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ABSTRACT Whole Slide Images (WSI) are widely used in histopathology for research and the diagnosis
of different types of cancer. The preparation and digitization of histological tissues leads to the introduction
of artifacts and variations that need to be addressed before the tissues are analyzed. WSI preprocessing can
significantly improve the performance of computational pathology systems and is often used to facilitate
human or machine analysis. Color processing techniques are usually the main concern, while other areas are
frequently ignored. In this paper, we present a detailed study of the state-of-the-art in three different areas
of WSI preprocessing: Artifacts detection, color variation, and the emerging field of pathology-specific
data augmentation. We include a summary of evaluation techniques along with a discussion of possible
limitations and future research directions for new methods.

INDEX TERMS Artifacts Detection, Computational Pathology, Histopathological Images, Image Aug-
mentation, Preprocessing, Stain Normalization

I. INTRODUCTION
In [1], the author describes five examples, from Tesla’s fatal
car crash to false facial recognition matches, where Artificial
Intelligence (AI) failed to deliver. Talking about examples of
where AI went wrong is not, as indicated in [2], intended to
put down AI or minimize AI research. The idea is to take
a look at where and how it went wrong, with the hope of
creating better AI frameworks in the future.

In a 2021 interview [3], Andrew Ng explains that: “Those
of us in machine learning are really good at doing well
on a test set, but unfortunately deploying a system takes
more than doing well on a test set”. He gave the follow-
ing very interesting example: “when we collect data from
Stanford Hospital, then we train and test on data from the
same hospital, indeed, we can publish papers showing [the
algorithms] are comparable to human radiologists in spotting

certain conditions. It turns out [that when] you take that
same model, that same AI system, to an older hospital down
the street, with an older machine, and the technician uses a
slightly different imaging protocol, that data drifts to cause
the performance of AI system to degrade significantly. In
contrast, any human radiologist can walk down the street
to the older hospital and do just fine.”. As explained in [4],
the American College of Radiology survey is in agreement
with A. Ng, “A large majority of the FDA-cleared algorithms
have not been validated across a large number of sites, raising
the possibility that patient and equipment bias could lead to
inconsistent performance”.

The author of [5] discusses ten mistakes often made in
machine learning. He groups them into three sections based
on the type of issue at hand: Data Issues, Modeling Issues,
and Process Issues. For the data issue type he describes two
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problems: not looking at the data and not looking for data
leakage, see [5]. There is not just one reason that cause AI
systems to fail, nor is there a clear solution to any of them.
Nonetheless, getting to know the data to be dealt with in
depth is of crucial importance. As D. Spiegelhalter explains
in an interview [6] about his interesting book [7], “I think the
ability to deal with data critically and to realize its strengths
and limitations is the most important skill in the future world
and it’s an extremely marketable skill as well”. This paper
provides an in depth study of Whole Slide Image (WSI)
acquisition and processing for artifacts detection, color varia-
tion, and data augmentation because, as indicated in the title,
the devil is in the details and we should get to know them
better.

WSIs play an important role in cancer diagnostics, among
other things. Cancer is one of the leading causes of death
worldwide, with nearly ten million deaths in 2020 [8]. The
gold standard for the diagnosis of many cancer types is the
examination of histopathological images by pathologists [9],
traditionally under a microscope and digitized in recent years
thanks to the advances in Digital Pathology (DP). Among
other advantages, the digitization of the slides as WSIs
makes it possible to create a digital archive of images and
to develop Computer-aided Diagnosis (CAD) and prognosis
systems. Machine learning based systems designed to assist
pathologist, by predicting diagnosis, prognosis, segmenting,
extracting Region of Interest (ROI), visualization etc., can be
referred to as computational pathology (CPATH). Through-
out the paper, we will use CPATH as an umbrella term
for such systems. CPATH can be defined as a branch of
pathology that involves computational analysis to digitized
pathology images in combination with their associated meta-
data, typically using AI methods such as Deep Learning
(DL) [10]. CPATH systems can surpass the human eye in
the assessment of smaller tissue characteristics in reasonable
time and with considerable accuracy [10], and are providing
necessary automation to mitigate the burden of the projected
rise of cancer rates. DL techniques drive CPATH systems
to perform faster and more accurate diagnostics in complex
scenarios [11]. Some recent works in this area like [12]
have attracted the interest of researchers and the media. In
fact, research and the development of CPATH systems have
observed a five-fold increase in the last five years [13].

DL based CPATH systems depend on the WSIs used
to train them. Inappropriate training data can hamper the
performance of CPATH systems and make them useless in
unseen scenarios, for example WSIs from different labora-
tories [14], [15]. For that reason, obtaining and preparing
data for the development of new systems often requires a
great amount of time and effort. Assuming that the data is
already gathered, the preprocessing stage is considered to
require more than the 50% of the total effort [16]. Here,
preprocessing is understood to be any analysis, cleaning or
transformation process applied to the data before it is fed to a
CPATH system, including image processing techniques when
image data is used.

To focus on WSI preprocessing we must first look at
how those images were obtained. The routine of acquir-
ing histopathological glass slides often introduces different
unintentional artifacts and variations due to manual tissue
preparation, staining, and scanning hardware [15]. Artifacts
such as folds, knife marks, creases, and tears add irrelevant
morphological features that do not contain any histological
information [17]. In addition, health systems manage huge
collections of digital glass slides in central repositories from
distant laboratories. WSIs collected from different laborato-
ries may exhibit vast differences in a clinical nature of cancer,
type of biopsy, color, age of the slide, tissue placement, and
file formats. These abnormalities and variations are known to
affect the performance of CPATH systems. By using prepro-
cessing, however, it is possible to ensure sufficient relevant
tissue patches and thus improve the overall performance of
automated diagnosis [18].

This study starts with the WSI acquisition procedure in
order to review the causes for WSI variations and to provide
an overview of the crucial preprocessing steps for histolog-
ical images. It explains how to handle a WSI and how the
literature deals with the presence of unintentional artifacts
in a WSI. Approaches to dealing with WSIs that contain
significant cauterized, folded, or blurred areas that must
be identified and removed before being fed to DL models
are presented. Then, we explain how color discrepancies
are resolved in the literature by using color deconvolution,
color normalization or color augmentation. Finally, data
augmentation techniques applied to histological images are
also studied, including morphological, color, and generative
approaches. Figure 1 presents a graphical overview of this
study.

A. RELATED WORK
In recent years, several studies have compared histological
image preprocessing techniques. They can be roughly clas-
sified in two branches: image processing applied to histo-
logical images and how this affects CPATH systems. In the
first branch, Roy et al. [19] compared the performance of
color normalization methods using similarity metrics. Tosta
et al. [15] provided a more extensive comparative analysis,
focusing on H&E images. In these articles, special emphasis
is placed on methods that deal with color variation and
other issues such as artifacts detection or augmentation tech-
niques are ignored. Smith et al. [20] discussed preprocessing
workflow by limiting artifacts detection to quality check and
not specifying their histological occurrence during the WSI
acquisition phase. Salvi et al. [18] reviewed pre- and post-
processing in a more general way, broadly including tissue
segmentation, artifacts detection, color normalization, and
patch selection techniques but not specifying the effects of
preprocessing on diagnosis performance. In this sense, the
work by Tellez et al. [14] compared the effect of color nor-
malization and augmentation methods on the performance of
Convolutional Neural Networks (CNN) in several diagnostic
tasks.

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3176091, IEEE Access

Kanwal et al.: The devil is in the details: A review.

30/01/2022, 17:26 Preview

1/2

WSI Acquisition

Image Processing

Handling of gigapixel WSI

CPATH System

Doctor

Diagnosis

Artifacts

Data AugmentationColor Variations

FIGURE 1. An introductory overview to this review. Gigapixel images acquired from WSI acquisition process are handled and split before applying processing
methods. These processed histological images are used later by CPATH systems and doctors for diagnosis.

Works in the second branch are more focused on the
performance of different CPATH systems but also mention
preprocessing. Srinidhi et al. [21] comprehensively surveyed
different learning strategies for common segmentation and
classification tasks for various cancer types. They also in-
cluded a brief discussion on domain adaptation and color
normalization techniques. Dimitriou et al. [22] published
digitization processes and annotation methods for patching
but did not explain how to deal with preprocessing tasks
such as artifacts or chromatic variability. Saxena et al. [23]
reviewed feature extraction and data augmentation methods
for breast-cancer datasets. Komura et al. [24] investigated
applications of DL for histological image analysis and re-
viewed typical problems to be addressed in order to work
with histopathological images, including color variation and
artifacts. Gurcan et al. [25] presented a methodological re-
view for detection and segmentation tasks with preprocessing
steps that were limited to the normalization of illumination.
The work by Tosta et al. [26] focuses on reviewing validation
techniques for segmentation of lymphoma lesions where
preprocessing and postprocessing were limited to color-
space conversion and morphological operations respectively.
Huang et al. [27] focused on the applications of CPATH
systems in medicine, mentioning the need for preprocessing
and feature extraction before carrying out diagnostic tasks.
Morales et al. [9] identified the standardization of the WSIs
in terms of artifacts and color variation as a challenge within
current computational pathology.

The works discussed above show the relevance of WSI pre-
processing. However, their main focus is to compare CPATH
systems and learning approaches. The only work from the
first branch that is more focused on preprocessing is that of
Salvi et al. [18] and includes an overview of the different
tasks required. In many cases, WSI preprocessing is reduced
to color normalization [15], [19] and other relevant tasks such
as artifacts detection or different approaches to dealing with

color variation [14], [28] are ignored.
In this work, we aim to focus on the different areas of WSI

acquisition and preprocessing, and review the state-of-the-
art approaches for histopathological images. First, Section II
introduces WSI image acquisition, which is required to un-
derstand the WSI-specific preprocessing techniques. Then,
Section III discusses WSI handling techniques, as usually it
is not possible to work with the complete images due to their
massive size. Next, we cover three WSI-specific image pro-
cessing techniques: artifacts detection, color variation, and
data augmentation. Section IV focuses on dealing with sev-
eral types of histological artifacts that affect the performance
of CPATH systems. Section V describes color variation and
the different approaches to avoiding color generalization
errors. Section VI introduces data augmentation methods
for histological images. Finally, Section VII analyzes the
challenges in WSI preprocessing and Section VIII concludes
the paper.

II. WSI ACQUISITION
In this section we review the different steps for WSI acqui-
sition, from acquiring the tissue sample to the digitization
on the scanner, and explain the impact they have on the ob-
tained images. Artifacts and variations are introduced during
the acquisition process; therefore it is vital to understand
the acquisition steps in order to apply WSI-specific image
processing techniques.

The process of creating a fine quality histopathological
glass slide for diagnostics requires competence and skills
in both surgical and laboratory techniques [29], [30]. Al-
though the steps in the WSI acquisition procedure are fixed,
they are sensitive to a wide range of variables. Variations
in chemicals, time, and temperature, among others, make
it almost impossible to establish a standard routine among
laboratories. Although the staining of the tissue is usually the
biggest difference between laboratories, the final appearance
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of the sample is affected by every step in the procedure [31].
Some artifacts might be minimized with expertise and pre-
cautionary measures [30], while minor variations cannot be
entirely controlled. The steps in the acquisition sequence are
described below and illustrated in Figure 2. Note that some
artifacts are mentioned here to better illustrate the effect of
the step, and more detailed artifacts information is provided
in Section IV.

1) Biopsy
First, a tissue sample is obtained from the patient’s body
with a tissue-specific biopsy procedure performed by sur-
geons and paramedic assistants. The biopsy can be carried
out by scraping or brushing the surface of the tissue or by
removing the whole tumor. Some of the most commonly used
techniques are: Needle biopsy, to take samples from inside
the body (e.g. liver or prostate), punch biopsy, to remove
cylindrical skin sections, and endoscopy or cystoscopy, to
obtain samples from areas that are hard to reach (see [32] for
a complete list). The response to the chemicals in subsequent
steps will be affected by the type and size of the sample.
In addition, some types of biopsies may introduce artifacts.
Blood hemorrhages are a common complication [33] when
using scalpels. Tissue can also be damaged due to the surgical
tools or heat used during the extraction [31]. Also, a sample
might be contaminated with coloring agents used to identify
the area to be removed [34], or even by tattoo ink.

2) Fixation
Once the biopsy has been obtained, fixation is carried out
as soon as possible to preserve the tissue and cellular struc-
ture and avoid deterioration. The fixative that is used (e.g.
Phosphate formalin, Picric acid, B-5 fixative, Bouin‘s solu-
tion [35]) depends on the tissue type. Fixation time varies
with the size of the tissue and between laboratories, lying
in the range of 24-48 hours. Both the choice of fixative and
fixation time affect how stains will bind to the tissue. An
improper fixation affects the details in the sample, reduces the
contrast and differences between dyes, and might even create
undesired pigments [31]. Large samples or fixatives with
poor penetration rates might produce uneven color during
the staining step. Fixation carried out with freeze-drying
methods forms ice crystals which may cause tissue distortion.

3) Dehydration
Dehydration is performed next to remove aqueous fixative
fluid from tissue using alcohol. Different alcohol concen-
trations are used for varying time intervals. Water drops or
excessive time in alcohol will affect the staining quality and
may cause tissue shrinkage [36].

4) Clearing
Removing any dehydrating agent or alcohol left in the tissue
using a xylene immersion is required for the subsequent
steps. Alcohol residues might avoid posterior staining of
certain areas, while excessive clearing times might cause

tissue brittleness, crystallization and crumbling during sec-
tioning [34].

5) Embedding
Next comes tissue embedding, which is essential for pre-
serving the structural appearance for the sectioning process.
Specimens are enclosed in a supporting medium using a
mold. Paraffin wax is most commonly used for embedding,
and other mediums (e.g. Acrylic resins, Paraplast, or Polyfin)
might be used depending on the tissue type and the sectioning
tool, also affecting sectioning and appearance when using
light microscopy [37]. The orientation of the tissue in the
block is critical. Incorrect placement may damage diagnostic
elements during sectioning or obscure them from further
analysis.

6) Sectioning
The embedded tissue is chilled at a suitable temperature
and then sectioned into thin slices using a microtome. Ide-
ally, successive sections will stick edge to edge, forming a
ribbon. Proper sectioning results in uniform thickness and
depends on many factors including temperature, knife angle
and cutting speed, and requires good handling experience and
high-grade equipment [37]. The slicing typically varies from
2-10 µm. A thick section may be opaque and get heavily
stained compared to a thin section, thus uniform thickness
is highly desirable. Insufficient dehydration, clearing or im-
proper embedding in previous steps or temperature can cause
excessive hardening, leading to cracking during sectioning.
Similarly, uncalibrated microtomy machines or dull medical-
grade blades may tear or stretch the slices [29].

7) Flotation
A thermostatically controlled water bath is then used to
flatten the ribbon and to place the sections onto the slide.
Wrinkles and folds in the tissue may occur during sectioning
and placing [36], [37]. Folded regions are useless for diag-
nosis and are twice as thick, and consequently absorb more
stain. Excessive time in the water causes excessive expansion
and thus distorts the tissue [37]. This step is often considered
to be part of the sectioning process.

8) Staining
Staining is the process of adding chemical compounds (dyes)
in order to highlight structural components of the tissue
and enhance the contrast of specific cell types that provide
important information for diagnosis. The stains react to the
pH or specific proteins in the tissue, giving each element a
distinctive color that pathologists can read. Different staining
protocols may be selected according to the pathologist’s
requirements. The most common staining is the Hematoxylin
and Eosin (H&E) staining, where Hematoxylin highlights
DNA and RNA in purple, whereas Eosin highlights cyto-
plasm and proteins in pink [37]. Special stains such as
immunohistochemical (IHC) are used to highlight different
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FIGURE 2. A flow diagram of the WSI acquisition procedure. The procedure is subjective to material and human errors that interfere with tissue structure and
formation. Different stages are involved in adding artifacts and variations to the final WSI.

proteins in brown. Most color differences are introduced dur-
ing staining. The previous steps, stain manufacturer, concen-
tration of the mix, mordant ratio, pH, oxidation, temperature,
tissue thickness, and staining time are some of the variables
that affect the final color. In addition, there is no consensus
on the staining protocol, as pathologist might have different
preferences over the appearance of the slide [37]. Staining
artifacts [31] such as blotching or unstained areas may appear
due to wax or alcohol residues from previous steps.

9) Mounting
In the final step in slide, the slides are covered with a mount-
ing media before being protected with cover-glass. Common
artifacts that might be introduced during mounting are air
bubbles, dust or microorganism contamination.

10) Storage
In some cases, the mounted slides might be stored or even
transported between laboratories [9] before scanning or re-
scanning. Slides suffer a natural discoloration over time
that might render the slides useless. The storage conditions
need to be controlled, if slides are not stored in the dark,
light might cause the stains to become bleached [31]. Many
current archives contain glass slides that were collected over
several years.

11) Scanning
Finally, slides are scanned to produce WSIs. Digital mi-
croscopy scanners vary widely and have a noticeable impact
on the observed color due to scanner-specific illumination
of the sample, sensors, and image processing carried out
during the image acquisition [15]. Scans might operate with
either bright-field, fluorescence illumination, or both [37].
Scanning occurs at different scales or magnification levels of
the slide, typically 10×, 20×, and 40×. A vendor-defined
pyramidal format stores different zoom levels as a WSI.
Metadata such as the storage format, focal profile and other

technical and administrative parameters is often stored within
the WSI. It is essential to choose the right focal profile and
focal map to avoid blurring artifacts.

At the end of this procedure, the WSI file can be used by
pathologists for annotation or diagnosis instead of using the
microscope. Usually, scanning system vendors provide spe-
cific software to view WSI stored in their proprietary format.
The final image perceived by pathologists is also affected by
their display system. Feeding WSI images to CPATH systems
requires additional steps that are covered in the next section.
In addition, these digitized slides are likely to require the
application of image processing techniques before they are
used in CPATH systems, otherwise the diagnosis could be
affected by the undesired variations and artifacts introduced
during acquisition.

III. WSI HANDLING
The acquired WSIs contain all the information required to
emulate the navigation of a glass slide on a microscope [38].
Several resolutions are available within the same file and
thousands of individual images are stitched together, render-
ing files of gigapixel order. Therefore, the computational cost
of analyzing a complete WSI with CPATH systems is usually
very high, and it is almost impossible to analyze it all in
one go due to memory restrictions [9], [39]. Furthermore,
WSIs do not even fit in a GPU, which renders the tasks of
processing and automated diagnosis almost impossible. The
most common strategy is to analyze WSIs by breaking them
down into smaller patches. The patching workflow is usu-
ally adapted for the following WSI processing or automatic
diagnosis [9], [40]. In general, the process of WSI patching
consists of two sub-problems: what-to-patch, and when-to-
patch.

What-to-patch: Processing and analysis will be affected
by how the WSI is split in sub-images [40]. Square patches
of different sizes are commonly used. Smaller sizes are often
used for DL models [41] to reduce the computational burden
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FIGURE 3. Patches extracted from the same WSI at a fixed 256 × 256 patch size and different magnification levels of 10x, 20x, and 40x (from left to right).

and to avoid excessive information within the patch. In some
cases, bigger patch sizes might be needed to capture whole
histopathological areas such as complete glands [40]. What
is captured in the patch is also affected by the magnification
used (see Figure 3). Patches can be extracted at one or
multiple magnification levels. Using several levels at once
gives a multi-resolution dataset where the same number of
pixels in different magnification levels correspond to differ-
ent fields of view. While this technique can mimic how the
pathologists work when zooming in and out to get details or
context, it requires complex models in order to be able to
handle the different levels [38], [42]. To cover the entire WSI,
patches are usually extracted using a sliding window with
or without overlapping between patches [41]. If annotation
masks are available, the patching can be performed only
within ROI [43] or labeled areas, reducing the amount of ir-
relevant patches. Patching the background is usually avoided
by automatically generated tissue masks using Otsu or other
thresholding methods [40].

When-to-patch: Patching itself is a time-consuming pro-
cess that usually is performed in advance and stored for
subsequent processing. This pre-patching approach requires
the patch settings to be fixed in advance, and requires extra
storage for each patching configuration, e.g. if patching with
256×256 resolution and 512×512 resolution is to be tested,
the complete patched dataset must be stored for each of the
two setups separately. The extracted patches often become
the actual dataset, substituting the use of the WSIs [44]. An
alternative approach is patching "on-the-fly" [9], where a
WSI-specific list of patch coordinates is stored [41], [42]. The
extra storage required for different patching configurations is
reduced because the patches must not be saved separately,
and the flexibility for posterior processing is more flexible in
terms of size, resolution, and overlapping. However, patching
"on-the-fly" might imply an increase of the processing time
as the WSI needs to be loaded and processed during training
each time.

Patching makes it possible to load, process, and analyze
WSIs, yet it also implies contextual information loss [9].

The best patching option should be chosen according to
the task, model, memory, and computational constraints,
and is a trade-off between these requirements [9]. Patching
details are often briefly mentioned in research papers, but
any subsequent steps will be affected by the patching proce-
dure, making reproducible patching critical for reproducible
research [41].

At this point, the WSI patches might be used to feed a
CPATH system. However, good quality WSI is critical for
CPATH systems. The following sections describe different
preprocessing techniques that can be used to improve WSI
quality and CPATH system performance.

IV. DETECTION OF ARTIFACTS
During the acquisition procedure (see Section II), undesired
artifacts might be introduced in the slides. Artifacts are
alterations of tissue or artificial structures introduced by
extraneous factors [31] that may be present in some parts or
even the whole WSI [33] and might hamper the diagnostic
procedure. There is a wide range of possible histological
artifacts [31], and they can be roughly divided into: 1) Tissue-
level artifacts, 2) Slide-level artifacts, and 3) Scanner-level
artifacts [45]. Figure 4 depicts some of the artifacts that are
introduced in each step of the acquisition procedure.

Tissue-level artifacts: These artifacts are produced during
the acquisition and processing of the tissue, from the biopsy
to the staining steps (see (II-1) to (II-8) in Section II), or
often in various steps. Tissue-level artifacts are often hard
or impossible to rectify as this would require repeating the
tissue acquisition process or even a new biopsy. Tissue can
be damaged in the biopsy (II-1) (cauterized tissue, curling,
squeezing, and hemorrhage) often eliminating the diagnostic
value of the damaged areas [29], [33]. Several types of tissue
ruptures can be produced during sectioning (II-6) as a result
of the preceding steps (e.g., ice crystals due to inappropriate
fixation (II-2), brittle tissue due to excessive clearing (II-4),
or using a hard embedding (II-5)) [34], [36]. Improper ori-
entation during embedding causes tangential sections that
might not be of interest. Sectioning (II-6) might also cause
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artifacts to occur (e.g., tears caused by a dull knife, chatters
and cracks due to knife vibration, or uneven tissue thickness).
Special care has to be taken during sectioning and flota-
tion (II-7) to avoid tissue overlapping, referred to as tissue
folds [34]. Staining (II-8) might also produce artifacts that are
influenced by previous steps, such as blotching and unstained
areas caused by embedding (II-5) and clearing (II-4) residues,
respectively [34].

Slide-level artifacts: These artifacts are associated with
the final pathology workflow steps, such as mounting and
storage (see (II-9) to (II-10) in Section II), and can be
resolved by repeating just these steps. Some of these artifacts
are types of contamination such as dirt, fungi or microor-
ganisms before mounting, or air bubbles produced when
placing the cover slip [34]. Pen markings from previous
manual analysis or damage due to improper storage are also
considered slide-level artifacts. Slides with pen markings and
dirt can be cleaned prior to scanning.

Scan-level artifacts: These artifacts are caused during
scanning (see (II-11) in Section II) and do not appear on
the glass slides. They can be easily solved by re-scanning
if necessary. Blur is the most common scanner-level artifact
that diminishes the overall sharpness of a WSI. It is produced
by uneven tissue thickness or improper focal calibration.
Modern microscopy scanners try to avoid blurring artifacts
by selecting multiple focal points to adjust the focus to tissue
height [46], [47], but having more focus points usually means
longer scanning times. Other scanning artifacts appear due
to hardware limitations. The glass slides often need to be
scanned in separated pieces that are latter stitched together
to create the WSI. The most common approaches are line
and grid scanning, which may cause a strip-like or grid-like
appearance, respectively, if not well illuminated [17].

The presence of these artifacts directly affects the perfor-
mance of the CPATH systems; thus, it is crucial to detect
WSIs or patches containing artifacts [48]. Having provided a
general classification of the different artifacts that can occur
during the WSI acquisition process, we will now focus on
further detailing scan-level artifacts, blur and the tissue-level
artifacts, folded tissue, blood, and damaged areas because
those artifacts can have a major impact on WSI analysis and
have been somewhat explored in the literature. At the end
of this section, we will also address the general WSI quality
assessment techniques.

A. BLURRED AREAS
Blur is often considered the most critical quality issue in
WSI [49]. Methods that can objectively quantify the presence
of blurry patches can be classified in No-reference, partial-
reference, and full-reference methods [50]. Full and partial-
reference methods require a non-blurred reference image.
Unfortunately, references are not usually available, thus, no-
reference metrics are usually preferred [51]. No-reference
metrics assume that the distribution of the blur metric is
different in sharp and blurry patches [50]. Using no-reference
metrics, Wu et al. [50] proposed a workflow to classify

blurry and sharp regions in endomyocardial WSIs by de-
termining pixel-level information and bin distribution. Local
and global features were compared using several classifiers,
where higher accuracy was achieved using the local features.

Gao et al. [52] detected in-focus and out-of-focus WSI re-
gions by extracting 44 extensive features (e.g. neighborhood
contrast, gradient and Laplacian features, local statistics,
and wavelets) and training an AdaBoost classifier. Deep-
Focus [47] uses a CNN to analyze blur in four different
stains (H&E, Ki67, CD10, and CD21) with categorical cross-
entropy loss. The approach used data augmentation (see Sec-
tion VI) and was evaluated in a limited test set in terms of ac-
curacy. The work by Albuquerque et al. [53] compared seven
CNN architectures to classify blur for different focus levels.
Their work detailed benefits of data-driven methods over
knowledge-driven methods in terms of performance met-
rics. The method compared ordinal loss with nominal cross-
entropy loss for multi-class focus assessment. Campanella
et al. [54] quantified different blur levels using sharpness-
based features along with a random forest model and residual
network. Kohlberger et al. [55] proposed ConvFocus CNN
architecture, to quantify and localize out-of-focus areas in
a WSI. Their focus quality evaluator was trained on semi-
synthetic data to learn discriminative features and was vali-
dated on limited real data. Similarly, Ang et al. [56] proposed
FocusLiteNN, a data-driven method used to evaluate focus
quality in various stains. FocusLiteNN uses a shallow CNN
layer to transform features with transferability and relatively
low complexity.

Once blur areas are detected, they are often discarded or re-
scanned if possible. Deblurring and Super-Resolution (SR)
of histological images can also be found in the literature.
Zhao et al. [57] proposed a residual dense convolutional
network for image deblurring in optical microscopic sys-
tems. Mukherjee et al. [58] built a recurrent SR network
in order to use the intermediate resolutions available in the
WSI to reconstruct a high-resolution image. Chen et al. [59]
extended this work by linking a multi-scale SR network and
diagnostic network. Singh et al. [60] proposed the idea of
using a dark channel algorithm designed for haze removal in
natural images to enhance medical images.

B. TISSUE FOLDS
Tissue folds are tissue-level artifacts that occur during the
flotation step when a layer of tissue is placed over itself. In
the folded areas, overlapping tissue might introduce morpho-
logical aberrations (e.g., overlapped nuclei) that may cause
misinterpretation [61]. The tissue thickness is also increased
by the additional layer, adsorbing more of the stain than the
rest of the tissue on the glass slide.

The color difference in folded tissue has been used to
identify these areas [61]–[63] by using color-space transfor-
mation. Palokangas et al. [61] developed an unsupervised
approach using differences in the Hue, Saturation, and Inten-
sity (HSI) channels as shown in Figure 5. Then, folded tissue
was identified by the use of clustering. This method evaluates
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FIGURE 4. Artifacts can be introduced during the WSI acquisition (see Section II). (A),(B), and (C) are damaged tissue artifacts caused during biopsy due to heat,
curling or squeezing, respectively. (D) represents a blood hemorrhage with no diagnostic value. (E) shows tearing of the tissue due to ice crystals caused by
freeze-drying fixation methods. The shrinking of tissue due to excessive alcohol dehydration is shown in (F). (G) shows crystallized brittle tissue due to excessive
cleaning. (H) shows a tangential section due to improper orientation of the tissue within the embedding block. During sectioning, tearing (I) and cracks (J) may occur
due to flaws in the embedding procedure or improper temperature, while chatters (K) and tears (L) are caused by a loose and dull knife, respectively. Folded tissue
is shown in (M), caused by an incorrect slide placement during flotation. Staining artifacts in previous steps (e.g., blotching (N) and unstained areas (O), might be
due to residual wax or xylene, respectively. Air bubbles (P) and contamination due to microorganisms (Q), or dirt (R) might occur during mounting. The natural
discoloration over time is accelerated by light exposure as shown in (S). Finally, blur artifact (T), strip-like appearance (U), or stitching (V) can be produced by the
scanner due to improper calibration.

WSI based on the assumption that folds are present and will
result in false positives in the absence of folds. Kothari et
al. [63] combined RGB, HSI, CIELUV and CIELAB features
with texture features such as Gray-level Co-occurence Matrix
(GLCM) to discard tissue folds and pen marks.

Bautista and Yagi [62] detected folds at low magnification
to try and to avoid these areas in the selection of focal
points for the scanner. They used the RGB shift with an
adaptive factor depending on saturation and luminance values
to distinguish between tissue folds and the rest of the tissue.
Although the authors recognize that their method could ig-

nore small tissue folds due to low magnification, it was not
tested on higher magnifications. Wang et al. [64] extended
the work by Palokangas et al. [61] by adding connectivity
properties of tissue structures to detect tissue folds in low
magnification WSIs. Although the method adapts the fold
detection thresholds based on neighboring pixels, it needs to
be optimized according to the dataset.

The use of color-based features might be affected by vary-
ing staining protocols. To overcome this issue, Shakhawat et
al. [48] proposed the use of data-driven features trained with
heterogeneous datasets. They explored the use of GLCM to
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RGB to HSI Transformation
Folded Tissue Diff (S - I)Hue Saturation Intensity

FIGURE 5. HSI transformation of a patch with folded tissue artifacts. Altered regions can be highlighted by different components of HSI color-space due to their
colorimetric properties. An enhanced observation can be formed by subtracting of two prominent components [61].

feed a binary Support Vector Machine (SVM) classifier and
detect folds at low magnification as a quality check step.
Babaie et al. [65] proposed the use of five well-known pre-
trained CNN to extract deep features that were then used to
classify tissue folds with different classifiers (Decision trees,
SVM and KNN).

C. DAMAGED AND BLOOD AREAS
Damaged tissue (e.g. cauterized, squeezed, etc.) and blood
hemorrhages result from complicated specimen collection
procedures such as trans-urethral resection in bladder cancer
(see (II-1) in Section II). These regions are considered to be
tissue-level artifacts and are often ignored [66] due to the
lack of information relevant to diagnosis or prognosis [38].
Similar to folded tissue, damaged and blood areas differ in
terms of stain absorption and thus can be separated with color
histograms and texture features [67]. Despite the diagnostic
irrelevance, there are not many publications which have fo-
cused on finding damaged tissue or blood. Some research fo-
cused on finding diagnostically relevant tissue include them
as a class to discard. The method by Bahlmann et al. [68]
flagged irrelevant patches using the percentile of the stain
channels by [69] and a linear SVM. Mercan et al. [67] used
k-means to find a dictionary and represent the WSI as a
bag-of-words. The patches were classified into clusters using
combination of Local Binary Patterns (LBP) extracted from
the stain channels provided by [69] with L*a*b histograms.
Blood was identified as one of the clusters. Wetteland et
al. [66] presented a segmentation CNN to find several tissue
classes, including blood and damaged tissue with the aim
of finding relevant tissue. This work was extended to multi-
scale in [38] using global and local context from different
magnification levels, and combined with clustering to include
low-probability patches in [70]. In Chadaj et al. [71] pro-
posed a U-Net model to detect damaged tissue. Although the
technique was only tested on IHC stained brain tissues, the
authors considered its possible use for WSI analysis of other
tissues and stain protocols.

Although blood is usually non-informative, in some cases
it is critical for diagnosis. Chadaj et al. [72] tackled the

problem of differentiating blood vessels (informative) from
hemorrhage (uninformative) using the CMYK color-space
and mathematical morphology to feed a decision tree. Blood
detection is also a critical step in the diagnosis pipeline
presented by Clymer et al. [73], where a RetinaNet model
is used to detect blood vessels at low resolution, which were
subsequently classified using an Xception CNN.

D. OVERALL QUALITY CHECK
We conclude this section on artifacts detection by describ-
ing the overall Quality Check (QC) models that have been
proposed in the literature. Some of them have already been
mentioned in Sections IV-A to IV-C.

WSI analysis is computationally expensive. The objective
of a QC is to quickly identify faulty WSI containing signif-
icantly distorted features in order to discard or re-scan them
before carrying out any further analysis [17]. QC approaches
try to evaluate each WSI and provide a quality metric, usually
by looking at lower magnifications in the multi-resolution
pyramid [48], [49], [74]. The overall quality metrics are
designed according to what pathologists consider to be the
most relevant features and often include sharpness of the
image, amount of artifacts or noise, and contrast metrics [49].
Most of the time, it is not possible to obtain an ideal high
quality reference image. Thus, no-reference (blind) quality
assessment methods are preferred for robust QC [51]. A
general QC pipeline is shown in Figure 6. QC methods are a
coarse approach to artifacts detection. Notable artifacts such
as folded tissue, air bubbles and blur are often treated as a
single class in QC approaches.

The method presented by Hashimoto et al. [51] uses a
combination of image sharpness and noise measurements to
derive a linear regression model in order to provide a quality
metric. This work was extended by Shakhawat et al. [48] to
distinguish whether the low quality of an image was caused
by scanning or other artifacts. Ameisen et al. [74] proposed
a set of QC metrics using blurriness, color separation, bright-
ness and contrast assessments to evaluate different scanners.
They discussed the trade-off between using lower magnifica-
tion for quick QC or higher magnification for a more com-
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FIGURE 6. Overview of an automated QC at lower magnification. Various image parameters are used to set a quality score. Agreement between final quality score
and the pathologists’ subjective evaluation is often used to validate the effectiveness of the QC method.

prehensive analysis. Shrestha et al. [49] evaluated the quality
and reproducibility of different scanners over time using
a weighted average of five parameters: sharpness, contrast,
brightness, uniform illumination and color separation. The
QC by Avanaki et al. [75] compared quality estimators based
on the availability of the gold standard reference. Structural
Similarity (SSIM) is used when a reference image is available
for evaluation. For reference-less estimation, a blind feature-
enriched estimator was trained on artifacts free WSIs. The
HistoQC [76] tool performs quality estimations by making
a content-based evaluation for outliers in a cohort of WSIs.
It uses image metrics, features and supervised classifiers to
distinguish altered areas in the images. It also takes into
account the WSI metadata to catalogue and contextualize
visual information. Jimenez et al. [77] used full-reference
and blind metrics from general image quality assessment and
used them for WSI QC.

V. PROCESSING OF COLOR VARIATIONS
Once our WSIs are artifacts free, one might think that they
are ready to be used in DL related tasks. However, even
when using the same staining protocol (e.g. H&E, IHC),
the color observed in WSIs strongly varies between different
laboratories. The final color of the sample is affected by every
step described in Section II. This makes it impossible to avoid
color variation during WSI acquisition.

Although color variation does not usually affect the anal-
ysis and diagnosis of images by doctors, it hampers the
performance of CPATH systems. The impact of color can
be especially severe when working with data from several
laboratories or when testing systems on data from new lab-
oratories [14]. It is probably the most studied phenomenon
in histopathological image preprocessing [14], [15], [18].
Therefore, addressing color variation is one of the main
preprocessing tasks required to obtain reliable data that can
be used with transferable CPATH systems.

To reduce the effect of color variation in the WSI analysis,
several approaches can be found in the literature: Grayscale

conversion, Blind Color Deconvolution (BCD), Color Nor-
malization (CN), and Color Augmentation (CA). Although
most works dealing with color variation focus only on CN,
it is interesting to provide an overview of all the approaches.
We introduce a brief description of them in the following.

Grayscale conversion: Discarding the color information
and using grayscale images is the most naive approach. It is
supported by the hypothesis that color information is redun-
dant since the diagnosis relies on morphological and structure
patterns [14]. Although grayscale images are not commonly
used, they can reduce the CPATH system generalization error
for unseen colors [14]. However, it has been shown that
discarding color information results in lower classification
performance than other preprocessing techniques [14].

Blind Color Deconvolution: The basis of the staining
procedure is to be able to differentiate the structure of the
tissue according to the distribution of each stain [78]. BCD
techniques aim to separate the observed multi-stained image
into single-stain images. The separation is performed by
estimating the color of the stains in the image, and the amount
(concentration) of each stain for each pixel. A graphical
representation of the BCD procedure is depicted in Figure 7.
The amount of each dye absorbed by the tissue, which has
been separated from the color information, can be used to
feed CPATH systems instead of using the RGB channels
directly [79]. This approach reduces the impact of color
variation and tries to mimic how pathologists analyze the
image as they identify the different tissue structures in the
image by the amount of each stain.

Color Normalization: Nowadays CN is the most popular
procedure for dealing with color variation (see the review
in [15]). CN methods aim to adjust the color in the WSIs
as if they were obtained according to the same staining and
scanning procedure. Although BCD is the major first step
in most CN methods, some of them achieve normalization
without stain separation, e.g. by using style transfer [80] or
global normalization [81]. Particularly, most recent methods
based on deep generative models, i.e. variational autoen-
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coders and generative adversarial networks, perform CN
without BCD [80], [82].

Color Augmentation: Unlike BCD and CN, which aim
to reduce color variation, CA [14] aims to generate color
variations in training data, reducing the generalization error
of classifiers on future test data acquired with different color
properties.

In the following we will describe the BCD and CN tech-
niques in detail and postpone the analysis of CA techniques
(on account of their different nature) to Section VI, where
it will be discussed together with other augmentation tech-
niques.

A. STAIN SEPARATION USING BCD
Differential staining lies at the basis of pathology, providing
information about the distribution of the structures within the
tissue [78]. Classical BCD works [78], [83] were designed
to help pathologists during the manual diagnosis. The use of
BCD to deal with color variation came with the development
of complex CPATH systems that use more than just shape
features [84]. As BCD separates staining structure from its
color information, it is ideal for reducing color variation
while preserving structural information. The separated stain
channels can be used for CN, CA, to obtain channel specific
features [40], or directly for classification [85]–[87] which
seems to improve the classification performance of the tested
systems.

The work by Ruifrok et al. [78] introduced the use of the
Beer-Lambert law and the Optical Density (OD) space, pro-
ducing a linear representation of the combination of stains.
The OD image can be separated into the concentration matrix
and the color-vector matrix. Later works use the OD space
and propose different approaches to find the color-vector
matrix, which is considered to be unknown due to the color
variation. As the staining procedure is additive, [83] proposed
Non-Negative Matrix Factorization (NMF). This work was
extended in [88] using regularization and sparsity terms. The
work by Vahadane et al. [89] only used the sparsity term,
with the assumption that a type of stain is only bound to
certain structures. The sparsity term was revisited in [90]
where the authors estimated the sparsity parameter using a
fuzzy set method. Independent Component Analysis (ICA)
was also explored in [83] and further developed in [91]
with a stain vector correction step. Alsubaie et al. [92], [93]
explored its use in the wavelet domain where the indepen-
dence condition among stains is relaxed. Macenko et al. [84]
proposed the use of Singular Value Decomposition (SVD) to
separate H&E channels. Although the method in [84] is still
commonly used, it was extended in [94] by taking outliers
and the interaction between dyes into account. The authors
of [95] used SVD in a linearly inverted RGB-space instead
of the usual logarithmically inverted OD space. Clustering
techniques have also been explored to obtain the color-vector
matrix: In [96] the authors introduce the use of priors for the
color vectors and use k-means to estimate the actual color.
This work was extended in [97] by using the Maxwellian

chromacity plane to identify the reference colors and in [98]
with k-means and considering a possible imbalance of the
stains. The work in [99] adapts the deconvolution proposed
in [78] by including a prior knowledge based optimization
problem. Recently, Salvi et al. [100] proposed an adaptive
refinement of the method in [84] using Gabor-filters and k-
means to detect nuclei and stroma. A segmentation Gaussian
Mixture Model (GMM) method was proposed in [101] to
estimate the color-vector matrix and then extended in [102]
with an image-specific color descriptor and a more robust
color segmentation framework. Bayesian inference was ap-
plied by Hidalgo-Gavira et al. [103] introducing the use of a
similarity prior on the color-vectors and a smoothness prior
model on the concentrations. The Bayesian approach was
also utilized by Pérez-Bueno et al. [85] with the use of a Total
Variation (TV) prior. The work in [28] uses the high-pass
filtered domain to set sparse general super Gaussian priors
on the concentrations. Then BCD problem is approached as a
dictionary learning problem in [104], implementing Bayesian
K-SVD for BCD of histological images. DL has hardly been
applied in BCD, but there are some examples. Duggal et
al. [87] implements a stain deconvolution layer for CNN
based in the use of [84] to provide a stain separated input
to CNN-classifiers. Zheng et al. [86] use a Capsule Network
that produces multiple stain separation candidates using 1×1
convolution operators and finally assembles the output based
on a sparse constraint.

Figure 8 depicts the stain separation obtained by some of
the different methods in the literature. Different estimations
of the color-vector matrix and stain concentration will have
an impact on posterior applications of the BCD results, like
CN or CA.

B. COLOR NORMALIZATION
When CPATH systems started to use color-based features
rather than only morphological features [84], CN was pro-
posed in [84] for its use in WSIs. CN aims to obtain stan-
dardized images that mimic a chosen staining procedure,
often obtained from a reference image. Then, the normalized
images can be used as input to reduce the generalization error
for CPATH systems trained without considering color varia-
tions. Most CNN based CPATH systems use the RGB image
as input instead of previously obtained features [27]. The
popularity of CNNs has also increased interest in CN. The
main concern is that color correction needs to be done while
preserving the histological structure. For this reason, most
works concerning CN include a previous BCD step. In [105]
CN methods are divided into color modification and color
separation, where the latter are those that include a BCD step.
In [15] the authors classify CN methods as histogram match-
ing, color transfer, and spectral matching [106]. Histogram
matching ignores the stain separation. Color transfer might
include a segmentation or deconvolution step, it modifies
the color using statistical correspondences between histolog-
ical regions. Finally, spectral matching is a complete BCD
approach where stain concentrations and color properties
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FIGURE 7. Usual pipeline for stain separation using BCD. First, the RGB image which can be seen as a matrix with one row for each RGB channel, is transformed
to the logarithmically inverted OD space. Then, different methods are used to separate color from structure. The outputs are the estimated color vector matrix and
stain concentration matrix, which contain the color information for each stain (H&E in the example) and the concentration of each stain for each pixel, respectively.
The concentration matrix can be seen in the figure with one row for each stain as well as a grayscale image for each stain.

a) Observed H&E b) Ground truth c) Ruifrok et al. [78] d) Macenko et al. [84] e) Vahadane et al. [89] f) Pérez-Bueno et al. [104]

FIGURE 8. a) Ground truth separated E-only (left) and H-only (right) images from a Breast image of the dataset in [93] and the results of several methods in the
literature. The differences in the estimated color vector matrix can be appreciated.

are estimated. A more intuitive classification was introduced
in [18], where methods are considered as being i) global CN,
ii) CN after stain separation, and iii) color transfer using deep
networks. We will follow this classification in the following
discussion.

Global CN includes methods that do not separate stains
before tackling color variations. The work in [107] includes
two histogram based approaches to match the original and
reference colors. The first one performs quantile normaliza-
tion of the RGB channels to match original and reference
color distributions. The second creates a color map with
every unique RGB triplet and employs a mapping function
to transform the values to the reference color map. Although
it was not proposed for histopathological images, the work
by Reinhard et al. [81] is commonly cited in the CN litera-
ture [14], [18]. In [81] the authors use the lαβ color space
to separate the chromacity channels and then adjust the mean

and deviation of each channel to match the reference image.
CN after Stain separation: Once the color-vector matrix

and the stain concentrations are estimated using BCD, it is
possible to obtain normalized images. Note that most works
discussed in Section V-A were proposed for CN. In [84] the
color-vector was replaced by a standard one, and the concen-
trations are scaled to have the same pesudo-maximum (99th

percentile) as the reference image. The same CN procedure
has been used by more recent BCD works [79], [89], [94]
where the main differences can be found in each method’s
estimation of the color-vector matrix. The overview of this
procedure is depicted in Figure 9, where we can be observe
how the BCD estimation affects CN. While preserving the
replacement of the color-vector matrix, Khan et al. [102]
proposed a nonlinear (B-Spline) mapping of the concentra-
tions to the reference image. In [99], the authors calculate the
transformation matrix between source and reference image
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using an optimization function. The work in [44] did not
use BCD but instead separated stains and background classes
using the HSV color space, and then scaled the mean and
variation of each class separately. Recently, [108] presented
a multiscale Retinex model that estimates and corrects the
reflectance and illumination map for pixels of both stains
separately.

Color transfer using DL: Many of the recent works pre-
sented regarding CN use DL techniques. One of the first ap-
plications DL to histopathological images was presented by
Janowczyk et al. [109] using Sparse AutoEncoders. Bentaieb
et al. [80] used a Generative Adversarial Network (GAN)
to combine the normalization and classification of WSIs.
The generator is considered to be a stain transfer network,
while the discriminator simultaneously separates real and
normalized images and also positive and negative classes.
The StainGAN model [110] uses cycleGAN architecture to
map unpaired images between two different scanners (Aperio
and Hamatsu). In [82] Zanjani et al.use three different CNN
models for CN. First a VAE model is used, in which the latent
variable aims to encode K tissue classes, and the decoder
obtains the normalized images. Second, a GAN model is
used. It receives the lightness channel in the CIELAB color
system as input and generates the chromatic channels. Third,
a Deep Convolutional Gaussian Mixture Model (DCGMM)
that jointly optimizes the combined CNN and GMM models.
The GAN approach was used for CN cytological imaging by
Chen et al. [111] and includes an intermediate style removal
step.

Tellez et al. [14] proposed a CN network fed with heavily
augmented images and trained to reconstruct its original
appearance. Other popular CNN architectures have been
adapted to stain normalization, such as the Pix2pix condi-
tional GAN framework [112] or CycleGAN [113]. Zhou et
al. [114] combined a Cycle-Consistent GAN with the color-
vector obtained in [89]. Extending the unpaired CycleGAN
architecture, Invertible Neural Networks were used by Lan
et al. [115] to reduce the computational cost by means of
parameter sharing. Patil et al. [116] proposed a lightweight
fully-CNN that is attached to DL-based pipelines like a
preprocessing block. Moghadan et al. [117] explored the dis-
entanglement of style and content using a VAE architecture.
Ideally, the style space represents the color information while
the content space represent the structure of a histological
image. However, the fidelity of the latent content space in
terms of the structure of the image was not assessed. A con-
ditional GAN was used by Ke et al. [118] and combined with
federated learning to normalize the images to an interpolation
of the stain styles in the data clusters.

C. METRICS FOR THE EVALUATION OF COLOR
RELATED TECHNIQUES
After having discussed the relevance of reducing color vari-
ation in the preprocessing of histological images, we must
now evaluate the effects that different approaches have on
the images. The preservation of the tissue structure is often

considered to be the most important feature, but it is not mea-
sured in all publications [80], [84], [110]. Tosta et al.in [15]
reviewed the literature in terms of the evaluation techniques
used in each work, but did not discuss the use of the different
metrics. In this section, we introduce and discuss the most
common metrics in the literature.

1) Quantitative metrics

Due to the expertise required to visually evaluate histological
images and the fact that different pathologists may disagree
on the quality of an image, the use of objective quantitative
analysis is highly recommended.

Structure preservation: When the ground truth (GT) is
available, metrics such as the Peak Signal to Noise Ratio
(PSNR) or SSIM can be used to compare the results with
the expected output. PSNR and SSIM are commonly used
in BCD approaches [79]. Pathologists can easily identify the
true stain colors in the image, making it possible to obtain
a GT for the stain concentration [93]. Then the structure
preservation of the BCD separation can be assessed. When
the metric is calculated on the reconstructed separation (e.g.
H-only and E-only images), the use of the Quaternion Struc-
tural Similarity (QSSIM) [28] is recommended to account
for color similarities. Other approaches use the Euclidean
distance between the GT and the BCD concentrations or
the Normalized Mean Squared Error (NMSE). Note that
the structure preservation is measured before using the CN
techniques, and it is guaranteed by modifying only the color-
related information. For those methods that do not rely on
BCD and directly obtain CN, measuring the use of these
metrics is only possible when the expected normalization
result is available [89] (e.g. On the Mitos-Atypia dataset
previously mentioned). Measuring PSNR, SSIM or other
structural measures using original and CN images should
be avoided [110], as better values will be obtained by not
modifying the original image.

Color variation: When using BCD, it is possible to mea-
sure the difference between color vector matrices by using
Euclidean distance or NMSE [44]. Color evaluation can be
performed by comparing RGB or lαβ median values [89]
with the reference values or values from other images. This
comparison does not consider different distributions of the
stains in the images, so it is often performed on previously
identified regions such as nuclei, cytoplasm or red blood
cells [89]. The most popular metric is the Normalized Median
Intensity (NMI) [28], [44], [99], where the median intensity
value is divided by the 95th percentile. The NMI value is
calculated for the entire dataset in which the color variance
is measured, and then the standard deviation (SD) and the
coefficient of variation (CV) (standard deviation divided by
mean) are used as metrics. Lower NMI SD and NMI CV
values indicate that the color distribution of the images are
very similar.

CPATH system performance: The use of CPATH sys-
tems is the main reason for preprocessing techniques. There-
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a) Using GT separation b) Macenko et al. [84] c) Vahadane et al. [89] d) Pérez-Bueno et al. [104].

FIGURE 9. Top: Frequently used pipeline for CN after BCD (see Figure 7). First, the Reference and Observed images are deconvolved. Then, the color matrix
(column vectors depicted with estimated colors for the image) is replaced by the reference and the stain concentration (row vectors depicted in gray) is preserved.
The exact pipeline depends on each BCD method. Bottom: CN obtained with the same pipeline, using different BCD methods.

fore, it is important to see how preprocessing affects the
final performance of the CPATH system [14] as compared
with the original non-corrected images. Tumor segmenta-
tion [102], cell nuclei segmentation [44] or mitosis detection
are common CPATH tasks. In some cases the performance
of the CPATH system is tested and compared with systems
previously designed by the authors [102]. Tellez et al. [14]
presented an extensive evaluation on the effect preprocessing
has on convolutional neural networks. The work in [28]
assesses two different scenarios. In the first performance is
tested using stain-specific features [40] on four classifiers. In
the second scenario a VGG-19 is used and the performance
is compared using the original images, CN images (RGB),
and the OD concentrations. The use of RGB versus concen-
trations was also assessed in [87].

Computational complexity: Execution time and com-
plexity alone will not determine the quality of a method.
However, the massive size of WSI implies that it is important
to consider the computational requirements of a method.
For this reason, most authors include a time or complexity
comparison with other methods.

2) Visual and qualitative analysis
CPATH systems are designed as a tool for pathologists.
The human-machine collaboration scenario requires an input
that is suitable for both human and machine. It therefore
requires color-processed images to be to be visually evalu-
ated together with the quantitative metrics. It is important
to note the differences between the analyses performed by

pathologist and non-pathologist observers. As previously
discussed, the WSI analysis requires considerable expertise.
A visual analysis by pathologists is usually preferred but
is often not included in the studies [15] since an expert
pathologist might not be available. When included [43], [89],
the pathologist’s analysis is often reduced to evaluating the
quality of small patches or ROI. Analysis performed by non-
pathologist observers is often included, where a general as-
sessment of image quality and color similarity can be made.
Non-pathologists, however, cannot assess the diagnosis value
of color-processed images. How CN or other preprocessing
methods affect the pathologist diagnosis is still an open issue.

VI. IMAGE DATA AUGMENTATION
CPATH systems for cancer classification are normally based
on data-driven DL models [9], [21]. Their performance can
be considerably improved with image augmentation and it
has recently gained more and more attention [119]. One aug-
mentation technique, color augmentation (CA), was already
mentioned in Section V in the context of color variation
processing. The field of image augmentation, however, is
much broader and includes other types of variations, and
therefore we have devoted a whole section to it. The idea
of image augmentation is to apply random transformations
to the training images such that the model learns possible
variations in the data, making CPATH systems more robust
against unseen images. It can be used in addition to, or
in some cases as an alternative to the previously presented
preprocessing methods.
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In other areas of DL, image augmentation already plays
an important role [119] and it is to be expected that in the
future it will become more and more important in the medical
field. Apart from a better robustness to data variations, it can
help avoid overfitting in small datasets [120] and to tackle
class imbalance [121]. The augmented images can be seen
as an artificial extension of the training images, such that the
size of the dataset increases. It is important to note that some
augmentation techniques for histopathological images are
similar to those in other DL areas, while others are specific to
the problem, such as the BCD-based methods that use stain
separation for CA.

The image augmentation techniques can be divided into
three categories: Transformations that aim to manipulate the
morphology of the image, color augmentation and generative
approaches, as described in the following subsections.

A. MORPHOLOGICAL AUGMENTATION
By morphological augmentation we mean all image transfor-
mations that aim to change the shape, structure or field of
view of the input images. Typical basic augmentations in-
clude 90 degree rotations and vertical and horizontal mirror-
ing. Further width and height shifts have been adapted [122],
see Figure 10. To fill the ’free’ areas of the patch, either a
constant value can be used (black in our case) or the image
content, mirrored at the boundary. Note that the augmenta-
tions with a padding of constant values can lead to unrealistic
images, because black or white stripes appear at the im-
age border. To circumvent this problem, ’random coordinate
perturbation’ was presented in [123], which means that the
patches are extracted from the WSI with a random offset
of the patch center. This can be seen as a width and height
shift, and fills the ’free’ space with the actual content of the
neighbor patches.

These transformations can be extended by additive Gaus-
sian noise and Gaussian blurring as proposed in [14]. In the
case of Gaussian noise, a random value is added to the image
RGB values that is drawn from a Gaussian distribution.
Gaussian blurring describes the application of a Gaussian
filter to the image and leads to fuzzy contours, see figure 10.
In the case of elastic deformations and image scaling, the
effect remains unclear in the existing literature: while Xiao
et al. [124] do not recommend using these two techniques
for image segmentation to reserve the original tissue features,
Tellez et al. [14] successfully applied them to image classifi-
cation.

B. COLOR AUGMENTATION
CA aims to systematically manipulate the color distribution
of a given input image while preserving the structure. CA was
previously introduced in Section V, as it can be used as an
alternative to other color processing techniques [14]. Instead
of standardizing the images, basic CA includes the random
change of the brightness, contrast, hue or saturation of the
image [14], [123], [124]. This can help to make the model
invariant to different factors such as lightning conditions,

color intensity or other color variation introduced during
acquisition (see Section II). Khan et al. [125] proposed to
further modify, shuffle and shift the channels of the image
in RGB or HSV space to obtain more color variations. CA
can also be applied in addition to other techniques, such as
CA after CN [86], [104]. More dedicated methods are based
on BCD and try to mimic variations in the stains of the
microscope images, see Figure 10. BCD-based augmentation
strategies are tailored to histopathological images and have
shown promising results [14], [104], [125]. Tellez et al. [126]
proposed a method for H&E images consisting of three steps:
First, BCD is performed to decompose the RGB image into
one Hematoxylin and one Eosin channel. Then, the H&E
channels are individually multiplied with a random value
and finally the image is converted back to RGB color space.
Different techniques can be used for BCD, as described in
Section V-A, leading to different outcomes. The final perfor-
mance is quite sensitive to a good deconvolution, as men-
tioned in [86], [104]. Xiao et al. [127] followed a different
strategy: the images were transformed into the CIE-Lab color
space [128]. For each channel, color transfer was applied
with respect to a randomly chosen target patch: the mean of
the channel distribution was shifted to the mean of the target
patch. Faryna et al. [122] presented an approach that tailors
the RandAugment strategy [129] to histopathological images
by extending it (e.g. with BCD-based augmentation).

C. GENERATIVE APPROACHES
As a third category, generative approaches are outlined. Here,
new image content is generated instead of just modifying
the existing image. One technique of growing interest in this
area is GANs, which are able to generate synthetic images
that follow the same data distribution as the real images.
In other DL areas, GAN-based approaches are becoming
more and more popular for augmentation [119], however the
literature of GAN-based augmentation for histopathological
images remains scarce. Wei et al. [130] used cycleGAN [131]
architecture and adapted it for data augmentation such that
synthetic images of underrepresented classes were generated.
The approach of Brock et al. [132] relies on the architecture
of Biggan to generate artificial cancer tissue images [133].
An overview of the usage of GANs in the medical image
domain, including different augmentation strategies can be
found in [134]. Apart from GAN-based approaches, image
generation can also be understood in a broader sense: In
the work of [135], new images are generated by fusing the
left half of one training image and the right half of another
training image with pyramid pooling to avoid creating a sharp
edge in the middle.

D. EVALUATION OF IMAGE AUGMENTATION
TECHNIQUES
We conclude this section by describing the qualitative and
quantitative approaches to evaluate image data augmentation.
The goal of image data augmentation is to improve classi-
fication performance, however, if a qualitative evaluation is
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Transform. Weak Intermediate Strong
α = 0.1 α = 0.2 α = 0.5

Width & Height
Shift [122]

α=̂Max. shift in propor-
tion to image size

α = 0.33 α = 0.66 α = 1.0

Gaussian
Blurr [14]

α=̂Standard deviation of
Gaussian filter

α = 0.15 α = 0.3 α = 1.0

Brightness
Shift [14]

α=̂Max. factor multi-
plied with alpha channel

α = 1.0 α = 2.0 α = 4.0

Hue Shift [123]

α=̂Max. factor multi-
plied with hue value

α = 0.1 α = 0.2 α = 0.4

BCD-
Based [104]

α=̂Max. factor multi-
plied with each stain

FIGURE 10. Examples of weak, intermediate and strong augmentation of selected transformations.
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carried out by assessing examples of augmented images it
is important to check if the transformations are too weak
(no visual difference to the original images) or too strong
(image content hardly be recognized). In Figure 10 we show
a qualitative comparison of selected image augmentations
for an example patch of a breast cancer classification task.
For each transformation type, random samples of weak,
intermediate and strong transformations are depicted. While
weak transformations can be validated by non-experts, in-
termediate or strong image augmentation techniques require
the assessment of pathologists to know if the augmented
images are realistic or class-preserving. Quantitative evalu-
ation usually requires a ground truth that is not available for
image augmentation. Therefore, augmentation techniques are
commonly evaluated by the final performance of the CPATH
system, depending on the task, e.g. image classification, se-
mantic segmentation or object detection. For augmentation,
the evaluation is similar to the evaluation of color normaliza-
tion previously described in Subsection V-C1 under ’CPATH
system performance’: a CPATH model is trained for each of
the augmentation techniques. Then, the test performances of
the models are compared to determine the best augmentation
strategy [14], [104].

VII. CHALLENGES IN WSI PREPROCESSING AND
FUTURE RESEARCH DIRECTIONS
In this work we have provided an extensive review of the
WSI related preprocessing techniques, starting from data ac-
quisition and dealing with the problems of artifacts detection,
color variation, and image augmentation. The preprocess-
ing required for WSI analysis is complex and often tissue-
specific, disease-specific, and task-specific. The first chal-
lenge here is to identify and choose the right preprocessing
pipeline. Due to the massive size of WSIs, the required steps
and order should be chosen carefully to avoid redundancy.
Handling, as discussed in Section III, is usually performed
at the beginning, although some techniques using multi-
resolution or segmentation might define their own procedure.
It is not clear what order of preprocessing should be used.
Artifacts detection is often needed, but the detection of
specific artifacts depends on the tissue, biopsy, or even on the
laboratory procedures. Whether to do it before color process-
ing or not is also an open question. The presence of artifacts
might hamper color processing, at the same time, previous
color assessment could be used to improve the outcome of
artifacts detection. When it comes to image augmentation,
the discussion is similar. Are other techniques required if
augmentation is used? In many cases, applying augmentation
to clean, standardized images could lead to more controlled
scenarios, however, considering artifacts and variation could
create a wider range of plausible images during training.
Therefore, a preprocessing pipeline should consider how
different WSI preprocessing techniques interact with others,
something which has not yet been explored in depth.

Each WSI preprocessing area discussed in this paper is at
a different stage of development and has different challenges

to overcome. We will conclude this work with a discussion
on the limitations and the challenges they present.

A. CHALLENGES IN ARTIFACTS DETECTION

Quality control evaluation has shown how artifacts detection
and data curation affect the performance of the CPATH sys-
tems [38], [76]. Artifacts detection, however, is often ignored
in the preprocessing pipeline. Current approaches often rely
on low magnification analysis to discard complete WSIs. It is
a well-known issue that QC approaches need to be extended
to higher magnification in order to effectively detect some
of the artifacts [48]. This, however, would require new com-
putational efficient techniques to be implemented that can
deal with the massive size of the WSIs. While some notable
artifacts such as folded tissue, damaged tissue and blur are
often mentioned as being critical, few works explore them
separately. In many cases, artifacts detection is avoided by
using automatic methods to separate non-informative tissue
regions from ROIs. Focusing on ROIs may slightly speed up
the preprocessing pipeline but might not remove all possible
artifacts. Future research needs to address the presence of
artifacts and measure how they affect the performance of
CPATH systems.

Pathologists often consider blur to be the most critical
defect in digital pathology. In addition, blur is a downside
of the digitization process. It is not present when the slide is
manually studied in the microscope, and as such, it is a new
problem for pathologists. While blur is caused by a known
focus problem and can be corrected using deblurring tech-
niques, discarding blurred patches is often the most common
approach. The structure fidelity of deblurring methods is a
concern when working with medical images. This issue has
been addressed in natural images and needs to be explored
with histopathological images as well.

Most of the current methods used to detect specific arti-
facts (folded tissue, damaged tissue, and blood) rely on color
differences and use color space transformation. Although
most of these methods allow results to be influenced by color
variation between images, this effect is usually not measured.
Some of them include adaptive thresholding to deal with
small variations, but it is not clear how inter-laboratory color
changes will affect them. The range of possible artifacts
is extremely broad, however, preprocessing techniques have
only focused on finding and removing a few of them. Other
than that, there is not enough literature available on other ar-
tifacts such as air bubbles, tissue tearing, contamination, etc.
While pathologists need to be aware of the different types of
artifacts, CPATH systems are far from being able to recognize
one. Artifacts detection is not only a positive preprocessing
step for CPATH, but one that is required in more complex,
informative and interpretable systems. In this sense, research
on new methods that are capable of identifying patches with
different artifacts is needed.

Finally, artifacts might have an impact on other preprocess-
ing areas such as color normalization and data augmentation.
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How artifacts affect these areas has not been explored as of
yet, and needs to be addressed in future research.

B. THE FUTURE OF COLOR PROCESSING
Despite the great impact color has on CPATH systems and
the advances achieved in the color processing field, the latest
color techniques are not often used in works concerning
classification. As for the different approaches, CN is more
popular than directly using the BCD stain separation, and
CA is quickly gaining popularity. In the MICCAI 2018 con-
ference Multi-Organ Nucleus Segmentation challenge [136],
only half of the 32 teams used pathology-specific CN tech-
niques. Vahadane et al. [89] and Macenko et al. [84] were
the most popular. The other half used pixel intensity and
RGB color transformations (pathology-unspecific). The work
by Tellez et al. [14] also tested several CN approaches but
only included the work of Macenko et al. [84] as BCD-
based instead of more recent techniques. Neither the par-
ticipants in the Multi-Organ challenge [136] nor Tellez et
al. [14] reported the use of the deconvolved H&E channels.
However, BCD can be found in classification studies [40],
[137], usually using Ruifrok et al. [78] even when it is well
known that it does not consider color variation. The potential
performance boost of modern BCD [28], [79], [87] needs to
be transferred to other classification approaches. In contrast,
CA has quickly been adopted for color processing, as we will
discuss later on this section.

Apart from a better transference to CPATH systems, there
are several challenges that color processing needs to tackle.
As they are closely related to the lack of research in finding
artifacts, deviations from the desired staining schema are
ignored in almost every color-related work. The 95th/99th

percentile is used only in a few steps in the CN pipeline. As
previously discussed, many artifacts can have a deep impact
on the stain color-vector matrix estimation. This is usually
avoided by identifying the ROIs [28], [93], [99] before tack-
ling the color. If artifacts are not taken into account during
BCD or CN, they could end up being confused with other
histopathological features after standardization. For example,
dust might be confused with cell nuclei or blood with Eosin.

Similarly, guaranteeing structure preservation is critical
in color processing, and this is the main concern in BCD
techniques. However, recent DL-based approaches [14] are
more focused on classification performance. In [79] it was
mentioned that both objectives can be conflicting. More
research is needed on this interesting topic, which is also
related to the interpretability of the systems for pathologists.
Directly combining color processing with classification was
carried out in [80], [87], but needs to be further explored in
future work.

DL is of interest when dealing with color variation but
several issues need to be addressed in future research. Its
use for BCD needs to be explored, as well as the application
of the stain separation using DL to CN, CA and classifica-
tion. DL for CN often skips the BCD step and uses more
complex and less interpretable latent intermediate spaces. It

is common in DL-based CN studies [80], [113] to see the
lack of a reference image as an advantage, while training with
images with a fixed staining protocol can be seen as using a
reference laboratory instead. This often means that DL-based
CN cannot deal with intra-laboratory color variations.

A fair comparison between the color processing methods
in the literature is another challenge to be tackled. Review
papers [15], [18] relate them in a theoretical way, but more
works concerning quantification [14] are needed. A standard-
ized protocol for measuring the quality of color processing
methods has not been proposed so far.

Finally, the computational cost of color processing needs
to be considerably improved due to the size of WSIs. The
low computational cost of [78] is probably the reason why it
is still commonly used, and can probably explain the popu-
larity of pathology-unspecific techniques in [136]. Some ap-
proaches use unbiased pixel sampling [43], [84] to reduce the
computational cost of finding the color matrix. The reduced
time required by DL approaches once they are trained is one
of these models’ advantage, but their training cost is usually
considerably high in terms of data, time and computational
resources.

C. DATA AUGMENTATION POTENTIAL
Data augmentation is widely used in other areas of image
classification, segmentation and object detection [119]. It is
gaining popularity as a way of increasing the generalization
capability of DL models in the medical field. While sim-
ple morphological transformations such as image rotation
are widely used, more complex techniques still require fur-
ther scientific analysis. One explanation could be that, for
histopathological images, it is more difficult to tell which
transformation preserves the class: For an image of a dog,
for example, it is easy to see if the dog is still recognizable
after a transformation. In the medical domain, this evaluation
is more complex and often requires expert knowledge.

Further research in data augmentation could have huge
potential, as shown in [14]. Here, more dedicated methods
clearly outperform basic transformations in the final model
classification performance: The application of color-based
methods in addition to morphological transformations leads
to a clear improvement and the best performing techniques
include stain-based augmentations. An open question in this
context is if the color transformations have to be realistic.
While some approaches (e.g. [127]) aim to obtain augmented
images with realistic color variations, others are so strong
that the colors are clearly unnatural (see for example strong
augmentations in [14]). To the best of the authors’ knowl-
edge, the risks of training with unrealistic augmentations in
the medical domain has not yet been studied systematically.

Generative data augmentation for histopathological im-
ages is becoming more and more popular and will probably
play an important role in the future, as it already does in other
areas of DL [119]. GANs have the potential to realistically
augment images or even generate completely new, artificial
image data. This is especially interesting in the medical
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domain, where labeled data is costly and access is limited
due to privacy reasons.

Despite the huge potential of data augmentation for
histopathological imaging, advanced augmentation tech-
niques have not yet been widely applied in this area. Al-
though some risks and limitations of data augmentation re-
quire further scientific studies, data augmentation promises
to provide better generalizability of deep learning models and
helps to overcome data shortage and class imbalance. Fur-
thermore, stain-based augmentation methods are a powerful
alternative to tackling color variations. Based on the current
literature, it is not possible to draw a final conclusion on
whether CA can replace CN methods. While in [14], [125],
CA methods are stronger, [86] report that CN methods show
the best results. Further research in this area is necessary to
determine the best strategies for different use cases.

VIII. CONCLUSIONS

In this work we have described in depth the different steps
of WSI-specific preprocessing and reviewed state-of-the-art
techniques. The proper preprocessing of histopathological
images is highly important because data-driven CPATH sys-
tems have shown promising results, yet are very sensitive
to the data they are trained on. Depending on the exist-
ing data and task at hand, each preprocessing step must
be carefully selected and evaluated. For this purpose, we
provided an overview that helps researchers and practitioners
obtain the best possible results. Starting with the WSI ac-
quisition procedure, we have further explained the problems
and existing methods for histological image preprocessing.
First, approaches for dealing with the massive size of the
WSIs and splitting them in patches were presented. Then,
we explored how to perform artifacts detection to remove
undesired structures or artificial structures from the images,
such as blur, fold, blood or damaged areas. We reviewed the
approaches for dealing with color variation between different
centers: color deconvolution, color normalization and color
augmentation, and the metrics to evaluate the color changes
in the image. In addition, the latest data augmentation tech-
niques applied to WSIs were presented, covering morpho-
logical transformation, color augmentation and generative
approaches.

Finally, we discussed the challenges and future research
directions for WSI preprocessing and the potential of DL
techniques in this field. The size of the gigapixel WSIs, the
amount of artifacts and possible variations in the images,
and task-specific problem characteristics for different types
of cancer are all challenges that show the complexity of WSI
preprocessing and the need for specialized methods. The
huge impact that preprocessing has on the development of
accurate and reliable CPATH systems makes on thing clear:
In automatic diagnosis systems, the devil is in the details. We
cannot ignore them if we want to build sound, reliable, robust
and widely used CPATH systems.
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