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Abstract 

The present paper compares a set of relevant methods, based on different mathematical 
approaches, for Landsat 7 ETM+ pansharpening. These are classical procedures such as 
Principal Component Analysis (PCA), Intensity Hue Saturation (FIHS); based on wavelet 
transforms: Wavelet à Trous (WAT), Additive Wavelet Luminance Proportional 
method (AWLP) and Multidirection-Multiresolution (MDMR); a method of a 
geostatistical nature, Downscaling Cokriging (DCK); and finally, a Bayesian method 
(L1COR). 

The comparison of the fused images is based on the qualitative and quantitative 
evaluation of their spatial and spectral characteristics by calculating statistical indexes 
and parameters that measure the quality and coherence of the images. Moreover, the 
quality of the spectral information is studied indirectly, by means of the ISODATA 
classification of the products of fusion. 

The results shows that DCK and L1COR methods yielded better results than the wavelet 
based did. Particularly, DCK does not introduce artefacts in the estimation of the digital 
numbers corresponding with the source multispectral image and, therefore, it can be 
considered as the most coherent method.  
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1. Introduction 

 
The arrival of new sensors and satellites in recent decades has notoriously favoured the 
availability of remotely sensed images with enhanced spatial and spectral resolution. In 
practice, a more effective use of this information entails the application of image fusion 
techniques in order to obtain a final product with spatial and spectral resolution 
characteristics suitable for a specific application. Typically, high spatial resolution 
panchromatic images are integrated with high spectral resolution multispectral images. 



Methodologies for image fusion comprise a set of procedures with diverse conceptual 
bases. They range from techniques based on simple arithmetic operations to complex 
algorithms based on the application of convolutions and filters. 
 
The simplest fusion techniques even carry out the direct substitution of some bands for 
visualization, or just a simple arithmetic transformation is applied, as in the Brovey 
method (Ehlers 1991). Some other classical image fusion algorithms are more complex 
and involve transformations of the images and substitution of components, e.g. 
Principal Component Analysis (PCA), IHS (Buchanan and Pendergrass 1980, Carper et 
al. 1990). In these methods, an intensity image is produced and then replaced in the 
inverse transformation by a high spatial resolution panchromatic image that is 
considered equivalent. 
 
Over the last decade, wavelet transforms have been applied to fuse multispectral and 
panchromatic satellite imagery (Garguet-Duport et al. 1996, Ranchin and Wald 2000, 
Aiazzi et al. 2002, Simone et al. 2002, Ranchin et al. 2003, Amolins et al. 2007). These 
fusion algorithms may be considered as an extension of the High Pass Filtering (HPF) 
method (Chavez et al. 1991), since they hold that spatial information is contained in the 
high frequencies. The wavelet transforms extract detailed information of the 
panchromatic image to integrate it subsequently into the multispectral image by using 
substitution methods, addition methods or a selection of methods based on the 
frequency or the spatial context. An additional advantage of these techniques is that the 
wavelet function can be modified to present specific features useful for a particular 
application of the transformation (Mallat 1999, Lillo-Saavedra and Gonzalo 2006, 
Amolins et al. 2007, Lillo-Saavedra and Gonzalo 2007).  
 
Fusion approaches based on the Bayesian modelling and inference, have recently been 
proposed. These approaches incorporate prior knowledge on the expected characteristics 
of the multispectral images, model the observation process of both panchromatic and 
multispectral images and apply inference methods to estimate the distribution of the 
high spatial resolution multispectral image (Molina et al. 2008, Vega et al. 2010). Vega 
et al. (2010) proposed a Bayesian method, L1COR, which considers the correlation 
between the multispectral bands themselves, besides considering the relationship 
between the panchromatic image and the multispectral band. This is a desirable 
property, as it has been shown that the multispectral bands of certain sensors (i.e. 
Landsat 7 ETM+) are only partially covered by the panchromatic image. 
 
A methodological alternative to the abovementioned is grounded on geostatistical 
methods, which, unlike those presented previously, explicitly account for the spatial 
variability characteristics of the images to be fused (Nishii et al. 1996, Chica-Olmo and 
Abarca-Hernandez 1998, Memarsadeghi et al. 2005). The geostatistical fusion model is 
based on the cokriging method (Atkinson et al. 1992, 1994, P. and Delfiner 1999). A 
variant of this methodology is the Downscaling Cokriging method (DCK), proposed by 
(Pardo-Iguzquiza et al. 2006), which considers relevant aspects for image fusion such as 
pixel size (information support), the direct and cross-spatial correlations of the digital 
values of the images, and the point spread functions of the sensors. 
 
Although several comparative studies on remote sensing image fusion methods have 
been published, only a few include a detailed assessment of the results obtained with a 
broad range of available techniques. Thus, (Chavez et al. 1991), (Ehlers 1991) and 



(Rigol and Chica-Olmo 1998) have compared results based on classical methods such 
as BR, PCA, IHS, and HPF. Likewise, (Yocky 1996), (Garguet-Duport et al. 1996), and 
(Pohl and Van Genderen 1998, Ranchin and Wald 2000) carried out studies comparing 
classical techniques with wavelet transforms. Alparone et al. (2007) tested different 
algorithms of different philosophies to merge QuickBird and simulated Pléiades. 
 
The goal of this research paper is to perform a detailed comparative assessment of a set 
of relevant image fusion techniques for Landsat 7/ETM+ pansharpening. In particular, a 
detailed comparative analysis of seven image fusion algorithms, representative of 
different methodological approaches, is presented: two classical methods, Principal 
Component Analysis (PCA) and Intensity Hue Saturation (FIHS); a Bayesian method 
(L1COR); a geostatistical method, Downscaling Cokriging (DCK); and, lastly, three 
methods based on wavelet transforms, such as Wavelet à Trous (WAT), Additive 
Wavelet Luminance Proportional (AWLP) and Multidirection-Multiresolution 
(MDMR). 
 
The study is illustrated using a multispectral Landsat 7 Enhanced Thematic Mapper 
(ETM+) image and its corresponding panchromatic image, with a spatial resolution of 
30m and 15m, respectively. The image was acquired on 20 July 2002 over the 
metropolitan area of Granada, in southeast Spain. The scene corresponds to path 200 
row 34 of the Landsat Worldwide Reference System (WRS). A sector of the Landsat 
scene of 944 km2 (1024x1024 pixels of 30m x 30m) was selected for the analysis 
(figure 1), which includes urban areas and small agricultural lots. 
 
[Insert Figure 1. Approximately here] 
 
The results of the fusion have been evaluated from different perspectives (Wald et al. 
1997, Ranchin et al. 2003): qualitatively, judging the visual quality of the image; and 
quantitatively, by degrading all available data to a coarser resolution, carrying out 
fusion from such data and calculating indexes and statistics of the spectral and spatial 
quality. Moreover, another experiment has been carried out to calculate “coherence 
measures” by degrading the fused images to its original resolution. Finally, the spectral 
quality of the fusion has also been assessed indirectly through the digital classification 
of the fused image. 
 

2. A Brief Review of Fusion Methods 

  
In this section, we briefly describe the seven fusion algorithms that have been chosen 
for comparative study. These algorithms present a different computational and 
application complexity: 

2.1 PCA Method 
 
The PCA method is based on the application of a classical statistical procedure of 
principal component analysis of the original bands of the multispectral image. 
According to Chávez et al. (1991), in the calculation process of the principal 
components, most of the common information of the set of multispectral bands is 
contained in the first component. This component is substituted by the panchromatic 



band, equivalent in load of radiometric information, but with a better spatial resolution. 
The inverse transformation allows obtaining the fused image. 
 

2.2 FIHS Method 
 
The IHS is probably the fusion algorithm most often used in remote sensing 
applications. It is based on the colour space transformation from RGB to IHS, and 
substitution of the resulting intensity band by the high spatial resolution panchromatic 
image (Carper et al. 1990, Ehlers 1991, Shettigara 1992, Grasso 1993, Pellemans and 
Jordans 1993). By applying the inverse transformation after substitution, a multispectral 
image similar to the initial one, but with an enhanced spatial resolution is obtained. The 
FIHS fusion algorithm is based on the same theoretical grounds as the IHS, but the 
inverse transformation process is simplified (Tu et al. 2005). The main advantage of this 
algorithm with respect to IHS is that it can be applied to any number of bands, not just 
to a band triplet. 
 

2.3 L1COR Method 

 
The Bayesian formulation of the pansharpening problem starts with the definition of the 
joint distribution p(y, Y, x), where y is the unknown high resolution multispectral image 
which has M bands yk, k = 1,…, M, Y is the observed low resolution multispectral 
image and x is the panchromatic image. This joint distribution can be defined as p(y, Y, 
x) = p(y)p(Y, x|y) and inference is based on p(y|Y, x) = p(y)p(Y, x|y) / p(Y,x). 
 
The L1COR method (Vega et al. 2010) proposes a prior model based on the L1 norm to 
take into account the smoothness within each band plus an auto-regressive model to 
exploit the correlation between the image bands, thus defining the multispectral image 
prior: 
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where the quadratic terms enforce similarity between the pixels in the same position in 
the different bands with kkv  > 0 being the parameter that control the similarity between 

band k and band k´ and the L1 norm priors impose smoothness into each multispectral 
band. In the previous expression, ( )h

i k y  and ( )v
i k y  represent the horizontal and 

vertical first order differences at pixel i, respectively, p the number of pixels of the high 
resolution images, and h

k and v
k  are the horizontal and vertical model parameter for 

the band k. The L1 model enforces smoothness within the objects in each image band, 
controlling the noise while preserving their edges whereas the quadratic model enforces 
spectral smoothness.  
 
Since the observed panchromatic and low resolution multispectral images are 
independent given the real high resolution multispectral image to be estimated, we can 



write p(Y,x|y) = p(Y|y)p(x|y). The conditional distribution of the observed multispectral 
image, Y, given the real high resolution multispectral image, y, is given by 
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where βk is the inverse of the variance of the independent Gaussian noise in each band k, 
and H =DB, with B a blurring matrix which takes into account the sensor integration 
function and any other blur that may degrade the image and D a decimation operator 
that match the fusion ratio. 
 
The conditional distribution of the panchromatic image x given y, is defined as 
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where γ is the inverse of the zero mean Gaussian noise of the panchromatic image and 

0k   are known quantities that weight the contribution of each high spatial resolution 

multispectral band yk to the panchromatic image, x. The values can be calculated, as we 
will see later, from the spectral response of the sensor. 
 
Once the parameters are known or previously estimated (Molina et al. 2008, Vega et al. 
2010), the Bayesian paradigm dictates that inference on y should be based on the 
posterior distribution p(y|Y,x). Since p(y|Y,x) cannot be found in closed form, 
variational methods are applied to approximate this distribution by another distribution, 
q(y), that minimizes the Kullback-Leibler divergence of p(y|Y,x) and q(y) and that 
make the inference process tractable. The estimated high resolution multispectral image 
can be obtained as the mean of the distribution q(y). 
 

2.4 DCK Method 

 
The fused image of high spatial resolution obtained through the Downscaling Cokriging 
method can be expressed as a linear combination of the experimental images (Pardo-
Iguzquiza et al. 2006, Atkinson et al. 2008, Pardo-Iguzquiza et al. 2011): 
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Where: 

( )b
aZ x : represents the digital number of a satellite image for the spectral band b and 

with a spatial resolution (pixel size) a and at a particular spatial location { , }x yx . The 
circumflex symbol above Z denotes that it is an estimated or fused image by cokriging, 
whereas without the circumflex accent it is designated as an experimental image. Other 
annotations are: 

0b k spectral band whose spatial resolution should be improved. 



jb k experimental spectral band included in the process of fusion by cokriging. 

0a u spatial resolution or pixel size of the fused image. 

ja u spatial resolution or pixel size of an experimental image used in the fusion. 

M:  number of experimental bands used in the fusion.  

jn : number of pixels of the neighbourhood used for the experimental image of the 

spectral band jk . Typically, these neighbourhoods are moving windows 33, 55, 7
7, etc.  
 

0
ji : optimal weight applied to ( )j

j

k

u iZ x  in the estimation of 0

0 0( )k
uZ x . 

The optimal weights given above are obtained by means of the resolution of a system of 
linear equations known as a cokriging system. This system is derived by imposing that 
the estimator be unbiased: 
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Where E .  is the operator of mathematical expectation. 

The cokriging system is represented in the form of a matrix, as: 
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Where: 

i j

i j

k k

u uC : matrix ( i jn n ) of cross-covariance between the in  pixels of spectral band ik  

with spatial resolution iu  and the jn  pixels of spectral band jk  with spatial resolution 

ju . Notice that a direct covariance is equivalent to the cross-covariance of an image 

with respect to itself.  

i

t
n1 : (1x in ) vector of ones. 

i

t
n0 : (1x in ) vector of zeros. 

The super index t denotes a transposed vector. 

k : (k =1,…,M) Lagrange multipliers. 

 
A further explanation about the resolution of the cokriging system (equation (7)) can be 
seen in (Pardo-Iguzquiza et al. 2006) and (Atkinson et al. 2008). This system accounts 



for three key aspects for image fusion: the experimental images pixel size (support 
effect), the direct and cross-variograms of the radiometric bands, and the point spread 
functions of the sensor. 
 

2.5 WAT Method 

 
Wavelet transforms are considered as a filter bank which, applied to a sequence of 
levels of image decomposition, divide the signal (e.g. satellite image) into both high and 
low frequency components (Amolins et al. 2007). When applied at different levels, the 
decomposition is referred to as multi resolution decomposition.  
 
The Wavelet à Trous transform, or WAT (Nuñez et al. 1999) involves basically the 
application of a series of consecutive convolutions for different levels of image 
degradation (Nuñez et al. 1999, Chibani and Houacine 2002, Ranchin et al. 2003, 
Garzelli et al. 2004, Gonzalez-Audicana et al. 2005). WAT requires an iterative filtering 
process, in which several degradation filters are used to obtain the wavelet coefficients. 
Since it is a non-decimated algorithm, the process starts by using an initial filter to 
which rows and columns of zeros are iteratively inserted between the rows and columns 
of the filter of the previous iteration until the desired resolution is achieved. 
 
The WAT method, unlike other algorithms such as the pyramidal one by Mallat (Mallat 
1999, Gonzalez-Audicana et al. 2005), is characterized by the directional independence 
of the filtering process, without spatial compression of the different levels of 
degradation. Therefore, the image for each level of degradation has half the resolution 
than the previous one, but the same size, so the information contained in each one of the 
levels is redundant.   
 
The wavelet coefficients Akj

uj+n(x) are calculated as the difference between two 
consecutive levels of degradation: 
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Zk

uj(x) represents the digital number at a pixel at location x = (x,y) belonging to spectral 
band kj of the original image. 
 
Following an additive criterion, if Zkj

uj+n(x) represents the successive degradations that 
contain the information of low frequencies of the original multispectral image, and 
Akj

uj+n(x) the respective wavelet coefficients that contain the high frequency 

information, it is possible to obtain a high-resolution fused image 0

0

ˆ ( )k
uZ x  by means of 

the sum of the low frequencies contained in the degraded multispectral image and the 
high frequencies extracted from the panchromatic image. 
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2.6 AWLP Method 

 
The additive wavelet luminance proportional method, AWLP (Otazu et al. 2005), is an 
extension of the Additive Wavelet Luminance (AWL) method (Nuñez et al. 1999) that 
considers an arbitrary number of bands in the multispectral image instead of three bands 

(RGB). In the AWLP method, the high frequency information,  
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  before being added to the corresponding multispectral 

band. In this way the details introduced in each reconstructed band are proportional to 
the original radiance values and, so, the spectral signature is maintained. 

 

2.7 MDMR Method 

 
The Multidirection-Multiresolution fusion algorithm (Lillo-Saavedra and Gonzalo 
2007) is a modification of the WAT method that incorporates directional transforms. It 
is an algorithm meant to attain an optimal equilibrium between the spectral and the 
spatial resolutions of the combined images, by means of the application of directional 
ellipsoidal filters. 
 
The fusion process is similar to the one put forward by the WAT method, as detailed in 
the following equations: 
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However, we see that the level of degradation has been replaced by that of the 
directional filter of orientation θ. Unlike WAT, this is a highly anisotropic algorithm, 
which allows weighting the desired spatial and spectral resolutions. 
(Lakshmanan 2004) adopted equation (12) to introduce a separable approximation to a 
directional low-pass filter (equations (14) and (15)). 
 

 

 

   2 2

2 2

cos sin sin cos
1 1

,

0

x y x y
if

a b

F x y

otherwise

     
 

 





 (12) 

 
Where a and b define the scale of the filter, and their ratio defines the ellipse elongation. 
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 Where α is given by (a2-b2) sin(2θ)/a2b2 and f1(x) and f2(y) by: 
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3. Fused Images Quality Assessment 

 
It is expected that an optimal image fusion methodology does not distort the original 
information (both spatial and spectral), thus allowing the use of fused images in 
applications such as digital classification or change analysis. In light of this 
understanding, a detailed analysis on the quality of the results obtained with the four 
aforementioned methods for image fusion has been carried out. To this end, the 
following criteria have been applied, based on visual and numerical aspects, the latter 
by means of indexes and statistical parameters. The general procedure is sketched in 
figure 2. 
 
[Insert Figure 2. Approximately here] 
 

3.1 Qualitative Assessment 

 
The quality of the results generated by the different fusion methodologies was evaluated 
visually. The criteria used were comparison of tone, contrast, saturation, sharpness, and 
texture of the fused images.  
 

3.2 Quantitative Assessment 

 
To assess numerically the quality of the reconstructed multispectral images, both spatial 
and spectral measures have to be considered. A set of statistical parameters and indexes 
were calculated to quantify the differences between the spectral information of the fused 
images (Mh*) and the real image that the Landsat ETM+ sensor would observe with the 
highest resolution (Mh): 

-Correlation coefficient (C).  
-Root Mean Square Error (RMSE). 
-The ERGAS index (Erreur Relative Globale Adimensionnelle de Synthèse) 
(Wald 2000, Ranchin et al. 2003): 
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Where h/l is the ratio between the resolution of the panchromatic image and the 
multispectral image, N is the number of spectral bands (Bk) of the fused image, 



Mk is the mean value of each spectral band, and RMSE is the Root Mean Square 
Error calculated between the fused image and the multispectral original image.  

 
The lesser the ERGAS value, the better the quality of the fused image. Wald et 
al. (1999) establishes experimentally that an ERGAS value< 3 corresponds to 
fused images of satisfactory quality. 
-The Image Quality Index (Q), proposed by (Wang and Bovik 2002) as an 
alternative to the Root Mean Square Error models the differences between two 
given monochromatic images as a combination of three different factors: loss of 
correlation, luminance distortion, and contrast distortion. 
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Where O  and F are the mean of the original and the fused images, respectively, 
σ2

Oand σ2
F are the variances, and σOF is the covariance between the original 

image and the fused image. In order to avoid errors tied to the index spatial 
dependence, (Wang and Bovik 2002) recommend the use of moving windows of 
different sizes. In our case, windows measuring 8x8, 16x16, 32x32, 64x64 and 
128x128 have been used, so the resulting index is the mean of all the partial 
indexes (Gonzalez-Audicana et al. 2005). 
-The Structural Similarity index (SSIM) (Wang et al. 2004), a perceptual quality 
measure that takes into account the luminance, contrast and structure 
differences, between each band of the reconstructed and original multispectral 
images.  
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Where x and y are two non-negative image signals, μx and μy are the luminance 
of images x and y, σxy, σx and σy are the covariance and the variances of image x 
and y respectively and, lastly, C1 and C2are constants. The SSIM index takes 
values between −1 and 1. The closer the SSIM index to one the better the 
reconstruction, with 1 only being reachable when the two images are identical. 
 

Spatial improvement was assessed by means of the correlation of the high frequency 
components (HFC) of the fused images (Mh

*) and the original panchromatic (Pl). 
 
The “coherence measure” between the degraded fused images (Ml

*) and the original 
image (Ml) was obtained by calculating the correlation coefficient (C) and the real 
errors (Root Mean Square Error, RMSE).  
 

3.3 Indirect quantitative Assessment 

 
This criterion is founded on the digital classification of the fused images and the 
measure of its mapping accuracy (Congalton 1991, Congalton and Green 1999).  

 



 

4. Results and discussion 

 
The best reference for assessing the quality of the fused image consists, obviously, in 
knowing the true or real image (Mh) which is wished to be obtained via the fusion 
method (Wald et al. 1997). However, this is not feasible in practice. For this reason, an 
experiment has been carried out in which the original multispectral (Mh) and 
panchromatic (Ph) images have been degraded to resolutions of 120m (Ml) and 30m (Pl), 
respectively, in order to obtain fused images with a resolution of 30m (Mh

*) (see figure 
2). Thus the results of fusion (Mh

*) can be compared to the real image (Mh). 
 
In Addition, any fused multispectral image once degraded to its original resolution l, 
should be as identical as possible to the original multispectral image Ml (Wald et al. 
1997). To measure the coherence between the said images, the (Mh

*) images have been 
degraded to the spatial resolution l.  
 

4.1 Application of the Fusion Algorithms 
 

4.1.1 Classical Methods 

The classical image fusion algorithms, PCA and FIHS, are computationally simple 
algorithms. These methods do not require definition of filters or the study of spatial 
variability between images, as required in the case of wavelet, Bayesian and 
geostatistically based procedures.  
 

4.1.2 L1COR 

The conditional probability distributions in equations 13 and 14 depend on a set of 
parameters that models the relationship between the high resolution multispectral image 
and the panchromatic and the low resolution multispectral image. The values of λk, k = 
1,…, 4, in equation 14 were calculated from the spectral response of the ETM+ sensor, 
following the procedure described in (Vega et al. 2010) producing values equal to 
0.0078, 0.242, 0.2239, and 0.5263, for bands one to four, respectively. Note that the 
panchromatic image almost does not cover band one and so, the value of λ1 is very low. 
The matrix H is obtained mimicking the degradation process by using 0.125×14×4 as 
sensor integration function and downsampling by a factor of 4 by discarding every other 
three pixels in each direction. Since no noise was added during the degradation process 
we chose βk= 100 and γ=10. 
 
The values for the parameters of the prior model were selected as follows. The values 

for h
k  and v

k were determined as  
2

1

1
P

d
i b

i

 Y , for directions  ,d h v , 

respectively, with P the number of pixels of Yb. Once these values are estimated, the 

values for kkv   were selected as 
2

, ' 'k k k kv C Y Y  where C was chosen to maximize 

the PSNR of the obtained reconstruction. Following this procedure we obtained αh = 
{0.13, 0.1, 0.07, 0.1}t, αv = {0.13, 0.11, 0.07, 0.11}t and { υ12, υ13, υ14, υ23, υ24, υ34} = 
{1.031, 0.0001, 0.005, 0.0001, 0.03, 0.0001}t. 



 

4.1.3 DCK 

This method requires the variographic analysis of the multispectral and panchromatic 
images. The experimental simple variograms of the different bands of the multispectral 
and panchromatic images are shown in figure 4, as well as the cross-variograms 
between these images, which are shown in figure 5. A linear model of coregionalization 
with two superimposed exponential structures has been used: a short-range one (45 m) 
and a long-range one (728 m). The practical ranges are 135 m and 2184 m, respectively. 
The sills of the simple and cross-variograms of the multispectral and panchromatic 
bands at point support level have all been calculated using a process of numeric 
deconvolution and a fitting of weighted squared minima. The models induced upon 
pixel support can be compared with the experimental variograms and cross-variograms 
as shown in figure 4 and 5 (solid line). 
 
[Insert Figure 4. Approximately here] 
 
[Insert Figure 5. Approximately here] 
 
Fusion by Downscaling Cokriging has been done using two bands in every case: the 
band whose spatial resolution is wished to be improved, and the panchromatic one. The 
results of the cokriging system provided the weights that were applied to the high and 
low spatial resolution images; that is, the multispectral and panchromatic ones, 
respectively. After different tests we adopted neighbourhoods of 3x3 pixels and 5x5 
pixels for low and high spatial resolution images respectively.  
 

4.1.4 Wavelet based Methods 

 

4.1.4.1 WAT 

In order to apply the Wavelet à Trous fusion (section 2), a fusion ratio of 4:1 between 
the degraded multispectral Landsat image (120m) and the degraded panchromatic image 
(30m) has been considered. Two levels of degradation have been applied to the 
multispectral image, so two sets of wavelet coefficients have been obtained, one 
containing the detail between 120 m and 60 m and the other, the detail between 60 m 
and 30 m (Gonzalez-Audicana et al. 2005, Lillo-Saavedra and Gonzalo 2006). 
 

4.1.4.2 AWLP 

Since the AWLP method (Otazu et al. 2005) follows the same steps than the WAT 
method, two levels of wavelets decomposition were applied to the panchromatic image. 
Bicubic interpolation was used to upsample the degraded multispectral Landsat image 
(120m) to the size of the degraded panchromatic image (30m). 

4.1.4.3 MDMR 

Following Lillo-Saavedra and Gonzalo (2007), in order to establish directionality and 
the optimal filter parameters, a large number of experiments have been carried out 
applying different levels of degradation (l = 21, 22, 23, 24) for different combinations of 
a and b (see section 2). In order to obtain the best fusion quality and a balance between 



the spatial and spectral resolution of the fused image, the optimum values of the filter 
parameters (a and b) have been determined by means of a simulated annealing 
procedure. Nonetheless, the values of a and b, together with the number of directional 
filters, can be fitted to highlight the spectral or the spatial resolution so as to attain lower 
ERGAS values (see figure 3). 
 
[Insert Figure 3. Approximately here] 
 

4.2 Image Quality Assessment 
 

4.2.1 Qualitative Assessment 

In order to facilitate the qualitative evaluation of the results, two subsectors within 
different environmental contexts were chosen for detailed evaluation (figures 1 and 6). 
In sector A, the northern part is occupied by urban structures mainly, and the southern 
part by irrigated crops. Sector B is characterized by a variety of natural land covers, 
with some distinctive vegetation areas around a central water body. Figure 6 shows 
ETM+ 321 (RGB) true colour compositions of the five merged images along with the 
original multispectral image for subsectors A and B. 
 
[Insert Figure 6. Approximately here] 
 
For all the studied cases, the bicubic interpolation produces over-smoothed 
reconstructions. The fused images show considerable differences in visual quality 
depending on the technique applied. The FIHS, WAT, AWLP, MDMR and, specially, 
PCA methods have a negative impact on the colour of the image, decreasing contrast, 
increasing colour saturation and introducing chromatic distortions, which are associated 
with a decrease in the spectral quality of the image. The FIHS and wavelet methods 
achieve a better spatial detail and give rise to sharper images, reflected most notably in 
the linear features present in the urban zones (sector A). However, the greater the spatial 
enhancement the greater the spectral distortions and moreover, contrast is reduced, and 
an effect of radiometric homogenization is produced, which causes a loss of texture 
(Zhang and Hong 2005). This effect is particularly appreciable in the fused image 
obtained using the MDMR method, where the crop fields areas seem to be blurred and 
nearly imperceptible in some sectors (figure 6, sector B). The good performance of the 
Bayesian (L1COR) and the geostatistical (DCK) methods is noteworthy, which 
outperforms bicubic interpolation. The L1COR and DCK are the methods that best 
preserves contrast, saturation and texture with respect to the original reference image, 
showing very similar results. 
 

4.2.2 Direct quantitative Assessment 
 

4.2.2.1 Assessment of the overall Quality  

In order to quantify the spectral and spatial quality of the fused images several statistical 
parameters were derived from the merged and the reference image (table 1): correlation 
coefficient and RMSE band by band, ERGAS, Q index, SSIM and the HFC (see section 
3). The spectral indexes have been calculated using the true multispectral Landsat 



ETM+ image (Mh), and the spatial indexes using the panchromatic image (Ph) (see 
figure 2). 
 
In general, correlation coefficients indicate that a relatively large correlation in the near 
infrared (NIR) band exists for all the fusion methods analysed (from 0.897 to 0.963) 
(see table 1). Correlations are however considerably higher for the green (from 0.935 to 
0.966) and red visible (from 0.946 to 0.972) bands due to a better spectral 
correspondence with the panchromatic band. The enhancement of the blue may be 
accompanied by a severe loss of correlation in FIHS, AWLP, WAT and MDMR, due to 
the fact that the blue visible part of the spectra has a minor weight in the panchromatic 
band. With regard to the performance of image fusion methods, PCA presents the 
lowest correlation coefficients for the blue and green visible bands (0.881 and 0.935) 
and FIHS for the red and near infrared bands (0.946 and 0.897). MDMR also presents 
very low correlation coefficients for all the bands (from 0.890 to 0.951). In contrast, the 
DCK and L1COR methods offered the best correlation with the original multispectral 
image (from 0.955 to 0.972 and 0.953 to 0.971, respectively). Table 1 shows that the 
RMSE are small for the DCK and L1COR methods, while the rest of the algorithms 
present larger RMSE values, especially the classical methods. The correlation of the 
high frequency components (HFC) (table 1) shows that wavelet based methods  
(WAT, MDMR and FIHS, mainly) incorporate more information from the 
panchromatic image than DCK and L1COR methods. L1COR method provides the 
lowest values for this measure, in special for the blue and green bands whose correlation 
coefficients are equal to 0.833 and 0.837 respectively. 
 
 
[Insert Table 1. Approximately here] 
 
Low ERGAS values and high Q and SSIM index values are indicative of merged 
images of good quality. In a hypothetical case, an optimal result of the fusion process 
would yield ERGAS and Q and SSIM values equal to 0 and 1, respectively. According 
to the authors, an ERGAS value greater than 3 corresponds to fused products of low 
quality, while an ERGAS value lower than 3 denotes a product of satisfactory quality or 
better (Wald et al. 1997).With regard to the previous idea, DCK method, generate good 
quality merged images. Both DCK and L1CORclearly outperform the rest of methods 
according to the ERGAS index (table 2). It is worth noting that the results obtained by 
the classical methods, PCA mainly (12.067) are very unsatisfactory.  
 
[Insert Table 2. Approximately here] 
 
To ease the comparison of the different fusion methods according to the average Q 
parameter (QAVG), we have displayed the QAVG values for different sliding size 
windows. Figure 7 shows the average Q values for each fused image and for the 
resampled original image using bicubic convolution (BIC). All the fusion methods 
result in improved spectral quality with respect to the BIC image. The DCK method 
yields the best results with an average Q equal to 0.962. On the contrary, PCA and FIHS 
gave as a result the worst values of the average Q index (0.877 and 0.919, respectively). 
Additionally, a comparison among algorithms, in terms of band to band Q index, has 
been carried out. All the methods yielded the poorest Q value for the blue band, in 
special the PCA, FIHS and MDMR methods (0.844, 0.857 and 0.887, respectively). 
However, both DCK and L1COR methods present a much lower reduction than the 



remaining methods. The Red band was the best enhanced band for most of the methods 
and the DCK method obtained the best results for all the bands (from 0.955 to 
0.972).The band by band SSIM index shows a different performance for every method, 
with the L1COR, DCK and AWLP presenting better results than the others. DCK gives 
higher values for band NIR, while L1COR obtains higher values for Red band, 
obtaining similar results in the other bands. In the average, DCK obtains the best result, 
with a slightly higher value than L1COR. The L1COR method gives its worst results for 
the NIR band and the rest of the methods, for the Red one. The average SSIM index 
offers very similar results to ERGAS and Q indexes. The ranking of methods confirms 
that wavelet are better than classical methods, with WAT and AWLP being superior to 
MDMR, and both the DCK and the L1COR methods yielding the best results according 
to the spectral indexes. 
 
[Insert Figure 7. Approximately here] 
 

4.2.2.2 Coherence Assessment  

Another aspect of interest considered in this study is the coherence between the original 
image (Ml) and those estimated by the fusion algorithm once degraded to the original 
resolution l (see figure 2). A “coherence measure” has been elaborated based on: the C 
and RMSE of each band estimated with respect to its corresponding multispectral band 
(table 3). According to the previous idea, the DCK method is the most coherent, as it 
presents a maximum C (practically equal to 1) and it minimizes the RMSE (lower than 
0.8) for all the bands. The rest of methods have lower correlation coefficients, and 
higher RMSE. Classical methods present higher correlation coefficients than the rest, 
although root mean square errors are significantly higher too, which make them less 
coherent.  L1COR and WAT methods are significantly less coherent than AWLP and 
MDMR. The high RMSE value for L1COR can be explained because it reduces the 
noise in the pansharpened image while incorporating the details of the panchromatic 
image. 
 
[Insert Table 3. Approximately here] 
 

4.2.3 Indirect quantitative Assessment 

In some remote sensing applications, it is required that the fused products are 
susceptible of generating maps of certain accuracy (e.g., land cover/ land use 
classification, change analysis, etc.). To this end, the ISODATA unsupervised 
classification procedure has been applied to the fused images and the reference image 
(without downscaling) (Lillesand et al. 1987). This procedure does not require human 
intervention that might bias classification and determine the differentiability among 
spectral classes.  
 
The high resolution multispectral image has been selected as the reference for the 
assessment of the accuracy of classifications of the fused images, since it represents a 
maximum spatial and spectral resolution for the case study. A level of quality 
comparable to the one derived from the classification of the original image could only 
be attained through the application of ideal fusion algorithms which would maximize 
the separability potential among classes. 
 



Figure 8 shows the unsupervised classifications of the original and the merged images 
using the analysed fusion methods. A visual inspection of the classified images suggests 
that the spatial distribution of the spectral classes varies notably depending on the 
method being used. In the classification of the original image (figure 8), six classes can 
be distinguished: classes 1 and 2 correspond to densely vegetated areas (irrigated land 
and natural vegetation, respectively); the rest of the classes correspond to non-vegetated 
zones or zones of scarce vegetation of high reflectivity, which range from urban areas 
(represented by class 3 mainly) to bare soils (class 6), including unirrigated farmlands 
and olive orchards (classes 4 and 5). 
 
[Insert Figure 8. Approximately here] 
 
Classification accuracy has been assessed by calculating the confusion matrix and the 
Kappa index (Congalton 1991, Congalton and Green 1999). The accuracy assessment 
indicated that the results corresponded to the images integrated using the L1COR, DCK 
and WAT methods are similar, with Kappa values equal to 0.78, 0.76 and 0.73, 
respectively. For the MDMR, AWLP, PCA and FIHS images, map accuracy can be 
considered low, with Kappas of 0.44, 0.45, 0.64 and 0.69. In the classifications obtained 
using these methods approximately half of the pixels were assigned to a category 
matching the classification of the original image. 
 
[Insert Table 4. Approximately here] 
 
A detailed accuracy assessment per category indicates that classes with high reflectivity 
values (Class 3 to 5) present the lowest Kappa per categories values for all the 
classifications of PCA, FIHS, L1COR, DCK and MDMR images. For these methods, 
classes 3 (urban areas) and 4 and 5 (unirrigated farmlands and olive orchards) of the 
reference image are those presenting lesser correspondence with the merged images. In 
the case of classification of the AWLP and MDMR fused images, it has not been 
possible to differentiate between the classes of vegetation 1 and 2. 
 

5. Conclusions 

 
Several image fusion methods of different philosophies have been compared in order to 
assess their performance for the integration of the panchromatic and multispectral bands 
of the Landsat 7 ETM+ sensor. This analysis has been carried out from diverse 
perspectives. On the one hand, the visual quality of the merged images has been 
qualitatively evaluated. On the other hand, the spatial and spectral quality, the 
coherence of the merged images and the mapping accuracy of the derived products from 
the merged images have been quantitatively assessed. 
 
The assessment of the global quality of all merged images has demonstrated that all the 
methods compared produce images of a better spectral quality than classical approaches 
(PCA and FIHS). The algorithms based on Geostatistic (DCK) and the Bayesian 
algorithm (L1COR), yield better spectral results than the wavelet based fusion methods 
(WAT, AWLP and MDMR). These wavelet methods enhance better the spatial details 
of certain zones presenting specific patterns, such as the reticulate pattern of urban 
zones. However, they introduce some colour distortions and more homogeneous areas, 
such as natural vegetation or crop fields, become visually blurred.  



 
The analysis of the values of the following parameters: C, RMSE, ERGAS, Q and 
SSIM, shows that the DCK method, is the algorithm that best preserves the 
multispectral information of the reference image. The WAT and MDMR methods has 
been the most efficient in order to increase the spatial resolution of the image (as 
indicated by the correlation of the high frequency components). Finally, from the point 
of view of the joint assessment of both the spectral and spatial indexes, DCK is the 
method that presents the most balanced results.  
 
DCK is the most coherent method of those analysed in this paper, since it does not 
introduce artefacts in the estimation of the digital numbers. Thus, the fused image, once 
degraded to its original resolution, is identical to the original multispectral image. 
However it is computationally complex, requiring variographic analysis and the fitting 
of simple and cross-covariance models. 
 
In terms of mapping accuracy and considering the ISODATA classifier, the algorithms 
generating the images of the highest spectral quality are L1COR and DCK, with 
L1COR producing slightly superior results in the classifications. Future works should 
examine the influence of both the spatial and spectral quality of fused images using 
different classification algorithms (e.g. machine learning and object oriented classifiers) 
and in scenes of different environmental characteristics. 
 
To sum up, we conclude that the Downscaling Cokriging and L1COR methods are 
efficient for increasing the spatial resolution of Landsat 7 ETM+ satellite images while 
maintaining the spectral contents. Therefore, the preferred use of one or the other will 
depend on the specific characteristics of the application in question. 
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Table 1.Band by band values of the correlation coefficients C, Root Mean Square Error 
(RMSE) and high frequency correlation coefficients between the reference multispectral 
image and the fused images. 
 

  
C 
 B 

C 
 G 

C 
 R 

C 
 NIR 

RMSE 
B 

RMSE 
G 

RMSE 
R 

RMSE 
NIR 

HFC 
B 

HFC 
G 

HFC 
R 

HFC 
NIR 

PCA 0.922 0.943 0.946 0.897 21.736 15.594 21.918 24.990 0.978 0.984 0.989 0.903 

FIHS 0.881 0.935 0.962 0.951 13.854 13.280 11.354 7.896 0.985 0.985 0.992 0.990 

L1COR 0.953 0.966 0.971 0.948 4.093 4.638 6.98 6.04 0.833 0.837 0.944 0.958 

DCK 0.955 0.965 0.972 0.963 3.963 4.675 6.796 4.891 0.933 0.913 0.951 0.957 

WAT 0.915 0.952 0.962 0.941 5.611 5.425 8.059 6.086 0.994 0.995 0.996 0.997 

AWLP 0.913 0.948 0.962 0.926 6.022 5.868 8.068 7.399 0.980 0.979 0.973 0.976 

MDMR 0.89 0.942 0.951 0.926 6.675 5.979 9.16 6.836 0.997 0.997 0.993 0.994 



Table 2. ERGAS values and band by band and average values of universal quality index 
(Q) and structural similarity index (SSIM) between the reference multispectral image and 
the fused images. 
 
 ERGAS Q  

B 
Q  
G 

Q  
R 

Q 
NIR 

Q 
AVG 

SSIM 
B 

SSIM 
G 

SSIM 
R 

SSIM 
NIR 

SSIM
AVG 

PCA 12.067 0.844 0.917 0.900 0.847 0.877 0.793 0.825 0.795 0.841 0.814 
FIHS 7.135 0.857 0.913 0.958 0.947 0.919 0.779 0.818 0.828 0.853 0.820 
L1COR 3.085 0.953 0.964 0.971 0.947 0.959 0.885 0.873 0.851 0.836 0.861 
DCK 2.914 0.955 0.964 0.972 0.962 0.963 0.888 0.870 0.842 0.875 0.869 
WAT 3.603 0.914 0.952 0.958 0.94 0.941 0.819 0.851 0.805 0.832 0.827 
AWLP 3.890 0.908 0.947 0.962 0.923 0.935 0.844 0.872 0.846 0.833 0.849 
MDMR 4.107 0.887 0.942 0.945 0.925 0.925 0.819 0.852 0.788 0.830 0.822 



Table 3. Band by band values of the correlation coefficients C and Root Mean Square Error 
(RMSE) between the original multispectral image and the degraded fused images. 
 

 
C  
B 

C  
G 

C 
 R 

C 
 NIR 

RMSE 
 B 

RMSE 
 G 

RMSE 
 R 

RMSE 
NIR 

PCA 0.963 0.975 0.976 0.931 21.220 14.735 20.804 24.474 
FIHS 0.938 0.968 0.986 0.988 12.621 12.114 9.246 5.964 
L1COR 0.926 0.953 0.92 0.884 5.11 5.12 11.564 8.804 
DCK 0.999 1 1 0.999 0.693 0.684 0.798 0.773 
WAT 0.835 0.888 0.933 0.879 7.59 7.958 9.872 8.289 
AWLP 0.965 0.982 0.989 0.970 3.543 3.348 4.177 4.402 
MDMR 0.937 0.974 0.977 0.963 4.608 3.74 5.962 4.469 

 



Table 4. Per-category Kappa values of the ISODATA classification of the fused images. 
 

 
Class Id. 1 2 3 4 5 6 

PCA 0.86 0.83 0.53 0.49 0.69 0.73 
FIHS 0.82 0.84 0.67 0.61 0.64 0.75 
L1COR 0.79 0.81 0.75 0.75 0.76 0.85 
DCK 0.81 0.78 0.73 0.72 0.75 0.85 
WAT 0.76 0.76 0.7 0.69 0.71 0.82 
AWLP 0.72 0.33 0.26 0.39 0.53 0.64 
MDMR 0.35 0.18 0.32 0.44 0.56 0.69 



FIGURE CAPTIONS 
 
Figure 1.Landsat 7 ETM+ false colour composition 432 (RGB) image of the study area 
(944 km2).It roughly corresponds to the Vega de Granada, Spain. Boxes A and B include 
two subsectors showing different land cover context used for qualitative assessment of 
results. 
 
Figure 2. Flowchart of the methodology used for comparative assessment of image fusion 
algorithms 
 
Figure 3. Spectral and spatial planes for level k=2 of the Multidirection- Multiresolution 
method 
 
Figure 4. Experimental variograms and induced models of the bands corresponding to blue, 
green, red and near infrared, the panchromatic image (from top to bottom and left to right, 
respectively) 
 
Figure 5. Cross-variograms and induced models between the multispectral bands, (blue, 
green, red and near infrared), and the panchromatic band (from top to bottom and left to 
right, respectively) 
 
Figure 6. Details of the true colour compositions of the original multispectral image and the 
fused images for test sectors A and B. The following images are shown from top to bottom 
and left to right: Reference multispectral image, PCA fused image, FIHS fused image, 
L1COR fused image, DCK fused image, WAT fused image, AWLP fused image, MDMR 
fused image and the bicubic resample of the original multispectral  
 
Figure 7. Graphical representation of the QAVG values of the Landsat 7ETM+ fused images 
for different sliding windows sizes 
 
Figure 8. From top to bottom and left to right: Maps derived from the classification of the 
original image and the fused images by PCA, FIHS, L1COR, DCK, WAT, AWLP and 
MDMR (from top to bottom and left to right, respectively) 
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FIGURE 5 
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FIGURE 6 
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FIGURE 6 (continuation) 
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FIGURE 7 
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FIGURE 8 
 

 


