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Abstract

In this paper we present a super resolution Bayesian methodology for pansharp-
ening of multispectral images. By following the hierarchical Bayesian framework,
and by applying variational methods to approximate probability distributions this
methodology is able to: a) incorporate prior knowledge on the expected charac-
teristics of the multispectral images, b) use the sensor characteristics to model
the observation process of both panchromatic and multispectral images, c) include
information on the unknown parameters in the model in the form of hyperprior
distributions, and d) estimate the parameters of the hyperprior distributions on the
unknown parameters together with the unknown parameters, and the high resolu-
tion multispectral image. Using real data, the pansharpened multispectral images
are compared with the images obtained by other parsharpening methods and their
quality is assessed both qualitatively and quantitatively.
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1 Introduction

Multispectral images are of interest in commercial, civilian or military areas
with a wide range of applications including GPS guidance maps, land type and
usage measures and target detection, among others. Nowadays most remote
sensing systems include sensors able to capture, simultaneously, several low
resolution images of the same area on different wavelengths, forming a multi-
spectral image, along with a high resolution panchromatic image. The main
characteristics of such remote sensing systems are the number of bands of the
multispectral image and the resolution of those bands and the panchromatic
image. For instance, the Landsat 7 satellite (http://landsat.gsfc.nasa.gov/),
equipped with the ETM+ sensor, allows for the capture of a multispectral
image with six bands (three bands on the visible spectrum plus three bands
on the infrared) with a resolution of 30 meters per pixel, a thermal band with
a resolution of 60 meters per pixel and a panchromatic band (covering a large
zone on the visible spectrum and the near infrared), with a resolution of 15
meters per pixel.

The main advantage of the multispectral image is to allow for a better land
type and use recognition but, due to its lower resolution, information on the
objects shape and texture may be lost. On the other hand, the panchromatic
image allows for a better recognition of the objects in the image and their
textures but provides no information about their spectral properties.

Throughout this paper the term multispectral image reconstruction will refer
to the joint processing of the multispectral and panchromatic images in order
to obtain a new multispectral image that, ideally, will exhibit the spectral
characteristics of the observed multispectral image and the resolution and
quality of the panchromatic image. The use of such an approach, also named
pansharpening, will allow us to obtain, in the case of Landsat 7 ETM+, a
multispectral image with a resolution of 15 meters per pixel.

A few approximations to this problem have been proposed in the literature.
With the Intensity, Hue, Saturation (IHS) transformation method [1], the mul-
tispectral image is transformed from the RGB color space into the IHS domain.
Then, the intensity component is replaced by the histogram matched panchro-
matic image and the hue and saturation components are resampled to the pan-
chromatic resolution. The inverse IHS transformation is performed to return
to the RGB domain. In [2] principal component analysis (PCA) is applied to
the multispectral image bands, the first principal component is replaced by the
panchromatic image, and the inverse PCA transform is computed to return to
the image domain. Both IHS transformation and PCA based pansharpening,
as well as other methods, are available in commercial remote sensing pack-
ages like ENVI (http://www.ittvis.com) and ERDAS imagine (http://gi.leica-
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Fig. 1. Problem formulation, acquisition model, and used notation.

geosystems.com). Some wavelet based approaches have been also proposed.
In [3], for instance, a redundant wavelet transform is applied to the multi-
spectral and panchromatic images and some of the transformed bands of the
multispectral image are either added or substituted by the transform bands
of the panchromatic image. A comparison of such techniques can be found
in [4]. Price [5] proposed a method relying on image based statistical rela-
tionships between the radiances in the low and high spatial resolution bands.
Later, Park and Kang [6] modified the statistics estimation method to include
spatial adaptivity. Recently a few super-resolution based methods have been
proposed. Eismann and Hardie [7] proposed an MAP approach that makes
use of a stochastic mixing model of the underlying spectral scene content to
achieve resolution enhancement beyond the intensity component of the hy-
perspectral image. Akgun et al. [8] proposed a POCS based algorithm to
reconstruct hyperspectral images where the hyperspectral observations from
different wavelengths are represented as weighted linear combinations of a
small number of basis image planes.

In this paper, in order to tackle the super resolution reconstruction of multi-
spectral images we follow the hierarchical Bayesian framework to incorporate
prior knowledge on the expected characteristics of the multispectral images,
to model the observation process of both panchromatic and low resolution
multispectral images, and also to include information on the unknown param-
eters in the model in the form of hyperprior distributions. Then, by applying
variational methods to approximate probability distributions we estimate the
parameters of the hyperprior distributions on the unknown parameters to-
gether with the unknown parameters, and the high resolution multispectral
image.

The paper is organized as follows. In section 2 the Bayesian modeling and
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inference for super resolution reconstruction of multispectral images is pre-
sented. The required probability distributions for the Bayesian modeling of
the super resolution problem are formulated in section 3. The Bayesian analy-
sis and posterior probability approximation to obtain the parameters and the
super resolution reconstructed image is performed in section 4. Experimental
results on a real Landsat 7 ETM+ image are described in section 5 and, finally,
section 6 concludes the paper.

2 Bayesian Problem Formulation

Let us assume that y, the multispectral image we would observe under ideal
conditions with a high resolution sensor, has B bands yb, b = 1, . . . , B, that
is,

y = [yt
1,y

t
2, . . . ,y

t
B]t , (1)

where each band is of size p = m × n pixels and t denotes the transpose of
a vector or matrix. Each band of this image can be expressed as a column
vector by lexicographically ordering the pixels in the band.

In real applications, this high resolution image is not available. Instead, we
observe a low resolution multispectral image Y with B bands Yb, b = 1, . . . , B,
that is,

Y = [Yt
1,Y

t
2, . . . ,Y

t
B]t ,

where each band is of size P = M × N pixels with M < m and N < n. Each
band of this image can also be expressed as a column vector by lexicographi-
cally ordering the pixels in the band. Figure 1 illustrates the acquisition model
and the used notation.

The sensor also provides us with a panchromatic image x of size p = m ×
n, obtained by spectrally averaging the unknown high resolution images yb.
Figure 2 shows the spectral response covered by the observed low resolution
and panchromatic Landsat 7 ETM+ bands (except the thermal band).

The Bayesian formulation of the high resolution multispectral image recons-
truction problem requires the definition of the joint distribution p(Ω,y,Y,x)
of the panchromatic high resolution observation x, the low resolution multi-
spectral observation, Y, the unknown high resolution multispectral image y,
and the hyperparameters Ω, describing their distributions. Then, the posterior
distribution of the unknowns given the observed low resolution and panchro-
matic images p(Ω,y|Y,x) has to be calculated and used to estimate the high
resolution image y.

To model the joint distribution, we utilize in this paper the hierarchical Ba-
yesian paradigm (see, for example, [9]). This paradigm has been applied to
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Fig. 2. Landsat 7 ETM+ band spectral response normalized to one.

various areas of research. For instance, Molina et al. [9] applied into image
restoration, Mateos et. al. [10] to removing blocking artifacts in compressed
images, and Galatsanos et al. [11] in deconvolution problems with partially
known blurs.

In the hierarchical approach to our high resolution image reconstruction prob-
lem we have two stages. In the first stage, knowledge about the structural form
of the low resolution and panchromatic image observation noise and the struc-
tural behavior of the high resolution multispectral image is used in forming
p(Y,x|y, Ω) and p(y|Ω), respectively. These noise and image models depend
on the unknown hyperparameters Ω. In the second stage a hyperprior on the
hyperparameters is defined, thus allowing the incorporation of information
about these hyperparameters into the process. We note here that each of the
two above mentioned conditional distributions will depend only on a subset
of Ω, but we use this more general notation until we precisely describe the
hyperparameters that define Ω.

For Ω, y, Y, and x the following joint distribution is defined

p(Ω,y,Y,x) = p(Ω)p(y|Ω)p(Y,x|y, Ω), (2)

and inference is based on p(Ω,y|Y,x).

The following questions have to be addressed when modeling and performing
inference for high resolution multispectral image reconstruction using the hi-
erarchical Bayesian paradigm. The first one relates to the definition of p(Ω).
One can use the improper prior

p(Ω) = const , (3)

which assigns a priori the same probability to all hyperparameters and makes
the observation Y and x solely responsible for all the estimates (see [12]).
However, we will see in the coming sections that alternative, more informative
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hyperpriors can be used to better guide the estimation of the high resolution
multispectral image.

The second question to be considered is how inference will be carried out. A
commonly used approach consists of estimating the hyperparameters in Ω by
using

Ω̂ = arg max
Ω

p(Ω|Y,x) = arg max
Ω

∫

y
p(Ω,x,Y,y)dy, (4)

and then estimating the multispectral image by solving

ŷ = arg max
y

p(y|Ω̂,Y,x). (5)

This inference procedure aims at optimizing a given function and not at ob-
taining posterior distributions that can be simulated to obtain additional in-
formation on the quality of the estimates (see [13]). The solution of the above
equations for Ω̂ and ŷ can be viewed as the approximation of posterior distri-
butions by delta functions. Instead of having a distribution over all possible
values of the parameters and high resolution multispectral images the above
inference procedure chooses a specific set of values. This means that we have
neglected many other interpretations of the data. If the posterior is sharply
peaked, other values of the hyperparameters and image, will have a much lower
posterior probability but, if the posterior is broad, choosing a unique value will
neglect many other choices of them with similar posterior probabilities.

The third question to be answered when using the Bayesian paradigm on
our problem is to decide how to calculate p(Ω,y|Y,x). The Laplace approx-
imation of distributions has been used, for instance, in blind deconvolution
problems when the blur is partially known [11, 14]. An alternative method
is provided by variational distribution approximation. This approximation
can be thought of as being between the Laplace approximation (see, for in-
stance, [11, 14]) and sampling methods [15]. The basic underlying idea is to
approximate p(Ω,y|Y,x) with a simpler distribution, usually one which as-
sumes that y and Ω are independent given the data (see chapter II in [16]
for an excellent introduction to variational methods and their relationships to
other inference approaches).

The last few years have seen a growing interest in the application of variational
methods [17,18] to inference problems. These methods attempt to approximate
posterior distributions with the use of the Kullback-Leibler cross-entropy [19].
Application of variational methods to Bayesian inference problems include
graphical models and neural networks [17], independent component analysis
[18], mixtures of factor analyzers, linear dynamic systems, hidden Markov
models [16], support vector machines [20], and blind deconvolution problems
(see Miskin and MacKay [21], Likas and Galatsanos [22] and Molina et. al.
[23]).
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In the coming sections we address the modeling as well as the inference steps
in our Bayesian formulation of the super resolution reconstruction of multi-
spectral images.

3 Hyperpriors, priors, and observation models used in super reso-

lution multispectral image reconstruction

In this section we describe the prior model for the multispectral image p(y|Ω)
and the observation model p(Y,x|y, Ω) we propose for the first stage of the
hierarchical Bayesian paradigm applied to our problem. Then, since these prior
and observation models depend on unknown hyperparameters we proceed to
explain the proposed hyperprior distribution p(Ω) on these hyperparameters.

3.1 First stage: prior model on the multispectral image

In this paper we assume no correlation between the different high resolution
bands. Then, our prior knowledge about the smoothness of the object luminos-
ity distribution within each band makes it possible to model the distribution
of y by

p(y|Ω) =
B
∏

b=1

p(yb|αb) ∝
B
∏

b=1

α
(p−1)/2
b exp

{

−
1

2
αb ‖ Cyb ‖

2
}

, (6)

where C denotes the Laplacian operator and 1/αb is the variance of the Gaus-
sian distribution of yb, b = 1, . . . , B.

3.2 First stage: observation model of the low resolution multispectral and
panchromatic images

We assume that Y and x, for a given y and a set of parameters Ω, are inde-
pendent and consequently write

p(Y,x|y, Ω) = p(Y|y, Ω)p(x|y, Ω) . (7)

Each band, Yb, is related to its corresponding high resolution image by

Yb = Hyb + nb, ∀b = 1, · · · , B, (8)

where H is a P × p matrix representing the blurring, the sensor integration
function, and the spatial subsampling (we assume that this process is the same

8



over the whole set of spectral images), and nb is the capture noise, assumed
to be Gaussian with zero mean and variance 1/βb.

A simple but widely used model for the matrix H is to consider that each
pixel (i, j) of the low resolution image is obtained according to (for m = 2M
and n = 2N)

Yb(i, j) =
1

4

∑

(u,v)∈Ei,j

yb(u, v) + nb(i, j), (9)

where Ei,j consists of the indices of the four high resolution pixels Ei,j =
{(2i, 2j), (2i + 1, 2j), (2i, 2j + 1), (2i + 1, 2j + 1)}.

We note here that H can be written as

H = DB, (10)

where B is a p×p blurring matrix and D is a P×p decimation operator. Given
the degradation model for multispectral image super-resolution described by
Eq. (8) and assuming independence between the noise observed in the low
resolution images, the distribution of the observed Y given y and a set of
parameters Ω is

p(Y|y, Ω) =
B
∏

b=1

p(Yb|yb, βb) ∝
B
∏

b=1

βb
P/2 exp

{

−
1

2
βb ‖ Yb −Hyb ‖

2
}

. (11)

As already described, the panchromatic image x is obtained by spectral av-
eraging of the unknown high resolution images yb. This relation is modeled
as

x =
B
∑

b=1

λbyb + v, (12)

where λb ≥ 0, b = 1, 2, · · · , B, are known quantities that can be obtained, as
we will see later, from the sensor spectral characteristics, and v is the capture
noise that is assumed to be Gaussian with zero mean and variance γ−1. Note
that, usually, x does not depend on all the multispectral image bands but on
a subset of them, i. e., some of the λb’s are equal to zero. For example, for
Landsat ETM+ images, the panchromatic image only covers the region from
the end of band 1 to the end of band 4 and, so, the rest of the bands have no
influence on x.

Using the degradation model in Eq. (12), the distribution of the panchromatic
image x given y, and a set of parameters Ω is given by

p(x|y, γ) ∝ γp/2 exp

{

−
1

2
γ ‖ x −

B
∑

b=1

λbyb ‖
2

}

. (13)
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3.3 Second stage: hyperprior on the hyperparameters

Let

Ω = (γ, β1, . . . , βB, α1, . . . , αB). (14)

A large part of the Bayesian literature is devoted to finding hyperprior dis-
tributions p(Ω) for which p(Ω,y|x,Y) can be calculated in a straightforward
way or can be approximated. These are the so called conjugate priors [24].
Conjugate priors have, as we will see later, the intuitive feature of allowing
one to begin with a certain functional form for the prior and end up with a
posterior of the same functional form, but with the parameters updated by
the sample information.

Taking the above considerations about conjugate priors into account, we will
assume that each of the hyperparameters, ω ∈ Ω, has as a hyperprior the
gamma distribution

p(ω|ao
ω, co

ω) = Γ(ω|ao
ω, co

ω), (15)

defined by

Γ(ω|ao
ω, co

ω) =
((ao

ω − 1)co
ω)ao

ω

Γ(ao
ω)

ωao
ω−1 exp[−(ao

ω − 1)co
ω ω], (16)

where ω > 0 denotes a hyperparameter, and the two parameters co
ω > 0 and

ao
ω > 1 will be estimated in section 4.2. This gamma distribution has the

following mean, mode, and variance

E[ω] =
ao

ω

(ao
ω − 1)co

ω

, mod[ω] =
1

co
ω

, var[ω] =
ao

ω

((ao
ω − 1)co

ω)2
. (17)

Note that the mean and mode do not coincide. Using gamma distributions as
hyperpriors for the hyperparameters allows us to incorporate in a straightfor-
ward manner prior knowledge about the expected value of the hyperparame-
ters and, also, about the confidence on such expected value.

We will then use the following distribution as the hyperprior on the hyperpa-
rameters

p(Ω) = p(γ, β1, . . . , βB, α1, . . . , αB) = p(γ)p(β1), . . . , p(βB)p(α1), . . .p(αB),
(18)

where the hyperprior for each hyperparameter ω ∈ Ω is given by Eq. (15).

Finally, combining the first and second stage of the problem modeling we have
the global distribution

p(Ω,y,Y,x) = p(Ω)p(y|Ω)p(Y|y, Ω)p(x|y, Ω), (19)
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where p(Ω), p(y|Ω), p(Y|y, Ω) and p(x|y, Ω) have been defined in Eqs. (18),
(6), (11), and (13), respectively.

4 Bayesian inference and variational approximation of the poste-

rior distribution for super resolution reconstruction of multi-

spectral images

For our selection of hyperparameters in the previous section, the set of all
unknowns is given by

(Ω,y) = (γ, β1, . . . , βB, α1, . . . , αB,y). (20)

As already known, the Bayesian paradigm dictates that inference on (Ω,y)
should be based on

p(Ω,y|Y,x) =
p(Ω,y,Y,x)

p(Y,x)
, (21)

where p(Ω,y,Y,x) is given by Eq. (19).

Once p(Ω,y|Y,x) has been calculated, y can be integrated out to obtain
p(Ω|Y,x). This distribution is then used to simulate or select the hyperpa-
rameters. If a point estimate,

Ω̂ = (γ̂, β̂1, . . . , β̂B, α̂1, . . . , α̂B), (22)

is required, then the mode or the mean of this posterior distribution can be
used. Finally, a point estimate of the original multispectral image ŷ can be
obtained by maximizing p(y|Y,x, Ω̂). Alternatively the mean value of this
posterior distribution can be selected as the estimate of the multispectral
image.

From the above discussion it is clear that in order to perform inference we
need to either calculate or approximate the posterior distribution p(Ω,y|Y,x).
Since p(Ω,y|Y,x) can not be found in closed form, we will apply variational
methods to approximate this distribution by the distribution q(Ω,y).

The variational criterion used to find q(Ω,y) is the minimization of the Kullback–
Leibler divergence, given by [19, 25]
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CKL(q(Ω,y) ‖ p(Ω,y|Y,x))=
∫

Ω,y
q(Ω,y) log

(

q(Ω,y)

p(Ω,y|Y,x)

)

dΩdy

=
∫

Ω,y
q(Ω,y) log

(

q(Ω,y)

p(Ω,y,Y,x)

)

dΩdy

+const, (23)

which is always non negative and equal to zero only when q(Ω,y) = p(Ω,y|Y,x).

We choose to approximate the posterior distribution p(Ω,y|Y,x) by the dis-
tribution

q(Ω,y) = q(Ω)q(y), (24)

where q(y) and q(Ω) denote distributions on y and Ω, respectively. We now
proceed to find the best of these distributions in the divergence sense.

Using Eq. (24) we have in Eq. (23)

CKL(q(Ω,y) ‖ p(Ω,y|Y,x)) = CKL(q(Ω)q(y) ‖ p(Ω,y|Y,x))

= const +
∫

Ω
q(Ω)

(

∫

y
q(y) log

(

q(Ω)q(y)

p(Ω,y,Y,x)

)

dy

)

dΩ (25)

= const +
∫

y
q(y)

(

∫

Ω
q(Ω) log

(

q(Ω)q(y)

p(Ω,y,Y,x)

)

dΩ

)

dy. (26)

Now, given q̂(Ω), an estimate of q(Ω), we can obtain an estimate of q(y) by
solving

q̂(y) = arg min
q(y)

CKL (q̂(Ω)q(y)) ‖ p(Ω,y|Y,x)) , (27)

and given q̂(y), an estimate of q(y), we can obtain an estimate of q(Ω) by
solving

q̂(Ω) = arg min
q(Ω)

CKL (q(Ω)q̂(y)) ‖ p(Ω,y|Y,x)) . (28)

The above equations lead to the following iterative procedure to find q(Ω,y).

Algorithm 1

Given q1(Ω), an initial estimate of the distribution q(Ω),

for k = 1, 2, . . . until a stopping criterion is met:

(1) Find

qk(y) = arg min
q(y)

CKL(qk(Ω)q(y) ‖ p(Ω,y|Y,x)), (29)

(2) Find

qk+1(Ω) = arg min
q(Ω)

CKL(q(Ω), qk(y) ‖ p(Ω,y|Y,x)). (30)
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The convergence of the parameters defining the distributions qk(y) and qk+1(Ω)
can be used as stopping criterion for the above iterations. In order to simplify
such criterion, the following condition can also be used for terminating Algo-
rithm 1‖ E[y]qk(y)−E[y]qk−1(y) ‖

2 / ‖ E[y]qk−1(y) ‖
2< ǫ, where ǫ is a prescribed

bound. Note that this is a convergence criterion over the multispectral image
but it normally also implies convergence on the posterior hyperparameter dis-
tribution, since its convergence is required for the convergence of the posterior
distribution of the image.

Regarding the convergence of the algorithm we first note that, by construc-
tion, at every iteration (of the distributions of the multispectral image and
hyperparameters) the value of the Kullback-Leibler divergence decreases. To
gain further insight into the above algorithm, let us consider a degenerate
distribution, q(Ω), that is,

q(Ω) =











1 if Ω = Ω

0 otherwise
, (31)

and use q∗(y) = p(y|Y,x, Ω).

If, at the k − th iteration of Algorithm 1, qk(Ω) is a degenerate distribution
on Ωk, then the step of Algorithm 1 for updating the multispectral image
produces

q∗k(y) = p(y|Y,x, Ωk). (32)

and the step in Algorithm 1 for updating the degenerate distribution on the
hyperparameters produces

Ωk+1 = arg max
Ω

E[log(p(Ω,y,Y,x)]q∗k(y) (33)

Interestingly, this is the EM formulation of the maximum a posteriori (MAP)
estimation of the hyperparameters (see [12,13]) for our super resolution prob-
lem. What Algorithm 1 does is to replace the search for just one hyperparam-
eter by the search for the best distribution on the hyperparameters.

4.1 Calculating qk(y) and qk+1(Ω)

We now proceed to explicitly calculate the distributions qk(y) and qk+1(Ω).
Let us assume that at the k-th iteration step of Algorithm 1 we have

E[γ]qk(Ω) = γk, (34)

E[αb]qk(Ω) =αk
b , b = 1, . . . , B, (35)

E[βb]qk(Ω) =βk
b , b = 1, . . . , B. (36)
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Differentiating the right in the right hand side of Eq. (29) with respect to q(y)
and setting it equal to zero we have that

qk(y) ∝ exp E[log p(Ω,y,Y,x)]qk(Ω), (37)

and so

qk(y) ∝ exp[−
1

2
(

B
∑

b=1

(

αk
b ‖ Cyb ‖

2 +βk
b ‖ Yb − Hyb ‖

2
)

+γk ‖ x−
B
∑

b=1

λbyb ‖
2)].

(38)
Thus we have that qk(y) is a normal distribution with the following param-

eters

qk(y) = N
(

y | Ek[y], covk[y]
)

, (39)

with

(

covk[y]
)−1

=





















αk
1C

tC 0p . . . 0p

0p αk
2C

tC . . . 0p

...
...

. . .
...

0p 0p . . . αk
BCtC





















+





















βk
1H

tH 0p . . . 0p

0p βk
2H

tH . . . 0p

...
...

. . .
...

0p 0p . . . βk
BHtH





















+ γkΛ ⊗ Ip , (40)

where ⊗ is the Kronecker product,

Λ =





















(λ1)
2 λ1λ2 . . . λ1λB

λ2λ1 (λ2)
2 . . . λ2λB

...
...

. . .
...

λBλ1 λBλ2 . . . (λB)2





















, (41)

and

Ek[y] = covk[y]φk (42)

where covk[y] has been defined in Eq. (40) and φk is the (B × p) × 1 vector

φk =





















βk
1H

t 0p . . . 0p

0p βk
2H

t . . . 0p

...
...

. . .
...

0p 0p . . . βk
BHt





















Y + γk





















λ1Ip 0p . . . 0p

0p λ2Ip . . . 0p

...
...

. . .
...

0p 0p . . . λBIp









































x

x

...

x





















. (43)

For simplicity, the dependency of φk on both x and Y is not explicitly shown.
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Once we know qk(y), the next step is to calculate qk+1(Ω). Differentiating the
right hand side of Eq. (30) with respect to q(Ω) and setting it to zero we have
that qk+1(Ω) satisfies

qk+1(Ω) ∝ exp Eqk(y)[log p(Ω,y,Y,x)], (44)

which produces

qk+1(Ω)∝
B
∏

b=1

α
ao

αb
−1

b e−(ao
αb

−1)co
αb

αb α
p−1
2

b e−
1
2
αbE[‖Cyb‖

2]
qk(y)

×
B
∏

b=1

β
ao

βb
−1

b e
−(ao

βb
−1)co

βb
βb β

P
2

b e−
1
2
βbE[‖Yb−Hyb‖

2]
qk(y)

× γao
γ−1 e−(ao

γ−1)co
γγ γ

p

2 e−
1
2
γE[‖x−

∑B

b=1
λbyb‖

2]
qk(y) , (45)

where

E
[

‖ Cyb ‖
2
]

qk(y)
= ‖ CEk[yb] ‖

2 +tr[CtCcovk[yb]], (46)

E
[

‖ Yb − Hyb ‖
2
]

qk(y)
= ‖ Yb − HEk[yb] ‖

2 +tr[HtHcovk[yb]], (47)

E[‖ x −
B
∑

b=1

λbyb ‖
2]qk(y) = ‖ x −

B
∑

b=1

λbE
k[yb] ‖

2

+
B
∑

i=1

B
∑

j=1

λiλjtr[cov
k[yi,yj]], (48)

where Ek[y] and covk[y] have been calculated in Eqs. (42) and (40), respec-
tively.

From Eq. (45) we have that

qk+1(Ω) = qk+1(γ)
B
∏

b=1

qk+1(αb)q
k+1(βb),

where
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qk+1(γ)= Γ

(

γ|ao
γ +

p

2
,

[

(ao
γ − 1)co

γ +
1

2
E[‖ x −

B
∑

b=1

λbyb ‖
2]qk(y)

]

/(ao
γ +

p

2
− 1)

)

,

(49)

qk+1(αb)= Γ
(

αb|a
o
αb

+
p − 1

2
,
[

(ao
αb

− 1)co
αb

+
1

2
E[‖ Cyb ‖

2]qk(y)

]

/(ao
αb

+
p − 1

2
− 1)

)

,

b = 1, . . . , B, (50)

qk+1(βb)= Γ
(

βb|a
o
βb

+
P

2
,
[

(ao
βb
− 1)co

βb
+

1

2
E[‖ Yb − Hyb ‖

2]qk(y)

]

/(ao
βb

+
P

2
− 1)

)

,

b = 1, . . . , B, (51)

where the definition of the gamma distribution has been provided in Eq. (15).

These distributions have the following means

E[γ]qk+1(Ω) =
aγ

o + p
2

(ao
γ − 1)co

γ + 1
2
E[‖ x −

∑B
b=1 λbyb ‖2]qk(y)

, (52)

E[αb]qk+1(Ω) =
aαb

o + p−1
2

(ao
αb

− 1)co
αb

+ 1
2
E[‖ Cyb ‖2]qk(y)

, b = 1, . . . , B, (53)

E[βb]qk+1(Ω) =
aβb

o + P
2

(ao
βb
− 1)co

βb
+ 1

2
E[‖ Yb − Hyb ‖2]qk(y)

, b = 1, . . . , B, (54)

which are then used to recalculate the distributions of y in Algorithm 1.

We can rewrite the above equations as follows

1

E[γ]qk+1(Ω)

=µγ

(ao
γ − 1)co

γ

ao
γ

+ (1 − µγ)
E[‖ x −

∑B
b=1 λbyb ‖

2]qk(y)

p
, (55)

1

E[αb]qk+1(Ω)

=µαb

(ao
αb

− 1)co
αb

ao
αb

+ (1 − µαb
)
E[‖ Cyb ‖

2]qk(y)

p − 1
, (56)

b = 1, . . . , B,

1

E[βb]qk+1(Ω)

=µβb

(ao
βb
− 1)co

βb

ao
βb

+ (1 − µβb
)
E[‖ Yb −Hyb ‖

2]qk(y)

P
, (57)

b = 1, . . . , B,

where

µγ =
ao

γ

p/2 + ao
γ

, µαb
=

ao
αb

(p − 1)/2 + ao
αb

, µβb
=

ao
βb

P/2 + ao
βb

, b = 1 . . . , B. (58)

The above equations indicate that µγ and µαb
, and µβb

, b = 1, . . . , B, can be
understood as normalized confidence parameters taking values in the interval
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[0, 1). That is, when they are zero no confidence is placed on the given hyper-
parameters, while when the corresponding normalized confidence parameter
is asymptotically equal to one it fully enforces the prior knowledge of the
mean (no estimation of the hyperparameters is performed). Furthermore, for
each hyperparameter, the inverse of the mean of its posterior distribution ap-
proximation is a weighted sum of the inverse of the mean of its hyperprior
distribution (see Eq. (17)) and its maximum likelihood estimate.

4.2 Variational super resolution reconstruction with hyperprior distribution
parameter estimation

In the discussion so far in this section we have assumed that the values of the
parameters ao

ω and co
ω, ω ∈ Ω, are known. In this section we study how the ap-

plication of the variational methodology to our super resolution reconstruction
problem allows us to estimate those parameters as well.

Let us consider for each channel b ∈ {1, . . . , B} the following Bayesian mod-
eling of our reconstruction problem

pb(αb, βb, γb,yb,Yb,x) ∝ α
(p−1)/2
b βb

P/2γp/2

× exp
{

−
1

2
αb ‖ Cyb ‖

2 −
1

2
βb ‖ Yb − Hyb ‖

2 −
1

2
γb ‖ x − λbyb ‖

2
}

. (59)

where we have assumed that pb(ω) ∝ const, for ω ∈ Ωb = {αb, βb, γb}. Observe
that in this formulation we are considering only the contribution of channel b
to the panchromatic image, scaled by the weight λb (see Eq. (13)).

We can now use the variational methodology to approximate pb(αb, βb, γb,yb|Yb,x)
by the distribution

qb(αb, βb, γb,yb) = qb(αb, βb, γb)qb(yb) (60)

and apply Algorithm 1 to the problem of estimating yb and Ωb by replacing
y by yb and Ω by Ωb.

Let us assume that at the k-th iteration step of the Algorithm 1 we have from
the distribution of the hyperparameters

E[γ]qk
b
(Ωb)

= γ∗k
b , (61)

E[αb]qk
b
(Ωb)

= α∗k
b , (62)

E[βb]qk
b
(Ωb)

= β∗k
b . (63)
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Then we obtain
qk

b (yb) = N
(

yb | Ek
b [yb], cov

k
b [yb]

)

, (64)

where
(

covk
b [yb]

)−1
= α∗k

bC
tC + β∗k

bH
tH + γ∗k

b Ip, (65)

and
Ek

b [y] = covk
b [yb](β

∗k
bH

tYb + γ∗k
x) . (66)

Then
qk+1

b (Ωb) = qk+1
b (γ)qk+1

b (αb)q
k+1
b (βb),

where

qk+1
b (γ)= Γ

(

γ|1 +
p

2
,
[

1

2
E[‖ x − λbyb ‖

2]qk
b
(yb)

]

/
p

2

)

, (67)

qk+1
b (αb)= Γ

(

αb|1 +
p − 1

2
,
[

1

2
E[‖ Cyb ‖

2]qk
b
(yb)

]

/
p − 1

2

)

, (68)

qk+1
b (βb)= Γ

(

βb|1 +
P

2
,
[

1

2
E[‖ Yb − Hyb ‖

2]qk
b
(yb)

]

/
P

2

)

. (69)

We can then use the parameters of the above posterior distributions as the
parameters of the hyperpriors, that is,

ao
γ = 1 +

p

2
, co

γ =
1

B

B
∑

b=1

lim
k→∞

E[‖ x − λbyb ‖
2]qk

b
(yb)

p
, (70)

ao
αb

= 1 +
p − 1

2
, co

αb
= lim

k→∞

E[‖ Cyb ‖
2]qk

b
(yb)

p − 1
, b = 1, . . . , B, (71)

ao
βb

= 1 +
P

2
, co

βb
= lim

k→∞

E[‖ Yb −Hyb ‖
2]qk

b
(yb)

P
, b = 1, . . . , B. (72)

Finally, the confidence parameters in Eq. (58) take the values

µγ =
p + 2

2p + 2
, µαb

=
p + 1

2p + 1
, µβb

=
P + 2

2P + 2
, b = 1, . . . , B. (73)

5 Experimental Results

The proposed super resolution reconstruction algorithm has been tested on
the set of Landsat ETM+ images [26] listed in Table 1. In the experiments
we used regions of interest of size 128× 128 pixels of the multispectral images
and their corresponding regions of size 256 × 256 pixels of the panchromatic
images. Figure 3 displays the region of interest for image D in Table 1. This
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Image Date Path Row

A 2000-07-30 200 031

B 2000-08-08 199 031

C 2002-08-05 015 034

D 2002-07-15 133 037Table 1
Landsat 7 ETM+, L1G Orthorectified image sets.

figure depicts, on the left, a false RGB color image composed of bands 4, 3, and
2 of the Landsat ETM+ multispectral image and on the right its corresponding
panchromatic image. Note that the multispectral image has been resized by
zero-order hold to the size of the panchromatic image for displaying purposes.

(a) (b)
Fig. 3. Details of the (a) false color multispectral image D (see Table 1) and (b) its
corresponding panchromatic image.

According to the ETM+ sensor spectral response, depicted in Fig. 2, the
panchromatic image only covers the spectrum of a part of the first four bands
of the multispectral image. Hence, we apply the proposed method with B = 4.

In order to apply Algorithm 1, we need to know the contribution of each
band to the panchromatic image, that is, the values of λb, b = 1, 2, . . . , B
in Eq. (12). These values can be obtained from the spectral response of the
ETM+ sensor (see Fig. 2). Note that the panchromatic image covers a region
of wavelengths from almost the end of band 1 to the end of band 4 and that
the sensor sensibility is not constant over the whole range. Taking into account
these considerations, we obtain values for λb, b = 1, 2, 3, 4 by summing up the
spectral response of the panchromatic sensor weighted by the response of the
sensor for each multispectral band. The obtained values are then normalized
so that their sum equals one, thus producing the values of λb displayed on
Table 2. The matrix H in Eq. (8) was modelled following Eq. (9).

The initial distribution on the parameters, q1(Ω), in Algorithm 1 was chosen
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λ1 λ2 λ3 λ4

0.0078 0.2420 0.2239 0.5263Table 2
Estimated values for λb, b = 1, . . . , 4.

(a) (b)

(c) (d)
Fig. 4. Reconstructions of image D using (a) bicubic interpolation (MI ), (b) the
Price method (MII ), (c) the proposed method with µω = 0,∀ω ∈ Ω (MIII ), and (d)
the proposed method with hyperprior distribution parameter estimation (MIV ).

from Eqs. (49)–(51) using aω = 1, ω ∈ Ω, and assuming that q0(y), is a degen-
erate distribution on the bicubic interpolation of the observed multispectral
image. The value of ǫ = 10−6 was used as the prescribed bound to stop the
iteration.

In the rest of the section we compare the proposed method with the result of
applying bicubic interpolation to each low resolution band of the multispectral
image (MI method) and the result of applying the method proposed by Price
in [5] (MII method). We present results obtained by the proposed method
in two cases. First, for the case when ao

ω = 1, ω ∈ Ω, that is, we make
the observed data fully responsible for the estimation process (MIII method).
For the second case, following the variational approach for the hyperprior
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(a) (b)

(c) (d)
Fig. 5. Reconstructions of image B using (a) bicubic interpolation (MI ), (b) the
Price method (MII ), (c) the proposed method with µω = 0,∀ω ∈ Ω (MIII ), and (d)
the proposed method with hyperprior distribution parameter estimation (MIV ).

distribution parameter estimation described in section 4.2, ao
ω, co

ω, and the
confidence parameters µω , ω ∈ Ω, are selected using Eqs. (70)–(73) (MIV
method). Note that the use of the MIV method implies that the variational
approach is first applied to the model for each channel described in Eq. (59)
to obtain estimates of ao

ω and co
ω.

Table 3 shows the comparison of the four approaches in terms of

PSNRb = 10 log10

{

2552 × P/ ‖ Yb − Dŷb ‖
2
}

.

For the MIII and MIV methods their corresponding band estimates ŷb, are
the mean value of the limit distribution of their corresponding qk(yb). The ob-
tained values show that the MIV method always obtains higher PSNR values
than the Price method and the MIII method. Figures 4 and 5 show the recon-
structions corresponding to images D and B, respectively, and figure 6 details
of the observed image B and its reconstructions. The observed multispectral
image in Fig. 6a has been resized by zero-order hold to the size of the high
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(a) (b) (c)

(d) (e) (f)
Fig. 6. Detail of the (a) observed multispectral image B, (b) its corresponding pan-
chromatic image, and the reconstructions using (c) bicubic interpolation (MI ), (d)
the Price method (MII ), (e) the proposed method with µω = 0,∀ω ∈ Ω (MIII ), and
(f) the proposed method with hyperprior distribution parameter estimation (MIV ).

resolution images. Visual inspection of the results shows that the proposed
method MIV provides sharper images than the other methods and, also, they
are not as noisy as the results obtained with the Price method (MII ).

In a second experiment we simulate a multispectral image of size 64×64 pixels
and its corresponding panchromatic image of size 128 × 128 pixels from the
observed 128×128 pixels multispectral image and its corresponding 256×256
pixels panchromatic image using the observation process, that is, applying
the sensor integration and downsampling the observed image according to
Eq. (9). The objective is to obtain sets of low resolution images that, once re-
constructed, could be numerically compared with their corresponding observed
multispectral images. Evaluation of the results of pansharpened multispectral
satellite images is a difficult task, since spatial improvement and spectral fi-
delity must be assessed separately, and a number of quality indices have been
proposed.

Spatial improvement has been assessed bandwise in terms of the UIQI index,
and ∆SNR in dB. UIQI [27] is an overall image quality index, with a value
in the range [−1, 1]. The closer the UIQI index to one the better the recons-
truction. This quality index models any distortion as a combination of three
different factors: loss of correlation, luminance distortion, and contrast distor-
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Image band MI MII MIII MIV

A 1 21.0 19.1 21.7 21.7

2 19.8 18.1 20.4 20.6

3 17.2 15.5 17.1 17.5

4 20.1 17.8 19.7 20.7

B 1 18.1 17.0 18.9 18.9

2 16.8 15.8 17.3 17.5

3 14.8 13.7 15.1 15.4

4 17.4 16.4 16.5 18.0

C 1 23.4 22.7 24.0 24.0

2 22.6 21.9 22.4 22.9

3 20.7 20.2 20.4 20.9

4 19.7 18.7 13.8 19.6

D 1 21.7 20.4 22.4 22.4

2 21.8 20.5 22.4 22.4

3 19.5 18.1 19.6 20.0

4 17.3 15.6 17.0 18.2

Table 3
PSNR (dB) obtained by bicubic interpolation (MI ), the Price method (MII ), the
proposed method with µω = 0,∀ω ∈ Ω (MIII ), and the proposed method with
hyperprior distribution parameter estimation (MIV ).

tion. Numerical comparison of the different reconstruction methods, presented
in Table 4, shows that the proposed methods perform better than bicubic in-
terpolation (MI ) and Price method (MII ). Note, however, that in some cases,
the proposed method MIII performs worse than classical methods (see, for
instance, the fourth band of image C in Table 4). This is due to the subopti-
mal estimation of the hyperparameters since no prior information about their
values is included in the estimation process. However, when including informa-
tion on the values of the parameters, as for the method MIV, our algorithms
perform better than the other methods. Additional improvement could also
be obtained by including more precise information about their possible values.

Spectral fidelity of the different fused images is quantified by the standard
ERGAS index (from the French “Erreur Relative Globale Adimensionalle de
Synthèse”) [28], a dimensionless global criterion based on the ratio of Root
Mean Square Error (RMSE) and bandwise mean. A low value of this index,
specially a value smaller than 3.0, indicates a higher quality of the multispec-
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UIQI ∆SNR

Image band MI MII MIII MIV MI MII MIII MIV

A 1 0.70 0.68 0.76 0.75 26.2 24.5 26.8 26.8

2 0.75 0.71 0.81 0.79 22.8 21.3 24.1 23.5

3 0.76 0.72 0.77 0.76 18.3 16.8 18.8 18.3

4 0.77 0.72 0.84 0.81 24.1 22.1 25.7 24.9

B 1 0.76 0.79 0.81 0.80 23.0 21.9 23.8 23.7

2 0.78 0.81 0.85 0.78 19.2 18.5 20.7 19.2

3 0.78 0.81 0.83 0.79 16.1 15.6 17.3 16.3

4 0.79 0.81 0.89 0.80 18.5 17.8 21.3 18.7

C 1 0.57 0.58 0.63 0.62 31.3 29.8 31.9 31.9

2 0.68 0.67 0.73 0.72 27.3 26.4 28.6 28.3

3 0.68 0.66 0.67 0.72 21.5 20.5 22.1 22.5

4 0.79 0.81 0.76 0.82 25.2 25.4 18.8 25.5

D 1 0.73 0.68 0.78 0.77 26.5 24.0 27.3 27.3

2 0.79 0.72 0.82 0.83 26.8 23.8 27.5 27.6

3 0.79 0.73 0.73 0.80 21.3 18.7 20.3 21.6

4 0.83 0.77 0.89 0.87 23.0 21.4 24.6 24.1

Table 4
UIQI and ∆SNR (dB) values obtained by bicubic interpolation (MI ), the Price
method (MII ), the proposed method with µω = 0,∀ω ∈ Ω (MIII ), and the proposed
method with hyperprior distribution parameter estimation (MIV ).

Image MI MII MIII MIV

A 3.67 4.40 3.35 3.55

B 5.44 5.83 4.52 5.31

C 2.50 2.73 3.28 2.28

D 2.86 3.75 2.83 2.65

Table 5
ERGAS value obtained by bicubic interpolation (MI ), the Price method (MII ),
the proposed method with µω = 0,∀ω ∈ Ω (MIII ), and the proposed method with
hyperprior distribution parameter estimation (MIV ).

tral image. Results, displayed in Table 5, show that bicubic interpolation (MI )
provides very good spectral results since it does not take into account the pan-
chromatic image or the information on other bands. Price method (MII ) also
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produces good spectral results although the obtained ERGAS values are al-
ways greater than the MI ones. The proposed MIII method performs better,
giving a better spectral fidelity, except for the image C due, again, to a subop-
timal estimation of the parameters. The proposed method MIV, which includes
a hyperprior ditribution for parameter estimation, provides lower ERGAS val-
ues and, hence, a better spectral fidelity, for all the images when compared to
classical methods.

We conclude this section by providing some information on the computing re-
quirements of the algorithms. For our proposed methods, the most demanding
computational task, both in terms of processing and memory requirements,
is the calculation of the covk[y] matrix, defined in Eq. (40). This calculation
reduces, in the Fourier domain, to the inversion of p matrices of size B×B (in
our experiments p = 256×256 and B = 4). Each iteration of Algorithm 1, took
20 sec. to execute on an Xeon 3.2GHz processor, for observed multispectral
images of size 128 × 128. The MIV method required less than 5 iterations to
reach convergence for all considered cases using as stopping criterion ǫ = 10−6

(see section 4), while the MIII method required a higher number (between 8
and 20) of iterations. The Price method took only 0.2 sec. to reconstruct all
four bands, while bicubic interpolation took 0.8 sec.

6 Conclusions

In this paper the reconstruction of multispectral images has been formulated
from a superresolution point of view. A hierarchical Bayesian framework to
incorporate prior knowledge on the expected characteristics of the multispec-
tral images, to model the observation process of both panchromatic and low
resolution multispectral images, and also to include information on the un-
known parameters in the model in the form of hyperprior distributions has
been presented. Then, by applying variational methods to approximate prob-
ability distributions, the parameters of the hyperprior distributions on the
unknown parameters together with the unknown parameters, and the high
resolution multispectral image have been estimated. Based on the presented
experimental results, the proposed method outperforms bicubic interpolation
and the method in [5].

References

[1] W. J. Carper, T. M. Lillesand, R. W. Kiefer, The use of intensity-hue-saturation
transformations for merging SPOT panchromatic and multispectral image data,
Phot. Eng. & Rem. Sens. 56 (4) (1990) 459–467.

25



[2] P. S. Chavez, S. Sides, J. Anderson, Comparison of three different methods
to merge multiresolution and multispectral data: Landsat TM and SPOT
panchromatic, Phot. Eng. & Rem. Sens. 57 (3) (1991) 295–303.
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