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Luis Mancera*†, Jose A. Guerrero-Colon† and Javier Portilla♠

Abstract

We present a simple and robust optimization method for, giving an overcomplete Parseval frame, an

`p-norm value, and an image, obtaining the representation vector, up to that`p-norm, that minimizes the

mean square error (MSE) of the image reconstruction. It is based on alternated orthogonal projections

onto the`p-ball of given radius and the set of representation vectors providing perfect reconstruction

of the image. This method, which we call`p-AP, yields the global optimum whenp ≥ 1, and a local

optimum when0 ≤ p < 1. We focus on thep = 0 and p = 1 cases, and apply them to the sparse

approximation problem. We show that, even being suboptimal,`0-AP clearly outperforms̀1-AP (which

is equivalent toBasis Pursuit). This result strongly questions the equivalence of minimizing both norms

when using natural images, typical dictionaries and useful sparseness levels. We also show that`0-AP

outperforms greedy heuristics and iterative methods based on applying fixed thresholds. Finally, we show

an example of application of̀0-AP to the removal of spatial quantization artifacts.
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I. I NTRODUCTION

The structure of the objects in the world produces images with distinct statistical features. It is

fundamental for image processing to have a gooda priori description of natural images (e.g., [1], [2], [3],

[4]). It has long been observed that the power of this description is considerably increased by representing

the pixels into a new domain, where we express the image as a linear combination of basis functions from

a given dictionary [5]. Overcomplete dictionaries (those with a greater number of basis functions than

the number of pixels) allow for a more powerful image analysis and processing compared to critically

sampled ones, because they favor the extraction of relevant local features without breaking the invariance

to translation, rotation, phase, etc. [6], [7], [3].

Using an overcomplete representation, there are infinite ways of expressing an image with a given

dictionary. Traditionally, the minimum energy solution has been chosen, because it is linear and thus,

easy to compute, though it has the disadvantage of introducing a lot of statistical dependency among

coefficients. This makes it inefficient to store and process. However, there are non-linear solutions for

this problem which result into a much smaller statistical dependency among coefficients. This also has

the effect of improving the performance of image processing tasks based on simple models assuming

independent coefficients. And they have additional advantages in terms of compression and computational

efficiency at the reconstruction stage.

Typically, overcomplete linear representations, such as multi-scale and multi-orientation pyramids

(x-lets), providesparsesolutions, meaning that a big proportion of the total energy of the signal is

concentrated in a small proportion of the coefficients [5], [8], [9], [10]. However, signal transformations

decreasing the statistical dependency among coefficients also significantly increase the sparseness of the

representations, when the involved signal are leptokurtotic [11]. This is also the case for some non-linear

solutions to the representation problem. Furthermore, if we allow for a certain degree of error in the image

reconstruction, those representations can be made strictly sparse, i.e., they can use a small proportion of

non-zero coefficients, without this new constraint causing a serious damage to the image reconstruction.

Some authors have formulated the problem of finding such representations as minimizing the number of

basis functions used, up to some reconstruction error. This is called thesparse approximation problem.

Unfortunately, this is a NP-hard problem, whose only known optimal solution is combinatorial. However,

there exist suboptimal solutions with tractable complexity. We have classified them in three main groups:

greedy heuristics, convex relaxation methods and iterative thresholding methods.

Greedy heuristics started withMatching Pursuit(MP) [9]. MP accumulatively selects at each step the
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basis function that best represents the approximation error. As a refinement,Orthogonal Matching Pursuit

(OMP) [12] optimizes the selected coefficients at each step to minimize the mean square error (MSE) of

the reconstruction. Although MP and OMP have been used for several applications, such as denoising

(e.g., [13]) or video coding (e.g. [14], [15], [16]), their strict implementation is very slow, because they

select a single basis function at a time. Stagewise OMP (StOMP) [17] allows for selecting several basis

functions at a time. Some heuristics to improve the OMP performance have been developed [18], [19],

[20], but they are also very computationally demanding. In [21], we used a simple method based on

non-iteratively selecting the largest amplitude coefficients at one stage, and then iteratively optimizing

the associated coefficients to minimize the mean square reconstruction error.

The number of non-zero coefficients of a vector is measured by its`0-norm, a strongly non-convex

function. It has long been proposed to use instead more tractable norms [22]. The`1-norm, as the lowest

convex norm, has been widely used as a substitute for the`0 norm, giving raise to the convex relaxation

problem [23]. Some techniques [24], [25], [26], [27] for solving this problem have become a reference in

the signal and image processing field. Among them, the most commonly used isBasis Pursuit(BP) [25].

However, when applied to images (i) there are no robust and efficient implementations of these methods;

and (ii), as we demonstrate here, their sparse approximation results are generally poor. The`1-AP method

presented here (though inferior to`0-AP, also presented here) provides equivalent results to Basis Pursuit,

but in a more easily applicable way when using common tight frames for image representation.

The use of convex relaxation methods for sparse approximation is theoretically supported on the

equivalence conditions of thè1 and the`0-norm minimizations. However, sufficient conditions given

in [28] require the proportion of non-zero coefficients to be extremely small, having thus little practical

application [29]. More recently, the equivalency condition has been found to be a number of non-zeros

proportional toN [29]. In [27] equivalency conditions in the presence of noise are stated. However, the

proportionality factor in [29] is difficult to calculate in general, and the conditions in [27] are highly

restrictive. Here, we prove through a large set of careful experiments that equivalency does not hold when

using typical images and representations in useful sparseness levels. In fact, this has been suggested by

some authors besides us, who obtained better practical results using hard instead of soft thresholding in

several sparse-based applications (see, e.g., [30], [31]).

The minimization of thè 1-norm has also been applied to signal and image restoration (e.g., [25],

[27] for denoising). Note that, interpreted as a maximum a posteriori (MAP) estimation, it is in better

agreement with empirical image statistics to use a smaller normp < 1 (e.g., [1], [32]). But the problem

of addressing in a classical Bayesian way the estimation is deeper here: using any prior model based
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on observed linear responses (analysiscoefficients) to build a prior onsynthesiscoefficients, although

widespread, is conceptually inconsistent. In this respect, we consider more correct to use the qualitative

assumption that typical images can be represented with little error using a small proportion of active

synthesis coefficients than to use a quantitative statistical model in the linear representation space and

then apply it to the non-linear synthesis coefficients.

There is also a group of heuristic algorithms which reduce the`0-norm by iterative hard-thresholding the

vector representation and imposing perfect reconstruction [33], [34], [35], [36], [37], [38]. Although they

do not formulate any criterion to optimize, some of them provide excellent results in practice [35], [38],

establishing the state-of-the-art in terms of signal energy compaction. In the case of`1 minimization

using iterative soft-thresholding there is a theoretically grounded method [39]. Although the referred

work provides a very powerful frame for many applications, it provides poor results when applied to the

sparse approximation problem. Heuristics based on iterative soft-thresholding have also been developed

(e.g., [40]), with good results for many image processing applications. However, we have experienced that

the same heuristics provide significantly better performance when using instead iterative hard-thresholding

(which would correspond to à0 instead of à 1-norm minimization).

Here we present a robust and simple optimization method that minimizes the MSE of the reconstruction

from a representation vector (using a Parseval frame) up to some`p-norm, which we call thè p-AP

method. We systematically test the sparse approximation performance of this method compared to previous

approaches, using a set of five natural images and two widely used image representations. We also show an

example of application of̀0-AP to the removal of spatial quantization artifacts. A previous instantiation

of this work was published in [31].

The structure of this paper is as follows. Section II first motivates the need of a non-linear mechanism

for improving the sparseness of the image representation, and then it formally introduces the sparse

approximation problem. Section III describes the`p-AP method and explains in detail thep = 0 and

p = 1 cases. We also explore here briefly the extension to image restoration. Section IV describes some

implementation details necessary to replicate the experiments presented in Section V, where results are

discussed. Last section concludes the paper

II. SPARSE APPROXIMATION

Figure 1 shows the approximation quality obtained in the image reconstruction using a limited number

of non-zero coefficients, for several representations. This is expressed as Peak Signal-to-Noise Ratio

(PSNR), defined as10 · log10( 2552

MSE ), where MSE is the average mean square error for five standard
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Fig. 1. Comparison of sparse approximation results obtained for several image representations. See text for details.

256×256 images1. Three of the representations used are critically sampled (pixels, Fourier, Haar wavelet),

whereas the fourth is a redundant frame (the Dual Tree Complex Wavelet, DT-CWT [41]). For all these

linear representations we take theK largest coefficients in amplitude. We can see how the quality of the

reconstruction for a given number of basis functions is improved when we go from pixels to Fourier and

from Fourier to critically sampled wavelets. However, when we do the same direct coefficient selection

on an overcomplete representation, performance drops. This is due to multiple coefficients responding

to the same image features. In order to increase the sparse approximation performance with respect

to critically sampled wavelets, it is clear that we need a non-linear selection mechanism. We have also

plotted here the results obtained with the`0-AP method proposed in this paper (DT-CWT, non-linear) (see

Section III), showing a great improvement over the linear representations. Figure 2 illustrates the effect

of using such a non-linear selection mechanism: coefficients of a non-linear solution to the representation

problem are more sparsely distributed (central panel vs. left panel), thus avoiding simultaneous responses

and representing more efficiently the local features of the image. Such a non-linear representation makes

possible to keep a small proportion of the total number of coefficients (less than 4% in this case), whereas

keeping the reconstruction quality high (35.7 dB, in this example, see right panel).

We formally present next the sparse approximation problem. LetΦ be aN ×M matrix with M > N

1(House, Boat, Barbara, Peppers, Lena) Boat and Barbara are cropped to256 × 256 starting at row200, column100 for

Boat and row150, column50 for Barbara.

July 24, 2007 DRAFT



6

Fig. 2. Top-left Higher frequency scale of the analysis pyramid ofPeppersimage using8-scales DT-CWT. Light and dark

pixels indicate respectively small and large amplitude of the coefficients. Size of the subband has been duplicated by pixel

replication to match the image size and then cropped to64× 64 starting at row111, column91 for visibility. Top-center and

top-right Same subband from the non-linear solutions provided by minimizing the approximation error with our method using

0.143N coefficients. Center image is the representation obtained, and right image is the sparse approximation.Bottom-left,

original image.Bottom-center Perfect reconstruction from the non-linear representation obtained with our methodBottom-right

Reconstruction from the approximation result of our method (35.67 dB).

and rank(Φ) = N , representing the synthesis operator of an overcomplete Parseval frame.N is the

number of pixels of the image andM the number of coefficients of the representation vector. Then, for

an observed imagex ∈ RN , the system:

Φa = x (1)

has infinite solutions ina ∈ RM . The minimum`2-norm solution,aLS = ΦTx, is often chosen because

it is linear and, thus, simple to compute. Here,ΦT is the analysis operator of the Parseval frame. We

aim to solve the sparse approximation problem, which is formulated as follows:

â0(λ) = arg min
a
{‖a‖0 + λ‖Φa− x‖2

2}, (2)

where‖a‖0 means thè 0-norm of a, i.e., the number of its non-zero elements, andλ ∈ R∗ controls the

accuracy of the approximation (the larger isλ, the more accurate the solution will be, at the price of

reducing the sparseness). Unfortunately, as we illustrated in Figure 1, direct thresholding ofaLS does
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not provide any result close to satisfy Eq. (2) for anyλ. Thus, more sophisticated non-linear mechanisms

than a single thresholding are required.

III. E NFORCING SPARSENESS THROUGH ALTERNATE PROJECTIONS

A. The`p-AP method

We can generalize Eq. (2) by:

âp(λ) = arg min
a
{‖a‖p + λ‖Φa− x‖2

2}, (3)

where‖a‖p = (
∑M

i=1 |ai|p)
1
p denotes thèp-norm ofa for some normp > 0. Note that, for a fixedp and

for eachλ value, âp(λ) will have some`p-norm, R. Then, to solve Eq. (3) for a givenλ is equivalent

to minimize the approximation error for a given‖âp(λ)‖p = R. Being the`p-ball Bp(R) = {a ∈ RM :

‖a‖p ≤ R}:

âp(λ) = âp(R) = arg min
a∈Bp(R)

‖Φa− x‖2. (4)

Because of its simplicity, we have chosen to solve this problem via alternating orthogonal projections [42]

onto two sets until convergence is reached. The first involved set is the set of representation vectors

(synthesis coefficients) which are solutions to Eq. (1), defined asS(Φ,x) = {a ∈ RM : Φa = x}. It is

an affine subspace, and thus, it is convex. The second set is the`p-ball Bp(R), for given p and radius

R. This is convex only ifp ≥ 1. When both sets are convex, the projections converge onBp(R) to the

global minimum of the distance toS(Φ,x) in that ball. Otherwise, the procedure converges to a local

minimum. See [43] for a more complete discussion on the convergence properties when non-convex sets

are used. Here we assume that the starting vector for the iterations has an`p-norm larger than desired (as

it happens in practice), thus ensuring that the achieved solution will lie on the boundary of the`p-ball

and that, as a consequence, Eq. (4) will hold.

We denoteP⊥
C (v) the orthogonal projection of the vectorv onto a given setC. Then, projectinga

onto the affine spaceS(Φ,x) of perfect reconstruction yields the well-known result:

P⊥
S(Φ,x)(a) = a + ΦT (x−Φa), (5)

which translates into adding to the vector the difference between the minimum LS-solution (aLS = ΦTx)

and the analysis of the reconstruction from that vector (ΦTΦa). The expression of theP⊥
Bp(R)(a) depends

on p. We explore in detail the casesp = 0 andp = 1 in the next subsections. Use of intermediate norms

is also a very interesting issue, which we will consider in future works.
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Then, for two givenp andR values, thè p-AP method is implemented through the following iterations:

âp(R)(0) = P⊥
Bp(R)(a

LS),

âp(R)(n+1) = P⊥
Bp(R)(P

⊥
S(Φ,x)(âp(R)(n))). (6)

We choose to stop the iterations when‖âp(R)(n+1)−âp(R)(n)‖2 < δ for someδ > 0 (see implementation

details in IV). Now we study thep = 1 andp = 0 cases in detail.

1) `0-AP: In this case it is straightforward to see thatP⊥
B0(R)(a) is a hard-thresholding preserving the

R largest coefficients in amplitude:

P⊥
B0(R)(a) = ah,

ah
i =

 ai, |ai| > τh(a, R)

0, otherwise
(7)

Here, τh(a, R) is the smallest threshold among those preserving theR − n0 largest amplitudes, being

n0 the smallest non-negative integer that guarantees that a solution exists (n0 = 0 if there are no

repeated amplitude values in the interval of interest). According to the previous definition, in most cases

the threshold is set to theR + 1-th largest coefficient amplitude ina. This threshold is found in our

implementation through a golden search. This method can be also seen as a particular case of the method

described in [35], but with the difference that in that work the proposed procedure was not described

and justified as a formal optimization method, unlike ours. Left panel of Figure 3 shows an illustration

of `0-AP with ”toy dimensions” that allow to visualize its behavior (N = 2, M = 3, R = 1).

Next we prove that this method leads to a local optimum in the image domain. Note that, from Eq. (5):

‖a− P⊥
S(Φ,x)(a)‖2 = ‖ΦT (x−Φa)‖2 = ‖x−Φa‖2, (8)

where the last step holds becauseΦT is a Parseval frame. Provided thatâ0(R) is a local minimum in

B0(R) of the distance toS(Φ,x), then∃ a δ > 0 such that∀a ∈ B0(R), if ‖a − â0(R)‖2 < δ then

‖a−P⊥
S(Φ,x)(a)‖2 ≥ ‖â0(R)−P⊥

S(Φ,x)(â0(R))‖2. Using (8) we obtain that‖x−Φa‖2 ≥ ‖x−Φâ0(R)‖2.

That is, Φâ0(R) is a local minimum fora ∈ B0(R) of the Euclidean distance tox. Regarding the

convergence properties, the method quickly evolves towards the solution at the first few iterations, and

then it progressively slows down, as shown in Figure 4. The convergence speed also depends on the

degree of sparseness being imposed (the higher sparseness, the faster), as it is also illustrated in this

figure. In this work we have been interested in exploring the absolute performance limits of the studied

methods. This has required making a few hundreds iterations for each sparse approximation experiment.
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In a practical implementation, though, much fewer iterations could have been made with comparable

results. See details about the stopping criteria in section IV-B.

2) `1-AP method:We first show thatP⊥
B1(R)(a) is a soft-thresholding operation. Given and observation

ao ∈ RM , the orthogonal projection ontoB1(R) is:

P⊥
B1(R)(a

o) = arg min
a∈B1(R)

‖a− ao‖2,

which was previously stated in Eq. (4) as equivalent to:

P⊥
B1(R)(a

o) = arg min
a∈RM

‖a‖1 + λ‖a− ao‖2
2 = arg min

a∈RM
‖a− ao‖2

2 +
1
λ
‖a‖1,

for someλ value depending onR. In [39] it is proven that the solution is a soft-thresholding with

thresholdτs(a, R) = 1
λ . That is:

P⊥
B1(R)(a) = as,

as
i =

 sign(ai) · (|ai| − τs(a, R)), |ai| > τs(a, R)

0, otherwise
(9)

Note that it is straightforward to computeR (`1-norm of the soft-thresholded vector) if we know either

λ or τs(a, R). But our aim here is the opposite, namely, to compute the thresholdτs(a, R) that will yield

the desired̀ 1-norm R of the projected vector. In appendix A we derive an efficient iterative method for

this computation, and prove its convergence.

Figure 3 (right panel) illustrates the behavior of the`1-AP method withN = 2, M = 3, andR = 1.

Only a face ofB1(1) is shown here for clarity sake. It is easy to show that`1-AP provides the global

optimal solution in the image domain. First note thatâ1(R) is the global minimum inB1(R) of the

Euclidean distance toS(Φ,x) (because the two involved sets in the projections are convex). Then,

∀a ∈ B1(R) ‖a − P⊥
S(Φ,x)(a)‖2 ≥ ‖â1(R) − P⊥

S(Φ,x)(â1(R))‖2. Applying Eq. (5) and beingΦT a

Parseval frame, we obtain that‖x−Φa‖2 ≥ ‖x−Φâ1(R)‖2. That is,Φâ1(R) is the global minimum

for a ∈ B1(R) of the Euclidean distance tox.

Figure 5 illustrates convergence properties of`1-AP. Interpretation is similar to Figure 4. As there is

no local solutions, the convergence is more regular than with`0-AP and the number of iterations needed

to converge is much smaller. Note that we have included an example (Houseimage in right panel) where

perfect reconstruction is achieved.

B. Minimizing the Mean Square Error for a given basis selection

In the `0-AP method, as the iterations runs, the selection of coefficients of`0-AP becomes stable, and

solving Eq. (2) for a given selection of basis function implies that the final solution becomes optimal in
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Fig. 3. Left , `0-norm minimization through alternate projections (`0-AP). Right, `1-norm minimization through alternate

projections (̀1-AP).

Fig. 4. Semi-logarithmic plot of PSNR vs. iterations for`0-AP using three images and two sparseness levels. Representation

used is DT-CWT. Number at the end of curves is the PSNR obtained at convergence. Dotted line is the curve corresponding to

the difference in PSNR used as a tolerance (a line if it was not in logarithmic scale). Iterations end when the slope of the bold

line is lower than that indicated by the dotted line. Number accompanying this tangency point is the PSNR given by the method

when iterations end, and the number of iterations taken.`0-norm is measured as the number of active coefficients normalized

by the number of pixels of the image.
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Fig. 5. Semi-logarithmic convergence plots for`1-AP for three images and twò1-norm levels. Details are similar to those of

Figure 4. It is also indicated thè0-norm of the solution at convergence.

a MSE sense for that selection1. As it was noted in [35], in the limit when fixing the number of active

coefficients the two involved sets (vectorial space spanned by the selected basis functions, on the one

hand, and the perfect reconstruction affine space, on the other hand) are convex, and iterations converge

to the global optimum at a linear rate. However, this is not the case for a generic`p-norm, because the

projection onto thè p-ball is not in general a hard-thresholding. However, as our final goal is sparse

approximation, nothing prevents us from using the referred alternated projections method as a means to

improve the quality of the approximation for a given set of selected basis functions, no matter how we

have arrived to that selection.

Given a setI of R indices extracted from{1, ...,M}, we defineΦI as aN ×R matrix formed by the

columnsφi of Φ such thati ∈ I. We want to find:

âI = arg min
aI∈RR

‖ΦIaI − x‖2, (10)

which translates intôaI = Φ]
Ix, whereΦ]

I is the pseudo-inverse ofΦI . Note that, when dealing with

images, the size ofΦI makes impractical to compute its pseudo-inverse directly. However, we can apply

instead the following iterative computation [35], [21]:

a(0) = DIΦTx,

a(n+1) = DI [a(n) + ΦT (x−Φa(n))]. (11)

1Note that the method is still suboptimal because the basis selection itself is not optimal in general.
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whereDI is the diagonalM × M matrix such thatdii = 1 if i ∈ I and 0 otherwise. We prove in

Appendix B that this method effectively solves forâI = Φ]
Ix.

C. Estimation using̀ p-AP

Sparseness has been widely used as a prior information for solving inverse problems (e.g., [25], [39],

[13]). In our context, we can choose to limit the`p-norm of the solution to a certain valueR. If the

degradation can be expressed (at least after the observation) as a deterministic function of the original

(e.g., loss of certain identifiable pixels, bits or color components), we can define theconsistency setas

the one formed by the original coefficient vectors that would yield the observation after the observed

degradation is applied. Then, for givenp andR, and a certain representation, we search for the vector in

the consistency set closest toBp(R). We can use thèp-AP method to solve this problem just changing

S(Φ,x) by the consistency set. Finding the orthogonal projection onto the consistency set is trivial for

a wide class of ”deteministic a posteriori” degradations. In general, this method has the drawback of

requiring the choice ofR, and this choice will vary from one application to another (see, e.g., application

to in-painting in [31]). An elegant and robust choice ofR that has proven to be useful for some applications

such as removing quantization artifacts (see Section V) is taking the smallestR value for which thè p-ball

and the consistency set still intersect.

IV. I MPLEMENTATION

A. Representation

Initially we tested four different tight-frames (DT-CWT [41], Curvelets [44], Steerable Pyramid [6]

and an overcomplete version of Haar wavelets [45]) and chose from them the two ones providing the best

sparse approximation performance on our set of five test images. Those were DT-CWT and Curvelets2.

For an homogenous treatment of all coefficient vectors, complex coefficients of DT-CWT are separated

in their real and imaginary parts. The DT-CWT redundancy factor is4. Redundancy factor of Curvelets

is ≈ 7.2. DT-CWT MATLAB r code is available at (http://www-sigproc.eng.cam.ac.uk/%7Engk/). We

used CurveLab 2.0 as Curvelet implementation for MATLABr (http://www.curvelet.org). In order to

optimize the sparse approximation for extremely high sparseness rates, in both representations we have

inserted an extra single coefficient capturing the global mean of the image. As a consequence, the best

2We have carried out most of the experiments on all the representations, and results with the other representations were

qualitatively similar to the ones we present here.
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approximation using a single coefficient is almost always, for natural images, a constant image with the

global mean.

B. Convergence and stopping criteria

The convergence criterium of̀p-AP methods is translated in our implementation into the use of two

tolerance constants. The first one controls the PSNR of the estimation to decide if the convergence

has been reached. We have chosen to stop when, after10 iterations, the increase of PSNR is below the

tolerance. We have empirically established this value to0.02 dB. This stopping criteria has been drawn as

dotted curves in Figures 4 and 5. Note that these curves would be straight lines tangent to the convergence

curves if the abscissa axis was linear. We have tested that this criterion typically provides, for`0-AP,

differences with respect to the PSNR at convergence smaller than1 dB at high sparseness range and than

2 dB at small range. This differences are even smaller for`1-AP (thus favoring this latter method in the

comparison). However, if the radius of the`p-ball used is large (specifically, greater or equal thanN , for

`0-AP), the method may achieve perfect reconstruction. In this case, the increase in PSNR is, according

to the theory, linear. For detecting this situation we have used a second tolerance, which controls the

increase of PSNR every10 iterations and stops the execution when the difference of the last two increases

in PSNR detected are below a constant (10−6 for `0-AP and10−4 for `1-AP). In addition, the threshold

search requires to set an extra tolerance parameter. In our golden search implementation for the`0-AP

method, that parameter controls the search interval length. For`1-AP, we have set the tolerance on the

difference of the desired and achieved radius of the`1-ball. As a good compromise between accuracy

and computational load, we have set both tolerances to0.1.

V. RESULTS AND DISCUSSION

The aim of our experiments is to determine the sparse approximation performance (Eq. (2)) of a wide

class of different methods, including our new ones, implemented on widely used tight frames, for a wide

range ofR, and for a set of representative test images. Reconstruction quality is measured by mean

square error, then averaged for all images, and finally expressed in PSNR terms. We use the same set

of standard images as in Figure 1. The`0-norm has been normalized byN (number of pixels in the

image). Note that we have used in our figures a logarithmic scale for the ordinate axis, no matter the

PSNR is already a logarithmic measurement. We believe that this, although unusual, is justified in this

case because it greatly improves the visualization of the resulting curves. Each marker in the curves

correspond to a measurement. We have linearly interpolated intermediate values.
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A. Some previous methods

Our first experiments compare commonly used sparse approximation strategies. Here we have set

two goals: a) compare the use of hard vs. soft-thresholding in iterative thresholding algorithms; and b)

compare accumulative vs. direct selection of basis functions in greedy algorithms.

Regarding the first goal, we have implemented a thresholding method that iterates between hard/soft-

thresholding with fixed threshold and projects back onto the setS(Φ,x) of vectors with perfect recon-

struction. This is similar to [34] when using hard-thresholding and to [39] when using soft-thresholding.

We have used the same stopping criterium as with`p-AP. We label these methods̀0-FT and `1-FT

respectively. Note that our implementation of these methods only differs from`0-AP and`1-AP in that

we use a fixed radius of thèp-ball whereas they use a fixed threshold.

To compare greedy heuristical methods, we have implemented StOMP [17] and the method presented

in [21], which we call here DT+OP (from Direct Thresholding plus LS-Optimization). To define the

threshold values used by StOMP, we have set a sampling over the number of coefficients used, and we

have set the number of basis functions added to the selection of StOMP at each step as the difference

with the next sample. DT+OP directly threshold the forward representation. Both methods use Eq. (13)

to optimize the quality of the reconstruction. DT+OP apply them once after the thresholding, whereas

StOMP apply them at each iteration (double loop). Here we have also used the stopping criteria described

for `p-AP.

Figure 6 shows graphically some numerical results of this experiment. Left panel is for DT-CWT and

right panel for Curvelets. This figure shows that performance of hard-thresholding is generally better than

that of soft-thresholding. It also shows that results obtained with DT+OP outperform our implementation

of StOMP, except in the high sparseness range (which has little practical importance). Among all these

compared methods,̀0-FT has the best performance. Other authors have pointed out before that hard-

thresholding better favors the compaction of energy [32], [36], [37], [31], as compared to soft-thresholding.

B. Comparing`0-AP to `1-AP and to previous methods

Our second experiment compares`0-AP vs. `1-AP. We also compare to the method resulting from

MSE-optimizing (using iterations (13)) the basis functions selected by`1-AP , which we term̀ 1-AP+OP.

Finally, we have included̀0-FT and DT+OP too as the two best methods from from Figure 6. Figure 7

shows the result of this experiment. Left panel shows DT-CWT results and right one Curvelet results. We

can see hoẁ0-AP clearly outperforms̀1-AP, even though the latter is optimally minimizing the`1-norm.
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Fig. 6. Averaged compaction results in our test set of StOMP [17], DT+OP [21],`0-FT [34] and`1-FT [39] in our test set.

Left , using DT-CWT [41].Right, using Curvelets [44].

Fig. 7. Averaged compaction results in the test set comparing`0-AP w.r.t. `1-AP, `1-AP+OP,`0-FT [34] and DT+OP [21].

Left , using8-scales DT-CWT.Right, using6-scales Curvelets.

We also observe hoẁ1-AP+OP improves drastically the results from̀1-AP, slightly outperforming̀ 0-

AP. This shows that selection of coefficients made by`1-AP is generally better than the one made by

`0-AP, specially in the low sparseness range. This seems a consequence of`0-AP getting trapped in local

optima, which rapidly increase their number as the sparseness level decreases. Note how`0-AP performs

also significantly better than DT+OP and`0-FT. It is interesting how fixing the radius of thèp-ball

proves to be much better than fixing the threshold at each iterations. Tables I and II show numerical

results for the curves of Figure 7.

Figure 8 visually compares the methods usingEinsteinimage and0.0765N Curvelets coefficients. From
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top to bottom, left column shows the original image, result from`1-AP (30.85 dB) and̀ 1-AP+OP (33.52

dB). Note the great improvement in visual quality obtained by post-optimizing the selected coefficients.

Right column shows DT+OP (30.21 dB),`0-FT (30.65 dB) and̀ 0-AP (32.98 dB). Though more than a

half dB below in PSNR, there is not significant visual difference between`0-AP and`1-AP+OP.

As we have pointed out before, the`0-AP method is equivalent to [35] when using a fixed number

of coefficients at each iteration and no additional heuristics are used in the referred algorithm. However,

the referred authors threshold the magnitude of each complex coefficient, whereas, in order to keep a

consistent procedure for all Parseval frames used in this paper, we separate the real and imaginary parts

Thus, to properly compare their results with ours we double the number of selected coefficients given

in [35] (so obtaining the same number of real coefficients), and we used DT-CWT with5-scales to match

representations. Using a fixed number of24, 000 selected coefficients withLena512 × 5123 we get an

improvement over his result of2.02 dB (39.09 vs. 37.07 dB). In [35] is also presented a dynamic version

of the method which increases the number of complex coefficients used at each iteration (from2, 400 to

12, 000 in 30 iterations). Their result is still0.41 dB below ours (38.68 dB). However, it is easy to test

that this difference is due to the extra flexibility of our scheme that allows to independently choose for

the real or imaginary part of every complex coefficient. This factor seems more important in this case

than the use of dynamic thresholding. Actually, if complex coefficients are not separated in our`0-AP

implementation, our result goes1.31 dB below theirs.

C. Computation

Iteration time is dominated in all methods by one image analysis and one image synthesis operation

at each iteration. However, searching for the threshold also takes a significant part. Both`1-AP and

`0-AP require additional search of a threshold, whereas other methods like DT+OP and`0-FT do not,

and, thus, they are relatively faster. Nevertheless, the time consumed by the methods depends more on

the average number of iterations until the convergence stop criterion is met. In Table III we show that

`0-AP takes more iterations to converge. Note that this is in part due to the tolerance used for detecting

perfect reconstruction is comparatively smaller (see subsection IV-B), so the number of iterations taken

when using low sparseness levels is much higher. It is important to point, as we did in section III, that

most applications will not require so many iterations. Nevertheless, it is fair to recognize that dynamic

thresholding strategies [35], [40], [46], [38] have proven to be intrinsically faster than those based on

3We thank Prof. Nick Kingsbury for helping us to replicate his experiment.
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Fig. 8. Visual comparison of the method using7.65e−2 ·N Curvelets coefficients for theEinsteinimage. Results are cropped

to 128 × 128 crop, starting at (71,41), for visibility.Left column, from top to bottom: original image,̀1-AP (30.85 dB),

`1-AP+OP (33.52 dB).Right column, from top to bottom, DT+OP (30.21 dB,`0-FT (30.65 dB)`0-AP (32.98 dB).
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fixing the selection mask, the threshold or the number of selected basis functions.

As an illustrative example of running times with the (very demanding) stopping criteria described here,

using a Pentium IV with 3.4 GHz and 1 GB RAM, over256×256 imagex,`0-AP takes about7 minutes

to stop using DT-CWT and about1 hour using Curvelets. On the other hand,`1-AP takes about3 minutes

using DTCWT and30 minutes using Curvelets.

D. An application example: de-quantizing

We have performed another experiment to demonstrate the applicability of`0-AP to the removal of

spatial quantization artifact as explained in Section III-C. Our observation is theEinsteinimage quantized

using3-bits. We compare the performance of`1-AP and`0-AP for removing its artifacts, using both DT-

CWT and Curvelets. Figure 9 shows this comparison. We can see that`1-AP results are too smooth,

even decreasing the PSNR with respect to the degraded observation. On the other hand, though showing

artifacts inherent to the tight frames used, the performance of`0-AP is much more satisfactory. Restoration

of other type of degraded images, such as filling-in missing pixels or texture separation require in general

different strategies to choose theR parameter and have not been addressed here (e.g., [31]).

VI. CONCLUSIONS

We have proposed a new optimization method, called`p-AP, which minimizes the mean square error

of the reconstruction of an image from a representation vector given a maximum`p-norm for that vector.

It iteratively orthogonally projects onto thèp-ball of given radiusR, givenp andR; and onto the set of

vectors providing perfect reconstruction. It achieves the global optimum whenp ≥ 1 and a local optimum

when0 < p ≤ 1. We have applied this method to solve the sparse approximation problem (minimizing

the MSE using a given number of coefficients), focusing on thep = 0 andp = 1 cases. Thè0-AP case

translates into similar iterations than [35], in its simplest version.

We have shown that̀0-AP clearly outperforms̀ 1-AP, which is optimal for solving the commonly

approached convex relaxation problem. This result demonstrates that equivalency conditions for mini-

mizing `1 and `0-norm do not hold using natural images and typical image representations. This is an

important practical issue for image processing. However, we have also tested that the selection of active

coefficients resulting by the convex relaxation (p = 1) is generally better than the one made by`0-AP.

Thus, slightly improved performance may be achieved by post-optimizing the amplitude of the non-zero

coefficients in thè 1-AP solution.
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Fig. 9. Application of`1-AP and`0-AP to removing quantization artifacts.First row , Einstein image, cropped to128× 128

for artifacts visibility starting at (71,41); and3-bits quantized observation (29.58 dB).Second row, `1-AP results using8-scales

DT-CWT (28.14 dB) and6-scales Curvelets (28.61 dB).Third row `0-AP results using the same tight-frames (31.24 dB and

31.29 dB respectively).
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We have also compared with greedy and iterative thresholding heuristical methods, showing that`0-AP

also outperforms the iterative fixed thresholding (either soft or hard) and the StOMP algorithm version

implemented for this purpose. More exhaustive tests would be necessary to state the superiority of`0-AP

over greedy (MP-like) algorithms in general but we have not tried that because of the huge computational

cost of the strict implementations of theses techniques. Among these methods, iterative fixed thresholding

provided clearly the second best energy compaction performance. Although not compared here in detail,

methods based on dynamic adjustment of a hard threshold through iterations (e.g. [33], [34], [35], [38])

clearly have currently the highest compaction potential. However, those methods, unlike ours, have not

been mathematically formulated as optimization techniques. It is easy to adapt`0-AP to iteratively increase

the number of coefficients (as in [35]), but we have focused here on a fully justified optimization model.

An additional fact is that, for some restoration tasks (like image de-quantizing), we have experienced

that better energy compaction does not always imply better restoration performance.

We have shown here how the`p-AP method can be easily adapted to image restoration. The resulting

method has the drawback of requiring a criterion for choosing the desired`p-ball radius of the synthesis

vector. We have shown a successful example of application to the removal of spatial quantization artifacts,

where the radius choice has been made to maximize the degree of sparseness compatible with the

observation. In this application, convex relaxation has yielded relatively poor results.

In the future we pretend to study the use of intermediate norms. This is justified as a way to explore

a better compromise between the good performance of`0-AP and the ability of`1-AP to avoid local

minima. Apart from that, in terms of is application to restoration, the solution of the problem at hand

is equivalent to a MAP estimation under white Gaussian noise when the marginal prior is a generalized

Gaussian [39], as pointed before. It has been observed that typically the marginal pdf is better adjusted

with intermediate norms (≈ 0.7) (see, e.g. [1], [39]). However, using empirical priors adjusted for analysis

coefficients is justified only if we apply them to analysis (but not to synthesis) coefficients. It is easy

to adapt our method in that direction by using an extra projection in the iteration loop, projection that

does not break the consistency of the theoretical frame [47]. Image processing based on sparsifying the

analysis (linear) coefficients has been successfully used to separate mixed images (MCA [40]) and to

fill in missing pixels [46] 4. We are also currently working on a practical and theoretically grounded

optimization method using dynamic iterative thresholding, with a much higher performance than`0-AP,

both in sparse approximation power and in computational load terms [47].

4See [48] for an interesting discussion on the analysis-sense vs. the synthesis sense sparseness applied to estimation.
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APPENDIX A

METHOD TO FIND THE THRESHOLD GIVEN THE RADIUS OF THÈ1-BALL TO PROJECT ONTO

In [39] was demonstrated that the orthogonal projection operator of a vectora ∈ RM ontoB1(R), the

`1-ball of radiusR, is a soft-thresholding (Eq. (9), in Section III). The remaining problem in our context

is, given the vectora, finding the thresholdτs(a, R) (or, equivalently, theλ of Eq. (3), asτs = 1/λ) that

yields the desired̀1-norm of the thresholded vector.

First, we express thè1-norm (i.e., the radiusR) of the soft-thresholded version of a vectora with a

given threshold5 τs. NamingΥ(a, τ) = {i ∈ {1, ...,M} : |ai| > τ} the set of coefficient indices whose

amplitude is strictly above the threshold we can write:

R =
∑

Υ(a,τs)

(|ai| − τs)

=

 ∑
Υ(a,τs)

|ai|

− card(Υ(a, τs)) · τs,

which yields:

τs =

(∑
Υ(a,τs)

|ai|
)
−R

card(Υ(a, τs))
, (12)

wherecard(·) indicates cardinality of a set. The term on the right depends onτs, but we can solve this

equation iteratively by using:

τ (0) = 0,

τ (n+1) =

(∑
Υ(a,τ (n)) |ai|

)
−R

card(Υ(a, τ (n)))
.

Iterations end when‖τ (n+1) − τ (n)‖2 is below a threshold (see subsection IV-B).

We assume here that‖a‖1 > R, because otherwise the projection ontoB1(R) is trivial (the identity).

Next, we demonstrate that the iterations converge toτs, by noting first thatR(τ) is a strictly monotonically

decreasing function, and, thus, so it isτ(R). This implies that Eq. (12) has a unique solution inτs. Note

that if we takeτ (n+1) = τ (n) then Eq. (12) is satisfied, so we know that if iterations converge they have

to do it to the unique solutionτs. Now, to prove convergence toτs it is sufficient to demonstrate that

the successionτ (n) converges. This can be done by showing that beingτ (n) monotonically increasing, it

never gets aboveτs, as we do next. We start by noting thatτ (0) = 0 < τs. Assumingτ (n) ≤ τs, then:∑
Θ(a,τ (n),τs)

|ai| ≤
∑

Θ(a,τ (n),τs)

τs,

5For notation clarity, we drop here the dependence ofτs on (a, R).
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whereΘ(a, τ1, τ2) = {i ∈ {1, ...,M} : τ1 < |ai| ≤ τ2}. From here we can derive the following:∑
Υ(a,τ (n))

|ai| −
∑

Υ(a,τs)

|ai| ≤
∑

Υ(a,τ (n))

τs −
∑

Υ(a,τs)

τs,

∑
Υ(a,τ (n))

|ai| −R ≤
∑

Υ(a,τ (n))

τs,

∑
Υ(a,τ (n))

|ai| −R ≤ card(Υ(a, τ (n))) · τs,∑
Υ(a,τ (n)) |ai| −R

card(Υ(a, τ (n)))
≤ τs,

τ (n+1) ≤ τs.

So the succession is bounded above byτs. Then, as
∑

Θ(a,τ (n),τs)
|ai| ≥

∑
Θ(a,τ (n),τs)

τ (n), and also∑
Υ(a,τs)

τs ≥
∑

Υ(a,τs)
τ (n), then∑

Θ(a,τ (n),τs)

|ai|+
∑

Υ(a,τs)

τs ≥
∑

Υ(a,τ (n))

τ (n),

and we can derive the following inequalities:∑
Υ(a,τ (n))

|ai| −
∑

Υ(a,τs)

|ai|+
∑

Υ(a,τs)

τs ≥
∑

Υ(a,τ (n))

τ (n),

∑
Υ(a,τ (n))

|ai| −R ≥
∑

Υ(a,τ (n))

τ (n),

∑
Υ(a,τ (n))

|ai| −R ≥ card(Υ(a, τ (n))) · τ (n),

∑
Υ(a,τ (n)) |ai| −R

card(Υ(a, τ (n)))
≥ τ (n),

τ (n+1) ≥ τ (n).

As a consequence the succession is monotonically increasing, and the proof is complete.

An alternative demonstration of this method and its convergence comes from noting that the orthogonal

projection ontoB1(R) can be implemented as the orthogonal projection of the amplitudesai’s on the

intersection of the convex setsC1 = {b ∈ RM :
∑

i bi ≤ R}, andC2 = {b ∈ RM : bi ≥ 0}, applying

alternated orthogonal projections and preserving the signs of the coefficients not being set to zero.
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APPENDIX B

MEAN SQUARE ERROR APPROXIMATION GIVEN A SUBSET OF ACTIVE COEFFICIENTS BY

ALTERNATED PROJECTIONS.

We prove here that Eq. (11) provide the pseudoinverse solution to the approximation problem for a

given set of active coefficients. That is, they provide the mean square error (MSE) solution to Eq. (10)

when there is no exact representation of the image, and the minimum`2 norm solution otherwise. Given

an imagex ∈ RN , a subsetI of R indices extracted from{1, ...,M}, and anN ×R matrix ΦI formed

by the columnsφi from Φ such thati ∈ I, we want to solve:

âI = arg min
aI

‖ΦIaI − x‖2, (13)

that can be expressed as:

âI = Φ]
Ix,

whereΦ]
I is the pseudoinverse ofΦI . We study the two cases of interest: (1)range(ΦI) = R ≤ N , and

(2) R > range(ΦI) = N .

A. Case 1:range(ΦI) = R ≤ N

We can express in this case:

âI = [ΦT
I ΦI ]−1ΦT

I x.

The inverse involved is potentially huge. Fortunately, we can use the Taylor expansion of the inverse of

the matrix [49] so we have:

âI =
∞∑

k=0

(I−ΦT
I ΦI)kΦT

I x.

As necessary convergence condition for the Taylor expansion, we check that for usual frames in image

representation eigenvalues of(I − ΦT
I ΦI) are not above1 in absolute value. From there we derive an

iterative method to calculatêaI :

a(n+1)
I = a(n)

I + ΦT
I (x−ΦIa

(n)
I ). (14)

We now defineSI as theR × N matrix selecting theR coefficients indicated byI. Then,ST
I is the

operator that expands aR × 1 vector into aN × 1 vector reinserting each coefficient in its original

position and setting the rest to zero. Noting thatΦI = ΦST
I andΦT

I = SIΦT , we have:

a(n+1)
I = a(n)

I + SIΦT (x−ΦST
I a(n)

I ).
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Multiplying by ST
I (which is an expansion matrix, so it does not destroy any information):

ST
I a(n+1)

I = ST
I a(n)

I + ST
I SIΦT (x−ΦST

I a(n)
I ).

and asaI = SIa, for somea ∈ RM we can write:

ST
I SIa(n+1) = ST

I SIa(n) + ST
I SIΦT (x−ΦST

I SIa(n)).

Let DI be a diagonalM ×M matrix wheredii = 1 if i ∈ I and0 otherwise. Noting thatST
I SI = DI

and using the fact thatDI is idempotent, we get:

DIa(n+1) = DI [DIa(n) + ΦT (x−ΦDIa(n))].

As the right term only depends onDIa(n), then these iterations are completely equivalent as those in

Eq. (11), beinga(n) the intermediate result of Eq. (11).

B. Case 2:R > range(ΦI) = N

Here, Eq. (13) has infinite solutions with perfect reconstruction ofx. The pseudoinverse gives the

minimum Euclidean norm solution:

âI = ΦT
I [ΦIΦT

I ]−1x.

We can writeâI = ΦT
I ẑI , whereẑI = [ΦIΦT

I ]−1x. Then:

ẑI =
∞∑

k=0

[I−ΦIΦT
I ]kx,

which can be computed through the iterative method:

z(n+1)
I = z(n)

I −ΦIΦT
I z(n)

I + x.

Multiplying by ΦT
I :

ΦT
I z(n+1)

I = ΦT
I z(n)

I −ΦT
I ΦIΦT

I z(n)
I + ΦT

I x,

and substitutingΦT
I z(n)

I by a(n)
I we obtain Eq. (14) and, thus, the solution is achieved by the same

iterative method as in the previous case.
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DT-CWT/Curv Normalized`0-norm (K/N )

Image Method 3.05e-002 9.45e-002 2.91e-001

DT+OP 27.08/25.58 30.83/29.41 37.82/34.96

Barbara `0-FT 28.18/25.98 33.25/30.51 40.58/34.30

`1-AP 26.39/25.75 30.21/31.02 38.65/38.38

`0-AP 29.23/28.61 33.38/34.29 41.76/41.51

`1-AP+OP 29.95/29.10 34.12/34.94 43.09/43.08

DT+OP 29.95/27.41 32.82/31.96 38.98/36.62

House `0-FT 31.19/28.64 34.76/32.69 40.25/37.77

`1-AP 29.60/27.98 32.79/33.32 39.56/39.35

`0-AP 32.09/30.45 35.18/35.63 43.00/41.87

`1-AP+OP 32.61/31.19 35.79/36.69 44.41/43.78

DT+OP 24.86/23.42 28.20/26.38 34.65/31.59

Boat `0-FT 25.46/24.07 30.07/27.62 34.69/31.17

`1-AP 24.10/23.41 27.53/27.00 34.56/33.62

`0-AP 26.48/26.15 30.43/29.97 38.00/36.73

`1-AP+OP 26.92/26.19 31.05/30.24 39.08/38.02

DT+OP 26.00/24.22 29.46/27.54 36.93/32.92

Lena `0-FT 27.09/24.86 32.17/28.63 39.38/32.54

`1-AP 25.50/24.78 28.92/28.72 36.89/35.69

`0-AP 27.72/27.10 31.63/31.27 40.29/38.66

`1-AP+OP 28.49/27.64 32.50/32.15 41.41/40.40

DT+OP 25.18/24.00 29.15/27.39 35.95/32.43

Peppers `0-FT 25.79/24.53 31.57/28.41 38.43/32.28

`1-AP 24.36/24.47 28.46/28.80 35.99/34.89

`0-AP 27.43/26.85 31.47/30.88 38.81/37.35

`1-AP+OP 27.82/27.43 32.26/32.13 40.12/39.17

TABLE I

DETAILED COMPARISON OF THE METHODS USING8-SCALESDT-CWT AND 6-SCALESCURVELETS IN OUR SET OF

STANDARD IMAGES. BOLD NUMBERS INDICATE THE METHOD PROVIDING THE BEST APPROXIMATION FOR EACH IMAGE

AND SPARSENESS LEVEL. CURSIVE INDICATES THE SECOND BEST. `0-NORM IS EXPRESSED AS NUMBER OF NON-ZERO

COEFFICIENTS NORMALIZED BYN . NORMALIZED COLUMNS CORRESPOND, RESPECTIVELY, TO 2001, 6189AND 19096

ACTIVE COEFFICIENTS.
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DT-CWT/Curv Normalized`0-norm (K/N )

Image Method 5.85e-001 8.55e-001 1.49e+000

DT+OP 43.62/39.23 45.89/41.99 52.42/46.13

Barbara `0-FT 44.73/39.69 47.69/42.78 53.44/47.16

`1-AP 45.39/44.16 50.24/50.20 >100/>100

`0-AP 48.31/47.37 51.76/53.00 61.73/64.86

`1-AP+OP 52.03/51.33 56.88/61.48 >100/>100

DT+OP 44.65/39.80 47.29/43.23 53.40/46.92

House `0-FT 45.85/42.02 50.01/43.95 55.98/47.94

`1-AP 46.22/43.78 50.09/50.94 >100/>100

`0-AP 50.92/46.52 54.56/53.96 67.38/63.13

`1-AP+OP 53.18/49.17 57.05/60.94 >100/>100

DT+OP 39.27/35.00 42.26/37.51 48.59/41.82

Boat `0-FT 40.61/36.07 44.29/38.27 52.50/42.61

`1-AP 40.71/38.73 45.86/45.29 >100/57.46

`0-AP 45.50/42.54 50.22/49.66 63.29/58.70

`1-AP+OP 47.76/45.14 52.90/55.64 >100/71.97

DT+OP 42.32/36.96 44.61/40.12 50.68/44.36

Lena `0-FT 43.65/38.07 46.15/41.61 51.57/45.47

`1-AP 43.71/41.30 48.14/49.70 >100/>100

`0-AP 47.54/44.74 51.16/51.02 61.60/60.94

`1-AP+OP 50.67/47.47 55.09/58.18 >100/>100

DT+OP 40.77/36.15 44.00/38.97 50.88/43.22

Peppers `0-FT 42.38/37.22 45.51/40.31 51.60/44.74

`1-AP 41.92/39.75 49.84/46.17 >100/58.62

`0-AP 45.76/43.04 52.13/50.40 63.78/61.45

`1-AP+OP 48.12/45.66 56.05/56.30 >100/72.91

TABLE II

CONTINUATION OF TABLE I. NORMALIZED COLUMNS CORRESPOND, RESPECTIVELY, TO 38342, 56048AND 97471ACTIVE

COEFFICIENTS.
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Iters.

Meth. DT-CWT Curv.

`0-FT 180 231

DT+OP 188 174

`1-AP 263 360

`1-AP+OP 333 440

`0-AP 495 920

TABLE III

AVERAGED NUMBER OF ITERATIONS EXECUTED IN OUR TEST SET USING8-SCALESDT-CWT AND 6-SCALESCURVELETS.
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