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Abstract

In this paper we propose the application of the hierarchical Bayesian paradigm to the image
restoration problem. We derive expressions for the iterative evaluation of the two hyperparam-
eters applying the evidence and MAP analysis within the hierarchical Bayesian paradigm. We
show analytically that the analysis provided by the evidence approach is more realistic and ap-
propriate than the MAP approach for the image restoration problem. We furthermore study
the relationship between the evidence and an iterative approach resulting from the set theoretic
regularization approach for estimating the two hyperparameters, or their ratio, defined as the

regularization parameter. Finally the proposed algorithms are tested experimentally.
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I. INTRODUCTION

A standard formulation of the image degradation model is given in lexicographic form
by [1]
g =Df +w, (1)

where the p x 1 vectors f, g, and w represent respectively the original image, the available
noisy and blurred image and the noise with independent elements of variance % = 71,
and D represents the known blurring matrix. The images are assumed to be of size m X n,
with p = m X n. The restoration problem calls for finding an estimate of f given g, D and
knowledge about w and possibly f. For a recent review and classification of the existing
restoration techniques see Chapter 1 in [17].

The simplest way to approach the restoration problem is to use least squares estimation
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and then select f , an estimate of the original image, as

1 1 5
mexp[—§ﬁ | g —Df [|*]},

where Z,,i5.(3) = (27/3)?/2. However, as is well known, this approach does not lead to
useful restorations [1], and we have to use our prior knowledge about the original image.

Smoothness constraints on the original image can be incorporated under the form of
/2 1
p(fla) oc a® exp{~ZaS(f)},

where S(f) is a non negative quadratic form which usually corresponds to a conditional or
simultaneous autoregressive model in the statistical community and to setting constraints
on first or second differences in the engineering community (see [31]) and ¢ is the number
of positive eigenvalues of S and « is a constant. A form of S(f) which has been used

widely in the engineering community is
S(f) =l cf |,

where C' is the Laplacian operator.
If the hyperparameters a and (3 were known, then following the Bayesian paradigm it is

customary to select, as the restoration of f, the image f, 5) defined by

o) = arg{min[aS(f) + B g — Df ||*]} = arg{ maxp(fla)p(glf. 5)}.  (2)

An important problem arises when « and/or 8 are unknown. Much interest has cen-
tered on the question of how these parameters should be estimated in both the statistical
and engineering communities. The ratio of the hyperparameters is typically called the
regularization parameter.

To deal with estimation of the hyperparameters o and 3, the hierarchical Bayesian
paradigm introduces a second stage (the first stage consists of the formulation of p(f|«) and
p(gl|f, B) ). In this stage hyperprior p(«, ) is also formulated, resulting in the distribution
p(a, B,f,g). With the so called the evidence analysis, see [4], [25] for other possible
names, p(a, 3,f,g) is integrated over f to give the likelihood p(«, 8|g); this likelihood is

then maximized over the hyperparameters. Recently, an alternative procedure has been
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suggested by Buntine and Weigend [8], Strauss, et al. [37], Wolpert [38], Molina [27] and
commented by Archer and Titterington [3]. With this procedure, which is henceforth called
the MAP analysis, one integrates p(a, 3, f,g) over a and (3 to obtain the true likelihood,
and then maximizes the true posterior over f.

There are a number of approaches from the engineering community to the restoration
problem and also to the problem of estimating the regularization parameter ([1], [10], [12],
[17]). Among such approaches is a set theoretic regularization approach [19]. According

to it the prior knowledge constrains the solution to belong to both ellipsoids
Qr = {f| || Cf ||I’< E”} (3)

and

Qr/g = {f| || g — Df [P< €%}, (4)
where S(f) =|| Cf || and C, in this context, represents in general a high-pass filter, so
that the energy of the restored signal at high frequencies, due primarily to the amplified
broad-band noise is bounded. If the bounds €2 and E? are known, and the intersection of

Qr and Qy/g is not empty, a solution to the problem can be found by solving
(D'D + AC'C)f = D'g, (5)

where \ the regularization parameter is equal to (¢/E)%. A posterior test needs to be
performed to verify that indeed the solution of Eq. (5) belongs to both ellipsoids in Egs. (3)
and (4). In [14], [15], [20], an iterative restoration algorithm is proposed according to which
both FE and e and the estimation of the original image are updated at each iteration step
based on the available partially restored image. It is noted here that when only one of the
bounds E or € is known then a constrained minimization problem results. That is, ||Cf||?
is minimized subject to the constraint imposed by Eq. (4), or ||g — Df||* is minimized
subject to the constraint imposed by Eq. (3). In both cases the solution is found by solving
Eq. (5). The regularization parameter A is now a Lagrange multiplier which needs to be
determined so that the constraint is satisfied. It is also noted that Eq. (5) provides also
the maximizer of Eq. (2) with A = a/f.

In this paper we propose the application of the hierarchical Bayesian approach to the

image restoration problem. We derive expressions for the iterative evaluation of the two
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hyperparameters applying the evidence and MAP approaches. We show analytically that
the analysis provided by the evidence approach is more realistic and appropriate than the
MAP approach for the image restoration problem. We furthermore study the relationship
between the evidence and an iterative approach resulting from the set theoretic regular-
ization approach, for estimating the two hyperparameters, or their ratio, defined as the
regularization parameter.

The paper is divided as follows. In section IT we describe the hierarchical paradigm
to hyperparameter and image estimation. Section III examines the evidence and MAP
analyses. Section IV provides reasons for selecting between the evidence and the MAP
approaches. Section V studies the set theoretic regularization approach. In section VI
we justify the method described in section V from the Bayesian point of view, interpret
the parameters involved in the iterative procedure and propose alternative iterative meth-
ods. Finally in section VII experimental results are shown and section VIII concludes
the paper. The paper also contains an appendix where the posterior distribution of the

hyperparameters is studied in order to characterized its local maxima.

II. HIERARCHICAL BAYESIAN PARADIGM

The hierarchical Bayesian paradigm is currently being applied to many areas of research
related to image analysis. Buntine [6] has applied this theory to the construction of classi-
fication trees and Spiegelhalter and Lauritzen [36] to the problem of refining probabilistic
networks. Buntine [7] and Cooper and Herkovsits [9] have used the same framework
for constructing such networks. MacKay [23] and Buntine and Weigund [8] use the full
Bayesian framework in backpropagation networks and MacKay [24], following Gull [13],
applies this framework to interpolation problems.

In the hierarchical approach to image restoration we have at least two stages. In the first
stage, knowledge about the structural form of the noise and the structural behavior of the
restoration is used in forming p(f|a) and p(gl|f, ), respectively. These noise and image
models depend on the unknown hyperparameters. In the second stage the hierarchical
Bayesian paradigm defines a hyperprior on the hyperparameters, where information about
these hyperparameters is included.

Although in some cases it would be possible to know, from previous experience, relations
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between the hyperparameters we shall study here the model where the global probability

is defined as

p(a, B,f,8) = p(a)p(B)p(f|a)p(g|f, B). (6)

A. Components of the first stage

The components of the first stage are the noise and image models. We shall only discuss
the image models, since the noise model defined by Eq. (1) will be used. Although the
theory we shall develop here can be applied to any quadratic prior on f, we shall study
in full two particular priors, the ones we have been applying restoration of astronomical
images [30], [31].

Our prior knowledge about the smoothness of the object luminosity distribution makes

it possible to model the distribution of f by a conditional autoregression (CAR) [35]. Thus,

plfla) o exp{~Jaf'( = pN)E),

where the entries of the matrix N, N;;, are equal to 1 if cells 7 and j are spatial neighbors

ij>
(pixels at distance one) and zero otherwise and ¢ is equal to 0.25. The term (I — ¢ N)f
represents in matrix notation the sum of squares of the values f; minus ¢ times the sum
of f;f; for neighboring pixels ¢ and j (we denote by f; the i-th entry of the vector f).

The parameters can be interpreted by the following expressions describing the condi-
tional distribution

Ef|f;, j#1) = ¢ > fj

7 nhbr i

var(f; | £, j #1i) = a

where the subscript ‘j nhbr 4’ denotes the four neighbor pixels at distance one from pixel ¢,
and the parameter a measures the smoothness of the ‘true’ image. This model on log scale
has been used in the galaxy deconvolution problem [30], [31], a problem in which no more
knowledge than the exponential decay of the luminosity can be incorporated, and on linear
scale in planet deconvolution problems [32].

Assuming a toroidal edge correction, the eigenvalues of the matrix (I — ¢N) are \;; =

1 —2¢(cos(2mi/m) + cos(2mj/n)),i =1,2,...,m,j =1,2,...,n. So, for $ = 0.25, f has a
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singular multinormal distribution (see [26]). It can be shown that the density of f has the

form
1

Zprior(a)
where Zpior(@) = (T j200 Mij) 227 /a)P~1/2, C = I — ¢N and f lies on a hyperplane

1
p(fla) = exp{—5af'CH},

of the form > (f; — ) = 0. It is important to note that p is not determined at all in the
model.
We shall also use the simultaneous autoregressive model (SAR) [35]. This model is

characterized by

fi—¢ Y fi=¢,

j nhbr i

where ¢; is independent, and N (0, «™*). Then, the corresponding distribution is given by

1
p(fla) = exp{—§a f'C'C f}

1
Zprior (a)
where, for this prior, we have Zpior () = (IT; j0,0 A5) /22w /)®~ V2, C = I — ¢N and
f lies again on an hyperplane of the form Y (f; — u) = 0.

From the regularization point of view, the CAR model imposes constraints on the first
differences and the SAR on the second differences of the image. Both of these models are
related to autoregressive models which have been used for image modeling and restoration
[18]. For notation simplicity we shall use here the SAR image model. Having defined the

components of the first stage, we move now on to the second stage.

B. Components of the second stage

Because of the attractiveness of the Bayesian machinery to perform conditional analysis,
Berger [4] describes the possibility of using the Bayesian approach when very little prior
information is available. According to it, in situations without prior information what
is needed is a non informative prior on the hyperparameters, o and 3 (the term “non
informative” is meant to imply that no information about the hyperparameters is contained
in the priors). For the problem at hand we can use improper non informative priors
p(a) o const and p(f) o const both over [0, 00).

However, it is also possible, as we shall see now, to incorporate precise prior knowledge

about the value of the noise and prior variances. Let us examine the hyperpriors we shall
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use.

In general, depending on p(a) and p(f3) used, p(a, f|g) may not be easily computable.
A large part of the Bayesian literature is devoted to finding prior distributions for which
p(a, B|g) can be easily calculated. These are the so called conjugate priors [4], which were
developed extensively in Raiffa and Schlaifer [34].

Besides providing for easy calculation of p(a, 3|g), conjugate priors have, as we shall
see later, the intuitive feature of allowing one to begin with a certain functional form for
the prior and end up with a posterior of the same functional form, but with parameters
updated by the sample information. As described in [4], at least for initial analyses,
conjugate priors like the one we are going to use in our problem can be quite useful in
practice.

These attractive properties of conjugate priors are, however, only of secondary impor-
tance compared to the basic question of whether or not a conjugate prior can be chosen
which gives a reasonable approximation to the true prior. This leads us to the problem of
model selection, which will not be dealt with in this paper (see [23], [24]).

Taking into account the above considerations about conjugate priors, we use as hyper-

prior one such conjugate prior, the gamma distribution defined by

1/2—1

p(w) xw exp|—a(l — 2)w],

where w denotes a hyperparameter, a is a constant whose meaning will be made precise

later, and [ is a non negative quantity. This distribution has the following properties

l l
Elw] = 5= and Varjw] = ek

So, the mean of w, which represents the inverse of the prior or noise variance, is for [ large,
approximately equal to 1/2a, and its variance decreases when [ increases. This means that
[ can then be understood as a measure of the certainty on the knowledge about the prior

or noise variances (see [28], [33]).

III. HIERARCHICAL BAYESIAN ANALYSIS

Having defined p(a, 3, f,g), the Bayesian analysis is performed. As mentioned earlier,

in the evidence framework, p(«, 3, f,g) is integrated over f to give the evidence p(«, 5|g)
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which is then maximized over the hyperparameters while the MAP framework p(a, 5, f, g)
is integrated over o and (3 to obtain the true likelihood which is then maximized with
respect to f. Let us examine these analyses in details.

A. Evidence Analysis

In this approach & and B are first selected as

A

&, = argmaxp(a, flg), (7)
and f( 4,8) defined in Eq. (2), is then selected as the restored image.

A.1 Evidence Analysis with Flat Hyperpriors

With the improper hyperpriors (the gamma hyperprior case will be examined later),

Eq. (7) amounts to selecting &, £ as the maximum likelihood estimates (mle), of a, 8 from

r(gla, B).

Let us examine the estimation process in detail. Fixing a and 3 and expanding the

function M (f,gla, B) = o || Cf ||> +3 || g — Df ||? around f, 5, we have
(e.8)

M(f, gla, B) = M(f..5),8la, B) + (f fa,p) Qla, B)(f — f(0,3))

and therefore

pla, Blg) < p(g|e, B) (8)

ol Ml BE DL [ oxp(= (6 o) Qo 0)E ~ Top)} ot 0)

_ exp{—M(fa,5). 8l #)/2}Q(a, B)| "/ (10)
Zprim‘(a)Znoise(ﬁ) ’

where Q(a, 3) = aC'C + fD'D

It is important to note that in cases where the image or the noise models are not Gaussian
(for example entropy-based image models), the approximation of p(g|a,3) obtained by
expanding log p(f, g|a, 3) around f(, 3) and integrating on f is still usefull (see for instance
[13]). Note, however, that for the image and noise models used in this paper the integration

1s exact.



We then have

logp(a,Blg) = —all Cfag [I” =5 | & — Dfiapll?
—log |Q(a, B) |1/2 —10g Zprior () — 108 Zppise(B) + const.

As MacKay [24] points out, the term || g —Df{, g)||* represents the misfit of the restoration
to the observation, the term a || Cf(o ) ||> measures how far f(, g is from its null value
and (2m)P/2|Q(a, B)| 7Y%/ Zprior () is the ratio of the posterior accesible volume in the
parameter space to the prior accesible volume.

We now differentiate —2log p(«, 5|g) with respect to a and 3 so as to find the conditions

which are satisfied at the maxima. We have

| Cflap) II” +trace[Q(a,5)7'C'C] = (p—1)/a (11)
| g8 — Dfs 5 |I> +trace|Q(a, B)"'D'D] = p/p. (12)

A study of these two equations in order to characterize the stationary points of p(a, 8|g)
and examine whether they are local maxima is found in appendix I. Let us now examine
how to find those stationary points.

Let us use the EM-algorithm [11] with X = (f,g)! and Y = g = T X to iteratively
increase p(a, f|g). We obtain the following iterative procedure for a and g3 (see [21] for

details),

ain = {ll Cla,py II” +tracelQ(es, B;) "C'Cl}/(p - 1), (13)
Biii = {ll 8 = Df(a,s, I +trace[Q(as, 4;) 'D'DI}/p. (14)
This iterative scheme finds the stationary points of p(«, 3|g), (see [5], [39] for the char-

acteristics of these stationary points found by the EM-algorithm; the proofs in [11] are

flawed) and can be seen as an iterative procedure derived from Egs. (11) and (12).

A.2 Evidence Analysis with Gamma Hyperpriors

We now generalize the above result by considering the following gamma distributions as
hyperpriors
p(a) o o* Lexpl—ai (b - 2)a], (15)
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and
p(B) o B2/*7! exp[—az(lo — 2)A]. (16)

Clearly improper hyperpriors correspond to /; = Iy = 2. Differentiating the corresponding
—2log p(«, B|g) with respect to o and 3, where p(«, 3|g) can be easily obtained multiplying
p(gle, B) in Eq. (10) by p(a)p(B), we have

| Cfiap) |I? +tracelQ(a, ) 'C'Cl+ (h —2)2a1 = (p—1+1 —2)/a, (17)
| g - Dy II? +tracel@(a, )" D'D] + (b - 22 = (p+l—2)/6.  (18)

The application of the EM-algorithm results now in the following iterative procedure for

o and [,

aipn = wi{ll Cfa, s I +trace[Q(as, ;) 'C'CI}/ (p — 1) + (1 —wi)2a1,  (19)
Bii = wllg—Dfa,p II” +trace[Q(es, f;) 'D'D]}/p+ (1 —wn)2a2,  (20)

where

w=pP-1)/(p—1+1—2) and wy =p/(p+1s —2).

There is a very nice and intuitive interpretation for this new iterative procedure. We
are estimating the unknown hyperparameters by weighting their maximum likelihood esti-
mates with our prior knowledge regarding their means and variances. So if we know, let us
say from previous experience, the noise or image variances with some degree of certainty
we can use this knowledge to guide the convergence of the iterative procedure.

As with flat priors for the hyperparameters, it is possible to study the characteristics of
the stationary points of p(«a, 3|g) for gamma hyperpriors and, with the use of the DFT, it
is also possible to see whether we have local maxima, see appendix I.

The values of a1 and ;1 obtained from iterations (19) and (20) will be denoted
by aiy1yEMa_w) and B i1)Em,a_w), respectively, where a_w is used to denote the vector
(2a1, w1, 2a9,ws). Clearly for [} = Iy = 2, iterations (19) and (20) reduce respectively to
iterations (13) and (14). We also use Q(EM,a_w) and B(EM,a_w) to denote the corresponding
evidence solutions, i.e., the values of the hyperparameters o;y1)(zam,a_w) and Biy1yEra_w),

respectively, at convergence.
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B. MAP Analysis

We briefly describe next the MAP analysis approach (named empirical by Berger [4]),
when the gamma distribution is use for the hyperpriors. We have (see [28] and [29] for
details),

r(f,g) « /

o

[jo7 gy el 5olll OF I 420, (1~ 2))

Zprior

S exp{~5Blll & — DI | +20s(1s — 2)]} dard,  (21)

Znoz’se (ﬂ)

where a;, as,l; and [l are constants whose meaning has been made precise in the previous
section.

Using the well known result from the gamma distribution
/000 Yy le~dy =T'(u)a™
we have
p(f, g) o [|| Cf ||* +2ay(ly — 2)]"PV270/2 | g — Df || +2ay(ly — 2)]7P/*71/2.

Thus, to obtain a restored image we would just minimize

p+1ls
2

p—1+1
2

log[|| Cf ||* +2a1(l; — 2)] + log[|| g — Df ||? +2a2(l> — 2)]. (22)

This equation suggests the following iterative scheme to obtain a MAP solution (see Eq. (3)
in [27] for details for flat hyperpriors). Starting at step 0 with £, we will see in section VII
how to choose this image, we use at step ¢ of the iterative procedure

ly —2

oy =w ||CEFT P /p—1)+ (1 —wi)2ay L

(23)

and
Iy — 2
Iy ’

Py =w [l g—DEH? /p+ (1 —ws)2a
and then define f as f(,, , 5, ), defined by Eq. (2), where

p—1 d
W1 = —— and wy = .
YT o1+ T+l
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Note that we are not really concerned with the estimation o and 3 in the MAP analysis
and that the above equations can be understood as intermediate steps to calculate £,
However, these intermediate steps accept a nice interpretation, as it was the case with
the evidence framework. That is, we are estimating the unknown hyperparameters by
weighting the estimation of the noise and prior variances, which come fully from the
restoration without involving the trace function, with our prior knowledge regarding their
means and variances.

We will show now that if f = (1 — p)f'"!' + pfis, , 5,_,), where f~' is the current
restoration at the (¢ — 1)st iteration step and with u close to zero the method is guaranteed
to converge. We have used 4 = 1 in all the experiments and we have not observed any
convergence problems.

Let us examine the convergence of the iterative procedure. Forming a; %, and £} as
defined in Egs. (23) and (24),expanding M (f, g|a;_1,6;—1) around fi~! and taking into
account that f(,, | 5_,) minimizes the function M(f, g|o;_1, fi—1) and o;_1C'C+ §,_,D'D

is non-negative definite, we have that
(fas_v5i) — £ 1) (i C'CE = 3, D' (g — Df 1)) < 0,

and so, for u close enough to zero

. Iy — 92 .
(p— 1+ 1) log[|| CF || +2a1=——] + (p + 1»)2log[|| & — DF || +2azls] ~
i—1 112 L =2 is1 112 lo —2
(p =1+ &) logll| CF 7 || +2a1——] + (p + l2) log[|| g — DE'™ || +2a,——]
1 2
+/‘(f(ai—1ﬂi—1) - fi_l)t(ai—lcthi_l - ﬁi—lDt(g - Dfi_l))

— 141 .
L logll| CF ! |2 420 ] + 5
1

. lo —2
logll| g — DE* | 20,2,
2

And so the method converges to a solution of

CtCf D'(g — Df)

—(p+1 =0.
|| Cf ||2 +2a1(ll — 2) (p 2) || g— Df ||2 +2&2(l2 — 2)

(p—l—l—ll)

IV. RELATIONSHIP BETWEEN THE EVIDENCE AND MAP ANALYSES

Let us examine how the evidence and MAP approaches are related. We have

v(flg) = [ [ pit..plg)dads = [ [ pl. ple)p(Ele, o B)decds
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Therefore, p(f|g) is close to p(f|g,&,B) only when p(«, 3|g) is sharply peaked at &, .
This is not the case for typical images, such as Lena (see also [13]).
However, the main difference between both analyses comes from the following facts.

Following MacKay [25], consider the Gaussian distribution
k
p(f) = (1/[v2ma])" exp[=>_ 7/ (207)].
1

Nearly all the probability mass of this Gaussian is in a shell of radius r = vkog and
thickness o< r/ Vk. For example, in 1000 dimensions, 90% of the mass of a Gaussian with
o¢ = 1 is in a shell of radius 31.6 and thickness 2.8. However, the probability density at
the origin is exp[k/2] bigger than the density at this shell where most of the probability
mass is, and where the main contribution to the estimation of the variance will come from.

In summary, probability density maxima often have very little associated probability
mass, even though the value of the probability density there may be immense, because
they have so little associated volume. So, the values provided by || g — Df(, ) ||* and
|| Cfia,s) ||* are not good estimators of 3 and «, respectively, since the estimator f(, g) is
not located where most of the mass of the distribution is. Furthermore, as a referee points
out, while o and 3 were originally independent f(, gy correlate them.

Finally, the following proposition tells us where the values of o and 3 should be.

Proposition. 1: Consider a sample f from p(f|g, d(a_u), B(a_w)). Then, the conditional
average values of || Cf ||? and || g — Df ||? satisfy

A pP— 1+ ll -2
Aa_w) " = ,
E[| Cf |1? I8, &(a_w) Ba—w)] + (L — 2)2a1
B p+ l2 -2
(a-w) - = .
E[“ g~ Df ”2 |g, a(a_w)aﬁ(a_w)] + (lz — 2)20,2
Proof.
Since
f‘g’ é{(a_w)a ﬂ(a_w) ~ '/V‘(f(éé(a_w)7/3)(04_“))7 (d(a—"") CtC + /B(G—W)DtD)_l)
and

E[|| g — Df |I°| 8, &a_u), Bra_w) = {Il Cf, oy P +tracelQ(dga ), Ba_w)) " C'CI},

oA‘(a,_u.))’B(a,
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and

B[ Cf || & 6oy fla) = { & — Df4 ) I +tracelQ(ég_u), o) D'D]}

(a_w)vﬁ(a_w

then using Eqs. (17) and (18) we obtain the given results.
Finally, let us examine and make even clearer the differences between the MAP and the

evidence approaches with the following example. Let us use the simple image model,
p(fla) o o exp[—a' 3" f2/2]

and

p(g|B) o< B” exp[—f Z(gi — fi)?/2].

If we use improper priors for a and 8 and follow the MAP approach we have

plE.g) o [ £ 1P (1] g — £ 77772

Therefore, the solutions provided by the MAP analysis are f; = 0, Vi or f; = g;, Vi. This
is a typical behavior of the MAP approach. In particular for the CAR and SAR image
models we have found that it tends to find the flat solution, f; = const, since that is a
maximum of p(f,g). This can be avoided using a prior whose corresponding eigenvalues
are all positive, as was done in [27] where we used ¢ < 0.25. However, the problem of
finding an accurate estimate of this parameter remains. This is a fact that has not been
taken into account in some papers using the MAP approach, see for instance [3].

Let us examine how the evidence analysis works in this simplified example. The corre-

sponding equations to estimate o and (3 are

1
fos) I” 40— = p/o,
| £ap) |l oy p/
1
~flap 1P +0——= = :
| g~ fap | PaT s p/B

The only maximum is for & = , which provides the solution f; = ¢;/2,Vi. Therefore, the
analysis provided by the evidence approach is much more realistic and appropriate for the

image restoration problem.
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V. ITERATIVE EVALUATION OF THE REGULARIZATION PARAMETER

In a series of papers [14], [15], [20] we have introduced and used a paradigm in which
parameters required for obtaining a solution to the restoration problem, such as o and
B, are evaluated iteratively based on the partially restored image. Using a set theoretic
formulation of the restoration problem [19], it was proposed in [14], see also [2] for an

alternative formulation, to obtain a restored image f by solving

. —Df ||2 46 . .

of) = 18=DHE+% v _ prg — Dy = 0 (25)
|| Cf ||? +0d2

Such a solution is obtained using a successive approximations iteration, that is,

fi=f"1—ed(fi ), (26)

where f0 = g and the relaxation parameter € is chosen in such a way to insure convergence,
see [16]. The regularization parameter A = o/ is updated at each iteration step according

to .
\_lle-Df 2 +5
! | Cfi ||2 +d2

The quantities d; and d, are introduced in this context in order to keep the quantities in

(27)

the numerator and denominator of A away from zero. Their values are determined from the
convergence analysis of Eq. (26). The convergence analysis, the derivation of the optimal
range of A and experimental results are shown in [14], [15], [20]. In [20] the value of §; was
set equal to zero, since it was shown experimentally to provide better results. The value
of 0 on the other hand is considered to be a function of the iteration step, since it may
be required to change along the iteration so that the sufficient conditions for convergence
are satisfied. The steps in the convergence analysis are to first linearize the iteration and
then determine the sufficient condition for convergence by forcing the difference between
two iteration steps to go to zero. The relaxation parameter parameter used is set equal to
one, and therefore an inequality (sufficient condition) for d» results. In [15] the quantity
in the numerator of A is assumed to be known exactly, that is, it is replaced by a constant.
The iterative procedure takes the form

_ Ilg—Df'|?

( I CE |2 +4,

C'O)f' + eD’(g — Df?), (28)
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with f = g. According to iteration (28) the regularization parameter is updated at each

iteration, in the form

_llg—Df |

T Of |+

We henceforth refer to iteration (28) as the set theoretic (ST) iteration and J; is denoted

Ai

by di(s7,0,1,01)- A lower bound for ¢; and an upper bound for € are derived in [20] based on
convergence analysis. An estimate of the noise variance is also obtained at each iteration

step, equal to || g — Df? |2 /p. This estimate will be improved in the coming section.
VI. RELATIONSHIPS BETWEEN THE HYPERPRIORS AND REGULARIZATION PARAMETER
A. MAP analysis

We can rewrite the expression for A; in Eq. (27) as follows

. _05lle- Df’ || /p+ 0.56,/p
0.5 || Cfi || /p + 0.50,/p

By comparing Eq. (29) to Egs. (23) and (24), and by using the fact that p — 1 & p, we see

(29)

that the form of the regularization parameter and the form of a/f in the MAP analysis
are the same for 2as ~ §1/p, 2a; = §/p, and w; = wy = 0.5.

So, in principle, the MAP approach is more similar to the regularization approach using
ay = 0 and 2a; = d2/p. However, if we observe the tests performed in [20], the extremely
high values used for d,, in comparison to the corresponding values of || Cf ||?, ranging
from exp[13.5] to exp[18], led us to try an alternative interpretation using the evidence
analysis which seems to be more appropriate for the image restoration problem, as we will

show next.

B. FEvidence analysis
B.1 Hyperpriors with flat distribution

Let us use initially a flat improper hyperprior (the gamma hyperprior will be described
in the next section). Equation (14) can be rewritten as,

p—1

g — Dfo, 5, 2 Ui, B;) =
I (ai80) |17 /Ui, By) B

; (30)

where
low, Bi) =p/(p—1) — 5i+1t7"aC€[Q_1(04i, ﬁz’)DtD]/(p - 1),
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with ;11 obtained from Eq. (14).
Thus, the EM iterative procedure described in Eqgs. (13) and (14) can be rewritten as
follows. Starting at aq, 8o, f(a,s,) define

041 _ ” g — Df(aiwai) ||2
Biv1 | Cllas I +0s

Aig1 = (31)

where
(5,‘ = l((l’i, ﬂi)trace[Q_l(ai,ﬁ,—)CtC] - (1 - l(az,ﬁz)) ” Cf(ai,ﬂi) ”2 (32)

and calculate its corresponding MAP solution from Eq. (5). We henceforth refer to this
iteration as the EM iteration and d; in Eq. (32) is denoted by 6;zar,0,1,0,1)-

It is clear that the analysis we have carried out is based on calculating the maximum a
posteriori values of a and [ iteratively. However, the iterative procedure described in the
previous section (see [20]) is based on a gradient descendent method. Let us try to adapt
this new iterative method to the form of the iteration (28).

Starting with fy, o, By define

as = Al CF |I* +trace[Q™ (s, 4:)C'Cl}/(p - 1), (33)
B = {llg —Df ||* +trace[@ (as, 4;)D'D]}/p, (34)

and use the iterative scheme

=g - pﬁm[g?i C'Cf' - D'(g - Df')]. (35)

The important point is that a;;1/8;+1 has the form

o | g—DF |
Bis1 || CfF |2 +6;°

where for this iterative scheme 0; has the form
51’ = l(ozi,ﬁi)trace[Q_l(ai,ﬁi)CtC] - (1 — Z(sz,,gz)) || sz ||2 . (36)

This iteration has the same form as the iterative scheme described in section V when we

use a constant step
€ = pPis1- (37)
We shall use d;(s7,0,1,0,1) to denote the J; defined in Eq. (36).
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The theory which was used to assure convergence of the algorithm described in section V
can be applied to iteration (35). However, there is an important difference; there is no
guarantee that the values of §; in Eq. (36) satisfy the convergence constraints defined in
[20], at least during the first iterations. Another important difference is that the estimate

of the noise variance we obtain from this iterative scheme is

i1 ={ll g = Df' ||* +trace[Q™" (a, 5;)D'D]}/p. (38)

which is not the same as the one provided in [20].

B.2 A modified iteration to obtain the evidence solution

The fact that iteration (35), using Eqgs. (33), (34) and(36) may not converge, leads us
to the introduction of a new iteration in this section. Such an iteration is guaranteed to
converge to a unique fixed point since it satisfies the contraction mapping theory.

Let us consider finding f(, g) for a given o and 3, in other words, solving
aC'Cf — sD!(g — Df) = 0.
This equation can be rewritten as
(20 + B)f = 2aWT + B[D'(g — Df) + f],
or
f = yWf + (1 — p)[D'(g — Df) +f],
with u = 2a/(2a+ ), C'*C = 2(I—- W), and W =1 — 0.5C'C.
This leads to a very simple iterative scheme to find f, 5); starting at f° define
f*! = yWF’ + (1 — u)[D'(g — DfY) + 7],

which can be easily shown to be a contraction.
This iterative scheme can be used to find the evidence solution. Starting at £°, ag, By,

calculate a; 1 and ;11 using Eqs. (33) and (34) and then use
7 = i WIE + (1 - pi41)[D' (g — DfY) + 7]
= £ — (1= i) [ 22— (I - W)f' - D'(g — DF')]
— Hi+1
= = (1- )2 C'CF — D'(g - DY) (39)
i+1
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with g1 = 2a;41/(20i41 + Biv1). We henceforth refer to iteration (39) as the contraction

(CO) iteration.

B.3 Hyperpriors with gamma distribution

The results and iterative methods we have discussed have been developed for flat hyper-
priors for a and 3. The same results can be obtained for general gamma hyperpriors. In

this case Eq. (31)

2
Q(EMa_w)Bi(EM,a_w)) ”

\ ~ lle—Df
i+1)(EM,a_w) = ’
(FLEM o) | Cf(az‘(EM,a_u)a(ﬂi(EM,a_u)) 12 +0i(mrt0_)

where
SiEMaw) = Uy Bi,a_w)[trace[Q ' (ay, B;)C'Cl + (I — 2)2a,]
_(1 - l(aia ﬁia a_w))
X || Cf(a(i)E‘M,a_waﬂ(i)EM,a_w) ”2’
and

l(ai,ﬁi,a_w) = (p—i— l2 — 2)/(])— 1 +ll — 2)
—Bi+1 {tmce[Q_l(ai, B)D'D]/(p—1+1; —2) — (Is — 2)2as/(p— 1 +1; — 2)} ,

where in these two last equations we have used, for simplicity, o; = aypare_w) and §; =
BiEM,a_w)-

The same equations are valid for the ST (set theoretic) and CO (contraction) iterative
methods replacing the corresponding MAP image f(,, 3) we obtain in the iterative procedure
by the image we obtain in the gradient method. It is clear that although the expressions
for ST (Eq. (28)) and CO (Eq. (39)) are the same, the restorations we obtain are not the

same because of the different steps used.

VII. EXPERIMENTAL RESULTS

A number of experiments have been performed with the proposed algorithms, EM
(Egs. (35), (36) and (37)), ST (Eq. (28)), CO (Eq. (39)) and MAP (Egs. (23) and (24) over

the “Lena“ image and a synthetic image obtained from a prior distribution. A synthetic
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image generated from the prior was also use in order to see how well the methods estimate
the prior and noise variance.

For both images, Lenna and the simulation, the blur was due to motion over 9 pixels,
and the criteria || £771 — £ ||2 / || £ ||?< 107° or ¢ = 200, which ever was met first, were
used for terminating the iteration. The performance of the restoration algorithms was

evaluated by measuring the improvement in signal to noise ratio after i-iterations denoted

by A% g and defined by

If—gl”
R

AL yr = 10log
Since we have four different iterative methods, we shall use ALy z(EM), ALyr(ST),
A%y r(CO) and A%z (M AP). Furthermore, we shall also use ALy (method, 2a;, wq, 2as,
ws) where method = EM, ST, CO or M AP and 2a;, wy, 2ay, and ws are the correspond-
ing parameters of the hyperpriors. We have used (see Eq. (37)) € = min;(1 — y;), where
p; comes from the contraction method (see Eq. (39)).

First, we run the methods on the “Lena” image blurred and with additive Gaussian noise
with variance f~! = 216, 37! = 21.6 and 7! = 2.16, to obtain a SNR of 10dB, 20dB
and 30dB, respectively. The selection of the starting image for the MAP algorithm was an
additional problem; when starting with the observed image we noted that the algorithm
converged to a very noisy image, 3! = 0, we then followed the procedure described in [3]
and started with the EM solution for the 10dB, 20dB and 30dB images, respectively. The
values of Agyg and the required number of iterations as well as the corresponding values
of 1 and &' at convergence, for flat hyperpriors, are shown in table I. From this table
it can be seen that the best results are produced by the EM iterative algorithm, followed
by the one based on the set theoretical approach. However, a visual inspection of the three
restored images shows that they are not very different. It is worth mentioning the speed
of convergence of the EM iterative algorithm. The MAP algorithm always tends to a flat

1~ 0, for those initial parameters.

image, o~

The estimate of a~! provided by the EM method, the one that produced the best results,
was always around 50 (see table I) so we decided to test our methods with two more values
of 2a;, one greater and other less than 50 on the “Lena” image.

The results of the same experiments for 2a; = 10, wy; = 0.5, ws = 1 and 2ay = 0 are
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shown in table II. The use of this value for 2a;, which is inversely proportional for the
mean of the hyperprior for o forces the restoration to be smoother than in the previous
experiment (see table I). It can be observed that, in this case, the noise variance estimates
are, as expected, greater than the corresponding to table I. The only exceptions are the
ST method at 10dB, where the maximum number of iterations, 200, was used. In this
case, the values of Agyg are smaller than in table I except for the MAP method since we

1

avoid the solution o™ = 0 by introducing the hyperprior on a.

The corresponding results for 2a; = 50, w; = 0.5, 2as = 0, ws = 1 are shown in table III.
This test corresponds to roughly use the prior variance estimate provided by the EM
method as one divided by the mean of the hyperprior for a. As expected, the results are
very similar to the ones in table I except for the MAP method since we, again, avoid the

maximum at a1 = 0.

The same experiments were performed for 2a; = 100, w; = 0.5, 2as = 0, wo = 1 and they
are displayed in table IV. The EM, CO and MAP methods produce smaller values for the

noise variance estimates. They also improve the SNR.

Using || g — Df ||? /p as the estimate for the noise variance, as proposed in [20] the noise
variance estimates for SNR= 10, 20, 30dB are 163.2, 16.4 and 3.01, respectively. It can be
seen that the noise variance estimates provided by the EM algorithm in table I, table III
and table IV are closer to the true value.

Figures 1, 2 and 3 show the values of 0j(g11,0,1,0,1), 0i(s7,0,1,0,1) and di(co.,0,1,0,1) for f71 =
216, S~ = 21.6 and B! = 2.16, respectively. As can be seen the behavior of these three
plots is very similar to figure 1 in [20].

Figures 4, 5 and 6 depict the values of Agyg for various hyperpriors including the flat
hyperprior for o and 3, for 37! = 216, 37! = 21.6 and $~! = 2.16, respectively.

As expected the behavior of the methods (EM,0,1,0,1) and (EM,50,w,0,1), w =
0.1,...,0.9, is very similar. This is because the mean of the gamma distribution used
as hyperprior for « is approximately equal to one divided by the prior variance esti-
mates obtained when using (FM,0,1,0,1). Furthermore, the method (FM,10,w,0,1),
w = 0.1,...,0.9, always produces a worse Agyg than (EM,0,1,0,1) while the method

(EM,100,w,0,1), w = 0.1,...,0.9, sometimes increases Agyg. This is reasonable since
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the EM method for flat hyperprior has not been designed to maximize the Agyg.
Finally, the original and noisy blurred images are shown in figure 7 and the corresponding
best restorations in terms of Agyg, according to figures 4, 5 and 6, are shown in figure 8.
In order to study how good the prior variance are estimated, we run the same experiments
on a synthetic image obtained from a prior distribution based on a SAR model with prior
variance 100 and mean 128. This image, shown in figure 9, was blurred and gaussian
noise with variance ! = 309.7, ! = 30.97 and ! = 3.097 was added, to obtain a
SNR of 10dB, 20dB and 30dB, respectively. The initial restoration for the MAP algorithm
was the EM solution for the 10dB, 20dB and 30dB problems, respectively. The required

number of iterations as well as the corresponding values of ﬁA_l and &1

at convergence,
for flat hyperpriors, are shown in table V. From this table it can be seen that the worst
hyperparameter estimations are obtained by the MAP algorithm.

We also tried the methods on the synthetic image with different values of 2a;, one was
the real variance, 2a; = 100, w; = 0.5,2a5; = 0, wy = 1, one higher than the real variance,
2a; = 500,w; = 0.5,2a = 0,ws = 1, and the other lower, 2a; = 10,w; = 0.5,2a, =
0, ws = 1. The MAP method was always outperformed by the other three methods except

for the 2a; = 500, w; = 0.5,2as; = 0, wy; = 1 case where using a very high value for a and

combining it with the MAP tendency to a~! = 0 produces more sensible results.

VIII. CONCLUSIONS

In this paper we have proposed three iterative image restoration algorithms according to
which a restored image and an estimate of the image and noise variances, or equivalently
an estimate of the regularization parameter, are provided at each iteration step. For
these methods no knowledge of the noise or prior variances is required, although this
knowledge, if available, can be incorporated in the form of gamma hyperpriors in the
iterative procedure. The iterative procedures proposed in this paper behave similarly
to the algorithm described in [20]. The results in [20] can be used to guarantee the
convergence of the step algorithm and also to test whether the stationary point of the
MAP and contraction algorithms are indeed a local maximum.

The proposed algorithms allow the incorporation of vague knowledge about the noise

and image variances. The algorithms can be used for solving other inverse problems such
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as the motion estimation problem where the values of the local variance can be weighted
with global estimates and estimates from previous frames can be used to calculate the

corresponding variance estimates.
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APPENDIX
I. A STUDY OF THE STATIONARY POINTS AND LOCAL MAXIMA OF p(a, 3|g)

Let us first start by studying Eqgs. (11) and (12) in order to characterize the stationary
points of p(a, 3|g) when a flat hyperprior is used and examine whether they are local
maxima.

Since both C and D are block circulant matrices, Egs. (11) and (12) can be written in

the discrete Fourier domain as,

D /32|Cz|2‘dz|2|Gz|2 V4 |c1‘2
= (p—1) —«a S 40
2l gaE — PV TR G B (40)
P a?lgt|Gi? & \d;|?
S y— L — 41
B G+ gam ~ PP aart pae (41)

where d; and ¢; are the eigenvalues of D and C, respectively, and G; is the ith components
of the discrete Fourier transform (DFT) of g.
We also note that

- lcil? - \d;|? Bd;G;
P—+ y 2 bt B — , F. , [ ey et S
LV er+ar TP aertgar ~ P 0 BOd) = e piap
and
v Bld; ?
—Df, s P = Gi———1 G 42
” g (a,8) || ;' { Ot|Ci|2+ﬁ|dz'|2 ‘ ( )

where Fj(a, 3) is the ith components of the DFT of f(, 3) and the superscript * denotes
complex conjugate.

Following [24], we define

Y= p ﬁ| dz|2
= ale? + Bldi|*
which obtains values between 1 and p and observe that at the stationary points of p(«, 5|g)
we have

a|[Cap|?=7-1,
and
Bl g—Dfng ll=p—17,
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which implies that the total misfit at any stationary point satifies
OzHCf(a,ﬁ)Hz + ﬂ || g— Df(a,ﬁ) ||: p— 1.

Having characterized the stationary points of p(«, #|g), and by taking into account that
it is not difficult to examine whether they are local maxima if we perform the calculations
in the Fourier domain, let us now study the conditions for having a single maximum.

There is not much work reported on this problem; MacKay [25] conjectures about the
unicity of the maximum and we will adapt his results to our problem.

If we accept the models for the image and degradation, then we believe there is a true

value of @ = & and 3 = f3 for which
glaf~N(0,A),

where A = :D[C'C] 'D’ + {I. We now transform g to z = .A""/g and then expect, if
the model is correct, that each z? is independently distributed like X2 with one degree of
freedom.

Following Mackay [25], the observations g; is grossly at variance with the model for
given values of a and f3 at significance level 7, if z? is not in the interval [e™",1+ 7]. Tt is
conjectured that if we find a value of & = & and 8 = 8 which locally maximizes p(a, Blg),
and with which all the observations are not grossly at variance, then there are no other
maxima.

Let us illustrate the meaning of these concepts with an example and see why it is
important that each observation is not grossly at variance with the model. Let us use the

simple image model,

p(f|f’ Oé) ox o exp[—a Zfzz/Q]a

i=1

and
p—1

p(glB) o< 67 exp[—B[D_(9: = fi)* + (9p — hf)°]/2],
i=1
with h, > 0 and 3 known. We want to estimate a.. Then, Eq. (11) becomes

2/82 1 1

B _
a+ﬁ2zgz Tﬁ)zgp+a+ﬁ(p—1)+w =p. (43)
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We now note that if >-2_ ¢? is small we may have a solution for o for the above equation

which is big, which suggests a small prior variance. Furthermore, if gg is big and h,, small,
another possible solution is a small & which suggests a big prior variance. Let us illustrate
this behavior with a simple numerical example.
Assume 8 =1,p = 10001, Zf;ll g? = 10000, h, = 0.1, g, = 100000. Figure 10 despicts
p—1 52 h2 ﬁz
2 P
mx) =p—x ; +

(@) =p izzl(:c+ﬁ)2g’ (z +h2B

for several values of z. We note that in the range [0, 0.2] there are two stationary points of

1
x+hi3|’

)2g§+ (p—1)+

x4+ f

p(|g) (two solutions of m(z) = 0). The smallest one is a local maximum (see figure 10(a)).
Furthermore there is another stationary point, greater than 0.2, in the range shown in
figure 10(b) which corresponds to another local maximum.

In order to have one maximum, it is therefore very important that the observations are
not grossly at variance with the model.

As with flat priors for the hyperparameters, it is possible to study the characteristics of
the stationary points of p(«, 3|g) for gamma hyperpriors and, with the use of the DFT, it
is also possible to see whether we have local maxima.

Let us now relate the solutions of Egs. (17) and (18) to the solutions of Egs. (11) and
(12). We will assume that [ is known and want to estimate a. Let a4 be a solution of
Eq. (11) and assume that oy > 1/2a;. Then, from Eq. (17) we have that U(aj:) > 0,

where
Ula) =a (|| Cfiop) |I> +trace[Q(a, B)7'C'C] + (I, — 2)2a1) —(p—14+10;-2).

Furthemore, if there is only one solution of Eq. (11), then U(1/2a;) < 0, (note that
U(0) < 0), and so there is a unique solution for Eq. (17) in the interval [1/2a;, afit]. A
similar study can be carried out when oy < 1/2a.

An interesting problem is to examine what happens when the solution of Eq. (11) is
not unique. If oy > 1/2a; and U(1/2a;) > 0, then either a4 is not a local maximum
or there is a solution of Eq. (11) in [1/2a1, afia) which is not a local maximum. It is
important to note that in this case we will have a solution of Eq. (11) in [0, 1/2a;] which
is now a local maximum, and that if we denote that maximum by @&y, we will have a

solution of Eq. (17) in [ fiat, 1/2a1].
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