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Abstract—Following the hierarchical Bayesian framework for
blind deconvolution problems, in this paper, we propose the use
of simultaneous autoregressions as prior distributions for both the
image and blur, and gamma distributions for the unknown pa-
rameters (hyperparameters) of the priors and the image formation
noise. We show how the gamma distributions on the unknown hy-
perparameters can be used to prevent the proposed blind deconvo-
lution method from converging to undesirable image and blur esti-
mates and also how these distributions can be inferred in realistic
situations. We apply variational methods to approximate the poste-
rior probability of the unknown image, blur, and hyperparameters
and propose two different approximations of the posterior distri-
bution. One of these approximations coincides with a classical blind
deconvolution method. The proposed algorithms are tested experi-
mentally and compared with existing blind deconvolution methods.

Index Terms—Bayesian framework, blind deconvolution, pa-
rameter estimation, variational methods.

I. INTRODUCTION

BLIND deconvolution refers to a class of problems of the
form

(1)

where is the support of the image, and , ,
, and represent, respectively, the unknown original

image, the observed image, the unknown impulse response or
point spread function (PSF) of the blurring system, and the ob-
servation noise. The operator in (1) denotes 2-D convolution,
given by

(2)

where is the support of the PSF.
Equation (1) can be written in matrix-vector form as

(3)
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by lexicographically ordering , , and . Matrix is a block-
Toeplitz matrix which is approximated by a block-circulant ma-
trix.

In classical image restoration, the blurring function is as-
sumed to be known, and the degradation process is inverted
using one of the many existing restoration algorithms. Various
restoration approaches have appeared in the literature which de-
pend on the particular degradation and image models used (see,
for example, [1]–[3] for details).

The objective of blind deconvolution methods is to obtain es-
timates of and based on and prior knowledge about the un-
known quantities and the noise. There are two main approaches
to the blind deconvolution problem [4], [5]. With the first one,
the blur PSF is identified separately from the original image and
later used in combination with one of the known image restora-
tion algorithms, while with the second one the blur identification
step is incorporated into the restoration procedure.

Two types of approaches, an experimental and a theoretical
one, have been reported in the literature for identifying the PSF
separately from the original image. With the experimental ap-
proach, the images of one or more point sources are collected
and used to obtain the PSF [6]. With the theoretical approach,
the PSF is mathematically modelled, usually assuming a partic-
ular type of degradation, like out-of-focus blur [7] or Gaussian
blur [8], [9], or by considering a particular imaging application
like microscopy [10], medical ultrasound [11], remote sensing
[12], or astronomy (see, for instance, Tiny Tim [13], a program
to simulate the PSF of the Hubble Space Telescope).

When the PSF estimation is performed jointly with the
restoration process, most methods address the blind (or
semi-blind) deconvolution problem by incorporating prior
knowledge about the image and blur into the deconvolution
process. This knowledge can be expressed, for instance, in
the form of convex sets and regularization techniques (see, for
example, [14]–[17]) or with the use of the Bayesian paradigm
with prior models on the problem unknowns [18], [19]. In this
paper, we will use the Bayesian paradigm to jointly estimate
the image, blur, and unknown hyperparameters in the blind
deconvolution problem.

Our goal will be, first, to define a joint distribution
of the observation, , the unknown image, ,

the blur, , and the hyperparameters, , describing their distri-
butions. Then, we will calculate the posterior distribution of the
unknowns given the observed image and use this
posterior distribution to estimate the image and blur. Bayesian
modeling and inference is based on building to
later perform inference based on .

To model the joint distribution, we utilize in this paper the
hierarchical Bayesian paradigm (see, for example, [20]). This
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paradigm has been applied to various areas of research. For in-
stance, Molina et al. [20] applied this paradigm to image restora-
tion, Mateos et al. [21] to removing blocking artifacts in com-
pressed images, and Galatsanos et al. [19] in deconvolution
problems partially known blurs.

In the hierarchical approach to blind deconvolution, we have
at least two stages. In the first stage, knowledge about the struc-
tural form of the observation noise and the structural behavior of
the image and PSF is used in forming , , and

, respectively. These noise, image, and blur models de-
pend on the unknown hyperparameters . In the second stage, a
hyperprior on the hyperparameters is defined, thus allowing the
incorporation of information about these hyperparameters into
the process. We note here that each of the three above mentioned
conditional distributions will depend only on a subset of , but
we use this more general notation until we precisely describe
the parameters that define .

For , , , and , the following joint distribution is defined

(4)

and inference is based on .
At least three crucial questions have to be addressed when

modeling and performing inference for blind deconvolution
problems using the hierarchical Bayesian paradigm.

The first one relates to the definition of . Blind decon-
volution is an ill-posed problem, which in a very simplistic way
and without considering the fact that the PSF values add to one,
consists of estimating two numbers whose product is known.
Clearly, there are a number of pairs of numbers whose product
is the same. Consequently, the more information we add to the
solution process the more accurate the estimates of the unknown
parameters will be.

The second crucial problem to be considered is to decide how
inference will be carried out. A commonly used approach con-
sists of estimating the hyperparameters in by using

(5)

and then estimating the image and blur by solving

(6)

This inference procedure aims at optimizing a given function
and not at obtaining posterior distributions that can be simulated
to obtain additional information on the quality of the estimates.
The solution of the above equations for estimates of the elements
of , the image, and the blur can be viewed as the approximation
of posterior distributions by delta functions. Instead of having
a distribution over all possible values of the parameters, image,
and blur, the above inference procedure chooses a specific set of
values. This means that we have neglected many other interpre-
tations of the data. If the posterior is sharply peaked, other values
of the hyperparameters, image, and blur will have a much lower
posterior probability but, if the posterior is broad, choosing a
unique value will neglect many other choices of them with sim-
ilar posterior probabilities. This is relevant to our blind decon-
volution problem, where the choice of broad priors on the un-

known hyperparameters leads to broad posterior distributions.
Note that when the hyperprior on the hyperparameters is given
by , the solution of (5) is the maximum likeli-
hood estimate of the hyperparameters given the observations
(see, for instance, [22]–[24] for the use of this model).

The third crucial problem to be solved when using the
Bayesian paradigm on blind deconvolution problems is to de-
cide how to calculate . The Laplace approximation
of distributions has been used in problems where the blur is
partially known [19], [25] or in order to calculate , when the
parameters of the distributions for the image, blur, and noise are
assumed known [16], [26]. An alternative method is provided
by variational distribution approximation. This approximation
can be thought of as being between the Laplace approximation
(see, for instance, [19] and [25]) and sampling methods [27].
The basic underlying idea is to approximate with a
simpler distribution, usually one which assumes that , , and
the hyperparameters are independent given the data (see [28,
Ch. II] for an excellent introduction to variational methods and
their relationships to other inference approaches).

The last few years have seen a growing interest in the ap-
plication of variational methods [29], [30] to inference prob-
lems. These methods attempt to approximate posterior distribu-
tions with the use of the Kullback-Leibler cross-entropy [31].
Application of variational methods to Bayesian inference prob-
lems include graphical models and neural networks [29], inde-
pendent component analysis [30], mixtures of factor analyzers,
linear dynamic systems, hidden Markov models [28], and sup-
port vector machines [32].

Variational methods have been recently applied to blind de-
convolution problems. Miskin and MacKay [33] use gamma
priors on the image and blur (see, also, [34]), which do not en-
force any spatial relationship between neighboring pixels in the
image or blur, and gamma distributions as hyperpriors for the
unknown hyperparameters of the priors. Likas and Galatsanos
[24] use normal distributions on the unknown blur and image
and an improper hyperprior for the hyperpa-
rameters. These models and the corresponding variational pos-
terior distribution approximations will be described and com-
mented in the following sections when we justify the priors and
hyperpriors proposed in our work and their corresponding vari-
ational posterior distribution approximations.

In this paper, we propose the use of simultaneous autoregres-
sions as prior distributions for the image and blur, and gamma
distributions for the unknown parameters (hyperparameters) of
the priors and the image formation noise. We show how the
gamma distributions on the unknown hyperparameters can be
used to prevent the proposed blind deconvolution method from
converging to undesirable image and blur estimates and also
how they can be inferred in realistic situations. We apply vari-
ational methods to approximate the posterior probability of the
unknown image, blur, and hyperparameters and propose two dif-
ferent approximations of the posterior distribution.

The rest of the paper is organized as follows. The hyperpriors,
priors, and observation models proposed in this paper are de-
scribed and compared to other models used in the blind decon-
volution literature in Section II. Section III describes the varia-
tional approach to distribution approximation for the blind de-
convolution problem, as well as, how inference is performed.
We propose different approximations of the posterior distribu-
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tion of the image and the blurring function, as well as, the un-
known hyperparameters, based on the variational approach for
the blind deconvolution problem and compare them to other ap-
proaches reported in the literature. Finally, in Section IV, experi-
mental results and comparisons with other methods on synthetic
and real images are shown and Section V concludes the paper.

II. HYPERPRIORS, PRIORS, AND OBSERVATION MODELS

USED IN BLIND DECONVOLUTION

In this section, we describe the prior models for the image and
blur and the observation model we propose for the first stage
of the hierarchical Bayesian paradigm in blind deconvolution
problems. Then, since these prior and observation models de-
pend on unknown hyperparameters, we proceed to explain the
hyperprior distributions on these hyperparameters we use.

A. First Stage: Prior Models on Images and Blurs

Our prior knowledge about the smoothness of the object lu-
minosity distribution makes it possible to model the distribution
of by a simultaneous autoregression (SAR) [35], that is

(7)

where denotes the Laplacian operator, is the
size of the column vector denoting the lexicographically ordered

image by rows, and is the variance of the Gaussian
distribution. To be precise, we should use instead of
in (7), since the Gaussian distribution we are using for is sin-
gular, that is , when , for all .
This priori model has also been used in [24].

We use the same model for the PSF, that is

(8)

where denotes again the Laplacian operator, is
the size of the support of the blur, is a column vector of size

formed by lexicographically ordering the blur by
rows (this vector has all its components equal to zero outside
the region of support of the blur), and is the variance of the
Gaussian distribution.

Instead of the prior blur model defined in (8), the blur model
used in [24] is

(9)

where is the unknown vector mean and is the unknown
variance of the multidimensional normal distribution. Note that
the components of are assumed statistically independent and
the number of unknowns in this distribution equals the size of
the support of the blur plus one (the variance).

Let us denote by either the image or blur. At a higher level
of complexity, we can model the distribution of by

(10)

where and denote the unknown vector mean and co-
variance matrix of the normal distribution. One of the problems
with the use of this model is that unless the vector mean and
covariance matrix are known its use leads to the simultaneous
estimation of a very large number of hyperparameters.

B. First Stage. Observation Model

By assuming that the observation noise in (1) or (3) is
Gaussian with zero mean and variance equal to , the proba-
bility of the observed image , if and were respectively the
“true” image and blur, is equal to

(11)

Similarly, we can use to form the convolution matrix
and rewrite (11) as

(12)

C. Second Stage: Hyperprior on the Hyperparameters

An important problem is the estimation of the parameters
, , and in (7), (8), and (11), respectively, when they

are unknown. To deal with this estimation problem the hierar-
chical Bayesian paradigm introduces a second stage (the first
stage consisting again of the formulation of , ,
and ). In this stage, the hyperprior is
also formulated, resulting in the joint global distribution

(13)

A large part of the Bayesian literature is devoted to
finding hyperprior distributions for which

can be calculated in a straightforward
way or be approximated. These are the so-called conjugate
priors [36], which were developed extensively in Raiffa and
Schlaifer [37].

Besides providing for easy calculation or approximations
of , conjugate priors have, as we will see
later, the intuitive feature of allowing one to begin with a certain
functional form for the prior and end up with a posterior of the
same functional form, but with the parameters updated by the
sample information.
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Taking the above considerations about conjugate priors into
account, we will assume that each of the hyperparameters has
as hyperprior the gamma distribution, , defined by

(14)

where denotes a hyperparameter, is the scale pa-
rameter, and is the shape parameter. These parameters
are assumed known. We will show how they can be calculated
in the experimental section. The gamma distribution has the fol-
lowing mean, variance and mode

(15)
Note that the mode does not exist when and that mean
and mode do not coincide.

We note here that the model proposed in [24] has as hyper-
parameters , , , and defined in (7), (9), and (11) and
uses as hyperprior on these hyperparameters

(16)

The problem with this hyperprior is that, as we will see in the
experimental section, the estimation process relies exclusively
on the observations, and, therefore, it is very sensitive to the
amount of observational noise, as well as the initial estimates of
the hyperparameters.

We note here that, for the components of the vector mean
in (9), the corresponding conjugate prior is a normal distribu-
tion. Furthermore, if we want to use the prior model in (10), the
hyperprior for is given by an inverse Wishart distribution
(see [38]).

III. BAYESIAN INFERENCE AND VARIATIONAL APPROXIMATION

OF THE POSTERIOR DISTRIBUTION FOR BLIND

DECONVOLUTION PROBLEMS

For our selection of hyperparameters in the previous section,
the set of all hyperparameters introduced in Section I is given
by

(17)

and the set of all unknown is given by

(18)

As already known, the Bayesian paradigm dictates that infer-
ence on should be based on

(19)
where is given by (13).

Once has been calculated, and can be integrated
out to obtain . This distribution is
then used to simulate or select the hyperparameters. If a point
estimate, , , , is required, then the mode or the mean of
this posterior distribution can be used. Finally, a point estimate

of the original image and blur, and , can be obtained by max-
imizing . Alternatively, the mean value of
this posterior distribution can be selected as the estimate of the
image and blur.

From the above discussion, it is clear that, in order to per-
form inference, we need to either calculate or approximate the
posterior distribution . Since can not be found in
closed form, we will apply variational methods to approximate
this distribution by the distribution .

The variational criterion used to find is the minimization
of the Kullback–Leibler divergence, given by [31], [39]

(20)

which is always non negative and equal to zero only when
. We note in passing that the term Ensemble

Learning has also been used to denote the variational approxi-
mation of distributions (see [30, p. 20]).

We choose to approximate the posterior distribution
by the distribution

(21)

where and denote distributions on and , respec-
tively, and is given by

(22)

We now proceed to find the best of these distributions in the
divergence sense.

For , let us denote by the
subset of with removed; for instance, if ,

. Then, (20) can be written as

(23)

Now, given (if, for instance,
then ), an estimate of is
obtained as

The differentiation of (23) with respect to results in (see
[30, Eq. 2.28])

(24)
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where

The above equations lead to the following iterative procedure
to find .

Algorithm 1

Given , , , and the initial estimates
of the distributions , , , and for

until a stopping criterion is met.

1) Find

(25)

2) Find

(26)

3) Find

(27)

(28)

(29)

We note here that the distributions of the hyperparameters
are updated in parallel in the above algorithm. The same dis-
tributions would have been obtained if the updating had been
done sequentially since does not contain terms in-
volving pairs of hyperparameters. As stopping criterion of the
above iterations, the convergence of the parameters defining
the distributions , , , , and

can be used. In order to simplify the above criterion,
, where is

a prescribed bound, can also be used for terminating algorithm
1. Note that this is a convergence criterion over the image but it
normally implies convergence on the posterior hyperparameter
and blur distributions, since their convergence is required for the
convergence of the posterior distribution of the image.

Regarding the convergence of the algorithm we first note
that, by construction, at every iteration of the distributions of
the image, blur, and hyperparameters the value of the Kull-
back–Leibler divergence decreases. To gain further insight into

the above algorithm, let us consider a degenerate distribution,
, that is

if
otherwise

(30)

and use , a conditional distribution
which can not be calculated for our problem but we use it to
illustrate how algorithm 1 works.

If at the th iteration of algorithm 1, is a degenerate
distribution on , then the step of algorithm 1 to update the
image and blur produces

(31)

and the step in algorithm 1 to update the degenerate distribution
on the hyperparameters produces

(32)

Interestingly, this is the EM formulation of the maximum a pos-
teriori (MAP) estimation of the hyperparameters (see [40]) for
our blind deconvolution problem. What algorithm 1 does is to
replace by a distribution easier to calculate and also
to replace the search for just one hyperparameter by the search
for the best distribution on the hyperparameters.

A. Optimal Random Distributions for and

We now proceed to explicitly calculate the distributions
, , , and in the

above algorithm. Let us now assume that at the th iteration
step of the above algorithm the distribution of has mean
vector and covariance matrix given by

(33)

and for the distribution of the hyperparameters, we have

(34)
Then, from (24), we have that the best estimate of the a pos-

teriori conditional distribution of the real image given the ob-
servation is given by the distribution satisfying

(35)

and, thus, we have

The mean of the normal distribution is the solution of

while the covariance is given by
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From these two equations, we obtain

(36)

(37)

with

(38)

Once has been calculated, following the same steps we
obtain from (26) that the solution of (26) is

(39)

with

(40)

(41)

(42)

An important observation based on (38) and (40) is that, in
order to be able to calculate the covariance of the distributions

and using the discrete Fourier transform (DFT),
we only need to utilize a circulant covariance matrix in the dis-
tribution . This will guarantee that the covariances of the
estimates of the distributions of and at the th iteration of
algorithm 1 can be easily calculated using the DFT.

In order to find , in step 3) of al-
gorithm 1, we have to calculate the corresponding mean value

in (24). After some straightfor-
ward calculations, we obtain

(43)

with

(44)

(45)

(46)

(47)

(48)

where , , , and have been de-
fined in (36), (37), (41), and (42), respectively.

From (43), we have

where the parameters and are given by

(49)

(50)

(51)

(52)

(53)

(54)

These distributions have the following means:

(55)

(56)

(57)

which are then used to recalculated the distributions of and
in algorithm 1.

We provide an interpretation of (55), (56), and (57) by
rewriting them as

(58)

(59)

(60)

where , and and

The above equations indicate that , , and can
be understood as normalized confidence parameters. They take
values in the interval [0,1). That is, when they are zero no con-
fidence is placed on the given parameters , , and ,
while when the corresponding normalized confidence parameter
is asymptotically equal to one it fully enforces the prior knowl-
edge of the mean (no estimation of the hyperparameters is per-
formed).
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A particularly interesting case corresponds to

(61)

which corresponds to the hyperprior model in (16). This type
of hyperprior modeling (used, for instance, in [24]) makes the
observation responsible for the whole estimation process. The
performance of the algorithm in this case heavily depends on the
level of the observation noise and the initial distributions used
in the iterative process, as will also be verified experimentally.

B. Optimal Degenerate Distributions for and

In algorithm 1, we have presented, and explicitly calculated
later, the best possible approximation of the posterior distribu-
tion given its chosen factorization. However, nothing prevents
us from using (23) and selecting random distributions for the
image, blur, or hyperparameters, which are suboptimal, in the
sense that they decrease the value of the KL divergence but not
by the maximum possible amount, as was the case with the algo-
rithm presented in the previous section. This is, in a way, similar
to the use of the generalized EM (GEM) algorithms [40] instead
of the EM algorithm. Notice that the GEM algorithms have to
be utilized, for instance, when the unknowns that globally max-
imize the M-step in the EM formulation can not be easily found.
In [24], and are assumed to be Gaussian and the distri-
bution on the hyperparameters is assumed degenerate (assigning
probability one to one value of the hyperparameters). Other al-
ternatives are also possible.

Another suboptimal choice is to assume that and
are both degenerate distributions (we will use the subscript
BD to denote this approximation). Given , the current
blur estimate where we assume that the degenerate distribution

is located, we proceed to find .
Taking into account that the distributions on and are de-

generate, we have in algorithm 1

(62)

(63)

Note that the above iterative procedure is equivalent to
solving

(64)
and then

(65)
We mention here that fixing the unknown hyperparameters

and not updating them, the above iterative procedure on and
is the same as the one proposed in [16] to jointly estimate the

image and blurring functions in blind deconvolution problems.

Finally, to update the distribution of the hyperparameters in
(50), (52), and (54) when using degenerate distributions on
and , we have

where and have been defined in (62) and (63),
respectively.

Two very important problems to be commented on. The se-
lection of the parameters of the hyperpriors and the quality of
the approximation of by . The discussion on the se-
lection of the parameters will be postponed to the experimental
section.

The goodness of the approximation of by is still
an open question. However, insightful comments on when the
variational approximation may be tight can be found in [29]
(see, also, [41]). Related to this problem is the selection of the
type of probability distributions defining and, in partic-
ular, , and . We believe that there is work to be done,
for instance, on the modeling of the distributions of and by
mixtures of Gaussian distributions. These mixtures will, in gen-
eral, still be tractable when gamma distributions are used on the
hyperparameters. Furthermore, the use of mixtures of Gaussian
distributions will lead naturally to the problem of model selec-
tion by the use of Bayes factors (see, for instance, [42]–[44]).

IV. EXPERIMENTAL RESULTS

A number of experiments have been performed with the pro-
posed methods using several synthetically degraded and real as-
tronomical images and PSFs, some of which are presented here.
Henceforth, we are refering to the proposed methods as BR
(both distributions of and are random) and BD (both dis-
tributions of and are degenerate). They are compared with
the approach VAR1 in [24] (denoted by LG) and the method in
[45], which assumes that the blur is known. The latter method
(denoted by MOL), uses the prior model in (7) and the degra-
dation model in (11), and simultaneously provides maximum
likelihood estimates of the hyperparameters and and the
MAP estimate of the image given the estimated hyperparame-
ters and the observed image. Since this method assumes exact
knowledge of the PSF, it provides an upper bound of the achiev-
able quality by the blind deconvolution methods.

As an objective measure of the quality of the restored
image, we use the improvement in signal-to-noise ratio
(ISNR) defined as ,
where , and are respectively the original, observed,
and estimated images. For all experiments, the criterion

was used for
terminating algorithm 1.

For the first set of experiments, the “Lena” image was blurred
with a Gaussian shaped PSF with variance 9. Gaussian noise
was then added to this blurred image at two noise levels, one
with variance [ dB, Fig. 1(a)], and a
second one with variance [ dB, Fig. 1(b)].
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Fig. 1. Images degraded by a Gaussian shaped PSF with variance 9 and
Gaussian noise of variance (a) 0.23 (SNR = 40 dB), (b) 16 (SNR = 20 dB).

TABLE I
ISNR VALUES, AND NUMBER OF ITERATIONS FOR THE

LENA IMAGE USING 
 = 
 = 
 = 0

The initial values in Algorithm 1 were chosen as follows: The
observed image was used as initial estimate for . Var-
ious starting points were used for the PSF , as reported
below, all providing similar restoration results. The initial values

, , and were then chosen according to
(58)–(60), assuming a BD approximation. Note that, except for
the initial value for which has been manually fixed, all
other initial parameters are automatically chosen from the avail-
able data.

For the first experiment in this set, the four methods (BR,
BD, LG, and MOL) are compared when no prior information
on the hyperparameters is included, that is,

. In this case, the observations are fully responsible for
the whole estimation process. For the LG method, the initial
PSF is chosen to be Gaussian with variance 4, that is, an initial
value close to the real one, since the method is quite sensitive
to the initial parameters. The rest of the initial parameters were
also empirically chosen to ensure the method produces the best
results.

Table I shows the resulting ISNR and number of iterations
for the BD, BR, LG and MOL methods when the initial PSF
is chosen to be Gaussian with variance 4. Their corresponding
restorations are displayed in Figs. 2 and 3 for the 40- and 20-dB
SNR images, respectively.

As expected, all blind deconvolution methods perform worse
than the MOL (PSF is known). There are, however, differences
among the blind deconvolution methods. For the 40-dB SNR
observed image all three blind deconvolution methods provide

Fig. 2. Restorations of 40-dB SNR Lena image using (a) the MOL method,
(b) the LG method, (c) the BR method with 
 = 0, ! 2 f� ; � ; �g, and
(d) the BD method with 
 = 0, ! 2 f� ;� ; �g.

Fig. 3. Restorations of 20-dB SNR Lena image using (a) the MOL method,
(b) the LG method, (c) the BR method with 
 = 0, ! 2 f� ; � ; �g, and
(d) the BD method with 
 = 0, ! 2 f� ;� ; �g.

similar results although the BR and, especially, the BD methods
produce better ISNR values than the LG method. For the 20-dB
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TABLE II
POSTERIOR MEANS OF THE DISTRIBUTIONS OF THE HYPERPARAMETERS, ISNR, AND NUMBER OF ITERATIONS FOR THE LENA IMAGE

WITH 40 dB SNR USING � = 1=0:22, � = 1=93:6, � = 1� 10 , FOR DIFFERENT VALUES OF 
 , 
 , AND 


SNR case, the BD approximation usually converges to the trivial
solution, and , that is, a flat image
and a uniform PSF. It is important to note that the BD approx-
imation provided this solution independently of the initial PSF
and parameter values. The BR method always converges to a
meaningful solution with higher ISNR than the one by the LG
method, although both restorations are rather noisy and not all
the blur has been successfully removed.

We also note here that when the BD and BR methods ini-
tialize the iteration with a Gaussian shaped PSF with variance
0.009 (a PSF close to a delta function, thus allowing the decon-
volution method to make it “grow”), their resulting ISNRs are
similar to the ones reported in Table I. For the 40-dB SNR ex-
ample, the obtained ISNRs were 2.56 and 2.19 dB for the BD
and BR methods, respectively, and for the image with 20-dB
SNR, the ISNRs were 8.36 and 1.58 dB for the BD and BR
methods, respectively. These values demonstrate the robustness
of the proposed methods to parameter initialization.

We now examine how the introduction of additional informa-
tion on the unknown hyperparameters leads to improved ISNRs
for the BD and BR methods. As we have already shown when
no information about the values of , , and is available,
we can select , , making the observed
data responsible for the estimation of the parameters. However,
we usually have, at least, some information on those parameters.
For instance, if we have access to the camera used to observe the
scene we can estimate the observation noise by observing a uni-
formly flat colored object and calculating the variance of this
image. The image prior variance is more difficult to estimate
since it depends on the image. However, an estimation of this
value could be obtained from images with the same characteris-
tics as the image being processed. For the blur prior variance es-
timation, methods developed for estimating the image prior vari-
ance can also be used, due to the exchangeability between image
and PSF estimation in our formulation. You and Kaveh [16] es-
tablished that the image and blur parameters should follow the
relation

(66)

and this relationship can be used to estimate the blur prior
variance.

In this paper, we propose a method to estimate , , and
based on the use of the MOL method. The method automat-

ically estimates these parameters, given the degraded image and

an initial PSF. Unfortunately, there is no way to fix a priori this
PSF, and a small number of trial and error experiments have to
be carried out. We suggest to use a few PSFs (for our experi-
ments we used Gaussian shaped PSFs with variance 1, 4, and
16) and chose the one that produced the “best” final restored
image, based on visual observation. We want to point out that
our simulations demonstrate that the proposed procedure is not
very sensitive to the selection of the trial and error PSFs. By run-
ning the MOL method on the observed image using a Gaussian
shaped PSF with variance equal to 4 we obtained
and and and , for
the 40- and 20-dB SNR experiments, respectively. Due to the
symmetry between image and blur estimation, the resulting re-
stored image was used in the MOL method as the “true” PSF to
restore the observed image; the output of the MOL is now an es-
timate of the PSF, the noise, and the prior variances. The values

and for the 40- and 20-dB SNR
experiments, respectively, were then obtained. Note that the re-
lation between and is similar to the one obtained using
(66). Note also that we are using only the image, blur, and obser-
vation variances provided by running the MOL method twice.
We have now to select the confidence parameters, , ,
and . In our experiments, we initially chose a set of eleven
values ranging from 0 to 1 for the confidence parameters. Once
we have presented the results we will further discuss the selec-
tion of these confidence parameters.

Tables II and III show for the 40- and 20-dB SNR experi-
ments, respectively, the means of the posterior distributions of
the hyperparameters, ISNR, and the number of iterations for
some selected values of the confidence parameters. The confi-
dence parameters , , and are chosen to provide the
maximum ISNR in the following cases: 1) when we only in-
clude information on the expected value of the noise variance,

; 2) when we only include information on the expected value
of the image prior variance and blur prior variance ; and
3) when information about the value of all three hyperparame-
ters is available. From these tables the BR approximation pro-
vides a good solution when and , although
better results are obtained when some information about the ex-
pected value of and, especially, is provided. The
noise parameter is always accurately estimated regardless
of the confidence on the parameter values.

The BD approximation again converges to the trivial solu-
tion, and , when the noise level
is high and no information about the hyperparameters and

is provided (see Table III), while the BR approximation
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TABLE III
POSTERIOR MEANS OF THE DISTRIBUTIONS OF THE HYPERPARAMETERS, ISNR, AND NUMBER OF ITERATIONS FOR THE LENA IMAGE

WITH 20 dB SNR USING � = 1=15:7, � = 1=206, � = 2:15� 10 , FOR DIFFERENT VALUES OF 
 , 
 , AND 


Fig. 4. ISNR evolution for different values of 
 , ! 2 f�; � ; � g for the BR approximation applied to the Lena image with 20-dB SNR. (a) For fixed

 = 0:0, (b) for fixed 
 = 0:0, (c) for fixed 
 = 0:0, and (d) for fixed 
 = 1:0.

does not exhibit this behavior. When the confidence on and
is greater than zero, both proposed methods give useful and

very similar solutions in terms of ISNR and visual quality. Note
that this experiment justifies the claim that as the observation
noise increases more information has to be provided to solve the
blind deconvolution problem. When the noise level is low (see
Table II) both BD and BR approximations provide good solu-
tions, although better solutions are obtained by the BD method.

Fig. 4 depicts the evolution of the ISNR for a range of values
of the confidence parameters for the BR approximation on the
20-dB SNR Lena image. Similar ISNR evolution is obtained
for the BD approximations so their corresponding plots are
not displayed. From this figure it is clear that there is almost
no ISNR variation when the noise parameter confidence, ,
changes from 0 to 1, while increasing the value of the confi-
dence parameters on and especially on also increases
the ISNR.

Restorations which provide the maximum ISNR for the Lena
image with 40- and 20-dB SNRs are depicted in Figs. 5 and 6,
respectively. From the displayed images it is clear that both
approximations provide very similar restorations, visually and
with respect to their ISNR values, when the parameters are se-
lected so that the maximum ISNR is achieved. Fig. 7 depicts a
slice through the center of the real and estimated PSFs. The es-
timated PSFs approximate quite well the real PSF.

From the results, we can see that the proposed methods accu-
rately estimate the noise parameter and, therefore, including
prior information about it does not significantly increase the
quality of the restorations. However, including information on
the value of and especially , helps to increase the quality
of the restorations. The best value for and depends on
the accuracy of the values and , respectively. From our
experience and the results of the experiments, we suggest to use
a value around 0.6–0.8 for and a value close to 0.0 for .
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Fig. 5. Best restorations of the image with 40-dB SNR in Fig. 1(a) for: (a) BD
approximation for 
 = 0:4, 
 = 0:0, and 
 = 0:7 (ISNR =
2:96 dB); (b) BR approximation for 
 = 1:0, 
 = 0:0, and 
 = 0:6
(ISNR = 2:34dB).

Fig. 6. Best restorations of the image with 20-dB SNR in Fig. 1(b) for: (a) BD
approximation for 
 = 0:3, 
 = 0:9, and 
 = 1:0 (ISNR =
2:04dB); (b) BR approximation for 
 = 1:0, 
 = 0:4, and 
 = 1:0
(ISNR = 2:06dB).

Fig. 7. One-dimensional slice through the origin of the original and estimated
PSFs: a) real PSF; b) estimated BR PSF with 
 = 1:0, 
 = 0:4, and

 = 1:0, for 20-dB SNR; c) estimated BD PSF with 
 = 0:3, 
 = 0:9,
and 
 = 1:0, for 20-dB SNR; d) estimated BR PSF with 
 = 1:0, 
 =
0:0, and 
 = 0:6, for 40-dB SNR; e) estimated BD PSF with 
 = 0:4,

 = 0:0, and 
 = 0:7, for 40-dB SNR.

Regarding the convergence of the proposed methods, both the
BD and BR methods typically require only 25–50 iterations to
reach convergence. This is a small number of iterations but also,
since all calculations can be performed in the Fourier domain,
each iteration takes only about 0.043 CPU seconds on a Xeon
3200 processor.

As a general comment, as expected, both BD and BR ap-
proximations with additional information achieve much better
ISNRs than the LG method and the BD and BR methods without
the inclusion of additional information on the hyperparameters
(see results in Tables I–III). When introducing additional infor-
mation on the hyperparameters, the resulting restorations are
sharper and most of the blur is removed. The results are close

Fig. 8. (a) Observed Saturn image. Restoration with the method (b) in [45];
(c)BR with 
 = 
 = 
 = 0:0; (d) BD with 
 = 0:8, 
 = 0:1,
and 
 = 0:8; (e) BR with 
 = 0:8, 
 = 0:1, and 
 = 0:8.

to the results by the MOL method, both visually and in terms of
the ISNR values.

For the second experiment, the 96 250 image of Saturn
taken at the Cassegrain f/8 focus of the 1.52-m telescope at
the Calar Alto Observatory (Spain) in July 1991, depicted in
Fig. 8(a), was used. The image was taken through a narrow-band
interference filter centered at the wavelength of 9500 with
values ranging from 100 to 6100.

Although there is no exact expression describing the shape
of the PSF for images taken from ground based telescopes, pre-
vious studies [46], [47] have suggested the following radially
symmetric approximation for the PSF

(67)

where the parameters and were estimated from the intensity
profiles of satellites of Saturn that were recorded simultaneously
with the planet and from stars that were recorded very close
in time and airmass to the planetary images. The estimates we
obtained are and pixels.

The values for the distribution parameters were estimated
using the MOL method with the PSF in (67) being the “true”
PSF, thus obtaining and . As in
the previous experiment, the resulting restoration was provided
to MOL method as “true” PSF to restore the observed image
(note that this restoration process provides a blur estimate). This
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TABLE IV
OBTAINED VALUE OF THE PARAMETERS AND NEEDED NUMBER OF ITERATIONS

FOR DIFFERENT VALUES OF 
 , ! 2 f�; � ; � g FOR THE SATURN IMAGE

FOR � = 1=150, � = 1=99000 AND � = 3� 10

resulted in a value of . For comparison pur-
poses, we present the restoration obtained by the MOL method
in Fig. 8(b).

Our experiments show that, again, the BD approximation
converges to the trivial solution when the values of the confi-
dence parameters are close to zero, while the BR approximation
produces the restoration shown in Fig. 8(c). In order to obtain
better restorations, we have to include information about the
parameter values. Following the approach described in the
previous experiments we have selected , ,
and . Using these parameters the restorations de-
picted in Fig. 8(d) and 8(e) for the BD, and BR approximations,
respectively, are obtained.

The estimated parameters, as well as the required number of
iterations to reach convergence are shown in Table IV. This table
shows that the BR approximation always obtains accurate esti-
mates of the noise parameter even when no information about
the value of the parameter is provided, while the BD approxi-
mation needs some information about the parameter values to
provide useful estimations.

In all restored images, the improvement in spatial resolution
is evident. In particular, the ring light contribution has been suc-
cessfully removed from equatorial regions close to the actual lo-
cation of the rings and amongst the rings of Saturn, the Cassini
division is enhanced in contrast, and the Encke division appears
on the ansae of the rings in most of the deconvolved images.
The restorations provided by the proposed methods are almost
indistinguishable and not as noisy as the estimation provided
by the MOL method. This may be due to the fact that the PSF
approximation in (67) does not take into account small atmo-
spheric turbulence that distorts the theoretical blur. In order to
compare the estimated PSFs, Fig. 9 depicts an 1-D slice through
the origin of the theoretical PSF in (67) and the estimated ones.
This plot shows that the estimated PSF by BR approximation
with is flatter and not as accurate as
the one obtained with , , and . The
PSFs obtained by the proposed methods for this case are close
to the theoretical PSF.

V. CONCLUSION

New methods for the simultaneous estimation of the image,
blur, and unknown hyperparameters in blind deconvolution
problems have been proposed, based on the variational ap-
proach to distribution approximation. Using this approach, we
can approximate the posterior distribution of the image and
blurring function, as well as, the unknown hyperparameters.
The proposed methods have been analyzed, validated, and
compared experimentally with synthetic and real data. Useful

Fig. 9. One-dimensional slice through the origin of the original and estimated
PSFs for the Saturn image: (a) theoretical PSF; b) estimated BR PSF with 
 =


 = 
 = 0:0; c) estimated BR PSF with 
 = 0:8, 
 = 0:1, and

 = 0:8; d) estimated BD PSF with 
 = 0:8, 
 = 0:1, and 
 = 0:8.

recommendations are provided regarding initial conditions and
the values of the confidence parameters.
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