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Abstract

We present a simple and robust optimization method for, giving an overcomplete Parseval frame, an
¢,-norm value, and an image, obtaining the representation vector, up tg,thatm, that minimizes the
mean square error (MSE) of the image reconstruction. It is based on alternated orthogonal projections
onto the/,-ball of given radius and the set of representation vectors providing perfect reconstruction
of the image. This method, which we cd|}-AP, yields the global optimum whep > 1, and a local
optimum when0 < p < 1. We focus on thep = 0 andp = 1 cases, and apply them to the sparse
approximation problem. We show that, even being suboptifga®P clearly outperformg,-AP (which
is equivalent taBasis Pursuit This result strongly questions the equivalence of minimizing both norms
when using natural images, typical dictionaries and useful sparseness levels. We also shigwAEhat
outperforms greedy heuristics and iterative methods based on applying fixed thresholds. Finally, we show

an example of application af-AP to the removal of spatial quantization artifacts.
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. INTRODUCTION

The structure of the objects in the world produces images with distinct statistical features. It is
fundamental for image processing to have a gaqutiori description of natural images (e.g., [1], [2], [3],

[4]). It has long been observed that the power of this description is considerably increased by representing
the pixels into a new domain, where we express the image as a linear combination of basis functions from
a given dictionary [5]. Overcomplete dictionaries (those with a greater number of basis functions than
the number of pixels) allow for a more powerful image analysis and processing compared to critically
sampled ones, because they favor the extraction of relevant local features without breaking the invariance
to translation, rotation, phase, etc. [6], [7], [3].

Using an overcomplete representation, there are infinite ways of expressing an image with a given
dictionary. Traditionally, the minimum energy solution has been chosen, because it is linear and thus,
easy to compute, though it has the disadvantage of introducing a lot of statistical dependency among
coefficients. This makes it inefficient to store and process. However, there are non-linear solutions for
this problem which result into a much smaller statistical dependency among coefficients. This also has
the effect of improving the performance of image processing tasks based on simple models assuming
independent coefficients. And they have additional advantages in terms of compression and computational
efficiency at the reconstruction stage.

Typically, overcomplete linear representations, such as multi-scale and multi-orientation pyramids
(x-lets), providesparsesolutions, meaning that a big proportion of the total energy of the signal is
concentrated in a small proportion of the coefficients [5], [8], [9], [10]. However, signal transformations
decreasing the statistical dependency among coefficients also significantly increase the sparseness of the
representations, when the involved signal are leptokurtotic [11]. This is also the case for some non-linear
solutions to the representation problem. Furthermore, if we allow for a certain degree of error in the image
reconstruction, those representations can be made strictly sparse, i.e., they can use a small proportion of
non-zero coefficients, without this new constraint causing a serious damage to the image reconstruction.
Some authors have formulated the problem of finding such representations as minimizing the number of
basis functions used, up to some reconstruction error. This is callesptree approximation problem
Unfortunately, this is a NP-hard problem, whose only known optimal solution is combinatorial. However,
there exist suboptimal solutions with tractable complexity. We have classified them in three main groups:
greedy heuristics, convex relaxation methods and iterative thresholding methods.

Greedy heuristics started witilatching Pursuit(MP) [9]. MP accumulatively selects at each step the
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basis function that best represents the approximation error. As a refingdndrdgonal Matching Pursuit

(OMP) [12] optimizes the selected coefficients at each step to minimize the mean square error (MSE) of
the reconstruction. Although MP and OMP have been used for several applications, such as denoising
(e.g., [13]) or video coding (e.g. [14], [15], [16]), their strict implementation is very slow, because they
select a single basis function at a time. Stagewise OMP (StOMP) [17] allows for selecting several basis
functions at a time. Some heuristics to improve the OMP performance have been developed [18], [19],
[20], but they are also very computationally demanding. In [21], we used a simple method based on
non-iteratively selecting the largest amplitude coefficients at one stage, and then iteratively optimizing
the associated coefficients to minimize the mean square reconstruction error.

The number of non-zero coefficients of a vector is measured bfgditeorm, a strongly non-convex
function. It has long been proposed to use instead more tractable norms [22].-fibem, as the lowest
convex norm, has been widely used as a substitute fofgtlm@rm, giving raise to the convex relaxation
problem [23]. Some techniques [24], [25], [26], [27] for solving this problem have become a reference in
the signal and image processing field. Among them, the most commonly uBedisPursuitBP) [25].
However, when applied to images (i) there are no robust and efficient implementations of these methods;
and (ii), as we demonstrate here, their sparse approximation results are generally pderAPhmethod
presented here (though inferior #4¢-AP, also presented here) provides equivalent results to Basis Pursuit,
but in a more easily applicable way when using common tight frames for image representation.

The use of convex relaxation methods for sparse approximation is theoretically supported on the
equivalence conditions of thé and the/y-norm minimizations. However, sufficient conditions given
in [28] require the proportion of non-zero coefficients to be extremely small, having thus little practical
application [29]. More recently, the equivalency condition has been found to be a number of non-zeros
proportional toN [29]. In [27] equivalency conditions in the presence of noise are stated. However, the
proportionality factor in [29] is difficult to calculate in general, and the conditions in [27] are highly
restrictive. Here, we prove through a large set of careful experiments that equivalency does not hold when
using typical images and representations in useful sparseness levels. In fact, this has been suggested by
some authors besides us, who obtained better practical results using hard instead of soft thresholding in
several sparse-based applications (see, e.g., [30], [31]).

The minimization of the/;-norm has also been applied to sighal and image restoration (e.g., [25],
[27] for denoising). Note that, interpreted as a maximum a posteriori (MAP) estimation, it is in better
agreement with empirical image statistics to use a smaller notml (e.g., [1], [32]). But the problem

of addressing in a classical Bayesian way the estimation is deeper here: using any prior model based
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on observed linear responsemélysiscoefficients) to build a prior osynthesiscoefficients, although
widespread, is conceptually inconsistent. In this respect, we consider more correct to use the qualitative
assumption that typical images can be represented with little error using a small proportion of active
synthesis coefficients than to use a quantitative statistical model in the linear representation space and
then apply it to the non-linear synthesis coefficients.

There is also a group of heuristic algorithms which reducegheorm by iterative hard-thresholding the
vector representation and imposing perfect reconstruction [33], [34], [35], [36], [37], [38]. Although they
do not formulate any criterion to optimize, some of them provide excellent results in practice [35], [38],
establishing the state-of-the-art in terms of signal energy compaction. In the cdsenwhimization
using iterative soft-thresholding there is a theoretically grounded method [39]. Although the referred
work provides a very powerful frame for many applications, it provides poor results when applied to the
sparse approximation problem. Heuristics based on iterative soft-thresholding have also been developed
(e.g., [40)]), with good results for many image processing applications. However, we have experienced that
the same heuristics provide significantly better performance when using instead iterative hard-thresholding
(which would correspond to & instead of a&;-norm minimization).

Here we present a robust and simple optimization method that minimizes the MSE of the reconstruction
from a representation vector (using a Parseval frame) up to ggmerm, which we call the/,-AP
method. We systematically test the sparse approximation performance of this method compared to previous
approaches, using a set of five natural images and two widely used image representations. We also show an
example of application of,-AP to the removal of spatial quantization artifacts. A previous instantiation
of this work was published in [31].

The structure of this paper is as follows. Section Il first motivates the need of a non-linear mechanism
for improving the sparseness of the image representation, and then it formally introduces the sparse
approximation problem. Section Il describes theAP method and explains in detail the= 0 and
p = 1 cases. We also explore here briefly the extension to image restoration. Section IV describes some
implementation details necessary to replicate the experiments presented in Section V, where results are

discussed. Last section concludes the paper

I[I. SPARSE APPROXIMATION

Figure 1 shows the approximation quality obtained in the image reconstruction using a limited number
of non-zero coefficients, for several representations. This is expressed as Peak Signal-to-Noise Ratio

(PSNR), defined ago - loglo(%), where MSE is the average mean square error for five standard
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Fig. 1. Comparison of sparse approximation results obtained for several image representations. See text for details.

256 x 256 images. Three of the representations used are critically sampled (pixels, Fourier, Haar wavelet),
whereas the fourth is a redundant frame (the Dual Tree Complex Wavelet, DT-CWT [41]). For all these
linear representations we take thelargest coefficients in amplitude. We can see how the quality of the
reconstruction for a given number of basis functions is improved when we go from pixels to Fourier and
from Fourier to critically sampled wavelets. However, when we do the same direct coefficient selection
on an overcomplete representation, performance drops. This is due to multiple coefficients responding
to the same image features. In order to increase the sparse approximation performance with respect
to critically sampled wavelets, it is clear that we need a non-linear selection mechanism. We have also
plotted here the results obtained with theAP method proposed in this paper (DT-CWT, non-linear) (see
Section lll), showing a great improvement over the linear representations. Figure 2 illustrates the effect
of using such a non-linear selection mechanism: coefficients of a non-linear solution to the representation
problem are more sparsely distributed (central panel vs. left panel), thus avoiding simultaneous responses
and representing more efficiently the local features of the image. Such a non-linear representation makes
possible to keep a small proportion of the total number of coefficients (less tham this case), whereas
keeping the reconstruction quality highs(7 dB, in this example, see right panel).

We formally present next the sparse approximation problemdiLbe aN x M matrix with M > N

Y(House, Boat, Barbara, Peppers, LgrRoat and Barbara are cropped t@56 x 256 starting at row200, column 100 for

Boat and row150, column50 for Barbara
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Fig. 2. Top-left Higher frequency scale of the analysis pyramidRefppersimage usings-scales DT-CWT. Light and dark

pixels indicate respectively small and large amplitude of the coefficients. Size of the subband has been duplicated by pixel
replication to match the image size and then croppe@ita 64 starting at rowl11, column91 for visibility. Top-center and

top-right Same subband from the non-linear solutions provided by minimizing the approximation error with our method using
0.143N coefficients. Center image is the representation obtained, and right image is the sparse approx@ottonleft,

original image Bottom-center Perfect reconstruction from the non-linear representation obtained with our nigdttodn-right

Reconstruction from the approximation result of our methglq7 dB).

and rank(®) = N, representing the synthesis operator of an overcomplete Parseval fharisethe
number of pixels of the image and the number of coefficients of the representation vector. Then, for
an observed image € RY, the system:

Pa=x (1)

has infinite solutions im € RM™. The minimum/s-norm solution,a™® = ®Tx, is often chosen because
it is linear and, thus, simple to compute. Hef®! is the analysis operator of the Parseval frame. We

aim to solve the sparse approximation problem, which is formulated as follows:
ao(A) = argmin{|laflo + Al|®a — x|}3}, )

where ||aljp means the&y-norm of a, i.e., the number of its non-zero elements, and R* controls the
accuracy of the approximation (the largerlsthe more accurate the solution will be, at the price of

reducing the sparseness). Unfortunately, as we illustrated in Figure 1, direct thresholdifig dbes
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not provide any result close to satisfy Eq. (2) for anyThus, more sophisticated non-linear mechanisms

than a single thresholding are required.

IIl. ENFORCING SPARSENESS THROUGH ALTERNATE PROJECTIONS
A. The/,-AP method

We can generalize Eqg. (2) by:
a,(\) = arg min{fal|, + A ®a — x|3}, (3)

where|a||, = (Zf\il |ai|f’)% denotes thé,-norm ofa for some nornp > 0. Note that, for a fixech and
for each\ value, a,(\) will have somel,-norm, R. Then, to solve Eq. (3) for a giveh is equivalent
to minimize the approximation error for a givefa,(\)|, = R. Being the/,-ball B,(R) = {a € RM :
lall, < R}:

ay(\) = &y(R) = arg_min || ®a x|, (4)

P

Because of its simplicity, we have chosen to solve this problem via alternating orthogonal projections [42]
onto two sets until convergence is reached. The first involved set is the set of representation vectors
(synthesis coefficients) which are solutions to Eq. (1), defined(d@s x) = {a ¢ RM : ®a = x}. Itis
an affine subspace, and thus, it is convex. The second set &-thall B,(R), for givenp and radius
R. This is convex only ifp > 1. When both sets are convex, the projections converg&giR) to the
global minimum of the distance t8(®,x) in that ball. Otherwise, the procedure converges to a local
minimum. See [43] for a more complete discussion on the convergence properties when non-convex sets
are used. Here we assume that the starting vector for the iterations hasi@am larger than desired (as
it happens in practice), thus ensuring that the achieved solution will lie on the boundary Gfbad
and that, as a consequence, Eqg. (4) will hold.

We denotePC%(v) the orthogonal projection of the vecteronto a given setC. Then, projectinga

onto the affine spac8(®, x) of perfect reconstruction yields the well-known result:
Pyig ) (a) =a+ & (x — ®a), (5)

which translates into adding to the vector the difference between the minimum LS-solytisin= ®”x)
and the analysis of the reconstruction from that vecst @a). The expression of thé’é (R) (a) depends
on p. We explore in detail the casges= 0 andp = 1 in the next subsections. Use of intermediate norms

is also a very interesting issue, which we will consider in future works.
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Then, for two giverp and R values, the,,-AP method is implemented through the following iterations:
ép(R)(O) = Pép(R) (aLS),
ap(R)"Y) = Py (1) (Ps(as ) (8(R)™)). (6)

We choose to stop the iterations whgi), (R) ™+ —4,(R)(™ ||, < 6 for somes > 0 (see implementation
details in 1V). Now we study the = 1 andp = 0 cases in detail.
1) 4o-AP: In this case it is straightforward to see ttfégo(R) (a) is a hard-thresholding preserving the

R largest coefficients in amplitude:

Pé_o(R) (a) = aha

a;, |a;| > m(a, R
b @i > mi(a, B) -
0, otherwise

~

Here, 7,(a, R) is the smallest threshold among those preservingRhe n, largest amplitudes, being

ng the smallest non-negative integer that guarantees that a solution exists ( if there are no
repeated amplitude values in the interval of interest). According to the previous definition, in most cases
the threshold is set to th& + 1-th largest coefficient amplitude ia. This threshold is found in our
implementation through a golden search. This method can be also seen as a patrticular case of the method
described in [35], but with the difference that in that work the proposed procedure was not described
and justified as a formal optimization method, unlike ours. Left panel of Figure 3 shows an illustration

of ¢o-AP with "toy dimensions” that allow to visualize its behavid¥V (= 2, M = 3, R = 1).

Next we prove that this method leads to a local optimum in the image domain. Note that, from Eq. (5):
la = Py ) (a)ll2 = @ (x — @a)|l2 = |x — @a, (8)

where the last step holds becauBé is a Parseval frame. Provided thaf(R) is a local minimum in

By(R) of the distance ta5(®,x), then3 aé > 0 such thatva € By(R), if ||a —ag(R)|2 < J then

o= Py @)z 2 [130(R) ~ P ) (80(R)) |- Using (8) we obtain thelfx— @all, > [x—®ao(R)

That is, ®ay(R) is a local minimum fora € By(R) of the Euclidean distance te. Regarding the
convergence properties, the method quickly evolves towards the solution at the first few iterations, and
then it progressively slows down, as shown in Figure 4. The convergence speed also depends on the
degree of sparseness being imposed (the higher sparseness, the faster), as it is also illustrated in this
figure. In this work we have been interested in exploring the absolute performance limits of the studied

methods. This has required making a few hundreds iterations for each sparse approximation experiment.
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In a practical implementation, though, much fewer iterations could have been made with comparable
results. See details about the stopping criteria in section I1V-B.
2) ¢1-AP method:We first show thaIPél(R)(a) is a soft-thresholding operation. Given and observation

a® € RM, the orthogonal projection ontB; (R) is:

1 .
Py, (p)(a°) = arg Lo |a— a2,

which was previously stated in Eg. (4) as equivalent to:
1
PJ_ o0y _ : b _ 20|12 — : _ a0]12 -
5,0y (2%) = arg min [lally + Alla —a%[3 = arg min fla —a°| + Jlalh.

for some \ value depending ork. In [39] it is proven that the solution is a soft-thresholding with

thresholdr,(a, R) = 1. That is:

P, (@) = 2",

sign(a;) - (Ja;| — 7s(a, R)), |a;| > 7s(a, R)

a; = 9)
0, otherwise

Note that it is straightforward to compute (¢;-norm of the soft-thresholded vector) if we know either
A or 75(a, R). But our aim here is the opposite, namely, to compute the thresh@ldR) that will yield

the desired/;-norm R of the projected vector. In appendix A we derive an efficient iterative method for
this computation, and prove its convergence.

Figure 3 (right panel) illustrates the behavior of theAP method withN = 2, M = 3, andR = 1.
Only a face ofB;(1) is shown here for clarity sake. It is easy to show thalAP provides the global
optimal solution in the image domain. First note ta(R) is the global minimum inB;(R) of the
Euclidean distance t&(®,x) (because the two involved sets in the projections are convex). Then,
Va € Bi(R) |la — Py, (a)ll2 = [a1(R) — Pgig ) (a1(R))ll2. Applying Eq. (5) and beingd” a
Parseval frame, we obtain thfjk — ®a||2 > ||x — ®a;(R)|2. That is,®a;(R) is the global minimum
for a € B1(R) of the Euclidean distance te.

Figure 5 illustrates convergence properties/ gfAP. Interpretation is similar to Figure 4. As there is
no local solutions, the convergence is more regular than gyHAP and the number of iterations needed
to converge is much smaller. Note that we have included an exafdpleséimage in right panel) where

perfect reconstruction is achieved.

B. Minimizing the Mean Square Error for a given basis selection

In the ¢o-AP method, as the iterations runs, the selection of coefficients-8P becomes stable, and

solving Eq. (2) for a given selection of basis function implies that the final solution becomes optimal in
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Fig. 3. Left, £o-norm minimization through alternate projections-AP). Right, /1-norm minimization through alternate

projections {;-AP).

10-AP, 10-norm = 0.0 10-AP, I0-norm = 0.2
- 27.88dB SN SEJRR R , N
o8l  (110iters.) - _4283d8
“““““““““““““““““““““““““““““““““““““““““““““““““ 71262 dB
41.04 dB B
25.24dB [
(170 iters.) . ), e A5 4B
" et
3428 dB #3900
(130 iters.) (300 iters.) :
—Barbara ; —Barbara
~ |=-House Ny S ---House
--:Lena , 4 ---Lena
4 . H Tolerance 36 s & ‘ R Tolerance
1 10 100 1000 10000 1 10 100 1.000 10.000 100000
# iters. #iters.

Fig. 4. Semi-logarithmic plot of PSNR vs. iterations f+AP using three images and two sparseness levels. Representation
used is DT-CWT. Number at the end of curves is the PSNR obtained at convergence. Dotted line is the curve corresponding to
the difference in PSNR used as a tolerance (a line if it was not in logarithmic scale). Iterations end when the slope of the bold
line is lower than that indicated by the dotted line. Number accompanying this tangency point is the PSNR given by the method
when iterations end, and the number of iterations takemorm is measured as the number of active coefficients normalized

by the number of pixels of the image.
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Fig. 5. Semi-logarithmic convergence plots #arAP for three images and twé -norm levels. Details are similar to those of

Figure 4. It is also indicated th&-norm of the solution at convergence.

a MSE sense for that selectidnAs it was noted in [35], in the limit when fixing the number of active
coefficients the two involved sets (vectorial space spanned by the selected basis functions, on the one
hand, and the perfect reconstruction affine space, on the other hand) are convex, and iterations converge
to the global optimum at a linear rate. However, this is not the case for a g&perarm, because the
projection onto the/,,-ball is not in general a hard-thresholding. However, as our final goal is sparse
approximation, nothing prevents us from using the referred alternated projections method as a means to
improve the quality of the approximation for a given set of selected basis functions, no matter how we
have arrived to that selection.

Given a setl of R indices extracted fronj1, ..., M}, we define®; as a/N x R matrix formed by the

columnsg; of ® such thati € I. We want to find:
a; = arg min ||[®ra; — x|2, (10)
a,eRR

which translates intaé; = <I>ﬁ1x, where@ﬂl is the pseudo-inverse @b;. Note that, when dealing with
images, the size ob; makes impractical to compute its pseudo-inverse directly. However, we can apply

instead the following iterative computation [35], [21]:
al® = D,;®"x,

a™) = D;[a™ + &T(x — ®a™)). (11)
INote that the method is still suboptimal because the basis selection itself is not optimal in general.
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where D; is the diagonaldM x M matrix such thatd; = 1 if ¢ € I and 0 otherwise. We prove in

Appendix B that this method effectively solves fay = @ix.

C. Estimation using,,-AP

Sparseness has been widely used as a prior information for solving inverse problems (e.g., [25], [39],
[13]). In our context, we can choose to limit tiig-norm of the solution to a certain valug. If the
degradation can be expressed (at least after the observation) as a deterministic function of the original
(e.g., loss of certain identifiable pixels, bits or color components), we can defirmtisestency seds
the one formed by the original coefficient vectors that would yield the observation after the observed
degradation is applied. Then, for giverand R, and a certain representation, we search for the vector in
the consistency set closest 8),(R). We can use thé,-AP method to solve this problem just changing
S(®,x) by the consistency set. Finding the orthogonal projection onto the consistency set is trivial for
a wide class of "deteministic a posteriori” degradations. In general, this method has the drawback of
requiring the choice oRR, and this choice will vary from one application to another (see, e.g., application
to in-painting in [31]). An elegant and robust choicel®that has proven to be useful for some applications
such as removing quantization artifacts (see Section V) is taking the smaNedtie for which the/,,-ball

and the consistency set still intersect.

IV. IMPLEMENTATION
A. Representation

Initially we tested four different tight-frames (DT-CWT [41], Curvelets [44], Steerable Pyramid [6]
and an overcomplete version of Haar wavelets [45]) and chose from them the two ones providing the best
sparse approximation performance on our set of five test images. Those were DT-CWT and Clirvelets
For an homogenous treatment of all coefficient vectors, complex coefficients of DT-CWT are separated
in their real and imaginary parts. The DT-CWT redundancy factdr. Redundancy factor of Curvelets
is ~ 7.2. DT-CWT MATLAB ® code is available athftp://www-sigproc.eng.cam.ac.uk/%7Engkie
used CurvelLab 2.0 as Curvelet implementation for MATLAB (http://www.curvelet.orly In order to
optimize the sparse approximation for extremely high sparseness rates, in both representations we have

inserted an extra single coefficient capturing the global mean of the image. As a consequence, the best

2We have carried out most of the experiments on all the representations, and results with the other representations were

qualitatively similar to the ones we present here.
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approximation using a single coefficient is almost always, for natural images, a constant image with the

global mean.

B. Convergence and stopping criteria

The convergence criterium d@f,-AP methods is translated in our implementation into the use of two
tolerance constants. The first one controls the PSNR of the estimation to decide if the convergence
has been reached. We have chosen to stop when, laftéerations, the increase of PSNR is below the
tolerance. We have empirically established this valu@ @@ dB. This stopping criteria has been drawn as
dotted curves in Figures 4 and 5. Note that these curves would be straight lines tangent to the convergence
curves if the abscissa axis was linear. We have tested that this criterion typically providés,ABr
differences with respect to the PSNR at convergence smallerltd@nat high sparseness range and than
2 dB at small range. This differences are even smalledfeAP (thus favoring this latter method in the
comparison). However, if the radius of thg-ball used is large (specifically, greater or equal tharfor
£y-AP), the method may achieve perfect reconstruction. In this case, the increase in PSNR is, according
to the theory, linear. For detecting this situation we have used a second tolerance, which controls the
increase of PSNR eveny iterations and stops the execution when the difference of the last two increases
in PSNR detected are below a constaiit € for ¢,-AP and10~* for ¢;-AP). In addition, the threshold
search requires to set an extra tolerance parameter. In our golden search implementatiordfétRthe
method, that parameter controls the search interval length/;FAP, we have set the tolerance on the
difference of the desired and achieved radius of théall. As a good compromise between accuracy

and computational load, we have set both tolerancesito

V. RESULTS AND DISCUSSION

The aim of our experiments is to determine the sparse approximation performance (Eq. (2)) of a wide
class of different methods, including our new ones, implemented on widely used tight frames, for a wide
range of R, and for a set of representative test images. Reconstruction quality is measured by mean
square error, then averaged for all images, and finally expressed in PSNR terms. We use the same set
of standard images as in Figure 1. Thenorm has been normalized by (number of pixels in the
image). Note that we have used in our figures a logarithmic scale for the ordinate axis, no matter the
PSNR is already a logarithmic measurement. We believe that this, although unusual, is justified in this
case because it greatly improves the visualization of the resulting curves. Each marker in the curves

correspond to a measurement. We have linearly interpolated intermediate values.
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A. Some previous methods

Our first experiments compare commonly used sparse approximation strategies. Here we have set
two goals: a) compare the use of hard vs. soft-thresholding in iterative thresholding algorithms; and b)
compare accumulative vs. direct selection of basis functions in greedy algorithms.

Regarding the first goal, we have implemented a thresholding method that iterates between hard/soft-
thresholding with fixed threshold and projects back onto theS$ét, x) of vectors with perfect recon-
struction. This is similar to [34] when using hard-thresholding and to [39] when using soft-thresholding.
We have used the same stopping criterium as WHAP. We label these methodg-FT and ¢;-FT
respectively. Note that our implementation of these methods only differs fgeAP and/;-AP in that
we use a fixed radius of th&-ball whereas they use a fixed threshold.

To compare greedy heuristical methods, we have implemented StOMP [17] and the method presented
in [21], which we call here DT+OP (from Direct Thresholding plus LS-Optimization). To define the
threshold values used by StOMP, we have set a sampling over the number of coefficients used, and we
have set the number of basis functions added to the selection of StOMP at each step as the difference
with the next sample. DT+OP directly threshold the forward representation. Both methods use Eq. (13)
to optimize the quality of the reconstruction. DT+OP apply them once after the thresholding, whereas
StOMP apply them at each iteration (double loop). Here we have also used the stopping criteria described
for £,-AP.

Figure 6 shows graphically some numerical results of this experiment. Left panel is for DT-CWT and
right panel for Curvelets. This figure shows that performance of hard-thresholding is generally better than
that of soft-thresholding. It also shows that results obtained with DT+OP outperform our implementation
of StOMP, except in the high sparseness range (which has little practical importance). Among all these
compared methoddy-FT has the best performance. Other authors have pointed out before that hard-

thresholding better favors the compaction of energy [32], [36], [37], [31], as compared to soft-thresholding.

B. Comparing/y-AP to ¢1-AP and to previous methods

Our second experiment compargsAP vs. ¢1-AP. We also compare to the method resulting from
MSE-optimizing (using iterations (13)) the basis functions selectefi 4P , which we tern¥;-AP+OP.
Finally, we have included,-FT and DT+OP too as the two best methods from from Figure 6. Figure 7
shows the result of this experiment. Left panel shows DT-CWT results and right one Curvelet results. We

can see how-AP clearly outperformg;-AP, even though the latter is optimally minimizing thenorm.
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Fig. 6. Averaged compaction results in our test set of StOMP [17], DT+OP RBI,T [34] and/¢,-FT [39] in our test set.

Left, using DT-CWT [41].Right, using Curvelets [44].
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Fig. 7. Averaged compaction results in the test set compaiir§P w.r.t. £1-AP, ¢1-AP+OP, {y-FT [34] and DT+OP [21].
Left, using8-scales DT-CWTRight, using6-scales Curvelets.

We also observe hov-AP+OP improves drastically the results fraitAP, slightly outperforming/,-

AP. This shows that selection of coefficients made/yAP is generally better than the one made by
£y-AP, specially in the low sparseness range. This seems a consequehesRfetting trapped in local
optima, which rapidly increase their number as the sparseness level decreases. NGteARoperforms

also significantly better than DT+OP arg-FT. It is interesting how fixing the radius of thg-ball

proves to be much better than fixing the threshold at each iterations. Tables | and Il show numerical

results for the curves of Figure 7.
Figure 8 visually compares the methods udtigsteinimage and).0765N Curvelets coefficients. From

July 24, 2007 DRAFT



16

top to bottom, left column shows the original image, result frgpfAP (30.85 dB) and/;-AP+OP (33.52
dB). Note the great improvement in visual quality obtained by post-optimizing the selected coefficients.
Right column shows DT+OP (30.21 dB)-FT (30.65 dB) and/y-AP (32.98 dB). Though more than a
half dB below in PSNR, there is not significant visual difference betwge&P and/;-AP+OP.

As we have pointed out before, tlg-AP method is equivalent to [35] when using a fixed number
of coefficients at each iteration and no additional heuristics are used in the referred algorithm. However,
the referred authors threshold the magnitude of each complex coefficient, whereas, in order to keep a
consistent procedure for all Parseval frames used in this paper, we separate the real and imaginary parts
Thus, to properly compare their results with ours we double the number of selected coefficients given
in [35] (so obtaining the same number of real coefficients), and we used DT-CWhsithles to match
representations. Using a fixed number2df 000 selected coefficients withena512 x 5122 we get an
improvement over his result @02 dB (39.09 vs. 37.07 dB). In [35] is also presented a dynamic version
of the method which increases the number of complex coefficients used at each iteratiof, @fonto
12,000 in 30 iterations). Their result is stil.41 dB below ours (38.68 dB). However, it is easy to test
that this difference is due to the extra flexibility of our scheme that allows to independently choose for
the real or imaginary part of every complex coefficient. This factor seems more important in this case
than the use of dynamic thresholding. Actually, if complex coefficients are not separated 4g-ABr

implementation, our result gods31 dB below theirs.

C. Computation

Iteration time is dominated in all methods by one image analysis and one image synthesis operation
at each iteration. However, searching for the threshold also takes a significant part/;B&fhand
£yo-AP require additional search of a threshold, whereas other methods like DT+OR)-&Tddo not,
and, thus, they are relatively faster. Nevertheless, the time consumed by the methods depends more on
the average number of iterations until the convergence stop criterion is met. In Table Il we show that
{y-AP takes more iterations to converge. Note that this is in part due to the tolerance used for detecting
perfect reconstruction is comparatively smaller (see subsection IV-B), so the number of iterations taken
when using low sparseness levels is much higher. It is important to point, as we did in section lll, that
most applications will not require so many iterations. Nevertheless, it is fair to recognize that dynamic

thresholding strategies [35], [40], [46], [38] have proven to be intrinsically faster than those based on

3We thank Prof. Nick Kingsbury for helping us to replicate his experiment.
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Fig. 8. Visual comparison of the method usifig5e — 2- N Curvelets coefficients for thEinsteinimage. Results are cropped
to 128 x 128 crop, starting at (71,41), for visibilityLeft column, from top to bottom: original image/;-AP (30.85 dB),
¢1-AP+OP (33.52 dB)Right column, from top to bottom, DT+OP (30.21 dBy-FT (30.65 dB)¢y-AP (32.98 dB).
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fixing the selection mask, the threshold or the number of selected basis functions.

As an illustrative example of running times with the (very demanding) stopping criteria described here,
using a Pentium IV with 3.4 GHz and 1 GB RAM, ov256 x 256 imagex,/y-AP takes abouf minutes
to stop using DT-CWT and abouthour using Curvelets. On the other hafg AP takes abous minutes

using DTCWT and30 minutes using Curvelets.

D. An application example: de-quantizing

We have performed another experiment to demonstrate the applicabiliy-A® to the removal of
spatial quantization artifact as explained in Section IlI-C. Our observation Bitf&einimage quantized
using 3-bits. We compare the performance®@fAP and/y-AP for removing its artifacts, using both DT-
CWT and Curvelets. Figure 9 shows this comparison. We can sed/{t#® results are too smooth,
even decreasing the PSNR with respect to the degraded observation. On the other hand, though showing
artifacts inherent to the tight frames used, the performanég-8P is much more satisfactory. Restoration
of other type of degraded images, such as filling-in missing pixels or texture separation require in general

different strategies to choose tiieparameter and have not been addressed here (e.g., [31]).

VI. CONCLUSIONS

We have proposed a new optimization method, calledP, which minimizes the mean square error
of the reconstruction of an image from a representation vector given a maxignorm for that vector.

It iteratively orthogonally projects onto thig-ball of given radiusk, givenp and R; and onto the set of
vectors providing perfect reconstruction. It achieves the global optimum whem and a local optimum
when0 < p < 1. We have applied this method to solve the sparse approximation problem (minimizing
the MSE using a given number of coefficients), focusing onptke0 andp = 1 cases. Thé&,-AP case
translates into similar iterations than [35], in its simplest version.

We have shown thaf,-AP clearly outperformd;-AP, which is optimal for solving the commonly
approached convex relaxation problem. This result demonstrates that equivalency conditions for mini-
mizing ¢, and ¢p-norm do not hold using natural images and typical image representations. This is an
important practical issue for image processing. However, we have also tested that the selection of active
coefficients resulting by the convex relaxatign=£ 1) is generally better than the one made dyAP.

Thus, slightly improved performance may be achieved by post-optimizing the amplitude of the non-zero

coefficients in the/;-AP solution.
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Fig. 9. Application of¢;-AP and/,-AP to removing quantization artifactsirst row, Einsteinimage, cropped td28 x 128

for artifacts visibility starting at (71,41); angtbits quantized observation (29.58 dBecond row ¢,-AP results using-scales
DT-CWT (28.14 dB) andi-scales Curvelets (28.61 dBJhird row ¢o-AP results using the same tight-frames (31.24 dB and
31.29 dB respectively).

July 24, 2007 DRAFT



20

We have also compared with greedy and iterative thresholding heuristical methods, showifyg/tRat
also outperforms the iterative fixed thresholding (either soft or hard) and the StOMP algorithm version
implemented for this purpose. More exhaustive tests would be necessary to state the supefig#tly of
over greedy (MP-like) algorithms in general but we have not tried that because of the huge computational
cost of the strict implementations of theses techniques. Among these methods, iterative fixed thresholding
provided clearly the second best energy compaction performance. Although not compared here in detail,
methods based on dynamic adjustment of a hard threshold through iterations (e.g. [33], [34], [35], [38])
clearly have currently the highest compaction potential. However, those methods, unlike ours, have not
been mathematically formulated as optimization techniques. It is easy to/gdaptto iteratively increase
the number of coefficients (as in [35]), but we have focused here on a fully justified optimization model.
An additional fact is that, for some restoration tasks (like image de-quantizing), we have experienced
that better energy compaction does not always imply better restoration performance.

We have shown here how tifg-AP method can be easily adapted to image restoration. The resulting
method has the drawback of requiring a criterion for choosing the dejrbdll radius of the synthesis
vector. We have shown a successful example of application to the removal of spatial quantization artifacts,
where the radius choice has been made to maximize the degree of sparseness compatible with the
observation. In this application, convex relaxation has yielded relatively poor results.

In the future we pretend to study the use of intermediate norms. This is justified as a way to explore
a better compromise between the good performancé-&P and the ability of¢;-AP to avoid local
minima. Apart from that, in terms of is application to restoration, the solution of the problem at hand
is equivalent to a MAP estimation under white Gaussian noise when the marginal prior is a generalized
Gaussian [39], as pointed before. It has been observed that typically the marginal pdf is better adjusted
with intermediate normsx 0.7) (see, e.g. [1], [39]). However, using empirical priors adjusted for analysis
coefficients is justified only if we apply them to analysis (but not to synthesis) coefficients. It is easy
to adapt our method in that direction by using an extra projection in the iteration loop, projection that
does not break the consistency of the theoretical frame [47]. Image processing based on sparsifying the
analysis (linear) coefficients has been successfully used to separate mixed images (MCA [40]) and to
fill in missing pixels [46]%. We are also currently working on a practical and theoretically grounded
optimization method using dynamic iterative thresholding, with a much higher performancé,thdah

both in sparse approximation power and in computational load terms [47].

4See [48] for an interesting discussion on the analysis-sense vs. the synthesis sense sparseness applied to estimation.
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APPENDIXA

METHOD TO FIND THE THRESHOLD GIVEN THE RADIUS OF THE{-BALL TO PROJECT ONTO

In [39] was demonstrated that the orthogonal projection operator of a veetd™ onto B;(R), the
¢1-ball of radiusR, is a soft-thresholding (Eq. (9), in Section Ill). The remaining problem in our context
is, given the vectoa, finding the threshold;(a, R) (or, equivalently, the\ of Eq. (3), asrs = 1/)) that
yields the desired;-norm of the thresholded vector.

First, we express thé -norm (i.e., the radius?) of the soft-thresholded version of a vectowith a
given threshold® 7,. Naming Y (a,7) = {i € {1, ..., M} : |a;| > 7} the set of coefficient indices whose
amplitude is strictly above the threshold we can write:

R = Y (lail-7)

T(a,7s)

= Z la;| | — card(Y(a,7s)) - 7s,

Y(a,rs)
which yields:

B (ZT(a,TS) al|) - R 12
Ts = card(Y(a,75)) (12)

wherecard(-) indicates cardinality of a set. The term on the right depends,pbut we can solve this

equation iteratively by using:
70 = 0,

(Zr(aﬁ(vo) ’%") - R
card(Y(a,7(M))
lterations end wherj7(**t1) — 7(")||, is below a threshold (see subsection IV-B).

n+l) _

7-(

We assume here thgt||; > R, because otherwise the projection oi@9(R) is trivial (the identity).
Next, we demonstrate that the iterations converge tby noting first that?(7) is a strictly monotonically
decreasing function, and, thus, so itri§R). This implies that Eq. (12) has a unique solutionrin Note
that if we taker®*1) = (") then Eq. (12) is satisfied, so we know that if iterations converge they have
to do it to the unigue solution,. Now, to prove convergence tq it is sufficient to demonstrate that
the succession™ converges. This can be done by showing that beiftg monotonically increasing, it
never gets above,, as we do next. We start by noting thef) = 0 < 7,. Assumingr(™) < 7, then:

Z ‘ai, < Z Ts)

O(a, 7 15) O(a, 7™ 15)
SFor notation clarity, we drop here the dependence.ofn (a, R).
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whereO(a, 1, m2) = {i € {1,..., M} : 11 < |a;| <72}. From here we can derive the following:

Soodail = D> el > = ) T

T (a,7(™) T(a,rs) T (a,7(™) Y(a,rs)
Z |a’b| - R S Z Ts,

T(a,r(m) Y(a,7(™)
Z la;| — R < card(T(a,T(”))) - Ts,

Y(a,7(™)
Zr(a () |az’| - R

: Ts,

card(Y(a,7(M)) —
) < 7

— 18-

So the succession is bounded abovehy Then, asZ@(ayT(")

ZT(am:) Ts = Er(a,n) 7, then

Z la;| + Z Ts > Z ()

O(a, 7" 1y) T(a,rs) T(a,7(™)

ai’ > Z@(aﬂ—(n)ﬂ—s) T(n), and also

\Ts)

and we can derive the following inequalities:

Z |ai| — Z la;| + Z T > Z ()

T (a,7(™) Y(a,7s) T (a,7s) T(a,r™m)
Yo lal-r= Y 7™,
T(a,7(™) Y(ar )
Z |az| -R> CCL’r’d(T(a’T(”))) . 7_('rL)v
T (a,7(™)
ZT(a,ﬂn)) la;| — R -
-
card(Y(a, 7-(n))) = )
Fntl) > o (n)

As a consequence the succession is monotonically increasing, and the proof is complete.

An alternative demonstration of this method and its convergence comes from noting that the orthogonal
projection ontoB;(R) can be implemented as the orthogonal projection of the amplitugen the
intersection of the convex set; = {b € RM : 3.5, < R}, andC, = {b € RM : p; > 0}, applying

alternated orthogonal projections and preserving the signs of the coefficients not being set to zero.
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APPENDIXB
MEAN SQUARE ERROR APPROXIMATION GIVEN A SUBSET OF ACTIVE COEFFICIENTS BY

ALTERNATED PROJECTIONS

We prove here that Eq. (11) provide the pseudoinverse solution to the approximation problem for a
given set of active coefficients. That is, they provide the mean square error (MSE) solution to Eq. (10)
when there is no exact representation of the image, and the minéxmorm solution otherwise. Given
an imagex € RV, a subsetl of R indices extracted froM1,..., M}, and anN x R matrix ®; formed

by the columnsp; from ® such thati € I, we want to solve:
ar = argmin || ®ar — x|z, (13)
ar

that can be expressed as:

ar = ‘I’gx,

Where@ﬁl is the pseudoinverse @ ;. We study the two cases of interest: (Ljnge(®;) = R < N, and
(2) R > range(®r) = N.

A. Case lrange(®;) = R< N

We can express in this case:

a; = [®T®; 1eTx.

The inverse involved is potentially huge. Fortunately, we can use the Taylor expansion of the inverse of
the matrix [49] so we have:
oo
ar=> (I-®7®)ex
k=0
As necessary convergence condition for the Taylor expansion, we check that for usual frames in image

representation eigenvalues @ — ®7®,) are not above in absolute value. From there we derive an

iterative method to calculat&;:

(n+1)

a; = agn) +®F(x - <I>1a§n)). (14)

We now defineS; as theR x N matrix selecting theR coefficients indicated by. Then, ST is the
operator that expands B x 1 vector into aN x 1 vector reinserting each coefficient in its original

position and setting the rest to zero. Noting tlgt = #ST and ®7 = S;®7, we have:

agnﬂ) = agn) + 887 (x - @S?agn)).
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Multiplying by ST (which is an expansion matrix, so it does not destroy any information):
STal"t) — gTal™ 4 875,87 (x — ®#STal").
and asa; = S;a, for somea € R™ we can write:
STs;a™t) = sTs;a(™ 4 STS; 87 (x — ®STS;a™).

Let D; be a diagonal/ x M matrix whered;; = 1 if i € I and0 otherwise. Noting thanS[ =D;

and using the fact thdD; is idempotent, we get:
D;a™Y = D;[D;a™ 4 &7 (x — ®#D;a™)).

As the right term only depends db;a(™, then these iterations are completely equivalent as those in

Eq. (11), beinga™ the intermediate result of Eq. (11).

B. Case 2:R > range(®;) = N
Here, Eqg. (13) has infinite solutions with perfect reconstructiork.offhe pseudoinverse gives the
minimum Euclidean norm solution:
a; = ®7[®;®1) x.

We can writea; = ®72;, wherez; = [®;®7]~!x. Then:

oo
21 =) [I-®97]",
k=0
which can be computed through the iterative method:

Z(In+1) = z(In) — <I>1<I>}Fz§n) + x.

Multiplying by ®7:

372" = 74" — T, 872" + ®7x,

and substitutinngr}Fzg”) by aﬁ”) we obtain Eq. (14) and, thus, the solution is achieved by the same

iterative method as in the previous case.
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DETAILED COMPARISON OF THE METHODS USING-SCALESDT-CWT AND 6-SCALESCURVELETS IN OUR SET OF

DT-CWT/Curv Normalized¢o-norm (K/N)

Image Method 3.05e-002 | 9.45e-002 | 2.91e-001
DT+OP 27.08/25.58| 30.83/29.41| 37.82/34.96

Barbara lo-FT 28.18/25.98| 33.25/30.51| 40.58/34.30
£1-AP 26.39/25.75| 30.21/31.02| 38.65/38.38

Lo-AP 29.2328.61 | 33.3834.29 | 41.7641.51
¢1-AP+OP || 29.9529.10 | 34.1234.94 | 43.0943.08

DT+OP 29.95/27.41| 32.82/31.96| 38.98/36.62

House Lo-FT 31.19/28.64| 34.76/32.69| 40.25/37.77
{1-AP 29.60/27.98| 32.79/33.32| 39.56/39.35

Lo-AP 32.0930.45 | 35.1835.63 | 43.0041.87
£,-AP+OP || 32.6131.19 | 35.7936.69 | 44.4143.78

DT+OP 24.86/23.42| 28.20/26.38| 34.65/31.59

Boat lo-FT 25.46/24.07| 30.07/27.62| 34.69/31.17
£1-AP 24.10/23.41| 27.53/27.00| 34.56/33.62

Lo-AP 26.4826.15 | 30.4329.97 | 38.0036.73
£1-AP+OP || 26.9226.19 | 31.0930.24 | 39.0838.02

DT+OP 26.00/24.22| 29.46/27.54| 36.93/32.92

Lena Lo-FT 27.09/24.86| 32.1728.63 | 39.38/32.54
{1-AP 25.50/24.78| 28.92/28.72| 36.89/35.69

lo-AP 27.7227.10 | 31.6381.27 | 40.2938.66
01-AP+OP || 28.4927.64 | 32.5032.15| 41.4140.40

DT+OP 25.18/24.00| 29.15/27.39| 35.95/32.43

Peppers lo-FT 25.79/24.53| 31.5728.41 | 38.43/32.28
£,-AP 24.36/24.47| 28.46/28.80| 35.99/34.89

lo-AP 27.4326.85 | 31.4780.88 | 38.8137.35
{1-AP+OP || 27.8227.43 | 32.2632.13 | 40.1239.17

TABLE |
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STANDARD IMAGES. BOLD NUMBERS INDICATE THE METHOD PROVIDING THE BEST APPROXIMATION FOR EACH IMAGE

AND SPARSENESS LEVEL CURSIVE INDICATES THE SECOND BEST/p-NORM IS EXPRESSED AS NUMBER OF NON.ERO

COEFFICIENTS NORMALIZED BY N. NORMALIZED COLUMNS CORRESPONDRESPECTIVELY, TO 2001, 6189%ND 19096
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DT-CWT/Curv Normalized/o-norm (K/N)

Image Method 5.85e-001 | 8.55e-001 | 1.49e+000
DT+OP || 43.62/39.23| 45.89/41.99| 52.42/46.13

Barbara lo-FT 44.73/39.69| 47.69/42.78| 53.44/47.16
£1-AP 45.39/44.16| 50.24/50.20| >100'>100

Lo-AP 48.3147.37 | 51.7653.00 | 61.7364.86
¢1-AP+OP || 52.0351.33 | 56.8861.48 | >100>100

DT+OP || 44.65/39.80| 47.29/43.23| 53.40/46.92

House Lo-FT 45.85/42.02| 50.01/43.95| 55.98/47.94
l1-AP 46.22/43.78| 50.09/50.94| >100'>100

£o-AP 50.9246.52 | 54.5853.96 | 67.3863.13
¢1-AP+OP || 53.1849.17 | 57.0560.94 | >100>100

DT+OP 39.27/35.00| 42.26/37.51| 48.59/41.82

Boat lo-FT 40.61/36.07| 44.29/38.27| 52.50/42.61
{1-AP 40.71/38.73| 45.86/45.29| >10057.46

Lo-AP 45.5042.54 | 50.2249.66 | 63.2958.70
{1-AP+OP || 47.7645.14 | 52.9055.64 | >10071.97

DT+OP || 42.32/36.96| 44.61/40.12| 50.68/44.36

Lena Lo-FT 43.65/38.07| 46.15/41.61| 51.57/45.47
l1-AP 43.71/41.30| 48.14/49.70| >100'>100

lo-AP 47.5444.74 | 51.1651.02 | 61.6060.94
¢1-AP+OP || 50.6747.47 | 55.0958.18 | >100>100

DT+OP 40.77/36.15| 44.00/38.97| 50.88/43.22

Peppers lo-FT 42.38/37.22| 45.51/40.31| 51.60/44.74
l1-AP 41.92/39.75| 49.84/46.17| >10058.62

lo-AP 45.7643.04 | 52.1350.40 | 63.7861.45
£1-AP+OP || 48.1245.66 | 56.0956.30 | >10072.91

TABLE I
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CONTINUATION OF TABLE |. NORMALIZED COLUMNS CORRESPONDRESPECTIVELY, TO 38342, 56048&ND 9747 1ACTIVE
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Iters.
Meth. DT-CWT | Curv.
lo-FT 180 231
DT+OP 188 174
£1-AP 263 360
£1-AP+OP 333 440
lo-AP 495 920

TABLE Il
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AVERAGED NUMBER OF ITERATIONS EXECUTED IN OUR TEST SET USIN&-SCALESDT-CWT AND 6-SCALES CURVELETS.
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