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Abstract
for the estimation of the sparse component of an outlier-
corrupted low-rank matrix, when linearly transformed composite
data are observed. The model constitutes a generalization of
robust principal component analysis. The problem considered
herein is applicable in various practical scenarios, such as
foreground detection in blurred and noisy video sequences and
detection of network anomalies among others. The proposed
algorithm models the low-rank matrix and the sparse compo-
nent using a hierarchical Bayesian framework, and employs
a variational approach for inference of the unknowns. The
effectiveness of the proposed algorithm is demonstrated using
real life experiments, and its performance improvement over
regularization based approaches is shown.

Index Terms
principal component analysis, foreground detection, network
anomaly detection

I. INTRODUCTION

The problem of estimating low-rank matrices in the presence
of sparse outliers has drawn significant attention recently.
A typical example is robust principal component analysis
(RPCA), where the high-dimensional data lying in a low-
dimensional subspace are subject to the perturbation of a
few outliers. Recently theoretical performance guarantees for
RPCA have been provided in [1], where it is shown that the
RPCA problem can be solved using convex optimization. In
addition, RPCA has been applied to solve a wide range of
problems [2]–[5] and its advantage has been demonstrated [6]–
[9].

In this paper we consider a generalization of the original
RPCA problem, where a linear transformation through the
use of a known measurement matrix, is applied to the outlier-
corrupted data. The goal is to estimate the outlier amplitudes
given the transformed observation. This problem stems from
several practical scenarios, which we will discuss in detail
shortly. A regularization based algorithm, which requires the
manual tuning of its parameters, was proposed to solve this
problem [10]. In this work, we propose a variational Bayesian
based approach that provides approximate posterior distribu-
tions of all the model unknowns. Experiments using real life
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datasets as well as computer simulations show performance
improvement of the proposed algorithm over its regularization
based counterpart.

This paper is organized as follows. In Section II we present
the general data model and several areas of applications. A
brief overview of the related work in each of these areas is
also provided. In Section III we introduce the proposed hier-
archical Bayesian model. Details of the variational inference
procedure are provided in Section IV. Numerical examples are
presented in Section V. Finally we draw conclusion remarks
in Section VI.

Notation: Matrices and vectors are denoted by uppercase
and lowercase boldface letters, respectively. vec(·), diag(·) and
Tr(·) are vectorization, diagonalization and trace operators,
respectively. Given a matrix X, we denote as xi·, x·j and
Xij its ith row, jth column and (i, j)th element, respectively.

II. PROBLEM STATEMENT AND DATA MODEL

In this section we formulate the sparse component detection
and low-rank matrix estimation problem. We first present a
general data model that covers a wide range of applications,
and then consider specific scenarios as its special cases.

Let X ∈ RL×T be a low-rank matrix with rank(X) ≪
min(L, T ), and E ∈ RF×T be a sparse matrix with entries
of arbitrarily large magnitudes. Matrix R ∈ RL×F models
the linear transformation performed on the data, that is, R
is a known measurement matrix, where L ≤ F . R bears
specific physical meanings in the scenarios discussed below.
Consider also dense measurement noise N ∈ RL×T added
to the observations. N is assumed to have small amplitudes
compared with X and E. With the quantities defined above,
we have the general data model:

Y = X+RE+N . (1)

The goal of the problem is to obtain accurate estimates for
the sparse term E and the low-rank term X, given the noise
corrupted observation Y. Although E is sparse, the multiplica-
tion with a wide matrix R has an effect of compression, and
hence the product RE is not necessarily sparse. Therefore
conventional RPCA approaches cannot be applied directly to
solve this problem.

Given (1), we present below examples of R, which stem
from different application scenarios.

A Variational Approach for Sparse Component
Estimation and Low-Rank

— Bayesian inference, variational approach, robust
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A. Robust PCA

With L = F and R = IF , (1) reduces to

Y = X+E+N, (2)

where all matrices involved are of dimensions F × T . This
is the classical RPCA problem, where the goal is to recover
the low-rank component X and the sparse component E.
The RPCA problem has recently drawn significant attention
from the research community, and a wealth of literature has
been devoted to related studies. Algorithms for solving the
RPCA problem can be broadly classified into two categories:
regularization based approaches or statistical inference based
approaches.

For the former category, the problem is formulated as reg-
ularized fitting, where the regularizers are convex surrogates
for rank and sparsity. Analysis on the exact recovery in the
RPCA problem is given in [1]. Examples of algorithms in
this category include the singular value thresholding (SVT)
algorithm [11], the accelerated proximal gradient (APG)
method [12], and the augmented Lagrange multiplier (ALM)
method in [13]. In addition, extensive efforts have been made
to analyze the RPCA problem from various perspectives [14]–
[18].

For the latter category, hierarchical statistical models are
introduced to formulate the data generation process and prior
distributions are selected to capture the low-rank and sparse
properties of the respective terms. The joint distribution in-
volving the observations, unknown variables and hyperpa-
rameters can be determined from the priors and conditional
distributions. Posterior distributions of the unknowns are ap-
proximated using Bayesian based approaches. Representative
algorithms in this category include [19]–[21]. As an example,
[21] employs hierarchical model to capture the properties of
the data and applies variational approach for inference. It is
therefore a special case of the algorithm proposed herein when
R = IF .

Foreground (FG) detection is an important computer vision
problem [22], [23]. Denote a video sequence as an F × T
matrix D, where F is the number of pixels per frame and T
is the number of frames. Each frame, represented as a column
in D, is the superposition of moving FG objects and relatively
static background (BG) scene. Since the FG objects are usually
small relative to the entire frame and do not persist across the
entire sequence, they can be represented as an F × T sparse
matrix E [20], [21], [24]. On the other hand, the background
is more static, and its time invariance can be captured by a
low-rank matrix X0. Let R model a linear transformation on a
frame, such as blurring and resolution scaling. With the above
specifications, the transformed and noisy video sequence can
be represented as

Y = RD+N = R(X0 +E) +N
= RX0 +RE+N = X+RE+N,

(3)

where we have combined RX0 as X since the primary
objective is to detect the foreground E. Note X inherits the

low-rank property from X0. It is clear (3) is identical to (1),
with R being an L×F real-valued matrix modeling the linear
transformation performed on video pixels.

Another application emerging from (1) is network security
and anomaly detection [25], [26]. Consider a network con-
sisting of N nodes (e.g., routers) that can send and forward
data packets. A link is the physical connection between a
pair of nodes, and L denotes the number of links. An origin-
destination (OD) flow is defined as a stream of packets sent
from one node and received by another node, and F denotes
the number of flows. Since the network in general is not
strongly connected (i.e., there is not a link between every pair
of nodes), we have L ≪ F . In the network scenario, R is
an L×F wide routing matrix consisting of binary entries rij ,
with rij = 1 denoting flow j passes through link i and rij = 0
otherwise [27].

Let the F × T matrix X0 denote the OD flow traffic
during normal network operation, where its (i, j)th component
is the sampled traffic of flow i at time j. X0 is low-rank
because the normal network flows roughly follow a temporal
pattern, rendering the columns of X0 approximately linearly
dependent. On the other hand, network anomalies can occur
sporadically in the OD flows and at different times, possibly
due, for instance, to network failures, external attacks, etc. The
anomaly induced traffic can be of large magnitude compared
with the normal traffic, and is represented by a sparse F × T
matrix E. The multiplication of the total OD flow X0 +E by
R maps the composite flow traffic into the link measurements.
It can be seen that the data model is again the same as (1),
with R being an L× F wide binary routing matrix.

Researchers have performed extensive and in-depth studies
into OD flow anomaly detection. For example, [28] presents
analysis of OD flow time series using PCA and the decompo-
sition of flows into the normal and abnormal constituents. [29]
applies the principal component pursuit (PCP) algorithm [1]
to analyze the OD flows. Along the same line of research
as [28], authors of [30] apply subspace methods to decom-
pose the link measurements and discusses the subsequent
identification of anomalies in the OD flows. From a slightly
different perspective, [31] examines the possible types of
attacks specifically targeted at PCA-based detectors, which
provides valuable insights as to the design of more effective
detection technologies. In addition, the authors of [10] extend
the APG algorithm [12] to analyze the link measurements for
flow anomaly detection. For an overview of anomaly detection
techniques the reader is referred to [25].

In the next section we propose a variational Bayesian based
approach to solve the recovery problem (1) for general R.
Within this framework, the variational Bayesian robust PCA
algorithm introduced in [21] can be regarded as a special case
of our proposed algorithm when R = IF .

III. BAYESIAN MODELING

In this section we present the Bayesian modeling for the
sparse component estimation and low-rank matrix recovery
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problem. Both unknowns and observed quantities are treated
as random variables. A hierarchical Bayesian framework is
employed to model the data generation process, where the joint
distribution of all quantities is factorized into the product of
priors and conditional probabilities.

Given the observation model in (1) our goal is to estimate a
low-rank matrix X and a sparse matrix E from the noisy Y. A
natural estimator is to fit Y in the least-squares (LS) sense as
well as to minimize the rank of X and the number of non-zero
entries in E measured by its l0-(pseudo) norm. Unfortunately,
both l0-norm and rank minimizations are in general NP-hard
problems [32], [33]. Therefore, we start by replacing the l0-
norm with its convex surrogate ||E||1, and the rank of X with
||X||∗, which is equal to the sum of the singular values of X.
The nuclear norm ||X||∗ can be neatly characterized as [34]

||X||∗ = min
{A,B}

1

2
{||A||2F + ||B||2F}

subject to X = ABT
(4)

Adopting these relaxation and parametrization, one obtains the
following optimization problem

min
{A,B,E}

1

2
||Y−ABT−RE||2F+λ∗

(
||A||2F+||B||2F

)
+λ1||E||1,

(5)
where λ∗ and λ1 are regularization parameters.

We denote an estimated upper bound for the rank of X as k
and let A and B be L×k and T ×k matrices, respectively. In
this way X can be expressed as the sum of k outer-products,
i.e.,

X = ABT =

k∑
i=1

a·ib
T
·i . (6)

Note that with the factorization in (6) we are able to char-
acterize the rank of X while accommodating X of arbitrary
dimensions.

To embody the low-rank property of X, we aim at pro-
moting column sparsity in A and B such that the sum in
(6) has only a small number of non-zero terms. To enforce
this constraint, we associate the columns of A and B with
Gaussian priors of precisions {γi}ki=1, i.e.,

p(A|γ) =
k∏

i=1

p(a·i|γi) =
k∏

i=1

N (a·i|0, γ−1
i IL), (7a)

p(B|γ) =
k∏

i=1

p(b·i|γi) =
k∏

i=1

N (b·i|0, γ−1
i IT ), (7b)

where γ = [γ1, · · · , γk]. Since the columns of A and B have
the same sparsity profile enforced by the common precisions
{γi}ki=1, they become small simultaneously when the corre-
sponding γi assumes large value. During the inference process,
many of the precision parameters γi will take large values,
effectively eliminating the respective outer products from X.
In this fashion, we achieve the goal of promoting low-rank
property of X.

In addition to (7), we incorporate the i.i.d. conjugate Gamma
hyperprior on the precisions {γi}ki=1, i.e.,

p(γ) =
k∏

i=1

p(γi) =
k∏

i=1

γa−1
i exp(−bγi), (8)

where a and b are treated as deterministic and they are assigned
small values to yield broad hyperpriors.

To model the sparse term E, we let the entries be inde-
pendent of each other, and their amplitudes be governed by
zero-mean Gaussian distributions with independent precisions.
Specifically, we have

p(E|α) =
F∏
i=1

T∏
j=1

p(eij |αij) =
F∏
i=1

T∏
j=1

N (eij |0, α−1
ij ), (9)

where α is the matrix containing all the FT values of the
precisions αij . For large αij , the corresponding eij is close to
zero with high probability. During inference, a large number
of αij will be set to high values, and consequently the
corresponding eij will be literally zeros. The precisions αij

are assigned i.i.d. non-informative Jeffrey’s prior

p(α) =
F∏
i=1

T∏
j=1

p(αij) =
F∏
i=1

T∏
j=1

α−1
ij . (10)

We employ the common i.i.d. Gaussian priors with zero
mean and precision β to model the dense observation noise
N:

p(N|β) =
L∏

i=1

T∏
j=1

p(nij |β) =
L∏

i=1

T∏
j=1

N (nij |0, β−1), (11)

Assigning Jeffrey’s prior on β, we have

p(β) = β−1 . (12)

Given the components defined above, the observation model
is given by

p(Y|A,B,E, β) = N (vec(Y)|vec(ABT +RE), β−1ILT )

∝ β
LT
2 exp

{
−β

2
||Y −ABT −RE||2F

}
(13)

By combining the stages of the hierarchical Bayesian model,
the joint distribution of the observation and all the unknowns
is expressed as

p(Y,A,B,E,γ,α, β) = p(Y|A,B,E, β)p(A|γ)p(B|γ)
× p(γ)p(E|α)p(α)p(β),

(14)
where p(Y|A,B,E, β), p(A|γ), p(B|γ), p(γ), p(E|α), p(α)
and p(β) are given in (13), (7a), (7b), (8), (9), (10) and (12),
respectively. The dependencies in this joint probability model
are shown in graphical form in Figure 1, where the arrows are
used to denote the generative model.
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hierarchical Bayesian model.

IV. APPROXIMATE BAYESIAN INFERENCE

As is widely known, Bayesian inference is based on the
posterior distribution of unknowns given the observations. Let
z be the vector of all the unknowns such that

z = (A,B,γ,E,α, β) . (15)

The posterior is expressed using Bayes rule as

p(z|Y) =
p(Y, z)

p(Y)
. (16)

However, the posterior p(z|Y) is computationally intractable
because the denominator

p(Y) =

∫
p(Y, z)dz (17)

cannot be calculated analytically by marginalizing all un-
knowns. Therefore, approximation methods must be utilized.
Common approaches for approximation include maximum a
posteriori (MAP) estimation, evidenced-based analysis, and
variational Bayesian. Among these options, Bayesian inference
is generally more effective in avoiding local minima than
deterministic approaches such as MAP, due to the fact that
Bayesian methods approximate the full posterior distributions
instead of merely providing point estimates of the modes.

In this section we present an inference procedure based
on mean field variational Bayes [35], [36] for approximating
the posterior distributions. Let q(z) denote the approximate
posterior distribution. The goal is to minimize the Kullback-
Leibler (KL) divergence between q(z) and the true posterior
distribution p(z|Y), given by

KL(q(z)||p(z|Y)) =

∫
q(z) log

q(z)

p(z|Y)
dz

=

∫
q(z) log

q(z)

p(Y, z)
dz+ C,

(18)

where C = log p(Y) does not involve z. To simplify notation,
we use C to denote constants that do not depend on the
variables currently under consideration, and C in different
equations may have different meanings. The non-negative
KL(q(z)||p(z|Y)) measures the difference between q(z) and
p(z|Y) and equals 0 if and only if q(z) = p(z|Y). In this
sense, minimizing the KL divergence with respect to q(z)

is equivalent to finding an approximation to the unknown
p(z|Y).

Another motivation for minimizing the KL divergence is
to derive a lower bound for the evidence of the observed
data p(Y), with marginalization performed over the unknown
variables. This can be seen by decomposing log p(Y) as
follows

log p(Y) = log
p(z|Y)p(Y)

p(z|Y)
= log

p(Y, z)q(z)

p(z|Y)q(z)

=

∫
q(z) log

p(Y, z)q(z)

p(z|Y)q(z)
dz

= Q(q(z)) + KL(q(z)||p(z|Y)),

(19)

where
Q(q(z)) =

∫
q(z) log

p(Y, z)

q(z)
dz (20)

is a lower bound of log p(Y) because KL(q(z)||p(z|Y)) ≥ 0.
Since log p(Y) does not depend on q(z), we have

argmax
q(z)

Q(q(z)) = argmin
q(z)

KL(q(z)||p(z|Y))

= argmin
q(z)

∫
q(z) log

q(z)

p(Y, z)
dz,

(21)

where the second equality follows from (18).
In the mean field approach, we make the assumption on the

factorization of the approximate posterior distributions

q(z) =
∏
m

q(zm), (22)

where zm denote the components of z, as is given in (15).
With this factorization we have

log q(zm) = Ez\zm
[log p(Y, z)] + C, (23)

from which we can determine the functional form of the
approximate posterior of each unknown. The expectation
Ez\zm

[·] in (23) is taken with respect to q(z\zm). In the
following we present the update rules resulting from this
inference scheme (23) for each unknown.

A. Inference for A and B

Letting zm = A and invoking (23), we have

log q(A)=Ez\A[log p(Y, z)] + C
=Ez\A[log p(Y|A,B,E, β)+log p(A|γ)]+C

=

L∑
i=1

Ez\A

[
−1

2

(
β||yi·−ai·BT−ri·E||22 + ai·Γa

T
i·
)]
+C

=
L∑

i=1

log q(ai·)+C,

(24)
where Γ = diag(γ). From (24) we see that the approximate
posterior distribution of A decomposes as independent distri-
butions of its rows. Moreover, by multiplying out the terms
and taking the appropriate expectations, it follows that

log q(ai·)=Ez\A

[
−1

2

(
β||yi·−ai·B

T−ri·E||22 + ai·Γa
T
i·
)]
+C

=−1

2

[
(ai·−⟨ai·⟩)

(
ΣA

)
−1(ai·−⟨ai·⟩)T

]
+C .

(25)
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Recognizing the right hand side of (25) as the energy of a
Gaussian distribution, we have

q(ai·) = N (ai·|⟨ai·⟩,ΣA), (26)

where
⟨ai·⟩T = ⟨β⟩ΣA⟨B⟩T(yi· − ri·⟨E⟩)T (27)

and
ΣA =

(
⟨β⟩⟨BTB⟩+ ⟨Γ⟩

)−1
(28)

are the approximate posterior mean and covariance matrix,
respectively. In (27) and (28) the expectations on the right hand
side of the equalities are taken with respect to the most recent
approximate posterior distributions of the respective terms.

Following steps similar to (24), we can see that q(B) also
decomposes into the product of Gaussian distributions q(bi·),
i.e.,

q(B) =

T∏
i=1

q(bi·) =

T∏
i=1

N (bi·|⟨bi·⟩,ΣB), (29)

where
⟨bi·⟩T = ⟨β⟩ΣB⟨A⟩T(y·i −R⟨e·i⟩) (30)

and
ΣB =

(
⟨β⟩⟨ATA⟩+ ⟨Γ⟩

)−1
. (31)

The required expectations in (28) and (31) can be found as

⟨ATA⟩ = ⟨A⟩T⟨A⟩+ LΣA

⟨BTB⟩ = ⟨B⟩T⟨B⟩+ TΣB .
(32)

B. Inference for E

Substituting zm = E into (23), we have

log q(E)=Ez\E[log p(Y, z)]+C
=Ez\E[log p(Y|A,B,E, β)+log p(E|α)]+C

=

T∑
i=1

Ez\E

[
−1

2

{
β||y·i−AbT

i·−Re·i||22 + eT
·iΩ

ie·i
}]

+C,

(33)
where Ωi = diag([α1i, α2i, · · · , αFi]) contains the prior
precisions for the ith column of E.

From (33) we see that q(E) factors into the product of the
approximate posterior distributions q(e·i), where

q(e·i) = N (e·i|⟨e·i⟩,ΣEi) (34)

is a Gaussian distribution. With some algebra, we obtain that
the approximate posterior mean and covariance matrix of (34)
are given by

⟨e·i⟩ = ⟨β⟩ΣEiRT (y·i − ⟨A⟩⟨bi·⟩T) (35)

and
ΣEi =

(
⟨β⟩RTR+ ⟨Ωi⟩

)−1
. (36)

From (36) we see that although the elements of e·i are
independent of each other in the prior distribution, they are
correlated with each other in the posterior distribution. This
is due to the coupling of R, which in effect takes a weighted
sum of a column in E and maps it into a single entry in the
observation.

Note that when R = IF , as is the case in robust principal
component analysis, the elements in E are independent of each
other and their distributions are single-variable Gaussians.

C. Estimation of hyperparameters γ and α

By keeping p(A|γ), p(B|γ) and p(γ) in (23), we have

log q(γ)=Ez\γ [log p(Y, z)]+C
=Ez\γ [log p(A|γ)+log p(B|γ)+log p(γ)]+C

=

k∑
i=1

Ez\γ[log p(a·i|γi) + log p(b·i|γi) + log p(γi)]+C .

(37)
Taking the logarithms of (7) and (8), we have

log p(a·i|γi) =
L

2
log γi −

γi
2
||a·i||22,

log p(b·i|γi) =
T

2
log γi −

γi
2
||b·i||22,

log p(γi) = (a− 1) log γi − bγi .

(38)

Substituting (38) into (37), it follows that

log q(γ) =
k∑

i=1

Ez\γ

[(
L+ T + 2a

2
− 1

)
log γi

−||a·i||22 + ||b·i||22 + 2b

2
γi

]
+ C

=
k∑

i=1

[(
L+ T + 2a

2
− 1

)
log γi

−⟨||a·i||22⟩+ ⟨||b·i||22⟩+ 2b

2
γi

]
+ C

=

k∑
i=1

log q(γi) + C,

(39)

where

q(γi)∝γ
L+T+2a

2 −1
i exp

(
−γi

⟨||a·i||22⟩+ ⟨||b·i||22⟩+ 2b

2

)
.

(40)
is recognized as a Gamma distribution. After resolving terms
⟨||a·i||22⟩ and ⟨||b·i||22⟩, we have

⟨γi⟩ =
L+ T + 2a

||⟨a·i⟩||22 + ||⟨b·i⟩||22 + LσA
ii + TσB

ii + 2b
, (41)

where σA
ii and σB

ii denote the (i, i)th element of ΣA and ΣB ,
respectively.

Similarly, setting zm = α in (23), it follows that

log q(α) = Ez\α [log p(Y, z)] + C
= Ez\α [log p(E|α) + log p(α)] + C

=
F∑
i=1

T∑
j=1

Ez\α [log p(eij |αij) + log p(αij)] + C

=
F∑
i=1

T∑
j=1

Ez\α

[
1

2
logαij −

1

2
e2ijαij − logαij

]
+ C

=
F∑
i=1

T∑
j=1

[
−1

2
logαij −

1

2
⟨e2ij⟩αij

]
+ C

=

F∑
i=1

T∑
j=1

log q(αij) + C . (42)
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From (42) q(αij) is recognized as a Gamma distribution with
mean

⟨αij⟩ =
1

⟨e2ij⟩
=

1

⟨eij⟩2 + (σ
Ej

ii )2
, (43)

where (σ
Ej

ii )2 denotes the (i, i)th element in ΣEj , the approx-
imate posterior covariance matrix for the jth column of E.

D. Estimation of noise precision β

By including the components of p(Y, z) that depend on β
in (23), it follows that

log q(β) = Ez\β [log p(Y|A,B,E, β) + log p(β)] + C

= Ez\β

[
LT

2
log β−β

2
||Y−ABT−RE||2F−log β

]
+C

=

(
LT

2
−1

)
log β−1

2
⟨||Y−ABT −RE||2F⟩β+C

(44)
Therefore, q(β) is a Gamma distribution

q(β) ∝ β
LT
2 −1 exp

{
−⟨||Y−ABT −RE||2F⟩

2
β

}
(45)

with mean given by

⟨β⟩ = LT

⟨||Y −ABT −RE||2F⟩
. (46)

Eq. (46) intuitively makes sense because the denominator mea-
sures the energy of the dense noise and the entire expression is
the reciprocal of the noise power (variance), which is exactly
the definition of precision.

To evaluate the expectation in the denominator of (46),
additional steps are needed. We present the result here while
leaving the derivation to Appendix A, in order to make the
text more readable. With some algebra, the denominator can
be computed in closed form using the posterior means of other
quantities as

⟨||Y −ABT −RE||2F⟩ = ||Y − ⟨A⟩⟨B⟩T −R⟨E⟩||2F
+ TTr

(
⟨A⟩T⟨A⟩ΣB

)
+ LTr

(
⟨B⟩T⟨B⟩ΣA

)
+ LTTr

(
ΣAΣB

)
+

T∑
i=1

Tr
(
RΣEiRT

)
(47)

E. Summary

The proposed variational Bayesian inference procedure es-
timates the posterior distribution of the unknowns iteratively,
where in each iteration the algorithm first computes q(A),
q(B) and q(E) using (26), (29) and (34), respectively. Then
the hyperparameters are estimated by taking their approximate
posterior means according to (41), (43) and (46), respectively.
A stopping criterion is that the relative change in the estimated
⟨E⟩ falls below a pre-specified threshold.

V. NUMERICAL EXAMPLES

In this section we test the proposed algorithm with numeri-
cal experiments. We consider both real life datasets to demon-
strate the effectiveness of the proposed approach in solving
practical problems, and simulated experiments to evaluate its
performance under various conditions.

To make the discussion clear, we name the proposed al-
gorithm that solves (1) as variational Bayesian based sparse
estimator (VBSE). The algorithm presented in [21] is a special
case of VBSE when R = IF . In comparison, we consider
two popular regularization based alternatives to validate the
performance of VBSE and furthermore to demonstrate their
respective merits and limitations. The algorithm presented in
[10] is named as accelerated proximal gradient sparse esti-
mator (APGSE). We have also extended the ALM algorithm,
which is the state-of-the-art solver for the RPCA problem,
to solve (1), and name it augmented Lagrange multiplier
sparse estimator (ALMSE). The algorithmic details are left
to Appendix B. Note that both APGSE and ALMSE have
user parameters controlling the achieved sparsity in E and
the estimated rank of X, respectively. The selection of these
parameters has direct impact on the performance of the
regularization based approaches. In each of the experiments,
we have determined the empirical optimal values of these
parameters. The VBSE algorithm is free of user parameters.

We consider two applications, namely the foreground detec-
tion in blurred and noisy video sequences and the detection
of network anomalies, whose details have been presented
in Sections II-B and II-C, respectively. The experimental
description and performance evaluation of the proposed and
alternative algorithms are given below.

In this experiments, the CAVIAR test video sequence [37]
was used. A sample video frame is presented in Figure 3(a),
showing the hallway in a shopping mall with people moving
as the foreground. The original 180× 140 frame was divided
into 30 non-overlapping blocks of size 30 × 28, and each
block was treated as the basic unit in the experiment. The
pixels in each block were vectorized into a column of size

F

= 30 × 28 = 840, and T = 100 such columns were
stacked into an F ×T matrix D. The F ×F matrix R models
pixel-wise blurring, where each output was computed as the
average of the 13 inputs within its radius-2 neighborhood, as
is illustrated in Figure 2. Dense Gaussian noise N was added
to the blurred video RD, resulting in the observed Y with an
SNR value at 23.5 dB. A blurred and noisy sample frame is
shown in Figure 3(b). Note that due to the presence of noise,
the direct application of inverse filter will magnify the noise
and render poor results. Therefore, approaches such as the
proposed VBSE have to be employed to deal with the blurred
and noisy data.

Figure. 2: Illustration of blurring kernel.
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In order to obtain a reference for performance evaluation,
we estimate the ground truth foreground E by applying VBSE
to the original video D with R = IF . This estimated ground
truth, denoted as EGT and shown in Figure 3(c), provides a
reasonable representation of the moving FG objects. From the
corresponding binarized FG map in Figure 3(d) we see that the
FG contains two moving shoppers and their reflected images
cast by the floor and the glass. Figures 3(c) and 3(d) serve as
the reference for visually evaluating the performance of the
algorithms.

(a) Original (b) Blurred and noisy

(c) EGT (d) FG map from EGT

Figure. 3: Sample frame of CAVIAR video sequence and
estimated ground truth.

VBSE, APGSE and ALMSE were then applied on the
blurred and noisy Y, and the results are shown in Figures 4(a)-
4(f). From the figures we see that both VBSE and its regu-
larization based counterparts produce reasonable results that
highlight the moving objects in the foreground. The VBSE
algorithm gives cleaner FG maps, while the results of APGSE
and ALMSE contain more isolated pixels falsely classified
as foreground. The presence of such pixels may result in an
increased false detection probability, if the FG maps are to
be used subsequently for applications such as surveillance
and intruder detection. Also note that the performance of
APGSE and ALMSE has been optimized via the manual
tuning of input parameters, while the VBSE approach is free
of input parameters and is hence more amenable to automated
deployment.

(a) EVBSE (b) FG map from EVBSE

(c) EAPGSE (d) FG map from EAPGSE

(e) EALMSE (f) FG map from EALMSE

Figure. 4: Estimated foreground from CAVIAR

In this subsection we apply the VBSE algorithm to the net-
work anomaly detection problem and examine its performance
under various experimental conditions. First we consider the
real life Internet2 dataset [38], which records the composite
OD flow traffic across the Abilene backbone network.

Figure 5 gives an illustration of the network, which consists
of 11 nodes located at various cities across the United States,
represented by red dots in the figure. The number of OD flows
is given by F = N2 = 121, including flows to and from
the same nodes. A solid line denotes a pair of bi-directional
links between two nodes, and there are a total of 15 such link
pairs. In addition, there is a link from every node to itself.
Therefore, the total number of links present in the network
is L = 2 × 15 + 11 = 41. A binary routing matrix R maps
the F = 121 flows onto the L = 41 network links. In the
experiment we took T = 210 temporal snapshots from the
data. Given the F × T OD flow traffic D, the link load Y
is obtained through multiplication with R. Note that besides
obtaining Y from flow measurements, link loads can also be
determined using the simple network management protocol
(SNMP) traces [39].

Figure. 5: Internet2 backbone network map.
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In order to quantitatively evaluate the performance of the
algorithms, we need to estimate the ground truth from the
data. This was done by applying the VBSE algorithm to
D by setting R = IF . As a validation, we also applied
the APG [12] and ALM [13] algorithms to D. These three
algorithms produced comparable results, with the estimated
anomalies comprising 9 numerically non-zero entries at the
same spatio-temporal locations and the estimated clean traffic
being of rank 4. We define as the estimated ground truth
anomalies EGT the average of the results produced by VBSE
(with R = IF ), APG and ALM in what follows.

The link load data Y were fed into the algorithms for
anomaly detection and amplitude estimation. Figure 6 shows
the algorithmic results superimposed on the ground truth. As
can be seen in the figures, VBSE detects all the anomalies
present in the ground truth and accurately estimates their am-
plitudes. In contrast, APGSE tends to produce biased estimates
and the amplitudes differ from the ground truth by a margin.
ALMSE, although accurately estimating the amplitudes of
anomalies present in the ground truth, has additionally detected
many spurious anomalies. This will result in an increased false
alarm probability, if ALMSE is used for network monitoring.

To further investigate the performance of the various al-
gorithms, we considered additional numerical experiments.
Specifically, we artificially added dense Gaussian noise to the
link measurements. The performance of VBSE, APGSE and
ALMSE at various SNR levels are recorded in Figures 7(a)
and 7(b). As can be seen, VBSE is more robust to noise
and gives uniformly lower estimation error than APGSE and
ALMSE. VBSE is also able to precisely identify the number
of anomalies, while APGSE yields a noticeably higher number
of false detections.

Finally, we carried out a separate simulated experiment to
examine the performances at different anomaly densities (i.e.,
various degrees of sparsity of E). The data generation process
is described as follows. A low-rank X0 was simulated as the
product of F × r and r× T matrices with i.i.d. entries drawn
from N (0, 100/F ) and N (0, 100/T ), respectively. Synthe-
sized E with amplitudes drawn from i.i.d. U(−10, 10) was
added to X0. R is simulated as a random binary matrix with
95% of zeros. The anomaly density was varied across a wide

(a) EVBSE

(b) EAPGSE

(c) EALMSE

Figure. 6: Estimated flow anomalies from Internet2 data.

range. As can be seen from Figures 8(a) and 8(b), VBSE gives
uniformly lower estimation error and more accurate estimate
of anomaly density than APGSE and ALMSE.

The numerical examples presented above demonstrate the
effectiveness of VBSE in solving real life problems. Com-
pared with its regularization based counterparts, VBSE has
satisfactory performance under a broad range of experimental
conditions. Moreover, VBSE is free of user parameters and
is hence especially amenable for automated deployment. Last
but not least, VBSE provides the posterior distributions of the
unknowns rather than only point estimates.
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Figure. 7: Performance of VBSE, APGSE and ALMSE at
various SNR levels.

VI. CONCLUSIONS

In this paper we proposed a variational Bayesian based
algorithm for estimation of the sparse component from an
outlier-corrupted low-rank matrix. A general data model was
formulated and several specific application scenarios were
discussed. The proposed algorithm is based on a hierarchical
Bayesian model, and employs a variational approach for
inference. The proposed algorithm is free of user parameters
and its effectiveness was demonstrated using both real life and
simulated experiments.

APPENDIX A
DERIVATION OF EXPECTED NOISE ENERGY

The expected noise energy

W = ⟨||Y −ABT −RE||2F⟩ (A.1)

in the denominator of (46) can be derived as follows.
First, note that ⟨·⟩ denotes the expectation taken with respect

to q(z\β), i.e., the approximate posterior distribution of all
unknowns except β. Since the unknowns that W depends on
are A, B and E, the expectation reduces to

W = EA,B,E⟨||Y −ABT −RE||2F⟩ . (A.2)

From the definition of Frobenious norm, it follows from
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Figure. 8: Performance of VBSE, APGSE and ALMSE at
various degrees of sparsity of E.

(A.1) that

W = ⟨||Y−ABT−RE||2F⟩
= ⟨Tr

(
(Y−ABT−RE)T(Y−ABT−RE)

)
⟩

= ⟨Tr(YTY)⟩− ⟨Tr(YTABT)⟩− ⟨Tr(YTRE)⟩
− ⟨Tr(BATY)⟩+ ⟨Tr(BATABT)⟩+ ⟨Tr(BATRE)⟩
− ⟨Tr(ETRTY)⟩+ ⟨Tr(ETRTABT)⟩+ ⟨Tr(ETRTRE)⟩

(A.3)
Since both trace and expectation are linear operations, and the
unknowns A, B and E are assumed to be independent of each
other in the approximate posterior distribution (see (22)), (A.3)
can be further written as

W = Tr(YTY)− Tr(YT⟨A⟩⟨B⟩T)− Tr(YTR⟨E⟩)
− Tr(⟨B⟩⟨A⟩TY)+ Tr(⟨BATABT⟩)+ Tr(⟨B⟩⟨A⟩TR⟨E⟩)
−Tr(⟨E⟩TRTY)+Tr(⟨E⟩TRT⟨A⟩⟨B⟩T)+Tr(⟨ETRTRE⟩)
= ||Y − ⟨A⟩⟨B⟩T −R⟨E⟩||2F− Tr(⟨B⟩⟨A⟩T⟨A⟩⟨B⟩T)
− Tr(⟨E⟩TRTR⟨E⟩)+ Tr(⟨BATABT⟩)+ Tr(⟨ETRTRE⟩)

(A.4)
For notational simplicity, denoting

S1 = Tr(⟨BATABT⟩)− Tr(⟨B⟩⟨A⟩T⟨A⟩⟨B⟩T)
S2 = Tr(⟨ETRTRE⟩)− Tr(⟨E⟩TRTR⟨E⟩),

we have from (A.4) that

W = ||Y − ⟨A⟩⟨B⟩T −R⟨E⟩||2F + S1 + S2 . (A.5)

In (A.5), ||Y−⟨A⟩⟨B⟩T−R⟨E⟩||2F can readily be computed
using the most recent q(A), q(B) and q(E). From [21] we
have

S1 = TTr(⟨A⟩T⟨A⟩ΣB)+LTr(⟨B⟩T⟨B⟩ΣA)+LTTr(ΣAΣB).
(A.6)

Similarly, S2 can be computed as

S2 = Tr(R⟨EET⟩RT)− Tr(R⟨E⟩⟨E⟩TRT)
= Tr(R(⟨EET⟩ − ⟨E⟩⟨E⟩T)RT)

=
T∑

i=1

Tr(RΣEiRT) .

(A.7)

Substituting (A.6) and (A.7) into (A.5), we have the esti-
mated noise energy, which appears as the denominator of (46).
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APPENDIX B
DERIVATION OF ALMSE

In this section we provide details on the ALMSE algorithm
that solves the general data model (1). For the ALM algorithm
that solves the more specific RPCA problem in (2), the reader
is referred to [13].

Defining
f(X,E) = ||X||2∗ + λ||E||1 (B.1)

and
h(X,E) = Y −X−RE, (B.2)

the rank minimization and sparse estimation problem can be
formulated as

minimize
X,E

f(X,E)

subject to h(X,E) = 0,
(B.3)

where λ is a regularization parameter controlling the relative
weight placed on the low-rank term and the sparse term.

The augmented Lagrangian function based on (B.3) can be
defined as

L(X,E,G, µ)
= f(X,E) + Tr(GTh(X,E)) + µ

2 ||h(X,E)||2F
= f(X,E) + g(X,E),

(B.4)

where G ∈ RL×T contains the Lagrange multipliers and
g(X,E) = Tr(GTh(X,E)) + µ

2 ||h(X,E)||2F is a quadratic
function in X and E. The general method for augmented
Lagrange multipliers is shown as Algorithm 3 in [13], and
we adapt it below (and label it as Algorithm 1 in this paper)
to facilitate the derivation that follows.

Algorithm 1 General Method of ALM (adapted from [13])
1: Input: Y, λ
2: while not converged do
3: Solve (Xk+1,Ek+1) = argmin

X,E
L(X,E,Gk, µk).

4: Gk+1 = Gk + µkh(Xk+1,Ek+1).
5: Update µk to µk+1.
6: end while(loop-1 indexed by k)
7: Output: X = Xk∗ , E = Ek∗ .

The core of the algorithm is Line 3 in Algorithm 1.
To minimize L, we employ a block descent approach, i.e.,
breaking the joint minimization with respect to (X,E) into
cyclic minimizations with respect to X and E. This cyclic
block descent procedure replaces Line 3 in Algorithm 1 with
an iterative loop, which we call loop-2 and index by j. The
block descent update procedures are summarized as follows

Algorithm 2 Block descent minimization of L
1: while not converged do
2: Solve Xj+1

k+1 = argmin
X
L(X,Ej

k+1,Gk, µk).

3: Solve Ej+1
k+1 = argmin

E
L(Xj+1

k+1,E,Gk, µk).

4: end while(loop-2 indexed by j)
5: Output: Xk+1 = Xj∗

k+1, Ek+1 = Ej∗

k+1.

Line 2 in Algorithm 2 can be solved analytically, following
procedures similar to those in the original ALM algorithm.
Specifically, by grouping terms independent of X in (B.4) into
constant C, we have

L(X,Ej
k+1,Gk, µk) = ||X||∗ + g(X,Ej

k+1) + C
= ||X||∗ + Tr(GT

k(Y−X)) +
µk

2
||Y−X−REj

k+1||+ C

= ||X||∗ +
µk

2
||X− (Y −REj

k+1 + µ−1
k Gk)||2F + C .

(B.5)
It is well known that (B.5) can be minimized using the
SVT [11] algorithm as follows

Xj+1
k+1 = USµ−1

k
(Σ)VT, (B.6)

where UΣVT is a singular value decomposition of Y −
REj

k+1 + µ−1
k Gk and

Sϵ(·) = sign(·)max{| · | − ϵ, 0} (B.7)

denotes the shrinkage thresholding operator with threshold ϵ.
Note that Y − REj

k+1 + µ−1
k Gk is the minimizer of the

quadratic function g(X,Ej
k+1).

Following a similar procedure as above for E, we have

L(Xj+1
k+1,E,Gk, µk) = λ||E||1 + g(Xj+1

k+1,E) + C
= λ||E||1 +

µk

2
||RE− (Y −Xj+1

k+1 + µ−1
k Gk)||2F + C,

(B.8)
In the original ALM algorithm, when R = IF , the optimal
Ej+1

k+1 minimizing (B.8) can be found as

Ej+1
k+1 = Sλ/µk

(Y −Xj+1
k+1 + µ−1

k Gk), (B.9)

i.e., by determining the minimizer of g(Xj+1
k+1,E) with respect

to E and shrinkage thresholding the entries. However, for the
general problem (1), the minimizer of the quadratic function
g(Xj+1

k+1,E) is not unique, due to the fact that R is wide and
RTR is rank deficient. Instead of looking for an analytical
solution, we resort to iterative approaches for this l1-norm
minimization problem. We choose the fast iterative shrinkage
thresholding algorithm (FISTA) [40] for this purpose, because
of its provably fast convergence and low-computational com-
plexity. Since FISTA is a well known approach, we omit
the details. Putting everything together, we have the (exact)
ALMSE summarized in Algorithm 3.

In [13], an inexact ALM algorithm was derived, by degener-
ating the inner loop into one iteration. Here we adopt the same
idea and speed up the ALMSE by making loop-2 transparent.
The details are straightforward to obtain, and hence are not
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shown to save space. Unless otherwise noted, we have used
the inexact version of ALMSE in our numerical examples.
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