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Abstract—In recent years kernel methods and in particular
support vector machines (SVMs) have been successfully intro-
duced to remote sensing image classification. Their properties
make them appropriate for dealing with high number of image
features and low number of available labeled spectra. The
introduction of alternative approaches based on (parametric)
Bayesian inference has been quite scarce in the more recent years.
Assuming a particular prior data distribution may lead to poor
results in remote sensing problems because of the specificities and
complexity of the data. In this context, the emerging field of non-
parametric Bayesian methods constitutes a proper theoretical
framework to tackle the remote sensing image classification
problem.

This paper exploits the Bayesian modeling and inference
paradigm to tackle the problem of kernel-based remote sensing
image classification. This Bayesian methodology is appropriate
for both finite and infinite dimensional feature spaces. The
particular problem of active learning is addressed by proposing
an incremental/active learning approach based on three different
approaches: the maximum differential of entropies, the minimum
distance to decision boundary, and the minimum normalized dis-
tance. Parameters are estimated by using the evidence Bayesian
approach, the kernel trick, and the marginal distribution of
the observations instead of the posterior distribution of the
adaptive parameters. This approach allows us to deal with
infinite dimensional feature spaces. The proposed approach is
tested on the challenging problem of urban monitoring from
multispectral and synthetic aperture radar (SAR) data and in
multiclass land cover classification of hyperspectral images, in
both purely supervised and active learning settings. Similar
results are obtained when compared to SVMs in supervised
mode, with the advantage of providing posterior estimates for
classification and automatic parameter learning. Comparison
with random sampling, and standard active learning methods,
such as margin sampling and entropy-query-by-bagging reveal
a systematic overall accuracy gain and faster convergence with
the number of queries.

Index Terms—Supervised classification, incremental/active
learning, multispectral image segmentation, Bayesian inference
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I. INTRODUCTION

CURRENTLY, kernel methods in general and support
vector machines (SVMs) in particular dominate the field

of discriminative data classification models [1]. During the last
years, the methods have been successfully introduced in the
field of remote sensing image classification [2], [3]. Kernel
methods deal efficiently with low-sized datasets of potentially
high dimensionality, as in the case of hyperspectral images.
The use of the kernel trick [4], as is known in the literature,
allows kernel methods to work in higher dimensional (possibly
infinite-dimensional) spaces requiring the knowledge of only
a kernel function which calculates an inner product in the new
space using the original data. Also, since kernel methods do
not assume an explicit prior data distribution but are inherently
non-parametric models, they cope well with remote sensing
data specificities and complexities. Alternative Bayesian ap-
proaches to remote sensing processing problems also exist and
have been introduced as well to Earth observation applications.
For example, the relevance vector machine (RVM) [5] assumes
a Gaussian prior over the weights to enforce sparsity and
uses expectation-maximization to infer the parameters. In [6],
[7], the RVM was used for multispectral image segmentation
and landmine detection using ground penetrating radar, while
in [8] the model was used for adaptive biophysical param-
eter retrieval. Lately, Gaussian Processes [9] have received
much attention in the field of machine learning, and some
applications and developments have been introduced in remote
sensing data processing as well, both for classification [10],
[11] and parameter retrieval [12] settings.

In this paper, we restrict ourselves to the classification
problem. Due to the particular characteristics of remote sens-
ing data, namely potentially high-dimensionality, low number
of labeled samples and different noise sources, assuming a
particular prior data distribution may lead to poor classification
results. In this context, the emerging field of non-parametric
Bayesian methods constitutes a proper theoretical framework
to tackle the problem [13], [9], [14]1. This paper follows
a Bayesian modeling and inference paradigm to tackle the
problem of kernel-based remote sensing image classification.
This Bayesian methodology is appropriate for both finite and
infinite dimensional feature spaces, and hence robustness to
the aforementioned problems in remote sensing is achieved.
In two-class classification problems, the goal is to estimate
a function and use as decision boundary the points where

1Excellent online lectures are available at: http://videolectures.net/
mlss09uk teh nbm/ and http://videolectures.net/mlss09uk orbanz fnbm/
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the function is zero, to decide whether a sample belongs
to a given class. In its simplest form, and given a training
set, this is equivalent to estimate a linear function on a
transformed feature space to separate samples from both
classes. SVMs approach this problem through the concept of
margin which is defined as the smallest distance between the
decision boundary and any of the samples. On the other hand,
Bayesian modeling and inference approach the problem by
introducing information on the hyperplane coefficients using
a prior model which in combination with the likelihood of
the labeled samples leads to both a posterior distribution
of the hyperplane coefficients and a Bayesian classification
procedure. The use of the Bayesian paradigm allows for the
calculation of the uncertainty of the estimated parameters and
also the determination of the certainty of the estimated label
for a given sample. It also allows for the estimation of all the
model parameters in a rigorous and sound manner.

Relations between SVMs and Bayesian inference is not
new. Note that adopting the least-squares SVM formulation
may alternatively allow to perform Bayesian inference on
SVMs [15]. Bayesian inference on these machines yields
some relevant benefits: hyperparameters may be learned di-
rectly from data using a consistent theoretical framework, and
posterior probabilities for the predictions can be obtained.
Consequently, non-parametric Bayesian methods may deal
with uncertainties in the data and naturally allow us developing
intuitive incremental/active learning methods. The presented
Bayesian kernel-based classifier permits to derive efficient
closed-form expressions for parameter estimation, as well as
to perform incremental, adaptive and active learning in a
consistent, principled way.

While kernel-based classification in static scenarios has
been extensively studied, the problem of on-line and in-
cremental classification is still unsolved. The most effective
schemes so far make use of both incremental and online
SVMs [16], [17], [18]. Most of these approaches are based
on growing and pruning strategies to create and update a
dictionary of (representative) support vectors. Unfortunately,
the algorithms require tuning several heuristic parameters.
Alternatively, Bayesian kernel machines, such as Gaussian
processes, have been successfully reformulated to deal with
online and sparse settings [19], [20]. These methods typically
rely again on a sequential generation of datasets of relevant
samples. Nevertheless the framework nicely allows for both a
propagation of predictions and Bayesian error estimates.

The previous online/incremental approaches are actually
related to the emerging field of active learning [21]. Active
learning aims at building efficient training sets by iteratively
improving the model performance through sampling. Many
query strategies have been devised in the literature, which
are based on different heuristics: 1) large margin, 2) ex-
pert committee, and 3) posterior probability (see [21] for a
comprehensive review). The first approach typically exploits
SVM methods, while the second one can be adopted by
any classifier. The latter requires classifiers that can provide
posterior probabilities. While Platt’s solution [22] of including
a sigmoid link in SVMs could do the job, some theoretical
concerns have been raised about the true meaning of such

posteriors. In Bayesian active learning, the prior over the hy-
potheses space is updated after seeing new data. For example,
in [23], the expected Kullback-Leibler divergence between the
current and the revised posterior distributions is maximized,
while in [24], the authors proposed a Bayesian framework to
tackle the active learning problem, which is utilized in Remote
sensing in [25]. In [26], a Bayesian framework is also used
and the posterior distribution is obtained as a Multinomial
Logistic Regression model. Other basis selection techniques
make explicit use of the response functions [27], [28], [29].
See also [30] for the basis selection general theory and [31]
for the use of the approach in compressive sensing.

The field of remote sensing image classification has experi-
enced a growing interest in active learning. Most of the intro-
duced methods rely on smart sampling strategies over the SVM
margin [32], [33], [34]. Some alternative approaches to work
with batches of selections per iteration have been presented,
and mainly rely on the concept of diversity between candidate
pixels [35], [33] or with respect to the current model [36],
or both [37]. Recent papers deal with new applications of
active learning algorithms: in [38], [39], active learning is
used to select the most useful unlabeled pixels to train a
semisupervised classifier, while in [11], [40] active queries are
used to correct for dataset shift in different areas of images.
A complete review of the field of active learning in remote
sensing can be found in [41].

In this paper, the Bayesian modeling and inference paradigm
is applied to kernel-based classifiers. This paradigm is used to
tackle both passive and active learning, as well as to address
the problem of parameter estimation for infinite dimensional
feature spaces, and consequently for problems where basis
selection cannot be carried out explicitly. The current work
presents the novel introduction of nonparametric Bayesian
learning for remote sensing image classification both in purely
supervised and active learning settings. This approach pro-
poses an iterative procedure to maximize the marginal of the
observations and, to the best of our knowledge, this is the
first paper where nonparametric Bayesian methods are used in
Active Remote Sensing Images Classification. The presented
methods actually go one step further by extending standard
nonparametric large margin techniques, such as SVM, which
are typically used for image segmentation applications. Non-
parametric Bayesian modeling and inference paradigms are
introduced here to tackle the problem of kernel-based remote
sensing image classification with the resulting major advantage
of automatically learning the values of the (hyper)parameters
from the data and thus no ad hoc cross-validation tun-
ing schemes are necessary. This Bayesian methodology is
appropriate for both finite and infinite dimensional feature
spaces. The particular problem of active learning is addressed
by proposing an incremental/active learning approach based
on three different approaches: the maximum differential of
entropies, the minimum distance to decision boundary, and
the minimum normalized distance. Comparison with random
sampling and standard active learning methods, such as margin
sampling, or entropy-query-by-bagging, reveals a systematic
overall accuracy gain and faster convergence with the number
of queries.
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The remainder of the paper is organized as follows. Sec-
tion II introduces the basic notation to perform Bayesian mod-
eling. Section III presents the Bayesian inference framework
proposed in this paper. We first introduce the basic tools and
then the novel formulations for parameter estimation, active
learning data classification and prediction. Section V illustrates
the performance of the proposed method in multispectral
image segmentation. Conclusions are outlined in Section VI.

II. PROBLEM STATEMENT AND BAYESIAN MODELING

Let us introduce the basic problem formulation and notation.
Let n be the number of pixels of a d-dimensional hyperspectral
image, {xi|i = 1, . . . , n}, x ∈ Rd we want to classify. The
general two-class supervised classification problem we tackle
here defines a classification function of the form

y(x) = φ>(x)w + b+ ε, (1)

where the mapping φ : X → H maps the observed data
point (samples, spectra) x ∈ X into a higher L-dimensional
(possibly infinite) Hilbert feature space H. Note that for a K-
class problem, the decision function implies K independent
classification functions of the form yk(x) = φ>(x)wk+ bk+
εk, k = 1, . . . ,K [4].

For the sake of simplicity of the notation, we will focus
here on the binary case. However, its extension to multiclass
scenarios is straightforward2. Therefore, for a data point, x, the
output y(x) ∈ {0, 1} consists of a binary coding representation
of its classification as belonging to class C0 or C1, respectively,
w is a vector of size L × 1 of adaptive parameters to be
estimated, b represents the bias in the classification function,
and ε is an independent realization of the Gaussian distribution
N (0, σ2).

For a training set, we already know the classification
output y(xi) associated with the feature samples φ(xi), i =
1, . . . ,M , with M the number of samples, and therefore we
can write

p(y|w, b, σ2) =

M∏
i=1

N (y(xi)|φ>(xi)w + b, σ2), (2)

where y = (y(x1), y(x2), . . . , y(xM ))>. Since xi, i =
1, . . . ,M , will always appear as conditioning variable, for
the sake of simplicity, we have removed the dependency on
x1, . . . ,xM in the left-hand side of the equation. We note that,
for infinite dimensional feature vectors φ(xi), w is infinite
dimensional.

The Bayesian framework allows us to introduce information
about the possible value of w in the form of a prior distribu-
tion. Since the likelihood function defined in Eq. (2) is the
exponential of a quadratic function of w, its corresponding
conjugate prior should be a Gaussian distribution [4] so that
the posterior will also be Gaussian. In this work, we consider a
particular form of the Gaussian prior in which each component

2Extension to multiclass problems can be accomplished in many different
ways by following standard schemes: one-versus-all, one-versus-one, pure
multiclass schemes, or even sophisticated puncturing alternatives. We suggest
here the use of a one-versus-all scheme, which typically gives rise to simpler
and highly competitive results [42].

of w independently follows a Gaussian distribution N (0, γ2).
Notice that this distribution can also be obtained utilizing the
Gaussian Process framework [4]. When the feature vectors are
infinite dimensional, we will not make explicit use of this prior
distribution but still we will be able to carry out parameter
estimation, prediction, and active learning tasks.

III. PROPOSED BAYESIAN INFERENCE METHOD

Due to the possible use of infinite dimensional feature
spaces we will mainly use the marginal distribution of the
observations to perform inference tasks, that is, parameter
estimation, prediction and active learning and avoid, when
possible, the use of the posterior distribution of the adaptive
parameters, w, since it cannot be calculated for infinite di-
mensional spaces. However, when a finite dimensional space
is used, we will also calculate the posterior distribution in this
section.

A. Marginal Distribution of y

The marginal distribution of y can be obtained by integrat-
ing out the vector of adaptive parameters w. It can easily be
shown, see for instance [4], that

p(y|b, γ2, σ2) = N (y|b1,C), (3)

with
C = γ2ΦΦ> + σ2I, (4)

where Φ is the design matrix whose i-th row is φ>(xi), and
1 is a column vector with all its M components equal to 1.

It is important to note that we do not need to know the
form of Φ explicitly to calculate this marginal distribution. We
only need to know the Gram matrix K = ΦΦ>, which is an
M×M symmetric matrix with elements Knm = k(xn,xm) =
φ>(xn)φ(xm). It has to be a positive semidefinite matrix
(see [1]), i.e., we only need to know the kernel function
k(·, ·) that represents the inner product in the new feature
space to calculate the marginal distribution. This leads to the
construction of kernel functions k(x,x′) for which the Gram
matrix K is positive semidefinite for all possible choices of
the set {xn}. Note that, even if Φ has an infinite number of
columns, which corresponds to the case of φ(xi) being an
infinite dimensional feature vector, we can still calculate K of
size M ×M by means of the kernel function. Consequently,
the new feature space dimension depends of the selected kernel
function.

It is also worth noting that the above marginal distribution
can be obtained by assuming that y consists of independent
additive noisy observations, with variance γ2, of a Gaussian
process with mean b and covariance K.

For a new sample x∗ the distribution of

yM+1 =

(
y

y(x∗)

)
, (5)

has the form

p(yM+1|b, γ2, σ2) = N (yM+1|b1M+1,CM+1), (6)
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with CM+1 = γ2ΦM+1Φ
>
M+1 + σ2IM+1, which can be

written as
CM+1 =

(
C k
k> c

)
, (7)

where C has been defined in Eq. (4) and

k> = γ2φ>(x∗)Φ
>, (8)

c = γ2φ>(x∗)φ(x∗) + σ2. (9)

Furthermore, the conditional distribution p(y(x∗)|y) is a
Gaussian distribution with mean m(x∗) and variance v(x∗)
given by

m(x∗) = b+ γ2φ>(x∗)Φ
>C−1(y − b1), (10)

v(x∗) = c− k>C−1k. (11)

B. Posterior Distribution of w

When the feature space is finite dimensional we can also
calculate the posterior distribution of w, which is given by
(see [4]),

p(w|y, b, γ2, σ2) =

N (w|Σw|y,γ2,σ2σ−2Φ>(y − b1),Σw|y,γ2,σ2), (12)

where
Σw|y,γ2,σ2 = (σ−2Φ>Φ + γ−2I)−1.

Notice that m(x∗) defined in Eq. (10) can be expressed in
terms of E[w] as

m(x∗) = φ(x∗)
>E [w] + b. (13)

C. Parameter Estimation

The last step in the Bayesian inference we are carrying out
is the estimation of the parameters involved in the models, that
is, the estimation of the values of γ2, σ2, and b. The value of
b can be easily obtained from Eq. (3) as

b =
1

M

M∑
i=1

y(xi). (14)

To estimate the values of γ2 and σ2 we use the Evidence
Bayesian approach without any prior information on these
parameters. The Evidence Bayesian approach [43], see [44],
[45] for other possible names, determines the values of the
parameters γ2 and σ2 by maximizing the marginal distribution
in Eq. (3) obtained by integrating out the vector of adaptive
parameters w. Intuitively, by integrating over w we are
searching for the best value of γ2 and σ2 for all possible
values of w. Differentiating 2 ln p(y|b, γ2, σ2) with respect to
γ2 and equating the result to zero, we obtain

tr[C−1ΦΦ>] = tr[(y− b1)>C−1ΦΦ>C−1(y− b1)]. (15)

Diagonalizing ΦΦ>, we obtain UΦΦ>U> = D, where
U is an orthonormal matrix and D is a diagonal matrix with
entries λi, i = 1, . . . ,M . We can then rewrite the above
equation as

M∑
k=1

λk
γ2λk + σ2

=

M∑
i=1

z2i
λi

(γ2λi + σ2)2
, (16)

where U(y − b1) = z with components zi, i = 1, . . . ,M .
Multiplying both sides of the above equation by γ2 we have

γ2 =

M∑
i=1

λi

γ2λi+σ2∑M
k=1

λk

γ2λk+σ2

γ2z2i
γ2λi + σ2

=

M∑
i=1

µi
γ2z2i

γ2λi + σ2
,

(17)
where

µi =

λi

γ2λi+σ2∑M
k=1

λk

γ2λk+σ2

. (18)

Note that µi ≥ 0 and
∑M
i=1 µi = 1.

Similarly, differentiating 2 ln p(y|γ2, σ2) with respect to σ2

and equating the result to zero, we obtain
M∑
k=1

1

γ2λk + σ2
=

M∑
i=1

z2i
1

(γ2λi + σ2)2
. (19)

Following the same steps we already performed to estimate
γ2, we obtain

σ2 =
M∑
i=1

νi
σ2z2i

γ2λi + σ2
, (20)

where

νi =

1
γ2λi+σ2∑M
k=1

1
γ2λk+σ2

. (21)

Note that, again, νi ≥ 0 and
∑M
i=1 νi = 1.

Equations (17) and (20) suggest the iterative procedure
described in Alg. 1 to estimate the parameters where the old
value of the parameters is used in the right hand side of the
equations to obtain a new estimate of the parameters in the
left hand side of the equations.

Algorithm 1 Parameter estimation

Using Eq. (14), compute b = 1
M

∑M
i=1 y(xi).

Compute U and λi, i = 1, . . . ,M , as the eigenvector matrix
and eigenvalues of ΦΦ>, respectively.
Set z = U(y − b1).
Initialize γ2 = 1, σ2 = 1.
repeat

Set γ2old = γ2, σ2
old = σ2.

Set γ2 =
∑M
i=1 µi γ

2
old z

2
i /(γ

2
old λi + σ2

old).

Set σ2 =
∑M
i=1 νi σ

2
old z

2
i /(γ

2
old λi + σ2

old).
until (γ2 − γ2old)

2/(γ2old)
2 < 10−6 and (σ2 −

σ2
old)

2/(σ2
old)

2 < 10−6.

D. Classification
Once the system has been trained, we want to assign a class

to a new value of x, denoted by x∗. We already know that the
conditional distribution p(y(x∗)|y) is a Gaussian distribution
with mean m(x∗) and variance v(x∗) given in Eqs. (10) and
(11). We classify x∗ utilizing m(x∗) and write

x∗ is assigned to
{
C1 if m(x∗) ≥ 0.5
C0 if m(x∗) < 0.5

. (22)

Notice that the classification of x∗ is based on the proximity
of the mean value of p(y(x∗)|y) to the value zero or one that
represents the classes C0 and C1, respectively.
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IV. PROPOSED ACTIVE LEARNING METHOD

Active learning starts with a small set of observations whose
class is already known. From these observations, the marginal
distribution of y, the conditional distribution of w given y, and
the parameters b, γ2, and σ2 are estimated using the procedure
described in the previous sections. In order to improve the
performance of the classifier we want to select a new training
sample x+, whose corresponding y(x+) will be learned by
querying the oracle. Let us now examine different ways to
select the new training sample.

A. Method 1: Maximum differential of entropies

Utilizing Eq. (10) and (11) we observe that, for a sample x
not already present in the training set, the distribution of y(x)
given the set of observations y has variance

v(x) = γ2φ>(x)φ(x)+σ2−γ4φ>(x)Φ>C−1Φφ(x), (23)

and consequently we can select the new training sample as the
one maximizing the variance of the prediction, that is,

x+ = argmax
x

v(x). (24)

Notice that using this criterion amounts to selecting the
sample the classifier is less certain about the class it belongs
to.

Let us relate this active method procedure to the one
proposed in [24], [31] for finite dimensional feature spaces.
The covariance matrix of the posterior distribution of w when
a new x is added to the training set is given by

Σx
w|y,γ2σ2 = (σ−2(Φ>Φ + φ(x)φ>(x)) + γ−2I)−1. (25)

For finite dimensional feature spaces it is proposed in [24],
[31] to add to the training set the sample with maximum
difference between the entropies of the posterior distribution
before and after adding the new sample, that is,

x+ = argmax
x

1

2
log |Σw|y,γ2,σ2 ||Σx

w|y,γ2,σ2 |−1. (26)

Let us first express this criterion in terms of the marginal
distribution of the observations in order to remove the need of
using finite dimensional feature spaces. We note that

log|Σw|y,γ2,σ2 ||Σx
w|y,γ2,σ2 |−1

= log |I + σ−2φ(x)φ>(x)(σ−2Φ>Φ + γ−2I)−1|
= log(1 + σ−2φ>(x)(σ−2Φ>Φ + γ−2I)−1φ(x)), (27)

and using

(σ−2Φ>Φ + γ−2I)−1 = γ2I− γ4Φ>C−1Φ, (28)

we can write Eq. (27) in terms of the marginal distribution of
the observations as

log |Σw|y,γ2,σ2 ||Σx
w|y,γ2,σ2 |−1 =

= log(1 + σ−2γ2φ>(x)φ(x)− σ−2γ4φ>(x)Φ>C−1Φφ(x))

= log(1 + σ−2γ2φ>(x)φ(x)

− σ−2γ4φ>(x)Φ>Σ−1y|γ2,σ2Φφ(x)). (29)

Consequently, all needed quantities to select x+ can be
calculated without knowledge of the feature vectors and
the posterior distribution of the possibly infinite dimensional
adaptive parameters and using only kernel functions and the
marginal distribution of the observations.

Furthermore we have

log |Σw|y,γ2,σ2 ||Σx
w|y,γ2,σ2 |−1 = log(σ−2v(x)), (30)

and consequently both criteria coincide. Notice that, as we
have already mentioned, we have also shown that the max-
imum differential of entropies criterion can be utilized over
infinite dimensional feature spaces.

B. Method 2: Minimum distance to decision boundary

In our classification problem the decision boundary corre-
sponds to the set

Π =
{
x ∈ X : φ>(x)E[w] + b− 0.5 = 0

}
. (31)

We can then select the next sample to be included in the
training set by using

x+ =argmin
x

d2(x,Π)

= argmin
x

(φ>(x)E [w] + b− 0.5)2

‖E [w] ‖2
=argmin

x
(m(x)− 0.5)2. (32)

Note that this method provides a Bayesian formulation of the
SVM margin sampling heuristic (see [41]).

C. Method 3: Minimum Normalized Distance

The two active learning methods described above take into
consideration only partial aspects of the conditional distri-
bution p(y(x∗)|y). While maximum differential of entropies
utilizes the variance of this distribution, it does not use the
distance to the decision boundary. On the other hand, the
minimum distance to the decision boundary criterion is based
on the mean of this conditional distribution and does not take
into account the uncertainty of the distribution. It is obviously
very easy to imagine scenarios where these two criteria will
not select the best sample, either because it is too far from the
decision boundary and, hence, having large variance does not
represent a problem, or because, although the sample is the
closest to the decision boundary, its uncertainty is very small
and consequently it may not be the best sample to be included
in the training set.

We can then use the following active learning procedure
which combines precision and proximity to the decision
boundary

x+ =argmin
x

E
[
(y(x)− 0.5)2

v(x)

]
, (33)

where the expected value is calculated utilizing the conditional
distribution p(y(x)|y) defined in Eqs. (10) and (11).

Notice that since

E
[
(y(x)− 0.5)2

v(x)

]
= 1 +

(m(x)− 0.5)2

v(x)
, (34)
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we can rewrite this criterion as

x+ =argmin
x

(m(x)− 0.5)2

v(x)
(35)

D. Multiclass Extension of the Active Learning Methods

Here we extend the proposed active learning methods to deal
with K-class problems. Recently, arquitectures for multiclass
active learning have been proposed. For instance, in [33]
authors propose the MCLU technique which selects the most
uncertain samples according to a confidence score based on
the distances to all separation hyperplanes. Note, however,
that this approach is specific to maximum margin algorithms
like SVM, which is not our case. In this paper, nevertheless,
we will use the classical one-versus-all strategy for tackling
multiclass problems. Hence, for each candidate x, K different
pair of values {mk(x), vk(x)}k=1,...,K are obtained. These
values are used in Eqs. (24), (32) or (35), depending on the
selected method, that is finally optimized with respect to x
and k.

V. EXPERIMENTAL RESULTS

In this section, the proposed method is applied to both
purely supervised and active remote sensing image classi-
fication settings. The method is compared to the standard
SVM algorithm in the case of supervised classification when
few labeled samples are available. This problem is typically
encountered in remote sensing image classification, in which
active learning can improve performance. Comparison to ran-
dom sampling and standard active learning methods, such
as margin sampling and entropy-query-by-bagging is then
performed. In all cases we provide the overall accuracy, the
estimated Cohen’s kappa statistic and Z-score 3 as measures
of accuracy and class agreement, respectively. All experiments
were implemented using Matlab c© and run on an Intel c©

i7@2.67GHz. The Matlab c© source code of the proposed
method is available at http://decsai.ugr.es/vip/resources/BAL.
html for the interested reader. Additionally, a video demon-
stration of the method is available at the same location.

A. Study area and data collection

Two multispectral images are used in our experiments for
supervised and active learning classification:
• Supervised classification with Landsat imagery. The im-

age was acquired in the context of the Urban Expansion
Monitoring project [46] over the city of Rome (Italy)
by the Landsat TM sensor in 1999. An external Digital
Elevation Model (DEM) and a reference land cover map
provided by the Italian Institute of Statistics (ISTAT)
were also available. The available features were the seven
Landsat bands, two SAR backscattering intensities (0–35
days), and the SAR interferometric coherence.
Since image features come from different sensors, the
first step was to perform a specific processing and con-
ditioning of optical and SAR data, and to co-register all

3Z-score is defined as the ratio between the estimated kappa statistic and
its standard deviation.

images [46]. In particular, the seven bands of Landsat
TM were co-registered with the ISTAT classification data,
and resampled to 30×30 m with the Nearest-Neighbor
algorithm. The registration for the multi-source images
was performed at the sub-pixel level obtaining a root-
mean-squared error of about 10 m, which potentially
enables good urban classification ability. We also ap-
pended two SAR features: the estimated coherence, Co,
and a spatially filtered version of the coherence, FCo,
which is specially designed to increase the urban areas
discrimination [46]. After this preprocessing, all features
were stacked at the pixel level, and each feature was
standardized. The goal is the discrimination of urban (C1)
versus non-urban (C0) land-cover classes.

• Active classification with ROSIS imagery. The second
image was acquired by the DAIS7915 sensor over the
city of Pavia (Italy), and constitutes a challenging 9-class
urban classification problem dominated by directional
features and relatively high spatial resolution (5 meters
pixels). We took into account only 40 spectral bands of
reflective energy in the range [0.5, 1.76]µm, thus skipping
thermal infrared bands and middle infrared bands above
1958 nm. We carried out a Principal Components Anal-
ysis (PCA) to reduce the dimensionality of the problem
and considered the 10 first components for each pixel
that have provided good classification performance in
previous works (see, for instance, [47]).

B. Supervised Classification Results

For the case of supervised classification, we report results
both on the binary classification problem of the Rome scene
and the multiclass classification problem of the Pavia scene
and compare the performance of our approach to the standard
SVM approach.

From the Rome image, of size 1440×930 pixels, a training
set of 500 randomly selected pixels was obtained, and results
are given in a representative test set of 10000 samples. To
obtain unbiased conclusions from the results, the process was
repeated 10 times with different randomly selected training and
test sets, and the average accuracies are given. In all cases, a
Gaussian kernel was used. Using 3-fold cross-validation with
the SVM as classifier, a kernel lengthscale σ = 100 was
selected. Although we could have used Bayesian inference
to estimate the kernel parameter (see, for instance, [4]) we
decided to use the same kernel parameter on both methods and
concentrate on the remaining model parameters. Notice that
this decision slightly favors SVM since the kernel parameter
is estimated seeking the best SVM performance. For the case
of SVMs, the regularization parameter C was tuned by 3-fold
cross-validation on the training dataset. Our method does not
need any heuristic tuning since hyperparameters are estimated
automatically in the training phase. The proposed method
needed 0.33 seconds to complete the training while the SVM
needed 1.94 seconds.

Table I shows the obtained results in the 10 independent
realizations and their average and variance. Although SVM
obtains better results in many cases, the differences are not
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TABLE I
CLASSIFICATION ACCURACY FOR SVM AND THE PROPOSED METHOD IN
THE ROME (1999) SCENE. OVERALL ACCURACY, ESTIMATED COHEN’S

STATISTIC AND Z-SCORE RESULTS ARE GIVEN FOR ALL 10 REALIZATIONS
AND AVERAGED.

Overall Kappa
accuracy, OA[%] statistic, κ Z-score, Z

Realization Proposed SVM Proposed SVM Proposed SVM
1 96.66 96.95 0.895 0.905 158.04 169.50
2 96.48 96.61 0.890 0.896 154.57 161.07
3 97.27 96.96 0.914 0.905 177.60 168.35
4 96.24 96.54 0.883 0.894 150.20 160.00
5 97.10 96.54 0.909 0.892 172.39 157.37
6 96.64 95.99 0.893 0.874 156.69 142.59
7 96.86 96.58 0.905 0.898 170.81 165.14
8 96.76 96.72 0.895 0.896 156.32 158.44
9 97.02 96.71 0.901 0.900 174.92 167.36

10 96.99 97.00 0.906 0.908 170.54 173.04
Average 96.80 96.66 0.90 0.90 164.21 162.29
Variance 0.0957 0.0867 < 10−5 < 10−5 98.95 74.66

TABLE II
MEAN CONFUSION MATRIX FOR SVM AND THE PROPOSED METHOD (IN

BRACKETS). WE SHOW THE AVERAGE KAPPA STATISTIC, ALONG WITH ITS
VARIANCE, Z-SCORE AND CONFIDENCE INTERVALS FOR BOTH METHODS.

C0 C1
Ĉ0 7802.80 (7846.30) 169.00 (198.30)
Ĉ1 165.00 (121.50) 1863.20 (1833.90)

SVM Proposed
OA [%] 96.66% 96.80%
κ 0.90 0.90
σ2
κ 3.07e-05 3.02e-05

Z-score 162.29 164.21
κ CI [0.886,0.908] [0.889,0.910]

statistically significant, as assessed by the average values of
the three measures. Table II shows the average confusion
matrices for the 10 realizations, along with its variance, Z-
score and confidence intervals for both methods. These results
also confirm the numerical and statistical similarity of the
results. Finally, Fig. 1 shows the classification maps obtained
by SVM and the proposed method in a particular realization.
Visual results match the previous numerical accuracies as no
difference is obtained. The statistical significance of the kappa
statistic also confirms this issue.

A second experiment was performed on the 9-class urban
classification problem of the Pavia scene depicted in Fig. 2a,
which has 400×400 pixels. Training was done on 1260 ran-
domly selected pixels (140 from each class), and a test set of
13314 representative samples was used. Again, ten different
realizations were used to obtain unbiased conclusions from
the results. We used a Gaussian kernel, whose lengthscale
σ = 500 was selected using 3-fold cross-validation with
the SVM as classifier. As in the previous experiment, the
regularization parameter C for the SVM was tuned by 3-fold
cross-validation on the training dataset while the proposed
method estimated all hyperparameters automatically in the
training phase. The proposed method needed 14.32 seconds
to complete the training while the SVM needed 9.09 seconds.
This is explained by the fact that SVM estimates a single
value of C for all classifiers while the proposed method has
to estimate the value of the hyperparameters for each classifier.

Table III shows the obtained results in the 10 independent

(a) RGB (b) Ground truth

(c) SVM (96.71 %, 0.9) (d) Proposed (97.02%, 0.901)

Fig. 1. (a) RGB composite of the Landsat multispectral image, (b) ground
truth showing the urban (yellow), non-urban (blue) classes and background
(black), (c) classification map with SVMs, and (d) classification map with
the proposed method. Overall accuracy and kappa statistic are given in
parentheses.

TABLE III
CLASSIFICATION ACCURACY FOR SVM AND THE PROPOSED METHOD IN

THE PAVIA SCENE. OVERALL ACCURACY, ESTIMATED COHEN’S STATISTIC
AND Z-SCORE RESULTS ARE GIVEN FOR ALL 10 REALIZATIONS AND

AVERAGED.

Overall Kappa
accuracy, OA[%] statistic, κ Z-score, Z

Realization Proposed SVM Proposed SVM Proposed SVM
1 98.24 98.10 0.979 0.977 705.28 678.51
2 97.75 98.13 0.973 0.977 622.88 683.29
3 98.31 98.28 0.979 0.979 721.51 712.40
4 98.42 98.42 0.981 0.981 743.00 744.51
5 98.46 98.11 0.981 0.977 754.33 680.18
6 97.95 98.36 0.975 0.980 653.39 730.60
7 98.48 98.27 0.981 0.979 760.01 710.51
8 98.29 98.23 0.979 0.978 714.96 701.91
9 98.37 98.30 0.980 0.979 733.20 715.85
10 98.18 97.87 0.978 0.974 693.48 640.06

Average 98.25 98.21 0.979 0.978 710.20 699.78
Variance 0.0545 0.0253 < 10−6 < 10−6 1926.64 906.97

realizations and their average and variance. The proposed
method provides better results in almost all cases, although
the differences are not statistically significant, as assessed by
the Z score of the κ statistic for both classifiers. Unlike
the overall accuracy, the kappa statistic avoids the chance
effect, and a value above 0.8 is typically considered to be
a ‘very good’ agreement. The kappa index confidence interval
is [0.975, 0.980] for the proposed method and [0.975, 0.981]
for the SVM. These results also confirm the numerical and
statistical similarity of the results. Finally, Fig. 2 shows the
classification maps obtained by SVM and the proposed method
in a particular realization. Visual results match the previous
numerical accuracies as no difference is obtained.

C. Active Learning Results

In this second battery of experiments, we illustrate the
capabilities of the proposed active learning methods. Clas-
sification experiments are conducted using the Rome (Italy)
scene acquired in 1999 whose RGB bands are depicted in
Fig. 1a. The proposed Bayesian active learning methods are
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(a) RGB (b) Ground truth

(c) SVM (98.27%, 0.979) (d) Proposed (98.48%, 0.981)

Water Meadows Parking lot Bitumen
Asphalt Bare soil Brick roofs
Trees Shadows Background

Fig. 2. (a) False color Pavia multispectral image composed by bands
[8, 4, 1], (b) ground truth showing classes in colors and background in black,
(c) classification map with SVMs, and (d) classification map with the proposed
method. Overall accuracy and kappa statistic are given in parentheses.

identified as follows: maximum differential of entropies (BAL-
1), the minimum distance to decision boundary (BAL-2), and
the minimum normalized distance (BAL-3). They are com-
pared to SVM-based approaches following similar heuristics:
margin sampling (MS) [21] and entropy-query-by-bagging
(EQB) [36]. The naı̈ve (passive) approach of random sampling
(RS) is included here as baseline.

Figure 3 shows the average accuracy curves over 10 real-
izations with different randomly selected training, pool and
test sets as a function of the number of training samples.
The initial training set is formed by only 7 labeled pixels
for each class, while the pool set has 986 spectra, and the
test set is formed by 10000 samples. Although the proposed
method can be used for the selection of a batch of samples,
in the experiments we report results by adding one sample at
each iteration (query). At each iteration the SVM model was
retrained using 3-fold cross validation on the current training
dataset to tune the regularization parameter C. The parameters
for the proposed method were automatically estimated using
Eqs. (17) and (20). For the EQB method, six classifiers were
used. The compared methods perform remarkably differently
from the very beginning: while all of them start from ap-
proximately Z = 80, a fast convergence is observed for
all methods but RS, as expected. MS and EQB show very
similar performance, and both outperform our proposed BAL-
1. The curves also reveal better results at convergence for
the BAL-2 and BAL-3 methods. Nevertheless, for a low
number of iterations (between 25-50), BAL-3 shows much
better results. The dashed line represents the upper bound for

TABLE IV
FIGURES OF MERIT AT CONVERGENCE IN THE ROME (1999) SCENE

(AFTER 100 SAMPLES WERE ADDED) FOR ALL LEARNING METHODS.

Methods Avg. OA σ2
OA Avg. kappa σ2

κ Z-score κ CI
SVM-RS 95.09 0.7520 0.8467 0.0008 128.79 [0.83,0.86]
SVM-MS 97.08 0.0894 0.9095 0.0001 175.23 [0.90,0.92]

SVM-EQB 97.06 0.1009 0.9094 0.0001 175.53 [0.90,0.92]
BAL-1 96.41 0.1847 0.8869 0.0002 152.87 [0.88,0.90]
BAL-2 97.31 0.0921 0.9166 0.0001 183.82 [0.91,0.93]
BAL-3 97.34 0.0412 0.9173 < 10−4 184.28 [0.91,0.93]

TABLE V
TOTAL RUNNING TIME IN SECONDS FOR ALL ACTIVE LEARNING METHODS

IN THE ROME(1999) SCENE.

SVM-RS SVM-MS SVM-EQB BAL-1 BAL-2 BAL-3
179 185 235 9 9 9

OA=97.45 and Z-score=187.62. Table IV gives the accuracy,
kappa and Z agreement scores after the full iterative process,
when 100 samples were added, and confirms the suitability of
the proposed methods, specifically BAL-2 and BAL-3, which
show higher accuracies and lower variance. Table V shows
the total running time in seconds, after 100 queries, for the
compared methods, including the initial learning stage and the
parameter estimation at each query. It is worth mentioning that
the running time for SVM based methods, MS and EQB, is
much higher than the time for the proposed Bayesian active
learning methods.

In addition, a multiclass active learning experiment was
performed in the Pavia scene. In this experiment, we compare
the multiclass extension of the proposed methods with the
multiclass versions of RS, MS and EQB. Also, the Multiclass
Level Uncertainty method (MCLU) [33] was included in the
comparison. Figure 4 shows the average accuracy curves over
10 realizations with different randomly selected training, pool
and test sets as a function of the number of training samples.
The initial training set is formed by only 5 labeled pixels
for each class, while the pool set has 13076 spectra, and
the test set is formed by 1453 samples. For the parameter
selection we followed the same procedure as in the previous
experiment. The proposed methods start with an advantage
of 2% with respect to the SVM based methods that, in the
case of the proposed BAL-2 and BAL-3 methods, is kept until
iteration 40. After that, MS, EQB, MCLU, BAL-2 and BAL-
3 have a similar behavior. We think that this is due to the
way the parameters are estimated. SVM methods use cross-
validation to estimate the parameters and, when the training
set is small, it does not provide accurate results. However,
the proposed method provides a precise estimation even if the
number of training samples is very small. BAL-1 performs
similarly to RS which confirms that maximizing the variance
of the prediction is not a good selection method by itself
but, in some cases, helps when combined with the minimum
distance to the decision boundary, as in BAL-3 method. Table
VI shows the numerical results when 100 samples were added.
From those figures of merit we observe that MCLU provides
slightly better results than MS, EQB, BAL-2 and BAL-3. The
dashed line represents the upper bound for OA=98.50 and Z-
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Fig. 3. Average accuracy (left) and Z-score (right) learning curves in the Rome(1999) scene.
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Fig. 4. Average accuracy (left) and Z-score (right) learning curves in the Pavia scene.

TABLE VI
FIGURES OF MERIT AT CONVERGENCE IN THE PAVIA SCENE (AFTER 100

SAMPLES WERE ADDED) FOR ALL ACTIVE LEARNING METHODS.

Methods Avg. OA σ2
OA Avg. kappa σ2

κ Z-score κ CI
SVM-RS 95.09 0.3812 0.9407 < 10−4 139.62 [0.93,0.95]
SVM-MS 97.56 0.2055 0.9706 < 10−4 202.10 [0.96,0.98]

SVM-MCLU 98.12 0.0934 0.9774 < 10−4 230.84 [0.96,0.99]
SVM-EQB 97.90 0.1213 0.9746 < 10−4 217.61 [0.96,0.98]

BAL-1 94.51 1.7123 0.9338 0.0003 133.54 [0.92,0.95]
BAL-2 97.92 0.2092 0.9749 < 10−4 220.04 [0.97,0.98]
BAL-3 97.69 0.2791 0.9720 < 10−4 208.67 [0.96,0.98]

TABLE VII
TOTAL RUNNING TIME IN SECONDS FOR ALL ACTIVE LEARNING METHODS

IN THE PAVIA SCENE.

SVM-RS SVM-MS SVM-MCLU SVM-EQB BAL-1 BAL-2 BAL-3
380 397 401 812 148 165 183

score=260.99. Table VII shows, for the compared methods, the
total running time in seconds after 100 queries, including the
initial learning stage and parameter estimation at each query.
Again the running time for SVM based methods is much
higher (from 2 to 5 times depending on the method) than
the time required by the proposed Bayesian active learning
methods.

VI. CONCLUSIONS

This paper presented a non-parametric Bayesian learning
approach based on kernels for remote sensing image classi-
fication. The Bayesian methodology efficiently tackles purely
supervised and active learning approaches, and shows com-
petitive performance when compared to SVMs and recent
active learning approaches. For the latter setting, an incre-
mental learning approach based on three different approaches
was presented: the maximum differential of entropies, the
minimum distance to decision boundary, and the minimum

normalized distance. Automatic parameter estimation is solved
by using the evidence Bayesian approach, the kernel trick, and
the marginal distribution of the observations instead of the
posterior distribution of the adaptive parameters.

The proposed approach was tested in several scenes dealing
with the urban monitoring problem from multispectral and
SAR data. We observed that, while similar results are obtained
by SVMs in supervised mode, an improvement in accuracy
and convergence is observed for the active learning scenario.
Interestingly our methods do not only provide point-wise class
predictions but confidence intervals.

Future work will deal with the application to more challeng-
ing multitemporal image segmentation and change detection
problems, in which a confidence map could be readily ex-
ploited. Also, it is interesting to study the performance of the
model in the presence of a reduced number of labeled samples
and much higher dimensionality scenarios.
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