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a b s t r a c t

The detection and location of objects concealed under clothing is a very challenging task that has crucial
applications in security. In this domain, passive millimeter-wave images (PMMWIs) can be used. However, the
quality of the acquired images, and the unknown position, shape, and size of hidden objects render this task
difficult. In this paper, we propose a machine learning-based solution to this detection/localization problem.
Our method outperforms currently used approaches. The effect of non-stationary noise on different classification
algorithms is analyzed and discussed, and a detailed experimental comparative study of classification techniques
is presented using a new and comprehensive PMMWI database. The low computational testing cost of this solution
allows for its use in real-time applications.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Millimeter and submillimeter waves are very high-frequency elec-
tromagnetic radiations with wavelengths in the ranges 30–300 GHz
and 0.3–3 THz, respectively. Images in both ranges can be obtained
by employing wave scanners. Depending on wavelength, two types of
scanners can be distinguished: active, which direct waves from 350 to
800 GHz to a subject, and collect and interpret the reflected energy; and
passive scanners, which create images using background radiation and
that emitted by human bodies or objects in the range 30–350 GHz.

Active scanners provide images with higher signal-to-noise ratios
(SNR), but problems related to privacy intrusion have prevented their
use in many applications. PMMWIs (see Fig. 1) acquired using passive
scanners are currently being used in anti-theft and threat detection
systems (Alexander et al., 2008) in places like airports and warehouses.
Unfortunately, passive millimeter sensors (and consequently, their im-
ages) suffer from the following problems: low SNR, low resolution, and
space-variant signal intensity. These factors degrade the performance of
detection systems as they tend to produce a very large number of false
positive detections and miss real threats. Detection systems based on
passive scanners must deal with the unknown position, shape, size, and
transmission properties of the hidden objects.

In this paper, we use artificial intelligence techniques to propose
a new detection approach capable of dealing with the poor quality of
PMMWIs. Our approach is based on feature extraction and classification
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algorithms, in contrast to current methods that only aim to enhance the
SNR of images and apply simple detection algorithms.

Despite their enormous potential for security applications, the artifi-
cial intelligence community has so far shown little interest in PMMWIs.
This is likely because of the absence of large databases of PMMWIs
to work with. For this work, we took pictures of people of different
complexions wearing 12 objects on 10 parts of the body: forearm, chest,
stomach, thigh, ankle (front), waist (side), armpit (side), arm, ankle
(lateral) thigh (lateral), and two images without any object. Images
of people wearing two objects in different locations were also taken.
Real hidden threats were simulated using objects of different sizes with
millimeter wave responses similar to real threats. A cutter, gel, a clay
bar, a simulated gun, sugar, frozen peas, cologne, a bag with metal
pieces, flour, a bottle of water, and a hydrogen peroxide bottle were
used. The dataset consisted of 463 pictures of people with no objects,
2144 pictures containing one object, and 702 pictures containing two
objects. More details are provided in Appendix. The passive scanner used
in this work provided 125 × 195-pixel images. The sizes of the hidden
objects of interest ranged from 35 × 39 to 10 × 10 pixels, corresponding
to roughly 2752.39 cm2 to 201.64 cm2 object areas, respectively.1 In the
section detailing the experiments, a discussion of how the size, location,
and composition of the threat influence the detection is provided.

1 The image database used in this paper can be downloaded at http://decsai.ugr.es/pi/
pmmwi/testdata.html.
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Fig. 1. Examples of PMMWI. Hidden objects correspond to whiter areas within the body. Unfortunately, not all whiter areas correspond to hidden objects.

This paper contains two major contributions. First, it provides a
new real time solution to the detection/location of hidden objects in
PMMWIs using a machine learning approach. Second, it introduces a
new and comprehensive database of PMMWIs that encourages research
on this challenging problem. In the remainder of the paper, the terms
hidden object and threat are used interchangeably.

The rest of the paper is organized as follows: In Section 2, the current
literature on PMMWI acquisition and threat detection is reviewed.
Section 3 describes the image enhancement technique we propose to
improve the quality of acquired images. Section 4 describes the image
patches extracted from the images in the dataset. Section 5 discusses
meaningful features extracted from each patch to solve the threat
detection problem, and these features are compared in the experimental
section. Once features have been extracted from each patch, a formal
definition of our solution using a patch detection function and an image
classification function is presented in Section 6. These two functions are
described in detail in Section 7. An exhaustive experimental validation
of the proposed classifiers is presented in Section 8. Conclusions are
drawn in Section 9. Appendix contains a complete description of the
created dataset.

2. Related work

The seminar work (Yujiri et al., 2003) described the phenomenology
that defines the performance of PMMW imaging systems, explained
the technological advances that have made these systems a reality,
and presented some of the applications for which these sensors can be
used (see also Yujiri, 2006). Oka et al. (2008) examined trends in
millimeter wave imaging technologies, focusing mainly on applications
and technical parameter variations for security surveillance and non-
destructive inspections.

As we have indicated, the use of very high frequencies in active sen-
sors compromises the privacy of the people being scanned. Furthermore,
due to their very narrow frequency range detection, passive terahertz
sensors (0.3–0.35 THz) must be calibrated to detect specific materials
making them blind to others. This favors the interest in and the wide
range application of PMMW sensors. However, these sensors require the
use of robust and efficient algorithms to detect concealed objects.

Image processing techniques have been utilized on PMMWIs. Denois-
ing, deconvolution, and enhancement techniques have been applied to
these images, (see Han et al., 2010; Mateos et al., 2016; Liu et al., 2016;
Fang et al., 2017; Yang et al., 2010; Yu et al., 2011). In this paper,
we develop an image denoising technique tailored to the sensors used
during the acquisition process. Note that the use of compressive sensing
and super-resolution techniques on these images has also been explored
(see Babacan et al., 2011; Saafin et al., 2016).

Few studies have been devoted to the development of robust algo-
rithms for the automatic detection of hidden objects when this type
of image is used. In Haworth et al. (2004), an MMW imager which

employed a 1D scanned focal-plane array operating at 0.35 THz and pro-
duced a real-time head-to-toe video output is utilized. K-means was used
to segment MMWIs into three regions: background, body, and threats.
However, the method may not detect a threat when its associated region
is not connected to the body. To solve this problem, the authors used
Active Shape Models (ASM) inside the body. However, this approach
does not guarantee adequate body segmentation. In Haworth et al.
(2006), Gaussian mixture models were used to characterize background,
body, and threat regions and segment the images. Although the reported
results were better than those in Haworth et al. (2004), this method
also produces an unconnected body segmentation. In Haworth et al.
(2007), the method was extended to detect and track metallic objects in
a sequence of MMWIs.

In Shen et al. (2008), for a passive terahertz imaging system, noise
was first removed from the image using anisotropic diffusion. Following
this, the boundaries of the concealed objects were detected. To model
the distribution of the temperature inside the image a mixture of Gaus-
sian densities was used. Curves were then evolved along the isocontours
of the image to identify the concealed objects. In Martínez et al. (2010),
the authors applied noise elimination and then image segmentation us-
ing local binary fitting (LBF). Two noise removal algorithms were used:
non-local means (NLM) and iterative steering kernel regression (ISKR).
Although this method’s detection rate was around 90%, its computing
time made it impractical for real-time applications. Furthermore, its
performance significantly decreased when used on noisy or low quality
images. In Sarkis and Mani (2012), a graph-cut algorithm was proposed
to segment threats, but its evaluation was inaccurate. In Yeom et al.
(2012), a method to detect and recognize threats in outdoor PMMWIs
is proposed. The threat detection was carried out through global and
local segmentation: at each level (global and local), a Gaussian mixture
model whose parameters were initialized using vector quantization (for
a different initialization approach see Yu et al., 2015) and optimized
through expectation maximization was used. This method was able to
detect threats, but was only tested on a small set of images and 2
types of threats. In Yeom et al. (2015), the same segmentation process
as in Yeom et al. (2012) was used, with the difference being the
initialization of the Gaussian mixture model using k-means clustering.
Shape features from the detected object were extracted and compared
with the true features with reasonable accuracy. In Agarwal et al.
(2014), a mean-standard deviation-based segmentation technique was
used and to detect and classify simple shape objects in MMWI images,
and a probability density function for this classification was proposed.
Furthermore, to improve the quality of the images the authors proposed
the use of a neuronal network. In Gómez et al. (2015), a highly
time efficient two-step algorithm, based on denoising and mathematical
morphology, was proposed. On noisy or low contrast images, it achieved
an acceptable detection rate but at the cost of a high false positive
detection rate. In Kumar et al. (2016), singular value decomposition
and discrete wavelet transform was used to ease the detection in MMWIs
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when thresholding was utilized. After this, a neuronal network was
used for target identification. In Mohammadzade et al. (2017), the
authors used principal component analysis and a two-layer classification
algorithm to distinguish between threats and normal objects.

Most of the reviewed techniques were oriented to obtain good
quality images which were then used in tandem with simple methods to
detect threats. In some cases, the methods were oriented to detect only
particular threat types evaluated on small datasets. The approach we
follow here is completely different, as it is entirely based on machine
learning from the spatial statistical information of the gray level of the
image and does not requires of geometric segmentation techniques. We
base our approach on image patch classification aiming for the best
accuracy/false positive trade-off. The approach is highly efficient; it can
achieve a 100% true detection rate with a relatively small false positive
detection rate. It can also be used to dissuade, for instance, robbery
either by customers or workers. In this case a 100% true detection
rate may not be achieved if good customers or workers are not to be
disturbed. However, a trade-off between accuracy and false positive
detection can always be achieved by tuning the model parameters. The
proposed approach achieved very good detection scores for medium–
low signal-to-noise ratio images. Preliminary results were presented
at López-Tapia et al. (2016), here we provide a formal definition of the
problem, new material on image pre-processing techniques, additional
experiments, and a deeper discussion.

3. Image enhancement

A natural question to consider is whether image filtering (smoothing,
contrast enhancement, etc.) helps the detection process. Fig. 2(c)–(d)
show the result of applying mean, median, Fig. 2(e)–(f), and bilateral,
Fig. 2(g)–(h), filters to observed passive images, Fig. 2(a)–(b).

We observed that to assign to each pixel an estimation of the most
frequent value in its neighborhood was a better smoothing criterion.
That is, for each pixel 𝑖, let 𝐲B𝑖 denote a block around 𝑦𝑖 in the
observed image 𝐲 and 𝑧𝑖(1),… , 𝑧𝑖(𝐾) denote K independent samples with
replacement from 𝐲B𝑖 . We then define:

𝑞𝑖 =
∑𝐾

𝑘=1 𝑧𝑖(𝑘)
𝐾

, (1)

assign 𝐲 = 𝐪 and repeat the process L times. The final processed image
is:

𝑥𝑖 = median(𝐲𝐵𝑖 ) (2)

We found that 𝐵 = 5 × 5 and 𝐿 = 5 produced satisfactorily processed
images (see Fig. 2(i)–(j)). Note that additional contrast improvement can
be observed in these images. In the experimental section, we analyze
how image processing improved the performance of the classifier.

4. Patch extraction

As mentioned in the Introduction, passive scanners provide very low-
resolution images (in our case, 125 × 195 pixel images). Because of
the small size of the threat regions and the possibility of having several
threats in the same image, threat detection was carried out using image
patches. A patch is a rectangular image piece centered on a pixel.

Due to the variability of the threat sizes described above, we used
patches at three scales on each pixel. These corresponded to patch sizes
of 39 × 39, 19 × 19, and 9 ×9 pixels, respectively. Only pixels whose
three patches were fully contained in the image (active pixels) were
considered. We used 𝐱𝑃𝑗 to denote the 39 × 39 patch centered on pixel
𝑗.

Let 𝑃𝐼 be a mapping that selects from an image 𝑖 in the image
dataset  = {𝑖, 𝑖 = 1,… , 𝑁𝐼} a subset of 39 × 39 patches  𝑖

𝐼 ,
specifically, 𝑃𝐼 (𝑖) =  𝑖

𝐼 . From each image, we extracted one 39 × 39
patch every 2 × 2 pixels, obtaining a total of 3476 patches per image.
From the full dataset, we obtained 11, 502, 084 patches (see Appendix).

Patches that fully covered a threat were labeled ‘‘positive’’ (+1); all
others were labeled ‘‘negative’’. (−1). Patches that partially overlapped
a threat were excluded from the training dataset. We acquired 392,494
positive instances and 9, 026, 123 negative instances. As the number of
negatives was much higher (approximately 23 times), and considering
that most of the negative patches were very similar, we used a subset of
these for training. We kept one negative sample from every 2 × 2
image block, meaning that we retained 1∕4 of the negative patches
we acquired. The final number of negative samples (2, 256, 530) was
approximately five times the number of positive ones. These patches
constituted the patch dataset  = ∪𝑁𝐼

𝑖=1
𝑖
𝐼 , associated with the image

dataset . Feature vectors were then extracted from each patch.

5. Feature extraction

All classifiers to be used in this work needed to be fed with feature
vectors. The pixel values in our 39 × 39 patches can be seen as a high-
dimensional feature vector where local spatial information is hidden
in the correlation between subsets of elements. In order to obtain an
adequate vector of more useful characteristics for each patch, where:
(a) spatial information is explicitly represented; and (b) individual
characteristics are as uncorrelated as possible, two multi-resolution
feature extraction techniques were utilized. Although the literature
on feature extraction is extensive, (for example, Nixon and Aguado,
2012), we focused on features expected to have good threat detection
capabilities.

We used Haar filters (Papageorgiou et al., 1998) and local binary
patterns (LBP) codes (Ojala et al., 1996) to create the feature vectors.
The corresponding feature vectors are denoted by 𝐱𝐹𝑗 , with 𝐹 = 𝐿𝐵𝑃
and 𝐹 = 𝐻𝑎𝑎𝑟, respectively. It is well-known that both filter banks
extract good neighboring features from an image; both features can be
computed very efficiently.

5.1. Haar filters

Haar filters (Papageorgiou et al., 1998) compute correlations of
different binary patterns with an image region. The pixel image values
in a white pattern are added and the difference between these values
and the sum of pixel image values in the corresponding black pattern
is calculated (see Fig. 3(a)–(j)). These patterns are expected to obtain
very positive values at patches containing a threat as body regions have
lower pixel values than threat regions. However, their responses will be
close to zero on pure background or body regions. Notice, for instance,
that the filter shown in Fig. 3(a) shares the pattern of the hidden object
in the row 1, column 2 image in Fig. A.9. Similarly, the filters in Fig.
3(b)–(c) are similar to the hidden object areas in the row 1, column 1
and row 1, column 3 images in Fig. A.9, respectively. Although the gray
levels of hidden objects and background are similar, hidden objects can
be recognized as they are attached to the body, a darker region. We have
used 115 filters on each patch resulting in a 3 × 115 feature vector per
active pixel, which will be denoted by 𝐱𝐻𝑎𝑎𝑟

𝑗 .

5.2. Local binary patterns

Local binary patterns (LBP) (Ojala et al., 1996) capture image local
structures by detecting gray level changes around each pixel. For every
pixel in a patch, a binary vector is computed by checking if its value
is greater than the value of a fixed number 𝑛 of pixels located at a
given radius 𝑟 around it. This binary vector is coded as an integer
number. The LBP feature vector of a patch is then calculated as the
histogram of these numbers obtained for all pixels in the patch. Different
radii can be used and the resulting feature vectors can be concatenated
resulting in a larger number of features. Regions with an inside strong
contrast due to the presence of boundaries between a hidden object and
body or background are highlighted. In this experiment, we used the
invariant-to-rotation LBP extension proposed in Ahonen et al. (2009)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Results of applying different image filtering techniques to (a) and (b). See text for details.

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j)

(k)

Fig. 3. Examples of Haar filters (a)–(j) and invariant to rotation LBP patterns for an 8 point neighborhood (k).

(see Fig. 3(k)). For each of the three patches described in the previous
section and centered on an active pixel, the histogram of all LBP
configurations was obtained using a radius 𝑟 ∈ {1,… , 4}, and several
points 𝑛 = 𝑟 ∗ 8 were built. The feature vector on each patch was
obtained by concatenating the histograms of its three associated regions.
In this case, there are 261 components and the feature vector will be
denoted by 𝐱𝐿𝐵𝑃𝑗 .

In the following section we formally define the statistical learning
framework we used to detect threats in PMMWIs. Its basic building
blocks will be the image patches and the features extracted from them.

6. Model

Given our image dataset  (see Section 4), our goal was to learn a
labeling function 𝑓 ∶  → {0, 1}𝑠, where 𝑠 is the image size, with the
lowest generalization error. This function assigns to each image pixel a
binary value {0, 1} indicating whether the pixel is part of a threat (1) or
not (0). Thus, our problem was defined as an object localization problem
using machine learning. We defined the function 𝑓 in two steps. First,

we detected potential threat regions (patches). Second, we determined
which pixels were considered to belong to real threats. The full image
dataset  was used to learn the function 𝑓, and its generalization error
was estimated using cross validation.

We used the patch dataset  defined in Section 4 to learn a patch
detection function 𝑓 ∶  → [0, 1]. We assumed, without loss of
generality, that the range of this function was the interval [0, 1] (note
that normalization can always be used). A binary classifier was built by
splitting the range of 𝑓 using a threshold to be learned.

Since the patch dataset  (see Section 4) has five times more negative
than positive patches, the set of negative patches used to learn an
ensemble of classifiers was partitioned. Let 𝑃 , 𝑁 define the subsets of
positive and negative labeled patches respectively  = 𝑃 ∪ 𝑁 . Let us
denote by 𝑛𝑃 and 𝑛𝑁 their cardinals, where 𝑛𝑃 ≪ 𝑛𝑁 and 𝑛𝐶 = 𝑛𝑁∕𝑛𝑃 .
Let 𝑁 = ∪𝑛𝐶

𝑖=1
𝑖
𝑁 be a random decomposition of the set 𝑁 in 𝑛𝐶

disjointed subsets. We solved 𝑛𝐶 learning problems 𝑓𝑘
 , 𝑘 = 1,… , 𝑛𝐶 ,

associated to the training sets defined by { 𝑘
𝑁 ∪ 𝑃 } respectively. We

repeated the same procedure 𝑡 times, obtaining an ensemble of 𝑡 × 𝑛𝐶
functions 𝑓𝑘

 , which use the positive and subsets of the negative patches.
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Table 1
Hyperparameter grid for the classifiers; see text for details.

Classifier Parameter Range Classifier Parameter Range

LR CLR [0, 5] SVM CSVM [10−1 , 105]
QLR CQLR [0, 5] 𝛾RBF [10−5 , 10]

RF
NT [100, 300]

ERF
NT [100, 300]

MNF [8, 30] MNF [8, 30]
MEL [1, 50] MEL [1, 50]

Following this, the patch detection function was defined as 𝑓 (𝐱𝑃 ) =
1

𝑡×𝑛𝐶

∑

𝑘𝑓
𝑘
 (𝐱

𝑃 ).
We associated to the patch detection function 𝑓 a detection thresh-

old, 𝑡ℎ𝑟 ∈ [0, 1]. We set 𝑓 (𝐱𝑃 ) = 0 if 𝑓 (𝐱𝑃 ) < 𝑡ℎ𝑟 and initially did
not change 𝑓 (𝐱𝑃 ) if 𝑓 (𝐱𝑃 ) ≥ 𝑡ℎ𝑟. To calibrate the threshold value, we
used the ROC curve obtained from 𝑓 when used as a binary classifier.
Although 𝑓 (𝐱𝑃 ) ≥ 𝑡ℎ𝑟 declares 𝐱𝑃 a potential threat patch (not all
with the same detection function value), some of these potential threat
patches are false positives that appear in the neighborhood of a true
threat due to the contamination of the highest patch detection value to
surrounding patches. We eliminated these contaminated patches using
non-maximum suppression on overlapping patches. On each image, we
rejected a detected patch 𝐱𝑃𝑗 (𝑓 (𝐱𝑃𝑗 ) ≥ 𝑡ℎ𝑟) if it had an intersection-
over-union overlap larger than a learned threshold with a higher scoring
patch 𝐱𝑃𝑙 . That is, if 𝑓 (𝐱𝑃𝑙 ) > 𝑓 (𝐱𝑃𝑗 ) ≥ 𝑡ℎ𝑟, we set 𝑓 (𝐱𝑃𝑗 ) = 0. This
process is depicted in Fig. 4.

Due to the strong no-stationary noise presence in the image, this
approach can produce a high rate of false positive patches even when
the 𝑡ℎ𝑟 value is properly tuned. Our solution to this problem is given in
Section 8, where a calibration curve, to estimate the best rate between
accuracy and false detection rates, is proposed.

After running the non-maximum suppression algorithm, we assigned
to each image pixel, 𝑘, the maximum of all 𝑓 (𝐱𝑃 ), for 𝑘 ∈ 𝐱𝑃 . After
this final processing, we acquired an image size vector of values in
the interval [0,1]. This vector represents our estimation of the labeling
function 𝑓 on each image.

7. Learning the patch detection function 𝒇 and the image classi-
fication function 𝒇

We considered six patch detection functions 𝑓 . These functions
represent different strategies to measure the presence of a threat in a
patch: logistic regression (LR), quadratic logistic regression (QLR), sup-
port vector machine (SVM), random forest (RF), extreme random trees
(ERT), and adaboost (ADA). LR and QLR were the linear approaches
used as our baseline in the comparative study, and SVM was the kernel-
based approach. These three methods search for the best function from a
fixed set of possible functions. ADA, RF, and ERT build a classifier from
an ensemble of simpler classifiers. RF and ERT use different subsets of
the training dataset for each member of the ensemble, and ADA weights
the training dataset with different sets of values. In all cases, the patch
detection function range is normalized to [0, 1].

For each classifier M∈ {LR, QLR, SVM, RF, ERT}, the corresponding
image classification function 𝑓𝑀

𝐷 was estimated and the corresponding
training and error estimations were calculated using five-fold cross-
validation. This cross–validation partition was performed on the images
and on every fold. Each fold contained approximately 600 images, all
of which had the same proportion of images with no threat, one threat,
and two threats. For adaboost, we used asymmetric boosting (Viola and
Jones, 2001) instead of a committee of classifiers.

Hyperparameter estimation was carried out using five-fold cross-
validation on every training fold. To reduce the time required to
estimate each the hyperparameters of each model, a smaller subset of
patches was selected. A uniform sample of patches, using an additional
factor reduction of 3, was used. This required selecting one location
for every 6 × 6 image block. Finally, for each threat in an image,

we added at least one patch that contained it to the training dataset.
This guaranteed the inclusion of all the threats in the database. The
hyperparameter ranges for each patch detection function are shown in
Table 1. They are the regularization strength parameters CLR, CQLR, and
CSVM for LR, QLR, and SVM, with RBF kernel with gamma parameter
𝛾RBF, respectively. The estimated hyperparameters of the tree-based
models RF y ERT are the number of trees (NT), the maximum number
of features (MNF) to consider for splitting, and minimum number of
examples per leaf (MEL).

The LR the regularization parameter (CLR)for quadratic penalty
(weight-decay) was determined using an adaptive search. QLR uses
linear and quadratic functions on the features, hence, the LASSO penalty
function was utilized to select the relevant features which were then
used to learn an LR model with a quadratic penalty. For SVM, RF,
and ERT, a grid search was used to estimate the hyperparameters, and
feature vectors were normalized by mean and variance before training.

To remove the possible bias introduced by the reduced number of
patches used to learn the hyperparameters, we selected the three best
sets of hyperparameters using the area value under the ROC curve for
each classifier. These three sets were then compared to the complete set
of training patches and the one with the largest AUC value was selected.

8. Experimental validation

For a given image, let us denote by 𝑆 (𝐡) and 𝑆 (𝐱𝑃 ) the support
regions (sets of pixels) associated with a hidden object 𝐡 and patch 𝐱𝑃 ,
respectively. Given an existing real hidden threat 𝐡 in an image, we
considered in the experiments that a patch 𝐱𝑃 was correctly classified
as containing a hidden threat when 𝑓 (𝐱𝑃 ) > 𝑡ℎ𝑟 and 𝑆 (𝐡) ∩ 𝑆 (𝐱𝑃 ) >
0.5 ∗ 𝑠𝑖𝑧𝑒(𝑆 (𝐡)). A hidden object in the image was said to be correctly
detected when there was at least one patch satisfying both conditions.
Finally, an image was correctly classified as positive (containing a
hidden threat) when, at least, a hidden object was detected.

We analyze two scenarios: preprocessed images and raw images. Our
preprocessing technique was described in Section 3, and Tables 2 and 3
contain a summary of the results for both scenarios. The AUC column
represents the area under the ROC curve for the test images when
classified as with or without a hidden object. The third column (TP)
shows the true positive percentage of detected hidden objects computed
by five-fold cross-validation; fold mean and standard deviation are
included. The fourth column shows the average number of false positive
(FP) patches per image and their standard deviations. Note the high
FP deviation values, which are due to the non-uniform quality of the
images. The fifth and sixth columns contain the threshold and overlap
parameters used for non-maximum suppression.

As Table 2 indicates, the best results are obtained by RF with Haar
features extracted from the preprocessed images using the algorithm
proposed in Section 3. Note that we also ran experiments with mean,
median, and bilateral smoothing algorithms but obtained lower scores.
Almost all classifiers obtained similar TP values, RF and ERT were the
best ones when used with Haar features.

Table 3 shows the scores for the raw image scenario. In this case, RF
and ERT again obtained the best results for Haar and LBP features. The
AUC values were lower, and the best value was obtained by the ERT
classifier. However, in terms of TP and FP values, the average results
were similar for both scenarios. That is, the proposed preprocessing
method only slightly helped the detection process, which shows that
our machine learning-based classification approach can deal with poor-
quality images.

In Table 2 it can also be observed that TP values for Haar and LBP
features are very similar. However, when considering FP values, Haar
features clearly outperform LBP features. As we have indicated in the
Introduction, the average FP per image is a key figure to minimize.
When analyzed in percentage terms, all models performed reasonably
well. This means that FP values were always below 10% when the
threshold was fixed to obtain a 100% TP detection rate (0% FN).
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(a) (b) (c) (d) (e) (f)

Fig. 4. Detection process: (a) observed image; (b) shows, using green intensities, the initial pixel probabilities (only at patch central pixels) assigned by the patch detection function
together with the red bounding box surrounding the threat; (c) shows the active pixels after thresholding by 𝑡ℎ𝑟; (d) shows the final estimation of the threat center; (e) shows the
corresponding patch after non-maximum suppression on (c); (f) shows the details of the non-maximum suppression process. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 2
For the preprocessed images using the preprocessing method presented in 3, this table shows a summary of the performance (AUC)
of the classifiers when Haar and LBP features were used. Threshold (Thr) and Overlapping values (Ovl) are also included. See text
for details.

Class Haar features (preprocessed) LBP features (preprocessed)

AUC TP × 102 FP Thr. Ovl. AUC TP × 102 FP Thr. Ovl.

LR 0.51 84 ± 1.8 10.5 ± 10.7 0.6 0.5 0.57 92 ± 0.8 10.2 ± 10.5 0.70 0.5
QLR 0.57 91 ± 1.1 8.7 ± 9.1 0.7 0.5 0.57 92 ± 1.0 10.2 ± 10.5 0.70 0.5
SVM 0.52 92 ± 3.0 6.5 ± 6.6 0.75 0.3 0.55 93 ± 1.4 8.8 ± 8.9 0.60 0.4
RF 0.75 94 ± 0.9 4.0 ± 3.8 0.7 0.3 0.61 92 ± 0.5 6.6 ± 6.5 0.55 0.3
ERT 0.74 94 ± 0.6 5.0 ± 5.0 0.7 0.5 0.63 90 ± 1.2 6.1 ± 6.0 0.55 0.3
ADA 0.57 93 ± 1.1 6.4 ± 6.2 0.5 0.3 0.59 92 ± 1.2 10.0 ± 10.2 0.50 0.5

Table 3
For raw images, this table shows a summary of the performance (AUC) of the classifiers when Haar and LBP features were used.
Threshold (Thr) and Overlapping values (Ovl) are also included. See text for details.

Class. Haar features (raw) LBP features (raw)

AUC TP × 102 FP Thr. Ovl. AUC TP × 102 FP Thr. Ovl.

LR 0.51 82 ± 1.5 10.2 ± 10.4 0.6 0.5 0.54 88 ± 1.0 10.4 ± 10.8 0.68 0.5
QLR 0.55 90 ± 1.0 8.2 ± 8.7 0.73 0.5 0.56 89 ± 1.0 10.6 ± 10.9 0.7 0.5
SVM 0.50 94 ± 1.0 6.7 ± 6.6 0.75 0.3 0.52 93 ± 6.0 11.5 ± 12.1 0.7 0.4
RF 0.72 94 ± 1.0 4.0 ± 3.7 0.7 0.3 0.60 86 ± 2.0 6.1 ± 6.1 0.58 0.3
ERT 0.73 94 ± 1.0 4.0 ± 3.8 0.68 0.3 0.59 84 ± 1.0 6.0 ± 6.0 0.57 0.3
ADA 0.63 94 ± 0.6 5.8 ± 5.7 0.50 0.3 0.55 90 ± 1.0 10.3 ± 10.5 0.50 0.5

However, a 10% FP value means that a very large number of patches
were incorrectly considered to contain a threat, which means that the
model became useless. Consequently, a better compromise between TP
and FP scores must be reached by selecting a higher thrM value which,
however, will reduce the TP percentage. Fig. 5(a) shows the ROC curve
for the best model combination, RF+Haar features on the preprocessed
images. Fig. 5(b) shows the true positive and true negative rate curves
for image classification. Their intersection point is slightly above 68%
and defines the accuracy of the system to classify new images when
FP = 1−TP, i.e., both false errors are equal. Although this score might be
considered low, it is important to note that the high slope of both curves
(positive rates, negatives rates) at the intersection point indicates that
it is possible to improve the true positive rate with a small threshold
increment, but only if the increase in FPs is affordable. Fig. 6 shows
the lack of contrast in some FN images and, therefore, the difficulty in
detecting some hidden objects without increasing the FP rate.

The success of tree-based methods can be explained by the fact that
both RF and ERT minimized mean square error using ensemble voting,
which is an effective approach to reduce noise in images. Regarding LBP,
the figures in both tables show a high influence of noise on the quality of
this feature type. Although LBP features yielded better detection results
than Haar features when used with parametric classifiers (LR, QLR,
SVM), their FP scores were too high to make them competitive. These
results clearly demonstrate the influence of noise on the behavior of
classifiers and the importance of preprocessing when LBP features are
used.

Fig. 7 shows the analysis of the behavior of our winning combination,
Haar+RF. In Fig. 7(a), the histogram of the average number of FPs
per image is shown. We observed that the mode of the average of FPs
per image was 4. Fig. 7(b) shows the histogram of the first TP position
on each image in the list of detected locations, ordered by decreasing
probability. This histogram indicates that the clear majority of TPs were
among the first two detected positive patches on each image, which
validates the use of a high threshold for object detection. Fig. 7(c) shows
the histogram of the mean value of the four highest probability values
per image, and the correct behavior of the classifier assigning the highest
probabilities to regions that overlapped with hidden objects.

Table 4(a)–(b) show how Haar+RF performed depending on threat
location and type. Variations in TP and FP were highly dependent on
the position of the object. When objects were in the body area (chest,
stomach, waist, armpit) detection was simpler. However, when they
were mainly surrounded by the background (arm, thigh, ankle), they
were more difficult to detect. Table 4(b) shows a clear ranking of the
objects depending on their PMMW responses. While the FP values were
similar, the TP scores showed a large variation. Objects with higher
densities (such as metallic objects) were easier to detect.

We also investigated whether models tailored to body regions im-
prove the quality of the image classification function. For this, we used
our best 𝑓 function (RF+Haar) to fit four new models, one for each
of the following body regions: arms, legs, chest, and ankles. Thus, only
patches from one of these regions were used by each model. For test
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(a) (b)

Fig. 5. (a) Shows the ROC when classifying new images. (b) The curves show the accuracy of the model on new images for a range of detection probability thresholds. The cross point
is at the 68% of accuracy for both classes.

Fig. 6. Examples of hidden objects that RF could not detect when the classifier was calibrated for the same FP and FN rates. Red arrows indicate object locations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4
The results of the best method (RF with Haar features). (a) Based on the threat location (front (F) and lateral (L)). (b) Based on
object type (see Appendix). See text for details.

(a) (b)

Loc. AUC TP × 102 FP Threat AUC TP × 102 FP

Forearm 0.73 97 ± 11.2 4.4 ± 4.1 1 0.72 94 ± 7.8 4.5 ± 4.3
Chest 0.82 95 ± 11.6 4.4 ± 4.1 2 0.83 95 ± 10.6 4.5 ± 4.3
Stomach 0.86 96 ± 11.6 4.3 ± 4.1 3 0.68 90 ± 9.3 4.5 ± 4.3
Thigh 0.53 85 ± 14.0 4.7 ± 4.5 4 0.72 94 ± 10.7 4.5 ± 4.2
Ankle-F 0.65 88 ± 8.3 4.4 ± 4.2 5 0.72 93 ± 7.6 4.5 ± 4.3
Thigh-L 0.75 97 ± 9.2 3.1 ± 2.9 6 0.81 96 ± 8.7 4.5 ± 4.3
Waist-L 0.85 95 ± 8.3 3.0 ± 2.8 7 0.81 96 ± 2.9 4.5 ± 4.3
Armpit-L 0.86 99 ± 12.0 3.0 ± 2.7 8 0.82 95 ± 8.0 4.5 ± 4.3
Arm 0.55 85 ± 14.4 5.3 ± 4.9 9 0.79 95 ± 16.4 4.5 ± 4.3
Ankle-L 0.65 92 ± 16.5 3.8 ± 3.5 10 0.64 90 ± 10.8 4.5 ± 4.3

11 0.79 94 ± 8.1 4.5 ± 4.3
12 0.83 96 ± 12.7 4.5 ± 4.3
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(a) (b) (c)

Fig. 7. Performance histograms of the best model, Haar+RF. See text for details.

Table 5
Testing Total (all the images) and per image (P.I.) times in seconds for each method.

Classifier Haar LBP Classifier Haar LBP

Total P.I. Total P.I. Total P.I. Total P.I.

LR 302 0.09 4939 1.49 RF 740 0.22 5497 1.66
QLR 341 0.1 4939 1.49 ERT 1202 0.36 5507 1.66
SVM 1277 0.38 6907 1.87 ADA 1965 0.59 7006 2.11

samples, the image localization of the patch determined the model to be
used, and a partition of the image in the four body parts was prefixed. In
terms of AUC, values there was no significant improvement. However,
a 5% improvement on average FP was observed.

In the experiments, we used an Intel Xeon E5-2630 v3 at 2.40 GHz
with 8 cores and 128 GB of RAM. Computation times during testing
are shown in Table 5. We observed that for both feature types, the
methods performed approximately in real time. However, when using
Haar features the classifiers performed faster. Finally, for RF and ERT,
we used parallel implementations running on 16 threads.

The approach presented in this paper cannot be fairly compared with
the methods described in Section 2. The methods reported in Section
2 were tested on small sets of higher quality images, with a reduced
number of threat locations, and with reduced variability on the threat
characteristics. Nonetheless, we compared our best method, RF+Haar,
against the methods described in Haworth et al. (2006) and Gómez et
al. (2015) using datasets of different sizes. The best performing method
was (Haworth et al., 2006), which, for a dataset of 200 images, obtained
a 13% TP and 1.92 mean FP. Our worst result was 47% TP and 1.5
mean FP, and was obtained with 30 raw images. We believe that our
method performed better because it is more generally applicable and
less adapted to the quality of the acquired images.

9. Conclusions

This paper was devoted to the study of hidden object detection
in PMMWIs. The main difficulty in this task arises from the low SNR
and non-stationary noise that populates an image. Simple thresholding
methods can be used but are most effective with high-quality images.
In this study, a machine learning approach to the detection task was
developed. This approach deals with the poor quality of passive images
and outperforms state-of-the-art threat detection methods for PMMWIs.

Given the lack of publicly available PMMWI datasets, we created
one that, to the best of our knowledge, is the largest, and possesses the
greatest variety of object types and sizes ever used for this purpose see
footnote 1.

Our proposed method is based on a committee of classifiers defined
on two highly unbalanced classes of image patches, and performed
well on all experiments. We compared different approaches to estimate
image classification functions, and found using tree sets to be the most

Fig. A.8. Simulated threats in the dataset: a cutter (1), 325 g of gel (2), a 200 g clay bar
(3), a simulated gun (4), 200 g of sugar (5), 200 g of frozen peas (6), 150 ml of cologne
(7), 160 g of gel (8) , a bag with metal pieces (9), 200 g of flour (10), a 50cl water bottle
(11), and a 250 ml hydrogen peroxide bottle (12).

effective, reaching an average 94% TP score with a distribution of the
number of false positives in the range of one to seven. The influence of
the image quality and the extracted features were also analyzed. Our
filtering method slightly helps the detection process; Haar filter banks,
very well adapted to our task, performed very well for all classifiers.

The results indicate that large objects with reduced or zero emissions
are simpler to detect. The easiest threat locations to detect were those
where objects were exposed to the camera in larger areas. Threats in
ankles, arms, and thighs were more difficult to detect.

Finally, a comparison between our detection model and other ap-
proaches in the literature indicated that our method is less reliant on
the quality of the observed images. Furthermore, when a large image
training set is available, our method performs very well, which makes a
prediction of excellent performance for a wide range of millimeter-based
detection systems realistic.
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Fig. A.9. First row: Examples of PMMWIs. Red boxes indicate the locations of hidden objects. Second row: Corresponding visual images of the PMMWIs’ examples. (Best viewed on a
high-resolution color screen). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix. Dataset description

A comprehensive dataset of PMMWIs was created. It consisted of
3309 125 × 195 images of 33 people of different complexions. The
hidden objects were in the range 35 × 39 to 10 × 10 pixels which,
in our images, corresponded roughly to 2752.39 cm2 and 201.64 cm2,
respectively. Smaller hidden objects were not considered relevant.

Threats were simulated by bags containing substances with different
millimeter wave responses (see Fig. A.8). Note that objects of different
sizes were used. We took pictures of each person wearing 12 objects on
10 parts of the body: forearm, chest, stomach, thigh, ankle (front), waist
(side), armpit (side), arm, ankle (lateral) thigh (lateral), and 20 images
without any object. Images of people wearing two objects in different
locations were also taken. Some images were eliminated because of poor
quality. The final dataset consisted of 463 pictures of people with no

objects, 2144 containing people wearing one object, and 702 containing
two objects.

Fig. A.9 shows PMMWIs of subjects with simulated threats on
different parts of the body and the corresponding color images taken by
a camera located on the scanner. Although objects are visible and not
hidden under the clothing, this was irrelevant for the PMMW sensors.
Color images were taken at the same time. Threats are marked on
the color images by the smallest bounding boxes containing them.
To transfer object-bounding boxes from colored to PMMW images, a
homography was estimated using a planar calibration pattern. Colored
and PMMW images were then registered. The bounding boxes were used
to assess the performance of the image classification functions.
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