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Expectation Maximization (EM) based inference has already proven to be a very powerful tool to solve 
blind image deconvolution (BID) problems. Unfortunately, three important problems still impede the 
application of EM in BID: the undesirable saddle points and local minima caused by highly nonconvex 
priors, the instability around zero of some of the most interesting sparsity promoting priors, and the 
intrinsic high computational cost of the corresponding BID algorithm. In this paper we first show how 
Super Gaussian priors can be made numerically tractable around zero by introducing the family of Huber 
Super Gaussian priors and then present a fast EM based blind deconvolution method formulated in the 
image space. In the proposed computational approach, image and kernel estimation are performed by 
using the Alternating Direction Method of Multipliers (ADMM), which allows to exploit the advantages 
of FFT computation. For highly nonconvex priors, we propose a Smooth ADMM (SADMM) approach to 
avoid poor BID estimates. Extensive experiments demonstrate that the proposed method significantly 
outperforms state-of-the-art BID methods in terms of quality of the reconstructions and speed.

© 2016 Elsevier Inc. All rights reserved.
1. Introduction

In the imaging process, factors like camera shake, defocus and 
atmospheric turbulence cause blurriness in the observed image. To 
remove the undesirable blur, one can use nonblind or blind de-
convolution methods, depending on whether the blur is known 
or unknown, respectively. Blind image deconvolution (BID) is an 
interesting and challenging problem which finds application in ar-
eas like astronomical imaging, medical imaging, and computational 
photography [1].

In general, the degraded image y can be approximately mod-
eled as [2]

y = Hx + n (1)

where x and n are the original image and noise, respectively, and 
H is the convolution matrix formed from the blur kernel h.
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Given a single degraded image y, the BID goal is to estimate 
the original image x and blur kernel h. BID is a severely ill-posed 
inverse problem, since there are infinitely many solutions for x
and h. To find the desirable ones from the set of uncountable 
solutions, additional assumptions on both x and h are indispens-
able. During the last decade, BID has been intensively studied in 
the image processing and computer vision communities [3–21]. It 
could be rightly claimed that the vast majority of state-of-the-art 
BID methods make use of sparsity promoting image priors. Most 
existing BID methods can be classified into three categories, that 
is, VB (variational Bayes), MAP (maximum a posterior), and other 
methods which we now briefly review. Notice that in this classifi-
cation EM inference is included in the VB category.

Miskin and MacKay [3] assume a mixture of Laplacian priors 
for cartoon images and propose a VB approach, termed ensemble 
learning, to estimate the blur. Likas and Galatsanos [4] propose a 
similar VB approach with Gaussian priors, see also Molina et al. 
[22] for VB with Gaussian priors for image and blur. Fergus et al. 
[5] exploit a mixture-of-Gaussians (MOG) prior and extend the VB 
approach [3] to handle natural images with nonparametric motion 
blurs. Levin et al. [10] also utilize an MOG prior on the latent 
image and propose a M A Ph approach, namely marginalizing all 
latent images and estimating the kernel alone. Making use of the 
conjugate concave principle, Babacan et al. [13] propose a general 

http://dx.doi.org/10.1016/j.dsp.2016.08.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dsp
mailto:zhouxu179@163.com
mailto:mvega@ugr.es
mailto:zhfugen@buaa.edu.cn
mailto:rms@decsai.ugr.es
mailto:aggk@eecs.northwestern.edu
http://dx.doi.org/10.1016/j.dsp.2016.08.008
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dsp.2016.08.008&domain=pdf


X. Zhou et al. / Digital Signal Processing 60 (2017) 122–133 123
Bayesian framework, which allows the use of general sparse priors 
for BID. This framework includes [5] and [10] as particular cases. 
Recently, following the M A Ph approach [10] and assuming a Gaus-
sian representation model, Zhang and Wipf [20] have proposed a 
BID method with parameter estimation to remove camera shake. 
Following the work in [13], Vega et al. [21] suggest introducing 
an additional parameter on the image prior and show that this 
parameter can be used to improve the quality of the restoration. 
Interested readers are referred to [2] and [23] for recent reviews 
on VB based BID methods.

Instead of imposing a prior distribution on the latent image, 
one can also use shock filters [24] to promote sparsity, see [7,8,16]. 
The shock filter provides a highly smooth image with predicted 
sharp step edges, which can be used as a reference image to 
regularize the latent image. Since the predicted step edges are 
probably inaccurate, a better approach is to use nondimensional 
sparsity measures [11,19,17], which model ideal step edges as lo-
cal minima. Sun et al. [14] propose a parametric step edge model 
to promote sparsity, where the parameters are learned from syn-
thetic or natural image patches. Recently, Perrone and Favaro [25]
have proposed a logarithmic TV (Total Variation) based BID meth-
ods using a delayed kernel normalization scheme [26]. The above 
MAP methods seek a cartoon like image to estimate the blur 
kernel and hence are robust to noise; however they may fail 
if the original image lacks step edges or is dominated by tex-
tures.

While most of the existing BID methods focus on image pri-
ors, priors on the kernel have received much less attention. Cai 
et al. [9] suggest using curvelet representations for motion blurs, 
since the curvelet representation takes into account both the con-
tinuity and sparsity of motion blur kernels. Goldstein and Fattal 
[12] propose a spectrum power prior on the blur kernel, based on 
the assumption that the spectrum power of a natural image drops 
quadratically as the frequency increases. Zhou et al. [27] propose a 
variational Dirichlet approach to estimate the blur kernel and show 
that it helps reduce noise in the estimated kernel.

Although Super Gaussian (SG) [13] distributions have proven to 
be the right tool to introduce prior information in BID, some of 
the most widely used such distributions, like �p and log priors, 
suffer from lack of differentiability around zero. In this paper we 
introduce in a sound way a new family of SG distributions fully 
differentiable and thus well behaved around zero. We call them 
Huber Super Gaussian (HSG) priors.

As is widely known, VB based BID methods involve two ma-
jor steps: image and kernel estimation. They correspond to solv-
ing large-scale linear equation problems and providing solution 
to large scale quadratic problems with constraints, respectively. 
In this work, by incorporating the latest techniques in image de-
convolution [13,28], we also present a fast Bayesian blind decon-
volution method formulated in the image space for Huber Super 
Gaussian priors.

Recent advances in BID [13,20,17,23,25,27] show that highly 
nonconvex priors are very effective in BID problems. However, the 
local minima and saddle point problem caused by nonconvex pri-
ors, e.g., log prior, has not been well addressed. We report that 
the EM approach, which provides an estimate of the mean of the 
posterior distribution of the latent image and has been used in 
Bayesian BID methods [10,13,20], often leads to a stationary point 
with a large objective function value and an image estimate which 
is not adequately smooth. We show that, with suitable parame-
ter settings and iterative schemes, ADMM can be used to tackle 
this problem. The proposed ADMM with a large penalty weight 
finds a smooth approximate solution to the reweighted linear equa-
tions, rather than the exact solution as searched by the EM ap-
proach. Experiments show that the proposed ADMM, which seeks 
a smooth image mean rather than the exact image mean pro-
vided by the EM approach, leads to a smoother image with a lower 
cost value, and the proposed BID method significantly outperforms 
state-of-the-art BID methods in terms of restoration quality and 
speed.

In summary, the contributions of this paper are a) the intro-
duction of the Huber Super Gaussian prior family to improve nu-
merical stability and convergence speed, and b) a fast method for 
nonconvex image deconvolution, which avoids undesirable station-
ary points and yields comparable or even better results than the 
EM approach in terms of ringing artifact reduction.

The paper is organized as follows. In section 2 we formulate 
the BID problem. We introduce the observation model, define the 
family of Huber Super Gaussian priors and present the inference 
framework. Section 3 is devoted to the image and blur reconstruc-
tion algorithms. Section 4 discusses, in detail, all the parameters 
involved in the BID algorithm we propose. Section 5 compares 
our approach with current state-of-the-art BID algorithms, and sec-
tion 6 concludes the paper.

2. Prior model

Let the sizes of y, x, and h in Eq. (1) be 
√

N × √
N , 

√
N × √

N
and 

√
K × √

K , respectively. We assume that H is block circulant 
with circulant blocks, and then have H = F−1diag(H)F , where 
F denotes the 2-D DFT and H = F Ph is the Fourier transform 
of h, with P being an N × K matrix that pads h with zeros to the 
size 

√
N × √

N . The dimensions of H and diag(H) are therefore 
N × N . For simplicity, we overload the notations x, y, and h with 
two meanings, a 2-D array or a column vector arranged in lexico-
graphic order; which notation is being used will be clear from the 
context.

Assuming an i.i.d. Gaussian noise with variance σ 2, we can 
write

p(y|x,h) = 1

(
√

2πσ)N
exp(−‖Hx − y‖2

2

2σ 2
) (2)

Let us now proceed to define the image prior model we use in 
the paper by introducing first its energy (penalty) function.

Let ρ(s) : � → [−∞, +∞] be symmetric around zero with 
ρ(

√
s) concave and increasing for s ∈ [0, ∞). This condition is 

equivalent to ρ ′(s)/s being decreasing on (0, +∞), that is, for 
s1 ≤ s2, ρ ′(s1)/s1 ≥ ρ ′(s2)/s2. A probability distribution of the 
form p(s) ∝ exp(−ρ(s)) is called a Super Gaussian (SG) distribu-
tion. SG distributions promote sparsity. Their use in blind image 
restoration problems was first proposed in [13]. Examples of en-
ergies associated to SG distributions are shown in Figs. 1(a) and 
1(b), in which ρ(s) = log(|s|), the so-called log prior, was first in-
troduced in [13].

The energy, ρ(·), associated to an SG distribution can be repre-
sented as (see [29])

ρ (s) = inf
ξ>0

1

2
ξ s2 − ρ∗

(
1

2
ξ

)
(3)

where ρ∗ (ξ/2) is the concave conjugate function

ρ∗
(

1

2
ξ

)
= inf

s

1

2
ξ s2 − ρ (s) . (4)

Furthermore, as shown in [13], the infimum in (3) is achieved at 
ξ = ρ ′(s)/s.

Equation (3) provides a quadratic upper bound to the energy 
of an SG distribution which naturally leads to a Gaussian approx-
imation. Unfortunately, for very useful energies associated to SG 
distributions, like ρ(s) = |s|p/p (0 < p < 1) and ρ(s) = log(|s|), 
ρ(s) is not differentiable at zero and ξ = ρ ′(s)/|s| is unbounded 
as s approaches zero. We overcome this problem by defining here 
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Fig. 1. (a) and (b): examples of penalty functions ρ(s), where the MOG is obtained from Levin et al. [10]. (c): their corresponding ρ ′(s)/s. (d) Plots of ρ ′
ε (s)/s, where ε = 0.01

for Log and L0.8.
for ε > 0 the robust symmetric around zero function ρε(s) associ-
ated with ρ(s) as follows

ρε(s) =
{

ρ(s) for s ≥ ε

ρ ′(ε)
2ε s2 − (

ρ ′(ε)
2 ε − ρ(ε)) for 0 ≤ s ≤ ε

(5)

Furthermore, since ρ ′(s)/s is decreasing on (0, ∞),

ρ ′
ε(s)

s
= min(ρ ′(s)/s,ρ ′(ε)/ε) =

{
ρ ′(s)

s for s ≥ ε

ρ ′(ε)
ε for 0 ≤ s ≤ ε

(6)

and so ρε(s) is also the energy of an SG distribution.
For the log and �p priors mentioned above we have ρ ′

ε(s)/s =
min(s−2, ε−2) and ρ ′

ε(s)/s = min(sp−2, εp−2), respectively, see 
Fig. 1(d). The use of ρε(s) makes ρ(s) differentiable at zero and 
the prior tractable. Following the terminology in [30], we call these 
priors Huber Super Gaussian (HSG) priors. We defer the analysis of 
this prior to section 4.

Having defined the robust energy associated to an HSG distri-
bution, we now proceed to introduce the image model we use. The 
prior p(x) on the latent image has the form

p(x) = Z exp (−
L∑

γ =1

∑
i

ρε(xγ (i))), (7)

where xγ = fγ ⊗x with ⊗ denoting a circular convolution operator 
and { fγ } being a set of L high pass filters. We will discuss the 
filters used in this work in the experimental section.

For the blur we do not assume any prior knowledge apart from 
the fact that it must be nonnegative and its coefficients should add 
to one. That is, p(h) ∝ const, subject to: h(i) ≥ 0, 

∑
i h(i) = 1.

3. Bayesian inference

The process to estimate the blur and image will be carried out 
as follows. First, we estimate the blur using the EM approach to 
solve
ĥ = arg max
h

∫
p(x,h, y)dx (8)

s. t.h(i) ≥ 0,
∑

i

h(i) = 1, (9)

and then once the blur has been estimated we use it to estimate 
the original image utilizing a nonblind image deconvolution algo-
rithm. Notice that, in principle, we should use p(x|ĥ, y) to estimate 
the original image. However, our sparsity promoting image prior 
based on ρε(·) is designed to obtain a good blur estimate when 
the joint distribution is marginalized on the image at the cost of 
removing fine details in the image estimate.

Directly applying EM inference on p(x, h, y) to estimate the 
blur is infeasible due to the form of p(x). Since ρε(s) is the en-
ergy associated to an SG distribution, we can write

p(x) ≥ Z
L∏

γ =1

∏
i

exp (−(
ξγ (i)

2
x2
γ (i) − ρ∗

ε (
1

2
ξγ (i)))),∀ξγ (i) > 0.

(10)

This Gaussian-like lower bound allows for the expectation of the 
joint distribution to be calculated analytically. We have

p(x,h, y) ≥ p(y|x,h)p(h)Ze− ∑L
γ =1

∑
i(

ξγ (i)
2 x2

γ (i)−ρ∗
ε ( 1

2 ξγ (i)))

≡ Q (y, x,h, ξ ), (11)

where ξ = {ξγ (i), γ = 1, . . . , L, i = 1, . . . , N} with all components 
positive.

We finally obtain

ĥ = arg max
h

E[log(Q (y, x,h, ξ̂ ))]q̂(x), (12)

q̂(x) ∝ Q (y, x, ĥ, ξ̂), (13)

ξ̂ = arg max E[log(Q (y, x, ĥ, ξ))]q̂(x). (14)

ξ>0
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Notice that q̂(x) is an approximation of the posterior distribu-
tion p(x|ĥ, y).

3.1. Estimation of image and variational parameter

For the latent image, we obtain from (13),

log q̂(x) = − 1

2σ 2
‖Ĥx − y‖2

2 − 1

2

L∑
γ =1

xT
γ diag(ξ̂γ )xγ , (15)

which is a multivariate Gaussian with precision matrix

C−1
x = 1

σ 2
Ĥ T Ĥ +

L∑
γ =1

F T
γ diag(ξ̂γ )Fγ , (16)

where Fγ is an N × N circulant convolution matrix formed by the 
kernel fγ . The mean x̂ is used as the estimate for x, which is ob-
tained by solving the following linear system of equations

C−1
x x̂ = 1

σ 2
Ĥ T y. (17)

This linear system can be solved by ADMM [28] very efficiently, as 
we will show in the following.

For the variational parameter ξ̂ , we obtain from (14)

ξ̂γ (i) = ρ ′
ε(νγ (i))

νγ (i)
= min(ρ ′(νγ (i)))/νγ (i)),ρ ′(ε)/ε), (18)

where νγ (i) =
√

E[x2
γ (i)], 1 ≤ i ≤ N , and the expected value is eas-

ily calculated using the distribution q̂(x) and the approximation 
similar to [10,13]

Cx ≈ (diag(C−1
x ))−1. (19)

Given a kernel estimate, we need to alternatively solve the 
linear system (17) and update the weights (18). This “joint” es-
timation of the image and weights is understood as a standard 
nonblind image deconvolution procedure. It proceeds as an IRLS 
(Iterative Reweighted Least Squares) frequently used in sparse sig-
nal recovery problems [28]. Previous methods [10,13,20] use the 
Conjugate Gradient (CG) algorithm to solve (17), which is very 
time consuming. Instead of using CG, we use ADMM to solve (17). 
The core idea is to treat the solution of a linear system as the 
minimizer of a quadratic function (see [28]). We transform the 
unconstrained problem into a constrained one by introducing the 
auxiliary variables, vγ = fγ ⊗ x [31]. Consequently, for a given blur 
H , x̂ can be rewritten as the minimizer of

f (x, vγ ) = 1

2
‖Hx − y‖2

2 + σ 2
L∑

γ =1

v T
γ diag(ξ̂γ )vγ (20)

s. t. vγ = Fγ x,

which can be solved efficiently using ADMM. To be precise, we 
form the augmented Lagrangian

Lβv (x, vγ ,dvγ ) = 1

2
‖Hx − y‖2

2 + σ 2
L∑

γ =1

v T
γ diag(ξ̂γ )vγ

+ βv

2

L∑
γ =1

‖vγ − Fγ x + dvγ ‖2
2 (21)

where βv is the penalty weight which enforces the constraints in 
(20) and controls the convergence rate, dvγ are the (scaled) dual 
variables (a.k.a., Lagrangian multipliers). ADMM consists of the it-
erations
Algorithm 1 Fast image estimation algorithm.
Require: y, h, initial x, ρε(s), βv , σ ,
1: Precompute H, H, HF y, �h , �γ

2: dvγ = 0, Cx = 0.
3: Initialize ξγ with a large constant or (18).
4: repeat
5: Use ADMM (see (22), (23), and (24)) to update the solution x to (17)
6: Update ξγ using (18)
7: Approximate Cx(i, i) with 1/C−1

x (i, i)
8: until The relative variation in x is very small
9: return x

x = F−1{HF y + βvF[∑L
γ =1 F T

γ (vγ + dvγ )]
�h + βv

∑L
γ =1 �γ

}, (22)

vγ = βv

βv + σ 2ξ̂γ
(Fγ x − dvγ ), (23)

dvγ = dvγ + vγ − Fγ x, (24)

where H is the complex conjugate of H, and �h and �γ are the 
eigenvalues of H T H and F T

γ Fγ , respectively.
The final algorithm for image estimation is presented in Algo-

rithm 1, which achieves state-of-the-art performance in terms of 
quality of restorations as well as speed. It should be noted that the 
image estimation problem is not trivial when ρ(s) is nonconvex. 
For instance, if we choose the log prior, it is shown in [28] that Al-
gorithm 1 will converge to a stationary point of the cost function, 
which might be a saddle point or a local minimum. Therefore, the 
optimization scheme makes a considerable difference to the final 
reconstruction.

Before concluding this section we would like to mention that if 
νγ (i) =

√
E2[xγ (i)] (1 ≤ i ≤ N , Cx = 0), then our procedure would 

not take into account the uncertainty of the image estimate and 
we would have a MAP procedure.

3.2. Estimation of blur

To estimate the blur we have

ĥ = arg min
h

‖Hx̂ − y‖2
2 + hT Dxh (25)

s. t. h(i) ≥ 0,
∑

i

h(i) = 1, (26)

where Dx is the K × K matrix given by

Dx(m,n) =
N∑

j=1

Cx(m + j,n + j). (27)

Given an image estimate, we use ADMM to efficiently solve 
the quadratic optimization problem (25) with nonnegativity and 
normalization constraints (26). By introducing the constraint H =
F Ph (see [18] for a different variable splitting), we find ĥ in (25)
as the minimizer of

g(h,H) = ‖H ◦X −F y‖2
2 + hT Dxh (28)

s. t. h(i) ≥ 0,
∑

i

h(i) = 1,

H = F Ph,

where X = Fx denotes the Fourier transform of x and ◦ element-
wise multiplication. The ADMM algorithm for this constrained 
problem is presented in Algorithm 2, in which the updates for H
and h are given by
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Algorithm 2 Fast kernel estimation algorithm.
Require: y, x, initial h, βH ,
1: Precompute Dx using (27), dH = 0.
2: while not converged do
3: Update H using (29)
4: Update h by finding the KKT point of (30)
5: dH = dH +H −F Ph
6: end while
7: return h

H = X ◦ (F y) + βH (F Ph − dH)

X ◦X + βH
(29)

h = arg min
h

‖h − P T F−1(H+ dH)‖2
2 + hT Dxh (30)

s. t. h(i) ≥ 0,
∑

i

h(i) = 1

where the L2-norm term in (30) is obtained by observing that ∀h ∈
�K , the following equalities hold ‖F Ph‖2

2 = ‖h‖2
2 = ‖P TF−1H‖2

2.
The convex problem (30) can be solved by the Karush–Kuhn–

Tucker (KKT) conditions, which refers to solving a system of non-
linear equations. Specifically, we use a fixed point iteration method 
to find the KKT point. It should be noted that the computa-
tion complexity of solving problem (30) is only O (K ) rather than 
O (K 2), since Dx is approximated by a diagonal matrix.

The proposed ADMM splits the constrained large scale quadratic 
program into two simpler subproblems: one which can be solved 
directly in Fourier domain and another which is a small scale 
quadratic program that can be solved iteratively. Moreover, with 
10 ADMM iterations, a very good approximate solution can be ob-
tained. In most cases, we observed that only 5 ADMM iterations 
are needed for convergence.

3.3. Multiscale blind deconvolution

As with previous BID methods [5,10,13], we also adopt here a 
multiscale approach to estimate the kernel. Fergus et al. [5] point 
out that single scale BID may suffer from local minima, especially 
when the support of the kernel is large. The multiscale approach, 
however, is very useful for large support kernel estimation. The 
rational behind this approach is that at the coarsest level, the blur 
is alleviated significantly, so that it is easier to estimate a kernel 
from the downsampled image. At the next finer level, this kernel 
estimate is upsampled and can be used as a good starting point for 
the single scale BID. Repeating this process until the finest level, 
we obtain a better kernel estimate.

3.4. Final image reconstruction

The estimated image x̂ obtained above is appropriate for esti-
mating the blur but, as we have already explained and also as we 
will show in the experimental section, it is over-smooth. This is be-
cause the sparsity promoting weight σ 2ξγ is too large to recover 
the fine details, especially in the case of the log prior. To recover 
more details, we reconstruct the final sharp image x∗ by solving 
the following problem [32,33],

x∗ = arg min
x

1

2
‖Hx − y‖2

2 + λx

p

∑
γ

‖ fγ ⊗ x‖p, (31)

where { fγ } is a set of derivative filters to be defined in the exper-
imental section, p is typically in the range [0.6, 0.8] [32] and the 
�p regularizer should be understood in the HSG form.
3.5. Summary

So far we have presented a fast EM approach for blind image 
deconvolution formulated in the image space, using a lower bound 
on the HSG image priors.

The benefit of working in the image space rather than in the fil-
ter space [5,10,13] is threefold. First, utilizing the image space can 
save computations by nearly 100 × L−1

L %, compared to the filter 
space. Second, the image space is less sensitive to noise, since us-
ing the filter space amplifies the noise in the observations. Third, 
the filter space solution ignores the important integrability con-
straint [10], whereas the image space solution does not suffer from 
this problem.

The proposed BID method, like many existing BID methods [5,8,
11,10,13,19,17], just to name a few, alternatively iterates between 
two major steps, image estimation with the current kernel esti-
mate and kernel estimation with the current image estimate. The 
image estimation step requires to solve the large scale linear sys-
tem (17) and update the weights ξ (18). By estimating the image 
and variational parameters jointly, the image estimation step is a 
standard nonblind deconvolution procedure.

The weights ξ (variational parameters) play an important role 
in sparse recovery problems. In fact, large values in ξ determine 
which pixels should be smoothed, and therefore help remove the 
blur, provided that the location is correct (consistent with the 
groundtruth).

4. Parameter analysis of Algorithm 1

In this section, we analyze the key parameters of Algorithm 1, 
such as the number of ADMM iterations, βv , ε , and σ 2. Through-
out this section and what follows, EM stands for the procedure 
described to estimate image, weights, and blur. Notice that we use 
ADMM to solve (17).

Regarding the number of ADMM iterations, for the Step 5 of 
Algorithm 1, we observe that 4 ADMM iterations with a small 
penalty weight (βv = 0.001) is sufficient to find a good approxi-
mate solution to (17). However, it turns out that finding such an 
accurate solution to (17) often leads to poor local minima or sad-
dle points in the sense of the objective function value. Instead of 
solving (17) fully, we solve (17) partially and use a large penalty 
weight βv to find a smooth approximate solution to (17). Unfortu-
nately, large βv reduces the convergence speed [31,34]. We there-
fore use only one ADMM iteration and update the weights more 
frequently for acceleration [28]. In the performed experiments, we 
have observed that appropriate images to estimate the blur are 
those with many step edges and tiny sharp details while not suit-
able images to perform the same task are those which are not 
smooth and also contain ringing artifacts. Based on this observa-
tion, we use a large penalty weight βv to enforce strong image 
smoothness during the optimization procedure, so that ringing or 
blur is less likely to emerge. In fact, the denominator of Eq. (22)
indicates that large βv makes the high frequency components of 
�h well regularized, so that ringing is suppressed even if �h is 
not accurate. We call this approach Smooth ADMM (SADMM) be-
cause it does not provide the exact EM solution to equation (17)
but a smoother image estimate that can be used to better estimate 
the blur.

We should mention that one ADMM iteration for Step 5 cannot 
guarantee that the cost function drops monotonically. For this to 
happen, more ADMM iterations are required for Step 5. Interested 
readers are referred to Fig. 2(e) in [28], for a challenging noncon-
vex image reconstruction for which the cost function does not drop 
monotonically but still converges after thousands of iterations. No-
tice that we can not prove the convergence of Algorithm 1 with 
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Fig. 2. SADMM vs. ADMM in nonblind deconvolution: restorations. (a) Groundtruth. (b) Restoration by MAP (ADMM). (c) Restoration by EM (ADMM). (d) Degraded image 
with groundtruth kernel, noise level σ = 0.01. (e) Restoration by MAP (SADMM). (f) Restoration by EM (SADMM).
one ADMM iteration, however we have not experienced any con-
vergence problems in the performed experiments.

To demonstrate the advantages of SADMM (fewer ADMM it-
erations, 100 × 1, and a large βv equal to 0.1) over EM (more 
ADMM iterations, 100 × 4, and a small βv equal to 0.001), we 
adopt the log prior and test the SADMM and ADMM in nonblind 
image deconvolution using the synthetic degradation in Fig. 2(a), 
whose groundtruth image is shown in Fig. 2(d). We use the 
MAP cost function, that is, F (x) = 1

2 ‖Hx − y‖2
2 + R(x), where 

R(x) = σ 2 ∑
i

∑L
γ =1 logε(|xγ (i)|) and logε (ε = 0.001) is the Hu-

ber log function. Fig. 2(b) shows the recovered image by MAP 
(ADMM), which is not very smooth and contains a small amount 
of boundary artifacts. In contrast, the restoration by MAP (SADMM) 
(Fig. 2(e)) is smoother and with many sharp step edges, includ-
ing the grass region. The cost functions, presented in Figs. 3(a) 
and (c), indicate that the proposed SADMM converges faster than 
the ADMM. It should be noted that ADMM needs 800 FFTs (includ-
ing 400 IFFTs) to generate such a smooth restoration,1 whereas 
SADMM requires only 200 FFTs (including 100 IFFTs). The same 
conclusions can also be drawn for the EM case, as shown in 
Figs. 2(c), 2(f), 3(b), and 3(d).

We now analyze the penalty weights for the ADMM proce-
dure. Fig. 4 shows the impact of βv on the SADMM results, for 
the input image in Fig. 2(a). It is clear that the recovered image 
becomes smoother as βv increases. However, if βv is too large, it 
can not recover sufficient (sharp) image edges and the convergence 
speed becomes slow (the image evolves slowly in each iteration), 

1 With 25 IRLS iterations, the output image is not so smooth and exhibits more 
(boundary) artifacts.
as shown in Figs. 4(a) and (f), respectively. Fig. 4(c) suggests that 
βv ∈ [0.1, 1] is a good choice for Algorithm 1, since it can enforce 
adequately strong smoothness and also recover many sharp step 
edges. In short, βv controls the image smoothness and convergence 
speed.

Regarding the robustness parameter ε used in the prior, we 
note that it plays an important role on the image sparsity as well 
as the numerical stability of the estimation procedure. The HSG 
prior favors an image of smaller sparsity than the SG prior, de-
pending on the value of ε . From (10) and (18), it is clear that 
increasing ε promotes less sparsity, since the weights ξ will be 
upper bounded by a smaller value. Fig. 5 shows the restorations 
with 5 different values of ε ranging from 0 to 0.02. As we can see 
in Figs. 5(a)–(e), the strong edges are basically the same, however 
the weak edges are different. As ε increases, more weak edges ap-
pear and the image gets somewhat blurry, see the selected patches 
in Figs. 5(d) and (e). Figs. 5(a) and (b) are quite similar, suggest-
ing that a small ε like 0.002 is enough to promote very strong 
sparsity for image deblurring. This figure shows that a small ε
is crucial for a smooth and blur free restoration. However, as ε
drops to zero, a small change in the image could cause a huge 
change in the value of the cost function. More importantly, as ε
increases, the Lipschitz constant of logε decreases and fewer iter-
ations are required for convergence. Fig. 6 shows that with ε = 0, 
the cost function does not reach the limit (not flat) in 100 itera-
tions and is not as stable as the others. A tradeoff between image 
sparsity and numerical stability is provided for ε in the range 
[0.001, 0.004].

The noise variance σ 2 controls the tradeoff between image de-
tails and smoothness. Increasing σ 2 leads to larger smoothness 
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Fig. 3. SADMM vs. ADMM in nonblind deconvolutions: (a) Cost profile by MAP (ADMM); (b) Cost profile by EM (ADMM); (c) Cost profile by MAP (SADMM); (d) Cost profile 
by EM (SADMM).

Fig. 4. Restorations with different βv . (a) βv = 10. (b) βv = 1. (c) βv = 0.1. (d) βv = 0.01. (e) βv = 0.001. (f)–(j) are the cost profiles of (a)–(e), respectively.
and fewer details. For blur estimation, it is helpful to start with 
a large σ 2 in which case the blur kernel is not accurate, and then 
gradually decrease it to the desirable value as the kernel estimate 
improves [10,13,27]. The rationale behind this strategy is that a 
very smooth image can facilitate the quick identification of the blur 
and hence speed up convergence. In our implementation, we adapt 
σ only in the first 5 iterations and then keep it fixed to 0.01, sim-
ilarly to [27].
5. Experiments

We first use synthetic data to demonstrate that the pro-
posed EM-SADMM approach is more robust than EM-ADMM, 
then we compare our EM-SADMM BID method with state-of-
the-art methods, [13,14,25,27]. For simplicity, we denote the 
proposed BID methods by the form log+ADMM or log+SADMM, 
where log+ADMM means Huber log prior and ADMM optimiza-
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Fig. 5. Restorations with different ε: (a) ε = 0; (b) ε = 0.002; (c) ε = 0.004; (d) ε = 0.01; (e) ε = 0.02. Increasing ε makes weak edges less steep and more blurry, as shown 
in close-up views in the 2nd row.
Fig. 6. Cost profiles with different values of ε . Increasing ε leads to better conver-
gence and numerical stability.

tion scheme, and log+SADMM means Huber log prior and ADMM 
optimization scheme.

To estimate the blur kernel, only the first order derivative fil-
ters, f1 = [1, −1] and f2 = [1, −1]T , are used. For the final im-
age reconstruction, we adopt not only the first order but also 
the second order derivative filters, i.e., f3 = [−1, 2, −1], f4 =
[−1, 2, −1]T , f5 = [1 − 1; −1, 1]. For fair comparison, we use our 
fast nonblind deconvolution algorithm2 with the same parameters 
to recover the final image for all the BID methods, that is, to solve 
(31). All experiments are carried out using MATLAB on a PC with 
the Intel Core i7-4790 CPU @ 3.60 GHz. The code is available at 
https :/ /sites .google .com /site /fbdhsgp/.

5.1. EM-SADMM vs. EM-ADMM in blind deconvolution

We first show that the proposed EM-SADMM approach out-
performs the EM-ADMM approach in terms of restoration quality, 
speed, and objective function value. We choose the 5 standard im-
ages (all of size 512 × 512): Cameraman, Lena, Boat, Airplane, and 
Pepper, and use the 8 motion kernels in [35] to convolve each im-
age and add 1% Gaussian noise as in [14]. Subsequently, we obtain 
a dataset of 40 degraded images. Table 1 shows the average PSNR 
(the highest PSNR after a shift operation, see Eq. (12) in [19]), 
SSIM [36], SSD (Sum of Squared Differences [35]) error, error ratio 

2 Code available at http :/ /decsai .ugr.es /vip /resources /VDBKE .html.
(ratio between the SSD restoration error with the estimated kernel 
and the SSD restoration error with the groundtruth kernel), run-
ning time, regularization R(x̂) (smaller indicates smoother), and 
objective F (x̂) (smaller is better). It is clear that the EM-SADMM 
approach yields better results than the EM-ADMM approach for 
all figures of merit and also is about 1.5 times faster. In addition, it 
shows that ε = 0.004 leads to the best performance in terms of the 
4 figures of merits and running time. However, further increasing 
ε makes the overall performance worse.

The EM-SADMM approach leads to better BID performance than 
the EM-ADMM approach, mainly because the EM-SADMM ap-
proach better avoids undesirable saddle point and local minima 
than the EM-ADMM approach, as we have shown in Fig. 2. To fur-
ther illustrate this point, we present the worst two EM-ADMM 
(ε = 0.001) restorations in Fig. 7(b) and the corresponding im-
age estimates x̂ (see Eq. (17)) in Fig. 7(d). The input images are 
shown in Fig. 7(a). As we can see from Figs. 7(b) and (d), it is con-
ceivable that the ringing artifacts and blur in Fig. 7(b) are indeed 
caused by the ringing artifacts and blur in the image estimates x̂ in 
Fig. 7(d), which are typical bad local minima or saddle point since 
the cost function F (x) is not small (see the caption in Fig. 7). Inter-
estingly, by calculating F (x̂) − R(x̂), we emphasize that the image 
and kernel estimates obtained by log+ADMM better fit the obser-
vation data than the estimates obtained by log+SADMM, although 
the image and kernel estimates obtained by log+ADMM are less 
accurate. Take the Boat image in Fig. 7 as an example; the data 
fitting term for log+ADMM is about 2.41, smaller than 2.76, the 
data fitting term for log+SADMM. Therefore, we can conclude that 
the image and kernel estimates by log+ADMM in Fig. 7 are indeed 
poor stationary points. By enforcing more smoothness during the 
optimization process, the log+SADMM approach leads to smoother 
image estimates and hence is more likely to avoid ringing and blur, 
as shown in Figs. 7(c) and (e).

Table 2 shows the running time of the 5 methods to estimate 
three kernels of different support from a 512 × 512 image. As 
we can see, the proposed method log+SADMM with ε = 0.002 is 
about 10–20 times faster than [10] and [13], depending on the 
kernel size. Thanks to the use of 2-D FFT, the running time of 
the proposed method does not increase much as the kernel gets 
larger, whereas both [10] and [13] become very time consuming 
as the kernel size increases. Due to the log prior intrinsic com-
putation cost and the MATLAB implementation, the proposed al-
gorithm is still much slower than the MAP method [17]. But, we 
argue that the BID method [17] is an “early stop” algorithm and 
can not achieve current state-of-the-art performance, as shown 
in [27]. The computational complexity of the proposed algorithm 
is O (N F N log N), similar to [17], where N F denotes the number 
of FFTs and IFFTs, since the computations for the image and ker-
nel estimation are both dominated by FFTs and IFFTs. In contrast, 

https://sites.google.com/site/fbdhsgp/
http://decsai.ugr.es/vip/resources/VDBKE.html
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Table 1
Quantitative comparison on our test set of 40 images.

Methods PSNR SSIM SSD Error ratio Time R(x̂) F (x̂)

With known h 32.90 0.8668 105.76 1 – – –
log0.001+ADMM 30.05 0.8529 167.20 1.5825 25.21 −312.62 −310.03
log0.002+ADMM 30.04 0.8528 167.23 1.5832 25.61 −302.66 −300.07
log0.004+ADMM 30.09 0.8531 167.80 1.5914 25.51 −285.95 −283.37
log0.01+ADMM 30.00 0.8507 172.95 1.6334 25.39 −253.07 −250.52
log0.001+SADMM 30.10 0.8600 128.49 1.2049 16.64 −339.52 −336.72
log0.002+SADMM 30.14 0.8598 130.04 1.2235 16.12 −319.40 −316.61
log0.004+SADMM 30.24 0.8600 128.55 1.2034 14.80 −294.14 −291.38
log0.01+SADMM 30.08 0.8535 158.15 1.5040 9.88 −254.69 −252.01

Fig. 7. The two worst deblurred results on the 40 dataset. (a) Input. (b) x∗ (see Eq. (31)) with the kernel estimated by log+ADMM. (c) x∗ with the kernel estimated by 
log+SADMM. (d) The estimate x̂ by log+ADMM, see Eq. (17), Cameraman: F (x̂) = −318.35, R(x̂) = −320.89; Boat: F (x̂) = −295.14, R(x̂) = −297.65. (e) The estimate x̂ by 
log+SADMM, Cameraman: F (x̂) = −352.34, R(x̂) = −355.10; Boat: F (x̂) = −331.61, R(x̂) = −334.54.
Table 2
Running time (in seconds) of different methods.

Kernel support 11 × 11 21 × 21 27 × 27

Babacan et al. [13] (MATLAB) 116.48 302.85 535.71
Levin et al. [10] (MATLAB) 111.75 240.72 425.58
Perrone&Favaro [25] (MATLAB) 2382.85 3447.20 3745.64
Xu et al. [17] (C++) 2.24 3.13 2.93
log+SADMM (MATLAB) 9.45 15.6 15.12

the computational complexity of the methods in [10,13,25] is of 
the form O (NC N K ), with NC being the number of 2-D spatial 
convolutions, since 2-D convolutions dominate the computations. 
Notice that we have used here K , the blur size, instead of the im-
age size, N . In general, due to the use of ADMM, N F can be 3–5 
times smaller than NC .

5.2. Comparison on the Sun et al. [14] dataset

We test the proposed methods on the dataset in [14], which 
contains 640 blurry and noisy images (σ = 0.01) generated from 
80 natural images and 8 motion kernels. For fair comparison, we 
use the nonblind deconvolution method EPLL [37] to reconstruct 
the final restoration. Fig. 8 shows the success percent of 5 meth-
ods, including the VB methods (the proposed log+SADMM and 
Babacan et al. [13]) and the MAP methods, Sun et al. [14], Perrone 
and Favaro [25] and Zhou et al. [27]. We observe that a restoration 
with error ratio less than 2 is visually satisfying (without notice-
able ringing artifacts and blur). Fig. 8 suggests that our method 
significantly outperforms the competitors, with over 75% excellent 
restorations (error ratio <1.5), 95% successful restorations (error 
Fig. 8. Cumulative histograms of the error ratios across the dataset [14].

ratio <2), and 100% acceptable restorations (error ratio <5). Sun 
et al. [14] can also achieve about 75% excellent restorations, but 
is not so robust as Perrone and Favaro [25] and Zhou et al. [27], 
which have over 99% and 98% acceptable restorations, respectively. 
Table 3 shows the average SSD error and error ratio of those meth-
ods. It is clear that the proposed method takes the lead, with an 
average error ratio of 1.41 and SSD error of 590.

Fig. 9 shows 5 selected images for visual comparison, in which 
only image 5 contains adequate step edges and the rest lack step 
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Table 3
Average scores of different methods.

Methods SSD error Erorr ratio

With known h 392.15 1
log+SADMM 590.39 1.41
Perrone & Favaro [25] 635.27 1.71
Sun et al. [14] 618.92 2.01
Babacan et al. [13] 792.27 2.27
Zhou et al. [27] 686.29 1.66

edges. As we can see from Fig. 9, the step edge based method 
[14] works well for image 5, but fails for the other natural images. 
The algorithm by Babacan et al. [13] works well for image 5 but 
generates noticeable ringing artifacts for the rest. Our method sig-
nificantly outperforms Babacan et al. [13] mainly because the pro-
posed EM-SADMM approach better avoids poor stationary points 
than the EM approach, which uses CG or ADMM to solve (17) fully 
and cannot guarantee a smooth image estimate as SADMM does. 
Perrone and Favaro [25] and Zhou et al. [27] yield good restora-
tions but still exhibiting visible ringing artifacts or blur, and the 
estimated kernels are not as accurate as ours, see image 44 for an 
example. The proposed method shows superior performance for 
all these challenging images, without any visible ringing artifacts 
in the deblurred results.

5.3. Results on real data

Fig. 10(a) shows a real image with blur caused by camera 
shake [38]. Figs. 10(b)–(f) show the deblurred images and esti-
mated kernels by various methods. As we can see in Fig. 10, no-
ticeable ringing artifacts emerge in the results of [13] and Xu et al. 
[17], whereas fewer ringing artifacts appear in the results of Per-
rone and Favaro [25], Zhou et al. [27], and ours.
Fig. 9. Selected results on the dataset [14] for visual comparison. This figure is best viewed on the screen. Please zoom in for more details.
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Fig. 10. Removing camera shake. (a) Input image, borrowed from [38]. (b) Babacan et al. [13]. (c) Xu et al. [17]. (d) Perrone and Favaro [25]. (e) Zhou et al. [27]. (f) The 
proposed log+SADMM.
6. Conclusion

In this paper, we have proposed first a new family of sparsity 
promoting priors, the so called Huber Super Gaussian priors, to ad-
dress the numerical problem caused by the singularity at zero of 
some SG priors, and introduced an smooth optimization approach 
to deal with the poor stationary point problem caused by the 
use of nonconvex image priors. We show that the proposed EM-
SADMM approach, which finds a smooth image mean rather than 
the exact image mean provided by the EM approach, better avoids 
undesirable saddle point and local minima. By making use of 
ADMM, a fast EM based BID method formulated in image space for 
these priors has been proposed. Experiments demonstrate that the 
proposed log+SADMM BID method significantly outperforms cur-
rent state-of-the-art BID algorithms in terms of restoration quality 
and speed.
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