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Abstract. Although in the last decades the use of Magnetic Resonance Imaging has grown in popularity
as a tool for the structural analysis of the brain, including MRI, fMRI and recently DTI, the ElectroEn-
cephaloGraphy (EEG) is still-today an interesting technique for the understanding of brain organization
and function. The main reason for this is that the EEG is a direct measure of brain bioelectrical activity,
and such activity can be monitorized in the millisecond time-window. For some situations and cognitive
scenarios, such fine-temporal resolution might suffice for some aspects of brain function; however, the EEG
spatial resolution is very poor since it is based on a small number of scalp recordings, thus turning the
source localization problem into an ill-posed in which infinite possibilities exist for the localization of the
neuronal generators. This is an old problem in computational neuroimaging; indeed, many methods have
been proposed to overcome this localization. Here, by performing a Variational Bayesian Inference proce-
dure with a generalized Gaussian prior, we come out with an algorithm that performs simultaneously the
estimation of both sources and model parameters. The novelty for the inclusion of the generalized Gaussian
prior allows to control the smoothness degree of the estimated sources. Finally, the suggested algorithm is
validated on simulated data.

PACS. 02.50.-r: Statistics – 02.50.Tt: Inference methods – 87.19.le: EEG, in neuroscience

1 Introduction

Electroencephalography (EEG) is a widely used technique to look into the brain [1–3]; compared to other neuroimaging
modalities, its main advantage is that EEG allows for a direct measurement of neuronal activity with a time-resolution
as fine as to account for variations of neuronal activity in the order of few milliseconds. The main EEG disadvantage is
that its spatial resolution is very poor. In fact, a big challenge for the EEG is to achieve a good physiological solution
to the (so called) ill-posed localization problem; namely, based on the scalp recordings to approach an estimation for
the cortical generators of the scalp signals. Bayesian Inference has a long tradition in the EEG source localization
problem, see for instance [4–12], in which by adding some prior information into the sources space it is possible to find
(under those assumptions) the localization of the sources which is consistent with the observed scalp recordings.

Following previous studies, here we present a Bayesian Inference formalism with two important features: 1) it utilizes
a generalized Gaussian prior for the sources and 2) uses a Variational Bayesian approach for the estimation of both
hyperparameters and sources. The combined estimation for hyperparameters and sources has been addressed before by
applying an Expectation-Maximization algorithm [5,6], see also [9] for a discussion of empirical Bayesian approaches
to the source localization problem. Estimation of both sources and hyperparameters have been also approached before
by Variational Bayesian methods with Gaussian priors [10]. In this paper, the use of a generalized Gaussian prior
distribution for the sources introduces a control (shape) parameter 1 ≤ p ≤ 2 which allows to control the smoothness
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degree of the estimated sources. Interestingly, the generalized Gaussian prior is equivalent to the use of the Lp-norm
to define the energy of the prior distribution [13]. Thus, the use of the generalized Gaussian prior allows to recover
in an elegant form previously reported source localization models; for instance, a Gaussian prior (achieved for p = 2)
coincides with the so-celebrated algorithm LORETA [4] if no hyperparameters estimation is performed; the case for
p = 2 and hyperparameters estimation by the Variational Bayesian approach was addressed in [10]; the case p = 1
produces a Laplacian prior, which was shown to approximate Total-Variations priors [14]. For other values of p new
solutions can be explored. Once the modelling is completed, the use of the Variational Bayesian inference [15,16]
comes-out with an iterative algorithm to estimate, given the scalp observations, the posterior distribution of sources
and hyperparameters. This inference procedure is, as we will explain later, much more powerful than the use of solely
point estimates since it allows to examine, for instance, the variance of the estimated unknown variables.

Interestingly Babacan et al. [17] showed in image processing that the use of Gaussian priors (p = 2) worked well
for reconstruction of smooth images whilst Laplacian priors (p = 1) worked better for edge reconstruction; they also
showed the possibility of improving the recostruction of some images for intermediate values of 1 < p < 2 compared to
the extremal situations of p = 1 and p = 2. Here, we bring these results to the problem of EEG source localization and
similarly conclude that the abrupt distributed sources are better localized for p = 1 and this happens independently on
the noise level. In contrast, the localization of smooth profiles depends critically on noise: for high noise, the localization
is practically independent on p but for low noise the localization is better for p = 2. Intermediate situations can occur
for a different p.

It is important to note that, while smooth sources are physiologically plausible to describe most of brain activity
situations, in pathological conditions such as localized epilepsy, in which the electrical activity becomes strong, highly
synchronous, in a small well-localized region (even that small as an individual point-source), smooth source estimation
is unrealistic and it is necessary the use of models that account for abrupt source-patterns. So, we need workable
localization methods as the one presented here which can localize both smooth or abrupt sources.

To summarize, we present here a generalized Gaussian prior, which, by simply varying a parameter p, allows the
use of the same algorithm to localize sources with very different profiles of electrical activity, and also a Variational
Bayesian inference method (which avoids hyperparameter hand-tuning) and provides information on the uncertainty
of the estimated parameters and sources.

The paper is organized as follows. In section 2 we detail the methods, including: 1) the Modelization, 2) the Bayesian
formulation, 3) the Variational Bayesian approach, 4) the iterative algorithm for the EEG source localization, 5) a
comparison to other similar existing methods, 6) the calculation of the Lead Field matrix, 7) the explanation of the
two different simulated conditions, 8) the generation of the observations and finally 9) the initial conditions used for
simulations. In section 3 we apply our algorithm to simulated data for two different conditions, one in which strong
sources are initially localized in a narrow region, named abrupt sources, and one in which weak sources are widespread
throughout the whole cortical surface, named smooth sources. For both situations, we utilize different values of the p
parameter, with 1 ≤ p ≤ 2, quantify performance and numerically validate the hyperparameters estimation provided
by our algorithm. Finally, conclusions are presented in section 4.

2 Methods

2.1 Modelization

We do not assume here to have a given numbers of dipoles at a specific location and responsible for the scalp signals;
in contrast, we use distributed source modeling, in which it is possible to have source dipoles at all possible locations
within the brain space (representing for instance source-points in grey matter). We assume there are nd dipoles
generating activity represented by the vector j and responsible of the observations, which represented by the vector v
correspond to the electrical potentials registered by ne � nd sensors on the scalp. In general, for each dipole its sources
activity is represented by a 3D vector (its electrical field), but hereon we consider only one component, corresponding
to the perpendicular direction to the cortical surface. At each time instant, observations and sources are linearly
related, and we can write

v = Lj + ε, (1)

where the noise ε, hereon, is assumed to be Gaussian with a covariance matrix in which all off-diagonal terms are equal
to zero, i.e., the noise at each sensor is independent from the noise at other sensors. In addition to this, it is assumed
that the noise at each sensor has zero mean and unknown variance β−1.

The matrix L relating observations and sources is of size ne×nd and is named the Lead Field matrix. To calculate
L, one needs the positions of both sensors and sources and knowledge on the specific head model. In section 2.6, we
provide details on its calculation.
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2.2 Bayesian Formulation

The Bayesian formulation of the EEG source localization problem needs to define and manipulate the joint distribution
to estimate, consistent with the observations, both sources and hyperparameters. Firstly, we will consider that the
observations probability distribution (i.e. the likelihood) is Gaussian, i.e.,

prob(v|j, β) ∝ β
ne
2 exp

[
−β

2
‖ v − Lj ‖2

]
, (2)

where the hyperparameter β controls the sensor noise variability. For the prior, we will take

prob(j|α) ∝ α
nd
p exp

[
−α

nd∑
i

ηi∑
l=1

|ji − ji:l|p
]
, (3)

in which the hyperparameter α, named the scale hyperparameter, controls the contribution that the prior has on the
source estimation compared to the contribution coming solely from the observations. This prior is named a generalized
Gaussian prior as the parameter p, with 0 ≤ p ≤ 2, allows for localization in different scenarios: p = 2 recovers the
standard Gaussian prior [4]; p = 1 the Laplacian prior; and otherwise it accounts for intermediate situations. For p
values smaller than 1, the generalized Gaussian prior allows for localization of sparser sources (this possibility has not
been explored in this paper). The index l in Eq. (3) labels the different nearest neighbors at site i; the total number of
nearest neighbors (per site) is represented by ηi. In constrast to regular (cubic) lattices, ηi in a realistic cortical mesh
is not always the same but varies depending on i, and this is why we are denoting it by ηi.

To model the joint distribution we will make use of the hierarchical Bayesian paradigm in which the estimation is
performed in two stages: first, over the two distributions, observations and prior, and second, over the hyperparameters.
The joint global distribution is then conveniently written as

prob(α, β, j,v) = prob(α)prob(β)prob(j | α)prob(v | j, β). (4)

The Gaussian distribution for the likelihood, Eq. (2), is known to be conjugated to Gamma distributed priors. This
means that when a Gaussian likelihood is multiplied by a Gamma prior the resulting posterior distribution is Gamma
distributed as well [18]. We use for this reason Gamma distributions to model the hyperpriors prob(β) and prob(α),
given by

prob(ω) = Γ (ω|aoω, boω) ∝ ωa
o
ω−1 exp [−boωω] , (5)

where ω > 0 denotes either hyperparameter α or β, and aoω > 0 and boω > 0 are the parameters defining the Gamma
distribution, which are assumed to be known (see Appendix for further details about the Gamma distribution).

Now, with Eqs. (2), (3) and (5) the joint distribution Eq. (4) can be explicitly written and ready to perform
Bayesian inference, which is based on calculating (or approximating)

prob(α, β, j|v) = prob(α, β, j,v)/prob(v). (6)

Note that if α and β were known we could use the so called Maximum a Posteriori (MAP) approach and estimate j
by solving

ĵ = arg max
v

prob(j|v, α, β) = arg min
j

α

nd∑
i

ηi∑
l=1

|ji − ji:l|p +
β

2
‖ v − Lj ‖2 . (7)

However, this procedure requires knowledge on model parameters that we may not have; furthermore, even if the
model parameters are known it is of great interest to estimate the posterior distribution (for instance, by using its
variance it allows to address how confident is our method on the provided estimates). In next subsection, we derive a
Variational Bayesian approach for the estimation of the posterior distribution.

2.3 The Variational Bayesian approach

We present here an approximation to estimate the posterior distribution, Eq. (6). More concretely, the posterior
distribution will be approximated by q(α, β, j) , a distribution that factorizes over the hyperparameters, i.e.,

q(α, β, j) = q(α, β)q(j) (8)
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and which is found by minimizing the Kullback-Leibler (KL) distance [19] between q(α, β, j) and prob(α, β, j | v), i.e.,

CKL(q(α, β, j) ‖ prob(α, β, j | v)) =

∫
α

∫
β

∫
j

q(α, β, j) log

(
q(α, β, j)

prob(α, β, j | v)

)
dαdβdj

=

∫
α

∫
β

∫
j

q(α, β, j) log

(
q(α, β, j)

prob(α, β, j,v)

)
dαdβdj + log prob(v), (9)

This quantity is always non negative and equal to zero if, and only if, q(α, β, j) = prob(α, β, j | v). Notice that in the
last equality in Eq. (9) we are using prob(α, β, j,v) which we know and not prob(α, β, j|v) which is unknown. Notice
also that explicit knowledge of prob(v) is not needed in the estimation of q(α, β, j).

The Generalized Gaussian prior considered here and given in Eq. (3) makes hard to perform the integral appearing
in Eq. (9). To overcome this difficulty, we will approximate the original prior prob(j|α) by a lower bound that makes
plausible the integration. In concrete, and similar to the strategy followed in [17], we will make use of the following
quadratic function

M(α, j,u) = αN/pexp

[
−αp

2

nd∑
i=1

ηi∑
l=1

[
(∆l

i(j))
2 + 2−p

p ui,l

u
1−p/2
i,l

]]
, (10)

which satisfying that prob(j|α) ≥ cM(α, j,u) (with c a constant), makes easier the integration of the KL distance.
The vector u has elements ui,l with values, which as we will see later, depend on the first-order spatial differences of
the sources j with respect the distribution q(j) , c.f. Eq. (16); in such a way the vector u is encoding the local-spatial
sources activity. In other words, we are using a spatially varying Gaussian distribution to provide a majorization of
the original prior distribution.

The operator ∆l
i in Eq. (10) denotes the first-order difference with respect to the l neighbor of site i. By these

considerations, it can be shown that

prob(α, β, j,v) ≥ c prob(α) prob(β)M(α, j,u)prob(v|j, β) ≡ F (α, β, j,u,v), (11)

where c is a constant. Thus the estimation of the posterior distribution is finally mapped to the minimization of an
upper bound of the KL distance, i.e.,

CKL(q(α, β, j) ‖ prob(α, β, j | v)) ≤
∫
α

∫
β

∫
j

q(α, β)q(j) log

(
q(α, β)q(j)

F (α, β, j,u,v)

)
dαdβdj. (12)

To summarize, using the Variational Bayesian approach and the lower bound in Eq. (11), the original problem, the
estimation of the posterior distribution with all the unknowns has been formulated as finding the two distributions
q(j) and q(α, β) and the vector u which minimizes the right-hand side of Eq. (12). In next subsection, we provide
details for an iterative algorithm to find such distributions.

2.4 The iterative Algorithm

1. Give the initial estimates of the distribution q(α, β) and u, represented by q1(α, β) and u1 respectively. Remark
that for the calculation of q1(α, β) only the mean values of α and β are needed.

2. Do for k = 1, . . . , (until convergence)
2.1 Find the solution of

qk(j) = arg min
q(j)

(∫
j

∫
α

∫
β

qk(α, β)q(j)× log

(
qk(α, β)q(j)

F (α, β, j,uk,v)

)
dαdβdj

)
, (13)

which is given by the probability distribution

qk(j) ∝ exp{Eqk(α,β)

[
lnF (α, β, j,uk)

]
}. (14)

Notice that at iteration k the estimation of the distribution of j is Gaussian, whose mean is given by Eqk(j)[j] =

covqk(j)[j]Eqk(β)[β]LTv. If a point estimate of j is needed, this mean can be used. However, a key advantage
of the Variational Bayesian approach is that it provides not only the point estimate but the whole probability
distribution over j. The covariance of the Gaussian distribution of j is given by

covqk(j)[j] =

(
Eqk(β)[β]LTL+ pEqk(α)[α]

nd∑
i=1

∆T
ηiWηi

(
uk
)
∆ηi

)−1

,
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where the matrix ∆ηi have elements which are all zeros at the l-th row except for two positions: value of 1
at column i and of −1 at column l ∈ ηi. Thus, ∆ηi has dimensions of ηi × nd. We have also defined that

Wηi

(
uk
)
≡ diag

(
1

(uk
i,l)

1−p/2

)
.

2.2 Find the solution of

uk+1 = arg min
u

(∫
α

∫
β

∫
j

qk(α, β)qk(j)× log

(
qk(α, β)qk(j)

F (α, β, j,u,v)

)
dαdβdj

)
, (15)

which is given by the vector

uk+1
i,l =

(
∆l
i

[
Eqk(j) [j]

])2
+

1

nd ηi

nd∑
j=1

trace
[
covqk(j)[j]×∆T

ηj∆ηj

]
. (16)

Notice that the sum appearing in the second term in the right hand-side is constant and independent of i, thus
the only dependence of uk+1

i,l in that second term comes from ηi.
2.3 Find the solution of

qk+1(α, β) = arg min
q(α,β)

(∫
α

∫
β

∫
j

q(α, β)qk(j)× log

(
q(α, β)qk(j)

F (α, β, j,uk+1,v)

)
dαdβdj

)
, (17)

which is given by the probability distribution

qk+1(α, β) = qk+1(α)qk+1(β) ∝ exp{Eqk(j)

[
lnF (α, β, j,uk+1)

]
}. (18)

This equation ensures that qk+1(α) and qk+1(β) are Gamma distributions. At the k-th iteration the estimation
of the two hyperparameters α and β are given respectively by the expectations of qk+1(α) and qk+1(β). The
inverse of the expectations are given by:

(
Eqk+1(α)[α]

)−1
= γα

1

ᾱo
+ (1− γα)

p
∑nd

i=1

∑ηi
l=1

(
uk+1
i,l

) p
2

nd
, (19)

and

(
Eqk+1(β)[β]

)−1
= γβ

1

β̄o
+ (1− γβ)

Eqk(j)

[
‖ v − Lj ‖2

]
ne

, (20)

where we have defined the ratios ᾱo ≡ aoα/b
o
α and β̄o ≡ aoβ/b

o
β , where aoω and boω were introduced in Eq. (5).

The parameters 0 ≤ γα ≤ 1 and 0 ≤ γβ ≤ 1 are modeling our confidence on the parameters of the Gamma
priors. When this confidence is zero, only the data are responsible for the estimation of α and β. When they
are equal to 1, α and β are specified in advance by the user and fixed in the whole iterative process. The term
Eqk(j)

[
‖ v − Lj ‖2

]
in Eq. (20) is calculated by using

Eqk(j) [‖v − Lj‖]2 =‖ v − LEqk(j)[j] ‖2 +trace
[
covqk(j)[j]LTL

]
. (21)

Finally, it is important to remark that the algorithm presented here has an interesting limit: when p = 2 and without
hyperparameter estimation, the method coincides with the so-celebrated LORETA algorithm [4]. Thus, fixing the
values of α and β in the calculation of Eqk(j)[j] and covqk(j)[j] (that is, giving full credibility to the values provided by
the user), needed in the algorithm stage 2.1, and observing that the W matrix (appearing into the covariance covqk(j)[j])

is the identity matrix, one can write for the mean value that j = T v with T =
(
LTL+ µ

∑nd

i=1∆
T
ηi∆ηi

)−1 LT and

µ = 2α
β , which is the LORETA solution [4]. Notice that this solution does not require any iteration, so a point

estimation of the localization problem can be achieved by only inverting once the matrix T .

2.5 Comparison to other similar existing methods

Together with the localization method presented in this paper, there are other methods that estimate both sources
and hyperparameters. In [5,6,9] the authors used hierarchical linear priors incorporating a linear combination of
quadratic priors. The hierarchical linear prior belongs to the family of parametric empirical Bayes approaches [5].
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In ths family the prior covariance of the sources is defined as a linear mixture of covariance components. In this
context, the model parameters at a given level can be treated as a prior for the level one-step below. Interestingly, this
approach allows to introduce in the prior covariance different terms, such as a smoothness prior (3D Laplacian prior),
a compensation term for the estimation bias of deep sources (a weighting prior), and even spatio-temporal location
priors accounting for a set of activated regions at a given time-instant and/or location (by a diagonal matrix whose
elements are equal to 1 if the source is active), see [6,9] for further details. This approach needs a careful definition of
the activated regions to provide an appropriate localization; to overcome this problem, the authors suggested the use of
anatomical information and fMRI-thresholded statistical maps. The sources and the hyperparameters are estimated via
ReML (Restricted Maximum Likelihood) method, a variant of EM (Expectation Maximization). There are two main
differences between the methods presented in [5,6,9] and our method here: first, we use (they did not) a Variational
Bayesian approach which minimizes the KL-distance; second, our generalized Gaussian prior allows not only for the
consideration of Gaussian priors (as they did) but for other classes of Lp-norm based priors.

In [5,6,9] the authors performed EM-based hyperparameters estimation, but Variational Bayesian localization was
used as well in [10]. Here, the authors proposed a Gaussian prior where the covariance was a non-negative weighted
sum of positive semidefinite matrices. Each positive semidefinite matrix defined a localization prior. A localization
prior corresponds, for instance, to a single dipolar source at a given location or to sources with some spatial extent.
Then the authors performed Automatic Relevance Determination principles to propose three different methods to
estimate the weights, (in other words) the active positive semidefinite matrices. Our approach differs from the one in
[10] in the use of a source prior with non quadratic energy which is able to estimate the location of punctual as well
as reduced size areas of activity of the brain without specifying all their possible locations.

Despite the similarity of our approach to the methods mentioned here, the LORETA algorithm [4] has been
by-far much more widely-used for the EEG source localization problem and it is for this reason why in section
“Results” we choose the LORETA method to be the control for testing the performance of the our localization
method. Further research will elaborate a more systematic (simulations-based) comparison with the other methods,
the ones acknowledged here that use Gaussian priors, and other methods specifically desgined for focused localization,
see for instance, [20,21].

2.6 Calculation of L in Eq. (1), the Lead Field matrix

Similarly to the approach utilized in [14], here the matrix L was calculated based on the template for the cortical-mesh
which is included in SPM8 [22]. The initial 8196 vertices were downsampled to nd = 1200 vertices. While the coarser
mesh provided a less accurate cortex geometry, however, it signicantly reduced the computational cost. The matrix L
was then computed using the BEM method from FieldTrip [23] in which sensors are located according to a 64 channel
montage, canonical scalp and meshes for the outer and inner skull, all of them included in SPM8.

2.7 The two simulated scenarios: abrupt and smooth profiles of electrical activity

We have simulated two plausible scenarios. The first one is generated by a strong circular-area of electrical activity,
20mm radius and strength of 30 (adimensional). In this case, there are in total a number of 26 active dipoles of the
possible 1200 existing in the cortical mesh, which can be easily eye-counted from Fig. 1A, considering the fact that
each dipole is located at a vertex of the cortical mesh. This scenario is named the abrupt case.

The second scenario considers a similar but weaker circular-area (with the same radius of 20mm but with a weaker
strength of 15) which smoothly is attenuating up to a distance of 150mm from the center of the circular area. In this
case, there are 1039 active dipoles (of a total number of 1200 dipoles), see Fig. 2 A. This scenario is named the smooth
case.

These two scenarios have been designed based on previous studies: first, the authors in [6] worked with a realistic
head model (T1- weighted MRI based) of 12300 dipoles uniformly distributed throughout the entire brain volume and
61 EEG sensors to define priors locations (fMRI-based) with a spheric shape of 7 mm far from the central dipole.
Only dipoles within this sphere were defined as active. Then, this mask was introduced into the prior to perform
localization. The use of this spherical geometry has inspired the design of the two scenarios presented here. In another
paper, for a very simplified head model (a three-spheres shell model) with 1716 dipoles and only 27 EEG electrodes,
the authors in [9] simulated a single source as the one we have considered, cf. Fig .2 (top left) in [9]. Finally, in another
paper and for a realistic mesh of 6004 dipoles the authors in [12] considered spatial profiles for the neuronal generators
consisting in Gaussian blobs (in concrete two blobs) whose locations change with time, i.e. the activated sources have
a spatio-temporal dynamics. Notice that, although we have not considered any dynamics in the generators, for a given
snapshot the profile of the neural generators for a given blob in [12] is quite similar in comparison with our case.



J.M. Cortes et al.: Variational Bayesian localization of EEG sources with generalized Gaussian priors 7

2.8 Generation of observation vector v

The observation vector v is generated according to Eq. (1) for different levels of noise: 0dB, 10dB, 20dB, 30dB. The
calculation of the Lead Field matrix is explained in section 2.6. The neuronal generators were simulated in two possible
scenarios (c.f. section 2.7); thus Eq. (1) comes-out with two v vectors, each one for each of the situations. For each of
the described scenarios, the values of p = 1.00, 1.25, 1.50, 1.75, 2.00 defining the prior and the two observed v are used
to perform localization. In such a way, the algorithm performance is studied over quenched -noise observations rather
than varying the noise and computing means over multiple noise-realizations.

2.9 Initial conditions used in the iterative Algorithm

The initial condition of the source activity was j1 = LTv, which, according to Eq. (1), gives a naive backprojection
estimation of the sources, see Figs. 1 and 2, “initial” label.

For the vector u1 we utilized u1i =
(
∆x
i j

1
)2

+
(
∆y
i j

1
)2

+
(
∆z
i j

1
)2

, neglecting the second term in the right-hand
side of Eq. (16).

For the two hyperparameters α and β their initialization is flexible, and different values did perform equally well
simply by keeping one constraint, the hyperparameter α has to be initialized about 10 orders (or more) of magnitude
smaller than β. Otherwise, the algorithm resulted in a very high MSE. For example, if α1 = 1 then β1 = 1010 (or
larger) did work well. This issue is related to the magnitude values of the Lead Field matrix; if the values are small
as it occurs in our case with the calculation performed with FieldTrip (section 2.6), then β has to be initialized to a
very large value in comparison to α. Another alternative would have been to rescale β to the values of the Lead Field
matrix, but this possibility has not been explored here.

Without loss of generality, we use γα = 0 and γβ = 0. Thus, according to Eqs. (19) and (20), solely the data are
responsible for the estimation of α and β, and no prior information on them is included.

3 Results

In this section, we applied the algorithm for source localization presented in section 2.4 to two possible scenarios: one
in which the cortical sources are abruptly distributed and other in which sources are smoothly expanded throughout
the entire cerebral cortex. The electrical activity in each scenario is plotted in Fig. 1A and Fig. 2A, label “original”.

3.1 Algorithm performance

The algorithm performed source localization for different values of the shape parameter p. Fig. 1 shows the results for
the abrupt scenario. The original sources are represented in Fig. 1A; next, the localization was performed in presence
of two levels of noise, SNR=30dB (Fig. 1B) and SNR=10dB (Fig. 1C). In both Figs. 1B-C, the label “initial” with the
initial condition in the iterative algorithm for the estimation (explained in section 2.9). After algorithm convergence,
the final estimation is represented for values of p = 1.0, 1.5, 2.0. Looking at the “final” estimation, one can see by
eye-inspection that for p = 2 the localization is more spread compared to the case of p = 1, and this happens for both
situations high (10dB) and low noise (30dB). The having a more spread estimation means that some of the dipoles
have a higher activity compared with the original sources, what will produce a larger Mean Squared Error (MSE) for
the case of p = 2 compared to p = 1.

In a similar manner, Fig. 2 shows for smooth sources, the “original”, “initial” and “final” estimates of source
activity. Now in Fig. 2, in contrast with what happened for abrupt sources, the final estimate hardly depended on the
noise level. Thus, for high noise of SNR= 10dB the estimation is p-independent (Fig. 2C). For low noise of SNR= 30dB,
Fig. 2B shows that the estimation of p = 1 is worse compared to p = 2, and this can be observed by looking at the
central area of the brain activity, the region in which sources have larger values. Here, the final estimation for p = 1
has more active sources within the central area, which will increase the MSE for p = 1 compared to p = 2.

The performance visualization shown in Figs. 1 and 2 was also quantified by the MSE between the final estimate and
the original sources. The MSE versus the parameter p is illustrated in Fig. 3 for different values of noise (SNR=0dB,
10dB , 20dB and 30dB) and the two scenarios: abrupt (red lines) and smooth (blue lines). The high noise of 0dB
shows that in this case neither for the abrupt nor for the smooth scenario there is a p-dependence for the estimation
performance. At 10dB the MSE is not p-dependent for the smooth situation but it do depends in the abrupt scenario;
indeed, one can see how the estimation for p = 1 performs with less MSE compared to p = 2, with a relative MSE
improvement of the 167% (MSE of 32.90 for p = 1 vs 87.96 for p = 2). A similar tendency occured for 20dB noise.
The MSE was quite-independent on p for smooth sources and better for p = 1 compared with p = 2 for the abrupt
scenario (with a relative MSE improvement of the 317%; MSE=10.60 for p = 1 vs 44.23 for p = 2).
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The MSE obtained at the very low noise of 30dB shows a peculiarity compared to higher noise situations: for
smooth sources the case of p = 2 performed better than p = 1. The relative MSE improvement was for this case of
the 100%, MSE=58.53 for p = 1 and MSE=29.26 for p = 2. When sources were abruptly generated, p = 1 performed
better than p = 2, similar to the other situations in presence of a higher noise; the relative MSE improvement was of
the 199% (MSE=8.73 for p = 1 and 26.11 for p = 2).

Finally, it is important to remark that in Fig. 3, the values of MSE versus p allows to monitor not only the extremal
values of p = 1 and p = 2 but its tendency; thus, when p = 1 performed better than p = 2 (for abrupt sources at
10dB, 20dB and 30dB) the improvement occurred gradually modulated along the different values of p. And similarly
for the smooth scenario at 30dB; the performance monotonously increased (the MSE decreased) in the direction from
p = 1 to p = 2.

3.2 Validation of the hyperparameter estimation

We have shown in section 2.3 how the Variational Bayesian approach produces the Eqs. (19) and (20) to perform
hyperparameter estimation. Herein, we have examined the quality of the estimated parameters α and β, and this is
illustrated in Fig. 4 in panels A and C for abrupt sources and p = 1, and in panels B and D for smooth sources and
p = 2.

To explore appropriately the 2D space (α, β), we have defined the hyperparameters ratio λ ≡ α/β to be the control

parameter. If λ̂ denotes the estimation achieved by the iterative algorithm, then values of λ < λ̂ consider for the

localization more dominant the observations than the prior, and viceversa, the values satisfying that λ > λ̂ weight
more the prior than the observations. This can be eye-observed for instance in Fig.4A. The brain sources corresponding

to λ = 10−1λ̂ shows that the estimated sources are localized within a smaller region compared to the estimated solution

as observations are more dominant than the prior. For values of λ = 10λ̂, the localization spreads-out to the whole
left hemisphere (the anterior brain –the front– coincides with the upper brain). A similar interpretation can be made
to Fig. 4B.

The localization with no-hyperparameters estimation and p = 2 coincides with the localization performed by

LORETA [4], what is represented along the MSE curve in Fig. 4D (all the points with λ 6= λ̂).

For both plots, Figs. 4C-D the algorithm estimation gives an excellent hyperparameters estimation λ̂, as the
localization performed at that point falls very close to the minimum of the MSE curve.

4 Discussion

We have presented a new Bayesian method for localization of the EEG sources. The method uses a Varional Bayesian
approach to derive an algorithm which allows for the simultaneous estimation of both hyperparameters and sources.
In addition, the method incorporates a generalized Gaussian prior, in which the shape parameter 1 ≤ p ≤ 2 operates
as a control parameter in the model, allowing the transition from the standard Gaussian prior (p = 2) as in LORETA
[4] to the Laplacian prior (p = 1). In between the two cases, other values of p can be explored by our algorithm.

We have performed the localization based on simulated EEG data corresponding to two different situations, one in
which strong sources are originally compacted in a narrow region (named the abrupt situation) and a smooth situation
in which the sources are widely spread throughout (almost) the entire cortical surface.

We have provided quantitative evidence that for abrupt sources, the case of p = 1 performs better (with smaller
MSE) than p = 2, and this occurred for a wide regime of noise values (SNR=10dB,20dB, 30dB). For smooth sources,
the estimation was p-independent for most of the noise simulated scenarios (0dB, 10dB and 20dB). However, for very
low noise such as SNR=30dB, p = 2 performed with lower MSE than p = 1. This tendency was preserved from
intermediate values of p, i.e., from p = 1 to p = 2 the MSE increased for abrupt sources and decreased for smooth
ones.

We have quantitatively validated the hyperparameters estimation achieved by our algorithm. We have simulated
different fixed values of hyperparameters and computed the MSE curve as a function of the hyperparameter ratio
λ ≡ α/β. For both abrupt and smooth sources, the values of the estimated hyperparameters are close to the minimum
value of the MSE curve.

We have simulated different noise levels ranging from SNR=0dB to 30dB. Although in practical EEG source
localization the SNR is generally below 0 dB, there are different possibilities to increase the SNR after processing
the EEG data; one, for instance, is the performed during Event-Related Potentials (ERP) in which by averaging over
multiple EEG time-series of same-conditions experiments, it is possible to increase the SNR up to values of about
10dB (this detail was acknowledged by one of the reviewers). Notice, however, that the ERP procedure is strongly
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limited by the possibility of performing multiple repetitions of same-conditions experiments, useful for instance to study
sensory, cognitive and behavioural neuroscience in which many pairs of stimulation-response can be recorded. However,
this possibility does not exist in other situations such as during epileptic seizures, in which only a small number of
recordings sessions are available (very often there is only one), so the ERP data manipulation is meaningless. Thus,
even if the exploration of this possibility is beyond the scope of the present work, we believe that for these situations
in which ERP manipulation is not possible to be performed, an alternative procedure to increase the SNR of the
EEG time-series might be the consideration of spatio-temporal priors in which if two EEG time-events are close each
other, it is more likely to have a higher temporal correlation between those two events compared with events which are
far-separated in time-distance (the closer, the more correlated), similar to the modelization presented in [24,12]. For
these reasons it is important to remark that the practical limitation of having the SNR of the EEG time series very
low does not mean that the method presented here is not valid. Simply that in order to have a meaningful localization,
one needs to perform inference over time-series in which the signal is enough to be decoded; otherwise the localization
on purely noise is meaningless.

Last but not least, we want to comment on some possible extensions to the modelization we have presented here; our
algorithm fixes p and then performs localization. But real physiological conditions might require a more self-adapting
and dynamical mechanism for the parameter p. Unlike to our modelization, sources which are smooth or abrupt at
one time-instant do not necessary remain invariant but may vary with the time-course of neural activity. Thus, for
instance, during an epileptic seizure neural sources can be more abrupt distributed at the seizure onset (then better
localized by p = 1) but later, after the seizure propagation, sources can become more smooth, thus p = 2 can be more
appropriate for localization. Another interesting issue is related to the fact that in our modelization the parameter p is
global and the same for all the possible cortical dipoles. But a more flexible and adaptable localization might require
to have different values of p for different dipoles, which might have important consequences for real localization of
cortical sources.
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Appendix: Simple statistics of the Gamma distribution

Here, we mention some of the properties used in the text related with the Gamma distribution, c.f. Eq. (5). Its mean,
mode and variance are given by:

mean[ω] =
aoω
boω
,

mode[ω] =
aoω − 1

boω
,

variance[ω] =
aoω

(boω)2
. (22)

Notice that the gamma distribution has a very interesting property, if we multiply aω and bω by λ > 0, the mean of
the new Gamma distribution does not change but its variance is divided by λ. This allows the introduction of prior
information on ω, very vague when λ is small or very precise when λ is large.
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Fig. 1. Visualization of the algorithm performance for abrupt sources. A: Original sources. B: at SNR=30dB the
initial and final algorithm estimates for p = 1.00, 1.50, 2.00. C: similar to B but for SNR=10dB. In all figures the neural activity
has been rescaled to its maximum value, thus normalizing activities between the values 0 and 1.



12 J.M. Cortes et al.: Variational Bayesian localization of EEG sources with generalized Gaussian priors

�

���

��


���

���



��������

������� ���������
���� ���������
���� ��������������

�

���

��


���

���




�

�����

�������

����	

�
�����

Fig. 2. Visualization of the algorithm performance for smooth sources. Similar to Fig.1 but for smooth sources (see
Methods). Activity has been normalized between values 0 and 1 for all figures.
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Fig. 3. Quantification of the algorithm performance. From very high (SNR=0dB) to very low noise (30dB), the MSE
between the original sources and the final estimates is plotted versus the prior shape parameter p. Concretely we have simulated
p = 1.00, 1.25, 1.50, 1.75, 2.00. Red lines are corresponding to the MSE obtained for abrupt sources and the blue lines are for
the smooth situation.
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Fig. 4. Validation of the hyperparameter estimation. A,C: Abrupt sources and p = 1. B,D: Smooth sources and p = 2.
A,B: Brain activity visualization for the original and the final estimates at different values of the hyperparameters ratio λ ≡ α/β

(details in the text). The value of λ = λ̂ is the one corresponding to the algorithm estimation, marked with an arrow in panels C
(abrupt) and D (smooth). For illustration purposes, we also showed the final estimates and their corresponding MSE localization

values for values of λ = 10λ̂ and λ = 10−1λ̂. C,D: For both panels, the algorithm estimation performs close to the minimum of
the MSE curve. A,B,C,D: Noise was fixed to SNR=10dB.


