition, define a topic weight vector for each

class . As in [54], these weight vectors and the empirical topic
frequency jointly determine the class distribution for an image.
In the supervised LDA model, we consider , ,

and as deterministically unknown, and denote them
collectively as .

B. Variational Approximate Inference

The approach employed to infer the latent and estimate the
parameters is known as variational EM algorithm.We present
the high-level overview of the algorithm, while referring the
interested readers to [54]–[56] for the omitted technical details.
The posterior distribution of the hidden given an annotated

image is

C.1

where the computation of the marginal likelihood or evidence
in the denominator is intractable. To resolve this issue,

we consider a convexity-based variational inference procedure.
Define fully factorized variational distribution using mean field
approximation as

C.2

where is a variational Dirichlet, is a vari-
ational multinomial over topics, and is a vari-
ational multinomial over image regions, respectively. Note
that is a family of distributions indexed by the varia-
tional parameters, which are to be chosen via an optimization
procedure to minimize the KL divergence between
and the true posterior distribution . As is shown
in Section III, such a minimization is equivalent to maximizing
a lower bound of .
The details of the iterative optimization procedure can be

found in [53] and its references (in particular [55] and [56]).
After the iterations converge, the optimal lower bound of

is used to determine the approximate ML estimates of
. As a summary, the algorithm consists of an iterative opti-

mization procedure for determining the optimal lower bound
of the marginal likelihood (or equivalently finding the
optimal approximation to the posterior distribution )
and an ML estimation to determine the optimal values of the
model parameters .
Note that for the image classification problem considered

here, the training phase described above yields a set of model
parameters . For testing a new data point, the above approxi-
mate inference procedure is applied first to obtain the per image
region topic distributions , which are averaged to
yield a topic distribution per image, i.e., . With the
estimated parameter , the predicted class is given by

C.3

Finally, a distribution over the annotation terms is approx-
imated as the averaged contribution from all image regions,
given by

C.4

according to which the most probable annotation terms can be
assigned to the image.
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Fig. 12. Confusion matrices of image classification experiments.

Fig. 13. Examples of correctly classified images with annotations in the braces
(adapted from Fig. 4 of [54]).

C. Examples

In this section we briefly demonstrate the application of the
above variational inference and LDA model for image classifi-
cation. The experiments were performed using the SLDA soft-
ware made available by the authors of [53]. The LabelMe [59]
data set consisting of images from classes with annota-
tions were used.
For this experiment, 1600 images were equally divided into a

training set and a testing set. As an example, we set the number
of topics to be and set to be a vector with values
0.02.
The overall training and testing classification accuracies are

0.83 and 0.745, respectively. The confusion matrices are visual-
ized in Fig. 12, where the th element denotes the empirical
frequency that images from class are predicted to be from class
. Examples of correctly classified images and annotation terms
are shown in Fig. 13. The labels assigned to the images correlate
well with the objects contained in the images. For more details
on the performance evaluation and comparison with other algo-
rithms, the readers are referred to [54].
Due to space constraints, we were able to present only a few

representative applications of VB. However, VB is widely ap-
plied to multimedia problems, such as speech recognition [60],
[61], medical imaging [62], video processing [63], [64], etc.

APPENDIX D
EXPECTATION PROPAGATION FOR GAUSSIAN PROCESS

CLASSIFICATION AND ITS APPLICATIONS

A. Gaussian Process Classification

In this section we consider the application of the EP algorithm
to a supervised classification problem. Given the training data

, where is the input and is the associated
binary class label, the goal of Gaussian Process Classification is
to learn a mechanism to assign class labels to unseen inputs.
A Gaussian Process (GP) [48] is an ensemble of functions

with probabilities assigned to them. Every realization of a GP
is a function that maps the input to a real number. The
likelihood of the class label associated with an input is de-
termined by

D.1

where is a so-called squashing (or sigmoid) function.
Assuming independent data samples, it follows that the joint

likelihood of is given by

D.2

where

D.3

consists of latent functions drawn from a GP.
The GP definition implies that in (D.3) follows a multi-

variate Gaussian distribution governed by its mean and covari-
ance matrix. Assigning a prior distribution to the latent , we
have

D.4

where the covariance matrix is calculated from
. Examples of include those based on Ra-

dial Basis Functions (RBF) and Neural Networks (NN). The
interested readers are referred to [48] for more details.
Note in the discussion here, prior and posterior are defined in

relation to the observed class labels , not the inputs , which
are assumed fixed. Therefore, to simplify notation we have sup-
pressed the dependence on in the equations.
As is the case for all Bayesian based algorithms, the classifi-

cation is performed with the posterior distribution

D.5

where is the evidence of the observed class labels. However,
due to the presence of non-Gaussian , the computation
of is in general intractable. Therefore, we have to resort to
either sampling based approaches or deterministic approximate
inference methods. In the following we describe the application
of the EP algorithm for approximating the posterior distribution.

B. EP for Gaussian Process Classification

The objective here is to approximate the posterior distribution
. From the factorization in (D.5) we see one possible ap-
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proach is to approximate each with an un-normalized
Gaussian distribution, i.e.,

D.6

The approximate joint posterior distribution of given is
therefore given by

D.7

where is the EP approximation to the normalization con-
stant .
Given the approximation in (D.7), the objective then is to

determine the parameters as well as . The
EP algorithm takes a “one-at-a-time” approach, where one set of
parameters are updated while all the other parameters are kept
at their most recent estimates.
Starting, for instance, with

D.8

where , the EP algorithm works by iterating through
the factors indexed by , and for each iteration
the following procedure is carried out:
1) Obtain the approximate marginal posterior

D.9

where is the th element in and is the th element
on the diagonal of , respectively.

2) Obtain the cavity probability distribution

D.10

by removing from the observation
.

3) Incorporate to the true likelihood to obtain
the distribution

D.11

where

D.12

4) Find a Gaussian approximation to in (D.11) by
minimizing the KL divergence over the set of Gaussian
distributions

D.13

which is in turn solved via the moment matching
procedure.

5) From

D.14

TABLE II
GPC WITH EP ON HYPERSPECTRAL IMAGE CLASSIFICATION

obtain

D.15
6) Update in (D.7) using the newly obtained

, where is computed as the nor-
malization constant. Since all terms in the product are
Gaussians, this determination is tractable. This concludes
one iterate in the EP algorithm, and in the next iteration,
another factor is updated.

When the EP iterations converge, the approximate joint pos-
terior is available for use in predicting the class label
for an unseen input . Specifically, this is done via the fol-

lowing two-step procedure:
1) Obtain the approximate posterior distribution

D.16

2) Compute the probability of class label associated with
by marginalizing the latent

D.17

C. Hyperspectral image classification

In this section we consider a remote sensing image classifi-
cation problem in which the GPC with EP approximations is
applied. This problem is discussed in [65], where GPC is com-
pared with the state-of-the-art support vector machine (SVM)
algorithm.
Three data sets were used in the experiments in [65]. The

information of the data sets is summarized in Table II.
As is reported in [65] and [66], GPC with EP approximation

yields similar or even higher classification accuracies compared
with SVM. Table II shows the overall accuracies obtained from
GPC with EP and SVM, respectively. In the table RBF and NN
denote two the types of prior covariance matrix used in the def-
inition of the Gaussian process. As can be seen, the GPC with
EP approximation performs similarly as or even better than the
state-of-the-art classification algorithm.
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