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In this work we propose a novel framework to obtain high resolution images from compressed sensing 
imaging systems capturing multiple low resolution images of the same scene. The proposed approach 
of Compressed Sensing Super Resolution (CSSR), combines existing compressed sensing reconstruction 
algorithms with a low-resolution to high-resolution approach based on the use of a super Gaussian 
regularization term. The reconstruction alternates between compressed sensing reconstruction and 
super resolution reconstruction, including registration parameter estimation. The image estimation 
subproblem is solved using majorization-minimization while the compressed sensing reconstruction 
becomes an l1-minimization subject to a quadratic constraint. The performed experiments on grayscale 
and synthetically compressed real millimeter wave images, demonstrate the capability of the proposed 
framework to provide very good quality super resolved images from multiple low resolution compressed 
acquisitions.
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1. Introduction

Compressed Sensing (CS) theory offers a framework to simulta-
neously sense and compress signals. It establishes that a sparsely 
representable image/signal can be recovered from a highly incom-
plete set of measurements [1–3].

The design of CS image/video cameras (see [4–8]) has fostered 
the application of typical image processing tasks to CS observed 
images. CS has been applied to areas like radar analysis, face recog-
nition, biomedical imaging, and microscopy imaging techniques [2,
9,10], among others. CS measurements have also been used to re-
cover images observed through unknown blur [11,12].

Super Resolution (SR) from a single image has also benefited 
from the introduction of CS theory. In [13,14] learning based SR 
is used to estimate a High Resolution (HR) image from the CS 
observation of a downsampled remote sensing image. In [15] the 
downsampling is incorporated in the measurement matrix, the CS 
image is reconstructed in the wavelet domain and the signal is de-
convolved in the Fourier domain.
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The recovery of an HR image from a set of unregistered LR CS 
observations has been scarcely addressed in the literature. To the 
best of our knowledge, the only reported works treating this gen-
eral SR problem are [16,17]. In these papers CS and LR to HR tech-
niques are coupled, using a fast and simple registration method, 
which uses the reconstructed HR images instead of the LR ones 
[17]. A non-robust prior model on the original image to be recon-
structed was used in both papers.

This paper also deals with the reconstruction of an HR image 
from a group of LR CS observed images. The proposed method 
assumes that the HR image to be estimated is compressible and, 
consequently, its warped, blurred, and downsampled versions are 
also compressible (see [11,12]). They can then be reconstructed 
from their CS observations. However, instead of first recovering the 
LR observations and then using LR to HR techniques we propose a 
combined framework where LR reconstructions and HR estimation 
are carried out simultaneously. This proposed method is based on 
a sound and well founded method to estimate registration param-
eters in LR to HR problems and the use of a new robust sparse 
promoting prior for the original image.

The proposed framework has been tested, in the experimental 
section, on CS grayscale and Passive Millimeter Wave (PMMW) im-
ages. Without using CS measurements, the improvement of Passive 
Millimeter Wave (PMMW) images to perform detection tasks has 
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been addressed in [18–22], and the use of CS techniques to re-
duce the time needed to capture such images has been addressed 
in [5,6,23,24]. In [17], high resolution images were super resolved 
for the first time, from multiple CS observations of unregistered LR 
PMMW images. We believe that PMMW images represent an im-
portant application area where CS and LR to HR techniques can be 
combined to enhance the detection capabilities of current PMMWI 
systems.

Before going into details, the more frequently used notation in 
the paper is listed next

yq M × 1 compressed observation vector q ∈ {1, · · · , Q }
� M × D CS measurement matrix
zq D × 1 the q-th LR image vector
rq D × 1 CS observation noise vector
A D × N down-sampling matrix
P zooming factor
Hq N × N blurring matrix
C(sq) N × N warping matrix formed by motion vector sq

sq 3 × 1 motion vector (rotation θq , horizontal cq , and verti-
cal dq displacements)

x N × 1 HR image vector
wq D × 1 HR to LR acquisition noise vector
Bq(sq) D × N LR acquisition model matrix
aq(sq),bq(sq) N × 1 pixel difference vectors
Daq(sq) N × N diagonal matrix with aq(sq) in the diagonal 

Dbq(sq) : bq(sq) in the diagonal
I the identity matrix
Lbl(sq) bottom-left-pixel matrix (br, tl, tr): (bottom-right, top-

left, top-right)
nq M × 1 combined CS and LR acquisition noise vector
W D × D transformation matrix
aq D × 1 transformation coefficient vector
α,β,η, τ non-negative parameters
Q(x) regularization term
ωx

d filtered image applying Fd on x in d-direction
λq D × 1 Lagrangian multiplier vector

The rest of this paper is organized as follows. The problem 
modeling and its formulation as an optimization task are pre-
sented in Sections 2 and 3, respectively. The estimation process 
is described in Section 4. We demonstrate the effectiveness of the 
proposed method in the experimental section, Section 5. Finally, 
conclusions are drawn in Section 6.

2. Modeling

In this work we assume that we have access to a set of Q CS 
LR observations of the form

yq = �zq + rq q = 1, . . . , Q , (1)

where yq is an M × 1 vector representing compressed observations 
from the LR image zq , � is a CS M × D measurement matrix, zq is 
a column vector of size D × 1 representing the q-th LR image and 
rq represents the observation noise. We denote by R the compres-
sion ratio of the measurement system, that is R = M/D , R ≤ 1. The 
sensing matrix � consists of either real or binary entries. The ma-
trix used in our work is binary, since it is easier to be synthesized 
physically [6,23,24]. In both cases the rows/columns of � are nor-
malized to 1. We assume that the LR observations zq are related to 
an HR image of size N, denoted by the column vector x by

zq = AHqC(sq)x + wq = Bq(sq)x + wq, (2)

where A is a D × N down-sampling matrix, D ≤ N , which models 
the limited resolution of the acquisition system, when capturing 
the high resolution image, where N = P 2 D and P ≥ 1 is the zoom-
ing factor, in each dimension of the image. Hq is an N × N blurring 
matrix, modeling the action accompanying the imaging process. In 
this work, Hq is assumed to be known. C(sq) is the N × N warping 
matrix formed by motion vector sq = [θq, cq,dq]t , where θq is the 
rotation angle, and cq and dq are respectively the horizontal and 
vertical translations of the q-th LR image with respect to the ref-
erence frame. Finally, wq models the noise associated to the HR to 
LR acquisition process. We write Bq(sq) = AHqC(sq) for simplicity.

As explained in [25], matrices C(sq) can be explicitly stated as 
follows. Let us denote the coordinates of the reference HR grid by 
(u, v) and the coordinates of the qth warped HR grid, after apply-
ing C(sq) to x, by (uq, vq). Then it holds that

uq = u cos(θq) − v sin(θq) + cq (3)

vq = u sin(θq) + v cos(θq) + dq . (4)

Let us denote the displacements between the grids by
�(uq, vq)

T = (u, v)T − (uq, vq)
T . The vector difference between 

the pixel at (uq, vq) and the pixel at its top-left position in the 
reference HR grid is denoted by (aq(sq), bq(sq))

T (see Fig. 1), that 
is,

aq(sq) = �uq − floor(�uq) , (5)

bq(sq) = �vq − floor(�vq) . (6)

Using bilinear interpolation, the warped image C(sq)x can be 
approximated as

C(sq)x ≈ Dbq(sq)(I − Daq(sq))Lbl(sq)x + (I − Dbq(sq))Daq(sq)Ltr(sq)x

+ (I − Dbq(sq))(I − Daq(sq))Ltl(sq)x

+ Dbq(sq)Daq(sq)Lbr(sq)x , (7)

where Daq(sq) and Dbq(sq) denote diagonal matrices with the vectors 
aq(sq) and bq(sq) in their diagonals, respectively. I is the identity 
matrix. Matrices Lz with z ∈ {bl(sq), br(sq), tl(sq), tr(sq)} are con-
structed in such a way that the product Lzx produces pixels at 
the bottom-left, bottom-right, top-left, and top-right, locations of 
(uq, vq), respectively.

Using (1) and (2) we can write

yq = �Bq(sq)x + nq , for q = 1, . . . , Q , (8)

where nq represents the combined CS and LR acquisition noise and 
x is the HR image we want to estimate.

3. Problem formulation

Since zq in (2) represents translated and rotated LR versions 
of the original image x (which are assumed to be compressible 
in a transformed domain), we can estimate the original HR image 
by first recovering the LR images using CS techniques and then 
recover the HR image using standard super resolution techniques 
on the recovered low resolution images. To be precise, if we as-
sume that the LR images are sparse in a transformed domain with 
zq = Waq , where W is a sparse promoting transformation of size 
D × D , we can recover them from the model in (1) by solving

âq = arg min
aq

η

2
‖ �Waq − yq ‖2 + τ ‖ aq ‖1, (9)

where η, τ are regularization parameters, ‖ . ‖ is the Euclidean 
norm, and ‖ . ‖1 the �1 norm. Then defining ẑq = Wâq and s =
(s1, . . . , sQ ) and using the degradation model (2), we can estimate 
the original image by solving

x̂, ŝ = arg min
x,s

β

2

∑
q

‖ Bq(sq)x − ẑq ‖2 + α Q(x), (10)
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Fig. 1. q-th HR grid calculation. (a) HR grid (in black) and the q-th image grid (in red), (b) Detailed view of (a), with the pixel notation used for the bilinear interpolation of 
grid element (uq, vq). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
where α and β are non-negative parameters, and the remaining 
terms are described in details next. In [16,17] the following regu-
larization term, Q(x), was used for the image

Q(x) =
∑
d∈�

N∑
i=1

log(|ωx
d(i)|) , (11)

where ωx
d(i) is the i-th pixel of the filtered image, and

ωx
d = Fdx , (12)

where Fd is a high-pass filter operator, and the index d ∈ � iden-
tifies one of the members of the used filter set. In this paper 
we have used a filter set with elements � = {h, v, hv, vh, hh, v v}, 
where h, v represent the first order horizontal and vertical dif-
ference filters, hv and vh represent first order differences along 
diagonals, and hh and v v the horizontal and vertical second order 
differences. The regularization term favors sparsity of the high-
pass filtered images Fdx, and corresponds to the Super-Gaussian 
log prior used in blind deconvolution [26].

Since the log function cannot be differentiated at zero, we con-
sider in this work the following robust version of the log regular-
izer

logε(|s|) =
{

log(|s|) for |s| ≥ ε
s2

2ε2 − ( 1
2 − log(ε)) for 0 ≤ |s| ≤ ε

(13)

and replace Q(x) in (11) by

Q(x) =
∑
d∈�

N∑
i=1

logε(|ωx
d(i)|) , (14)

where we have removed the dependency of Q(·) on ε for simplic-
ity.

We have two approaches to solve the CSSR problem: the se-
quential approach and the alternate approach (see [27]). The latter 
alternates between compressive sensing reconstruction, registra-
tion parameter estimation, and recovering of the HR image. The 
former approach estimates the unknowns sequentially, one after 
the other, as follows. Firstly, the LR images are reconstructed us-
ing (9), then motion parameters and the HR image are estimated 
using (10).

As we will show in the experimental section, combining the 
two optimization problems (9), (10) above into a simultaneous one 
leads to improved performance, as this enables better exploitation 
of the compressibility of the LR observations using the additional 
information obtained from the estimated HR image. Hence, in the 
following, this alternate approach has been adopted. According to 
it, let a = (a1, . . . , aQ ) and define

L(x,a) = η

2

Q∑
q=1

‖ �Waq − yq ‖2 + τ

Q∑
q=1

‖ aq ‖1 + α Q(x) . (15)

Then we approach the Compressed-Sensing Super Resolution 
(CSSR) problem by solving the following constrained optimization 
problem

min L(x,a)

s.t. Bq(sq)x = Waq, for q = 1, . . . , Q . (16)

This is the approach we will describe and use in the following 
section. Notice that in (15) we could have also introduced a reg-
ularizer on the motion vector s = (s1, . . . , sQ ). However, we have 
experimentally found that it is not necessary to use regularization 
on the motion vectors.

4. A super-resolution from compressed sensing algorithm

The constrained optimization problem in (16) is converted into 
an unconstrained optimization one, using the Alternate Direction 
Method of Multipliers (ADMM) [28,29]. We define the following 
augmented Lagrangian functional

L(x,a, s,λ) = L(x,a) +
Q∑

q=1

λt
q(Bq(sq)x − Waq)

+ β

2

Q∑
q=1

‖ Bq(sq)x − Waq ‖2, (17)

where L(x, a) has been defined in (15) for q = 1, . . . , Q , λq are 
D × 1 Lagrangian multiplier vectors with λ = (λ1, . . . , λQ ), and β
is a non-negative parameter. The ADMM leads to the following se-
quence of iterative unconstrained problems,

xk+1 = arg min
x

L(x,ak, sk,λk) , (18)

ak+1 = arg min
a

L(xk+1,a, sk,λk) (19)

sk+1 = arg min L(xk+1,ak+1, s,λk) (20)

s
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λk+1
q = λk

q − β[Bq(sk+1
q )xk+1 − Wak+1

q ] , q = 1, . . . , Q , (21)

where k is the iteration number. Notice that according to the 
ADMM approach, Bq(sq) in (16) should not depend on the itera-
tion index, as is the case here. However, we have not encountered 
any convergence issues with this iterative procedure.

Let us now describe the estimation process. The calculation of 
each λk+1

q is straightforward. The function ρε(s) = logε(|s|) in (14)
is symmetric around 0, and ρ(

√
s) is concave and increasing for 

s ∈ [0, ∞) [26]. So, it can be represented as (see [30])

ρε(s) = inf
ξ>0

1

2
ξ s2 − ρ∗

ε (
1

2
ξ) , (22)

where ρ∗
ε ( 1

2 ξ) is the concave conjugate function

ρ∗
ε (

1

2
ξ) = inf

s>0

1

2
ξ s2 − ρε(s) . (23)

It is shown in [26] that the infimum in (22) is achieved when 
ξ = ρ ′

ε(s)/s. Consequently, for the regularization term Q(x) in (15), 
we can write

Q(x) ≤ R(x, ξ ) = 1

2

∑
d∈�

xtFt
d
dFdx −

∑
d∈�

N∑
i=1

ρ∗
ε (

1

2
ξd(i)) (24)

where ξ = (ξ1, . . . , ξ Q ), ξq = (ξq(1), . . . , ξq(N)) for q = 1, . . . , Q , 
with all its components positive, and 
d is a diagonal matrix with 
entries


d(i, i) = ξd(i) . (25)

For a given x, the first inequality in (24) becomes an equality if 
(see [26] for details),

ξx
d (i) = min(1/|ωx

d(i)|2,1/ε2) =
{

1
|ωx

d (i)|2 for |ωx
d(i)| ≥ ε

1
ε2 for 0 ≤ |ωx

d(i)| ≤ ε

(26)

where ωx
d(i) is defined from x in (12). Then we can apply standard 

Majorization-Minimization (MM) methods [31]. Given xk, ak, sk

and defining

Lk(x) = β

2

∑
q

‖ Bq(sk
q)x − Wak

q ‖2 +
∑

q

λk
q

t
(Bq(sk

q)x − Wak
q)

(27)

it can be easily shown that

Lk(xk) + αQ(xk) ≥ Lk(xk+1) + αQ(xk+1) (28)

where

xk+1 = arg min
x

{
β

2

∑
q

‖ Bq(sk
q)x − Waq ‖2 +αR(x, ξxk

)

+
∑

q

λk
q

t
(Bq(sk

q)x − Wak
q)

}
. (29)

From (29), the optimization step in (18) produces the following 
linear equation for xk+1

xk+1 =
[
β

∑
q

Bkt
q(sk

q)Bk
q(sk

q) + α
∑
d∈�

Ft
d


k
dFd

]−1

×
∑

q

Bk
q(sk

q)
t
[
βWak

q − λk
q

]
(30)

where

k
d(i, i) = min(1/|ωxk

d (i)|2,1/ε2). (31)

The optimization step in (19) for each aq produces

ak+1
q = arg min

aq

{η

2
‖ �Waq − yq ‖2 +τ ‖ aq ‖1

+ β

2
‖ Bk

q(sk
q)xk+1 − Waq ‖2 −λk

q
t
(Bk

q(sk
q)x − Waq)

}
(32)

which is equivalent to

ak+1
q = arg min

aq

{η

2
‖ �Waq − yq ‖2

+ β

2
‖ Bk

q(sk
q)xk+1 − λk

q − Waq ‖2 +τ ‖ aq ‖1

}
. (33)

The above equation can be rewritten as

ak+1
q = arg min

aq
‖ �′Waq − J′ ‖2 +τ ‖ aq ‖1, (34)

where

J′ =
⎡
⎣

√
η
2 yq√

β
2 (Bk

q(sk
q)xk+1 − λk

q)

⎤
⎦ and �′ =

⎡
⎣

√
η
2 �√
β
2 I

⎤
⎦ (35)

with I the D × D identity matrix.
The above optimization problem can be solved using the algo-

rithm in [32].
To estimate the registration parameters in (20), we have to 

solve

sk+1
q = argmin

sq

β

2
‖ Bq(sq)xk+1 − Wak+1

q ‖2 . (36)

Notice that we could use regularization of the parameters to 
be estimated as we did in [17]. However, we have experimen-
tally observed that regularization was not needed for this problem. 
Bq(sq)x, can be approximated by expanding it into its first-order 
Taylor series around the previous value sk

q . Hence obtaining (see 
[33,25])

B(sk+1
q )xk+1 ≈ B(sk

q)xk+1

+
[

Oq1(sk
q)xk+1,Oq2(sk

q)xk+1,Oq3(sk
q)xk+1

]
× (sk+1

q − sk
q), (37)

where Oqi(sk
q)xk+1 = AHqNi(sk

q)xk+1. The values of Ni(sk
q)xk+1 can 

be calculated using[
N1(sk

q)x,N2(sk
q)x,N3(sk

q)x
]

=
[
(P1(sk

q)M1(sk
q) + P2(sk

q)M2(sk
q),M1(sk

q),M2(sk
q)

]
, (38)

where

M1(sk
q) = (I − Dbq(sq))(Ltr(sq) − Ltl(sq)) + Dbq(sq)(Lbr(sq) − Lbl(sq))

(39)

M2(sk
q) = (I − Daq(sq))(Lbl(sq) − Ltl(sq)) + Daq(sq)(Lbr(sq) − Ltr(sq))

(40)

P1(sk
q) = −[Du sin(θk

q ) + Dv cos(θk
q )] (41)

P2(sk
q) = [Du cos(θk

q ) − Dv sin(θk
q ), (42)

and Du and Dv are diagonal matrices whose diagonals are the vec-
tors u and v, respectively. Substituting (37) into (36), we obtain 
the final update equation as follows
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Algorithm 1 Compressive Sensing Super Resolution (CSSR).
Require: Values α, β , τ , η

Initialize a0, s0, λ0, �0 = {�0
d , d ∈ �}

k = 0
while convergence criterion is not met do

1. Calculate xk+1 by solving (30)
2. For d ∈ �, calculate �k+1

d using (31)

3. For q = 1, . . . , Q , calculate ak+1
q using (34)

4. For q = 1, . . . , Q , calculate sk+1
q using (43)

5. For q = 1, . . . , Q , update λk+1
q using (21)

6. Set k = k + 1
return x

sk+1
q =

[
�k

q

]−1
(ϒk

q + �k
qsk

q) = sk
q +

[
�k

q

]−1
ϒk

q, (43)

where �k
q and ϒk

q correspond to the q-th observation at the k-th 
iteration. The i, j ∈ {1, 2, 3} elements of these matrices are given 
by

�k
qi j =

[
AHqNi(sk

q)xk+1
]t

AHqN j(sk
q)xk+1,

ϒk
qi =

[
AHqNi(sk

q)xk+1
]t

(Wak+1
q − AHqNi(sk

q)xk+1). (44)

The complete CSSR algorithm is presented in Algorithm 1.

5. Experimental results

To evaluate the proposed algorithm, experiments were carried 
out on two types of images: simulated compressed LR images, and 
real LR images which are synthetically compressed using a mea-
surement matrix �. In both cases, � is constructed using a circu-
lant Toeplitz matrix with entries drawn from a Bernoulli distribu-
tion. We utilized a 3-level Haar wavelet transform as the transform 
basis. Using exhaustive search, the values of the parameters uti-
lized were τ = 1.25 × 10−2, α = 5 × 10−4, for all experiments. For 
the SNR = 40 dB case, η = 49.29, β = 3.85 × 10−5, and for the 
SNR = 30 dB case, η = 4.93, β = 3.85 × 10−4.

The algorithm stops when either a maximum number of itera-
tions (60 in all experiments) is reached, or when

norm(xk − xk−1)

norm(xk−1)
≤ 10−4. (45)

To estimate the initial value of the registration parameters s0
q , 

in (43), the following minimization problem, similar to (36), was 
solved

s0
q = argmin

sq

‖ C(sq)Wa0
R − Wa0

q ‖2, q = 2, . . . , Q (46)

The obtained registration parameters are then upsampled to the 
HR level. The subscript R denotes the reference image which cor-
responds to the first reconstructed LR observation.

5.1. Simulated images

To generate all simulated LR images from an original image we 
use the following procedure. The original HR image is first ran-
domly rotated and horizontally and vertically displaced. Then it 
is blurred with a Gaussian blur, with known variance. Next it is 
down-sampled by a variable zooming factor P. It is compressed 
using �, with variable compression ratio R, and finally white Gaus-
sian noise is added to the CS observations with variable signal-to-
noise ratios (SNR). Q different observations are generated using 
this procedure. An example of the degradation process, on the 
Cameraman image, is shown in Fig. 2.

As performance measure we use the Peak Signal to Noise Ratio 
(PSNR) calculated using
Fig. 2. Degradation procedure. (a) Original image, (b) Warped image, (c) Blurred 
image, Var = 3, (d) Down-sampled image, P = 4, (e) Compressed acquisition, R =
0.8, (f) Noise added, SNR = 40 dB.

Fig. 3. Reconstruction of LR images. (a) Original HR Shepp–Logan image, (b, c) 
Downsampled images Q = 2, P = 2, Blur Var = 3, R = 0.8, SNR = 30 dB, (d, e) First 
estimates of the LR images, PSNR = 40.22 dB and, 40.16 dB respectively, (f, g) Final 
estimates of the LR images, PSNR = 42.88 dB and 42.77 dB respectively.

PSNR = 10 log
Nmax(xorig)

2

‖ xest − xorig ‖2
, (47)

where xorig and xest are N × 1 vectors, representing the original 
and the estimated HR image, respectively, and max(xorig) is the 
maximum possible value of the image xorig (the value is equal to 
255 for an 8-bit image).

5.1.1. Compressed sensing reconstruction
This experiment concentrates on the CS reconstruction process, 

to study the performance of the CSSR algorithm. We use two sim-
ulated LR images as follows. With the HR Shepp–Logan image of 
size 256 × 256 pixels, shown in Fig. 3(a), we used a blur with 
variance = 3, zooming factor P = 2, and warping matrix corre-
sponding respectively to the following rotation and displacement 
vectors: [0, 0, 0]t , [−0.1047, 2, −3]t . The two simulated LR images 
are shown in Fig. 3(b, c). These simulated LR images are then com-
pressed with compression ratio R = 0.8, and noise is added with 
SNR = 30 dB.

Let us examine the first iteration resulting LR estimations using 
(33), without the registration regularization term. The estimated 
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Fig. 4. Reconstruction of LR images. (a) Cameraman original HR image, (b, c) Down-
sampled images Q = 2, P = 2, Blur Var = 3, R = 0.8, SNR = 30 dB, (d, e) First 
estimates of the LR images, PSNR = 35.52 dB and 35.29 dB, respectively, (f, g) Final 
estimates of the LR images, PSNR = 35.55 dB and 35.34 dB, respectively.

Fig. 5. Reconstruction of LR images. (a) Lena original HR image, (b, c) Downsampled 
images Q = 2, P = 2, Blur Var = 3, R = 0.8, SNR = 30 dB, (d, e) First estimates of 
the LR images, PSNR = 40.22 dB and 40.16 dB, respectively, (f, g) Final estimates of 
the LR images, PSNR = 42.88 dB and 42.77 dB, respectively.

images are shown in Fig. 3(d, e), and the PSNR values of the re-
constructed LR images are 40.22 dB and 40.16 dB, respectively. 
As the CSSR process advances, the inclusion of the registration 
term allows for a better extraction of the information in the com-
pressed observations; the final estimated LR images are shown in 
Fig. 3(f, g), with PSNR values being 42.88 dB and 42.77 dB, respec-
tively.

For the Cameraman image shown in Fig. 4(a), the downsampled 
images are shown in Fig. 4(b, c), the initially estimated LR images 
are shown in Fig. 4(d, e), with PSNR = 35.52 dB and 35.29 dB, 
respectively. The final estimated LR images are shown in Fig. 4(f, g), 
with PSNRs equal to 35.55 dB and 35.34 dB, respectively.

For the Lena image shown in Fig. 5(a), the downsampled im-
ages are shown in Fig. 5(b, c), the initially estimated LR images are 
shown in Fig. 5(d, e), with PSNR = 32.45 dB and 32.28 dB, respec-
tively. The final estimated LR images are shown in Fig. 5(f, g), with 
PSNRs equal to 34.24 dB and 34.07 dB, respectively.

Notice that the inclusion of the registration regularization term 
in (33) greatly contributes to the PSNR improvement when using 
the CSSR algorithm. This improvement will be very useful when 
super resolving the LR observations to estimate the HR image.

5.1.2. Registration parameter estimation
Two experiments were carried out to establish the CSSR accu-

racy when estimating the registration parameters. The 256 × 256
pixel HR Shepp–Logan image, with Q = 4, Blur variance = 3, 
SNR = 40 dB, and R = 0.8 was used. P = 2 and 4, were chosen 
to conduct these two experiments. The real and estimated regis-
tration parameters are shown in Table 1, which also contains the 
absolute errors. Notice that for the first observation, which is the 
reference observation, the motion vector is [0, 0, 0]t .

5.1.3. Super resolution reconstruction
This experiment compares the performance of the proposed 

CSSR algorithm with a set of existing SR algorithms, namely Bicu-
Table 1
Registration parameter estimation of CSSR for the Shepp–Logan image, Q = 4, Blur 
var = 3, SNR = 40 dB, R = 0.8.

Zooming 
factor

Motion vector θq cq dq

Observation, q = 2
2, 4 True .05236 2.00 −3.00
2 Estimated .05229 1.999 −3.002

Abs. error 7.0e−5 1.0e−3 2.0e−3
4 Estimated .05163 2.033 −3.057

Abs. error 7.3e−4 3.3e−2 5.7e−2

Observation, q = 3
2, 4 True −.06981 −1.0 −2.0
2 Estimated −0.06916 −1.002 −2.005

Abs. error 6.5e−4 2.0e−3 5e−3
4 Estimated −.06902 −1.012 −2.046

Abs. error 7.9e−4 1.2e−2 4.6e−2

Observation, q = 4
2, 4 True −.03491 3.0 −1.0
2 Estimated −0.03478 3.001 −1.001

Abs. error 1.3e−4 1.0e−3 1.0e−3
4 Estimated −.03351 2.999 −1.041

Abs. error 1.4e−3 1.0e−3 4.1e−2

bic Interpolation (BIC), SR using an l1 prior [34] (L1S), SR using 
sparse and non-sparse priors [25] (SnS), a fast and robust SR [35]
(FRSR), and a robust SR method [36] (RSR). Algorithms L1S [34]
and SnS [25] estimate all their parameters. Since algorithms FRSR 
[35] and RSR [36] need some parameters to be set, we performed 
an exhaustive search to find the parameters resulting in the max-
imum PSNR values. We used the Cameraman, Shepp–Logan and 
Lena images. The number of observations was Q = 4. For our CSSR, 
we used a unity compression ratio R = 1.0, to compare with those 
SR algorithms which do not use CS observations. Notice that we 
still use CS but with 100% of the measurements which is equiva-
lent to using � = I. Every experiment was carried out three times 
and the tabulated measures are the average values of the three ex-
periments. The results are tabulated in Table 2.

Fig. 6 compares the performance of SR algorithms as a func-
tion of the variance of the blur affecting the image. Using Q = 4, 
SNR = 40 dB and P = 4, the PSNR of the CSSR and the investi-
gated SR algorithms, are compared for the Cameraman, Lena, and 
Shepp–Logan images. Notice the relative improvement of the CSSR 
algorithm, when compared with SR algorithms that do not use 
compressed sensing.

5.1.4. The general case
In this experiment the overall behavior of the CSSR algorithm 

is investigated; the compression ratios and zooming factors will be 
varied and the sequential and alternate approaches compared.

A comparison between the sequential approach and the CSSR 
algorithm on the Cameraman and Shepp–Logan images is shown 
in Tables 3 and 4, respectively. Fig. 7 shows for P = 2 and 4 
with Q = 4, Blur variance 3, SNR = 40 dB, R = 0.8, the estimated 
Shepp–Logan images.

The obtained results show how the alternate approach out-
perform the sequential. It is important to pause to examine the 
obtained results. For a 256 × 256 HR image, the total number of 
pixels is 65 536. If we use a zooming factor P = 4, then the size 
of the LR image will be 64 × 64, and the total number of pixels 
4096. Using a compression ratio R = 0.8, the number of projections 
is 3277. Instead of saving 65 536 pixel values, the CSSR algorithm 
uses only 3277 values, a percentage of 4 × 5.0%, still adequate to 
obtain a good HR image, see Fig. 7(b).

Let us now examine the behavior of the CSSR algorithm as a 
function of several factors. For Q = 4, P = 4, SNR = 30 dB, Fig. 8
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Table 2
Comparison of state-of-the-art SR algorithms with the CSSR algorithm, with Q = 4
and for CSSR R = 1.0. Every experiment was repeated three times and the shown 
values are the average values. In bold are the highest PSNR values.

Blur Var 3 5 9

SNR 40 30 40 30 40 30

Alg P Average PSNR (dB)

Image Cameraman
BIC 2 22.5 22.7 22.4 22.3 22.4 22.4

4 20.5 20.4 20.5 20.5 20.5 20.4

L1S 2 24.1 24.5 23.9 24.2 24.1 23.9
4 21.9 22.1 21.7 21.3 21.7 21.6

SnS 2 24.1 23.7 24.1 23.4 24.2 23.3
4 22.2 22.4 22.1 22.0 22.2 22.1

FRSR 2 20.9 21.5 19.3 19.8 21.5 20.6
4 21.1 22.3 20.9 21.2 21.1 21.8

RSR 2 22.5 22.2 21.1 21.6 21.3 22.0
4 20.5 20.6 20.4 20.5 20.5 20.6

CSSR 2 25.9 24.8 24.6 23.8 23.4 22.6
4 25.0 24.1 24.0 23.3 23.1 22.3

Image Lena
BIC 2 24.7 24.7 24.6 24.6 24.5 24.4

4 21.1 21.0 21.1 21.0 21.1 21.1

L1S 2 27.0 27.4 27.2 27.5 26.7 27.4
4 25.8 25.7 25.9 25.4 25.9 26.0

SnS 2 27.7 27.5 28.4 27.6 28.3 27.5
4 26.4 26.3 26.9 25.9 26.5 26.4

FRSR 2 20.5 20.8 21.2 20.9 22.0 20.1
4 21.9 22.4 21.8 23.2 21.8 24.9

RSR 2 23.1 25.2 25.0 25.1 24.2 23.0
4 21.7 21.9 21.7 21.8 21.9 22.0

CSSR 2 31.1 29.0 29.4 27.6 27.3 26.0
4 29.4 27.4 28.2 26.4 26.7 25.2

Image Shepp–Logan

BIC 2 20.5 20.5 20.5 20.8 20.3 20.3
4 17.9 17.8 17.9 17.9 17.9 17.9

L1S 2 25.7 27.9 27.9 30.3 26.2 27.7
4 20.7 20.4 21.2 21.1 21.7 21.6

SnS 2 24.1 23.3 24.1 23.2 24.1 23.2
4 21.4 21.8 22.0 22.1 22.2 21.5

FRSR 2 20.0 20.8 20.2 21.9 20.2 21.0
4 20.8 20.5 20.5 20.9 21.0 20.8

RSR 2 21.1 21.0 21.4 21.0 21.3 21.1
4 18.7 18.8 18.7 18.7 18.6 18.4

CSSR 2 25.8 26.4 24.4 24.9 22.9 23.2
4 24.7 25.3 23.7 24.1 22.4 22.6

shows the behavior of CSSR when the compression ratio and blur 
vary.

Shown in Fig. 9, for both images using a variable R, Q = 4, 
Blur variance 5, SNR = 30 dB, for two values of P = 2 and 4, 
when changing the zooming factor, the performance degrades with 
increasing P. However, this difference in performance is less no-
ticeable than with the super resolution algorithms it is compared 
against. This becomes clear in Table 2, where the dB differences 
for the CSSR algorithm, on the average, is less than 1 dB, while it 
has big differences for the tested SR algorithms. For example, for 
the Shepp–Logan image, the average difference is around 7 dB for 
blur variances 5 and 9, for the L1S algorithm, while the differences 
for the CSSR algorithm were all less than 1 dB. The performance of 
the CSSR algorithm does not decrease much when increasing the 
zooming factor and the blur variance affecting the CS observations.
Fig. 6. Comparison among SR algorithms and the CSSR algorithm. P = 4, SNR =
40 dB, Q = 4, and for CSR, R = 1.0. (a) Cameraman image, (b) Lena, (c) Shepp–
Logan image.

Fig. 7. Image super resolution from simulated images, Q = 4, Blur Var = 3, SNR =
40 dB. (a) Estimated image using P = 2, R = 0.8, (b) Estimated image using P = 4, 
R = 0.8.

Fig. 10 shows the results obtained for both images, with Q = 4, 
Blur Var = 5, P = 2. In general, and as expected, better PSNRs were 
obtained with less noise and less compression. Notice, however, 
the interesting behavior of the test on the Shepp–Logan image 
where better quality restored images are obtained from noisier ob-
servations for low compression ratios. This is very likely due to the 
very flat nature of this particular image.

5.2. Real images

This experiment uses real LR observations, the underlying HR 
image being unavailable. The experiments were carried out to vi-
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Table 3
Comparison of the sequential approach and the CSSR algorithm for the Cameraman 
image, using Q = 4. Every experiment was repeated three times and the shown 
values are the average values. In bold are the highest PSNR values.

Blur Var 3 5 9

SNR 40 30 40 30 40 30

P Alg R Average PSNR (dB)

2 Sequential 0.2 19.4 19.9 18.9 19.6 17.5 18.9
0.4 22.2 22.1 21.7 21.6 20.7 20.8
0.6 23.8 22.9 23.0 22.2 21.9 21.3
0.8 24.5 23.2 23.5 22.5 22.4 21.5
1.0 24.8 23.4 23.8 22.6 22.6 21.6

CSSR 0.2 22.2 20.7 21.7 20.3 20.8 19.8
0.4 24.2 22.7 23.4 22.1 22.4 21.2
0.6 25.1 23.8 24.0 22.9 22.9 22.0
0.8 25.7 24.4 24.4 23.4 23.2 22.4
1.0 25.9 24.8 24.6 23.8 23.4 22.6

4 Sequential 0.2 15.5 13.9 15.5 14.0 14.7 13.9
0.4 18.9 15.3 18.8 15.4 18.3 15.3
0.6 21.7 15.9 21.3 15.9 20.5 15.8
0.8 23.2 15.9 22.6 16.0 21.7 16.1
1.0 23.9 15.9 23.1 15.9 22.1 16.0

CSSR 0.2 15.8 16.6 15.5 16.5 18.1 16.3
0.4 22.0 20.6 21.8 20.3 21.1 19.8
0.6 23.8 22.5 23.1 22.1 22.3 21.2
0.8 24.5 23.5 23.7 22.8 22.8 22.0
1.0 25.0 24.1 24.1 23.3 23.0 22.3

Table 4
Performance of sequential approach, with CSSR algorithm, for the Shepp–Logan im-
age, using Q = 4. Every experiment was repeated three times and the shown values 
are the average values. In bold are the highest PSNR values.

Blur Var 3 5 9

SNR 40 30 40 30 40 30

P Alg R Average PSNR (dB)

2 Sequential 0.2 17.1 18.6 16.4 18.2 15.2 17.6
0.4 22.8 23.3 21.9 22.2 20.3 20.9
0.6 24.3 23.9 23.1 22.8 21.5 21.5
0.8 24.7 24.1 23.5 23.0 21.9 21.7
1.0 24.9 24.1 23.7 23.0 22.1 21.7

CSSR 0.2 23.3 21.7 22.4 21.0 20.7 20.0
0.4 25.0 24.3 23.8 23.2 22.2 21.7
0.6 25.5 25.7 24.3 24.4 22.7 22.6
0.8 25.7 26.2 24.4 24.8 22.8 23.1
1.0 25.8 26.4 24.4 24.9 22.9 23.3

4 Sequential 0.2 14.0 15.6 14.2 15.4 13.5 15.2
0.4 19.0 20.2 18.5 19.4 17.4 18.4
0.6 22.6 22.3 21.6 21.5 20.3 20.4
0.8 23.6 22.6 22.5 21.8 21.2 20.7
1.0 23.9 22.7 22.8 21.9 21.5 20.8

CSSR 0.2 15.6 16.8 16.0 16.7 15.6 16.4
0.4 23.0 21.9 22.1 21.2 20.8 20.1
0.6 24.3 24.0 23.3 22.9 21.9 21.5
0.8 24.6 24.9 23.5 23.8 22.2 22.3
1.0 24.7 25.3 23.7 24.1 22.3 22.6

sually assess the estimated HR image, and to study the effect of 
the number of input images Q , on the estimated HR image.

In the first experiment we used noisy LR images of a car, the 
first four of which are shown in Fig. 11(a). The estimated high 
resolution image, using bilinear interpolation of one of the LR 
reconstructed images, is shown in Fig. 11(b). The estimated HR 
images using the CSSR algorithm are shown in Figs. 11(c, d), for 
number of input images Q = 4 and 16, respectively. We used a 
compression ratio R = 0.8, and a zooming factor, P = 2. The bet-
ter performance of the proposed CSSR in comparison to bilinear 
interpolation is clearly observable. Notice also that a better perfor-
mance is achieved by increasing the number of input images; this 
Fig. 8. Comparison for performance measure of proposed CSSR vs blur variance. 
Q = 4, P = 4, SNR = 30 dB. (a) Cameraman, (b) Shepp–Logan.

Fig. 9. Performance of the proposed CSSR for various zooming factors and compres-
sion ratios. Q = 4, Blur Var = 5, SNR = 30 dB. (a) Cameraman image, (b) Shepp–
Logan image.

becomes apparent when trying to read the letters written on the 
windscreen of the car; they are more readable in Fig. 11(d) than 
that in Fig. 11(c). Notice also the artifacts on the left hand side of 
the estimated image, due to warping and Fourier implementation 
of the blur convolution.

In the second experiment we used noisy LR images of a toy, 
the first four of which are shown in Fig. 12(a). The bilinear in-
terpolation of one reconstructed LR image is shown in Fig. 12(b). 
The estimated images using the CSSR algorithm, are shown in 
Figs. 12(c, d), for number of input images Q = 4 and 16, respec-
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Fig. 10. Performance of the proposed CSSR for various signal to noise ratios, of the 
additive noise, and compression ratios. Q = 4, P = 2, Blur Var = 5, SNR = 30 dB. 
(a) Cameraman image, (b) Shepp–Logan image.

tively. The compression ratio was equal to 0.8, and the zooming 
factor was equal to 2. Similarly, the best result was obtained us-
ing more input images (as shown in Fig. 12(d)), when compared 
to both the interpolated image in Fig. 12(b), and to the CSSR es-
timated image in Fig. 12(c). The estimated image in Fig. 12(d) is 
smoother with sharper edges and better quality.

5.3. Real passive millimeter wave images

In this experiment we used four noisy real 100 × 30 PMMW 
LR observations of a man hiding a threat attached to his left arm, 
as shown in Fig. 13(a). The unregistered images were synthetically 
compressed using a compression ratio R = 0.8. In the first part we 
used a zooming factor P = 2, and compare the estimated image us-
ing CSSR, shown in Fig. 13(c) with the image shown in Fig. 13(b), 
obtained by bilinear interpolation of the reconstructed reference 
image. In the estimated image using CSSR, the discontinuity in the 
arm, which refers to the threat location, appears more prominent 
than that in the interpolated image. This becomes even clearer in 
the next experiment, using a zooming factor P = 4, under the same 
conditions. The estimated image using CSSR, shown in Fig. 13(e), is 
again compared with the interpolated image, shown in Fig. 13(d). 
In addition, the edges of the legs look sharper. Notice that the esti-
mated image in the latter case has achieved a factor of increase in 
resolution of 16, a good result taking into account the low quality 
of the compressed input images. This is a very important prepro-
cessing step which should help improve the performance of any 
threat detection algorithm.

6. Conclusions

In this work we have proposed a method to obtain an HR image 
from a set of LR CS observations. The method combines CS and LR 
to HR reconstruction using ADMM and base the HR robust recon-
struction on an efficient registration procedure and a new sparsity 
promoting prior. We have experimentally shown that this simulta-
neous reconstruction outperforms the method, that first performs 
LR reconstruction to then obtain an HR image from a set of LR ob-
servations. The experiments carried out show a very good perfor-
mance in comparison with existing HR methods which do not use 
CS observations. We have also shown how the proposed method 
can be used to improve the quality of PMMW images to be used 
in detection tasks.

Acknowledgments

This paper has been supported by The European Union, Eras-
mus Mundus program, the Spanish Ministry of Economy and Com-
petitiveness under project TIN2013-43880-R, the European Re-
Fig. 11. Image super resolution from real observations, R = 0.8, P = 2. (a) First 4 LR images, (b) Bilinear interpolation of one reconstructed LR image, (c) Estimated HR image 
using the CSSR algorithm, with Q = 4, (d) Estimated HR image using the CSSR algorithm, with Q = 16.

Fig. 12. Image super resolution from real observations. R = 0.8, P = 2. (a) First 4 LR images, (b) Bilinear interpolation of one reconstructed LR image, (c) Estimated HR image 
using the CSSR algorithm, with Q = 4, (d) Estimated HR image using the CSSR algorithm, with Q = 16.



W. AlSaafin et al. / Digital Signal Processing 50 (2016) 180–190 189
Fig. 13. PMMW image super resolution from multiple observations, Q = 4, R = 0.8. 
(a) 100 × 30 LR images, (b) Bilinear interpolation from one reconstructed image, 
P = 2, (c) Estimated HR image using the CSSR algorithm, P = 2, (d) Bilinear interpo-
lation from one reconstructed image, P = 4, (e) Estimated HR image using the CSSR 
algorithm, P = 4.

gional Development Fund (FEDER), the U.S. Department of Energy 
(DE-NA0002520), and a Northwestern University Catalyst grant.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.dsp.2015.12.005.

References

[1] E. Candes, M. Wakin, An introduction to compressive sampling, IEEE Signal Pro-
cess. Mag. 25 (2) (2008) 21–30.

[2] M. Fornasier, H. Rauhut, Compressive sensing, in: Handbook of Mathematical 
Methods in Imaging, Springer, 2011, pp. 187–228.

[3] E. Candes, J. Romberg, Practical signal recovery from random projections, in: 
Proc. SPIE Conf., Wavelet Applications in Signal and Image Processing XI, Proc. 
SPIE 5914 (2005).

[4] M. Duarte, M. Davenport, D. Takhar, J. Laska, T. Sun, K. Kelly, R. Baraniuk, 
Single-pixel imaging via compressive sampling, IEEE Signal Process. Mag. 25 (2) 
(2008) 83–91, http://dx.doi.org/10.1109/MSP.2007.914730.

[5] W.L. Chan, K. Charan, D. Takhar, K.F. Kelly, R. Baraniuk, D. Mittleman, A single-
pixel terahertz imaging system based on compressed sensing, Appl. Phys. Lett. 
93 (12) (2008) 121105, http://dx.doi.org/10.1063/1.2989126.

[6] A. Heidari, D. Saeedkia, A 2d camera design with a single-pixel detector, in: 
34th International Conference on Infrared, Millimeter, and Terahertz Waves, 
IRMMW-THz 2009, 2009, pp. 1–2.

[7] T. Li, X. Wang, W. Wang, A.K. Katsaggelos, Compressive video sensing with lim-
ited measurements, J. Electron. Imaging 22 (4) (2013) 043003, http://dx.doi.
org/10.1117/1.JEI.22.4.043003.

[8] A. Sankaranarayanan, C. Studer, R. Baraniuk, CS-MUVI: video compressive sens-
ing for spatial-multiplexing cameras, in: 2012 IEEE International Conference on 
Computational Photography, ICCP, 2012, pp. 1–10.

[9] Y.C. Eldar, G. Kutyniok, Compressed Sensing: Theory and Applications, Cam-
bridge University Press, 2012.

[10] H. Babcock, J. Moffitt, Y. Cao, X. Zhuang, Fast compressed sensing analysis 
for superresolution imaging using �1-homotopy, Opt. Express 21 (23) (2013) 
28583–28596, http://dx.doi.org/10.1364/OE.21.028583.

[11] L. Spinoulas, B. Amizic, M. Vega, R. Molina, A. Katsaggelos, Simultaneous 
Bayesian compressive sensing and blind deconvolution, in: 2012 Proceed-
ings of the 20th European Signal Processing Conference, EUSIPCO, 2012, 
pp. 1414–1418.
[12] B. Amizic, L. Spinoulas, R. Molina, A. Katsaggelos, Compressive blind image de-
convolution, IEEE Trans. Image Process. 22 (10) (2013) 3994–4006, http://dx.
doi.org/10.1109/TIP.2013.2266100.

[13] C. He, L. Liu, L. Xu, M. Liu, M. Liao, Learning based compressed sensing for SAR 
image super-resolution, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5 (4) 
(2012) 1272–1281.

[14] S. Yang, F. Sun, M. Wang, Z. Liu, L. Jiao, Novel super resolution restoration of re-
mote sensing images based on compressive sensing and example patches-aided 
dictionary learning, in: 2011 International Workshop on Multi-Platform/Multi-
Sensor Remote Sensing and Mapping, M2RSM, IEEE, 2011, pp. 1–6.

[15] P. Sen, S. Darabi, Compressive image super-resolution, in: 2009 Conference 
Record of the Forty-Third Asilomar Conference on Signals, Systems and Com-
puters, 2009, pp. 1235–1242.

[16] W. Saafin, M. Vega, R. Molina, A.K. Katsaggelos, Image super-resolution from 
compressed sensing observations, in: 2015 IEEE International Conference on 
Image Processing, ICIP, Sept. 2015, pp. 4268–4272.

[17] W. Saafin, S. Villena, M. Vega, R. Molina, A. Katsaggelos, Pmmw image super 
resolution from compressed sensing observations, in: 2015 23rd European Sig-
nal Processing Conference, EUSIPCO, Aug. 2015, pp. 1815–1819.

[18] J. Yang, J. Wang, L. Li, A new algorithm for passive millimeter-wave image 
enhancement, in: 2010 2nd International Conference on Signal Processing Sys-
tems, vol. 3, ICSPS, IEEE, 2010, pp. V3–507.

[19] Y. Li, Y. Li, J. Chen, Y. Hou, Passive millimeter-wave image restoration based on 
improved algorithm of nonlinear extrapolation in frequency space, Int. J. Digit. 
Content Technol. Appl. 5 (5) (2011) 42–49.

[20] P. Chen, T. Zou, J. Chen, Z. Gao, J. Xiong, The application of improved PSO algo-
rithm in PMMW image OSTU threshold segmentation, Appl. Mech. Mater. 721 
(2015) 779–782, Trans Tech Publ.

[21] H. Chen, S. Lee, R. Rao, M. Slamani, P. Varshney, Imaging for concealed weapon 
detection: a tutorial overview of development in imaging sensors and process-
ing, IEEE Signal Process. Mag. 22 (2) (2005) 52–61.

[22] H. Lee, D. Lee, S. Yeom, J. Son, V. Guschin, S. Kim, Passive millimeter wave 
imaging and analysis for concealed object detection, in: 2011 3rd International 
Conference on Data Mining and Intelligent Information Technology Applica-
tions, ICMiA, IEEE, 2011, pp. 98–101.

[23] N. Gopalsami, S. Liao, T.W. Elmer, E.R. Koehl, A. Heifetz, A.C. Raptis, L. Spinoulas, 
A.K. Katsaggelos, Passive millimeter-wave imaging with compressive sensing, 
Opt. Eng. 51 (9) (2012) 091614, http://dx.doi.org/10.1117/1.OE.51.9.091614.

[24] N. Gopalsami, T. Elmer, S. Liao, R. Ahern, A. Heifetz, A. Raptis, M. Luessi, 
D. Babacan, A. Katsaggelos, Compressive sampling in passive millimeter-wave 
imaging, in: SPIE Defense, Security, and Sensing, International Society for Op-
tics and Photonics, 2011, 80220I.

[25] S. Villena, M. Vega, S. Babacan, R. Molina, A. Katsaggelos, Bayesian combination 
of sparse and non-sparse priors in image super resolution, Digit. Signal Process. 
23 (2) (2013) 530–541.

[26] S.D. Babacan, R. Molina, M.N. Do, A.K. Katsaggelos, Bayesian blind deconvo-
lution with general sparse image priors, in: Computer Vision, ECCV 2012, 
Springer, 2012, pp. 341–355.

[27] A.K. Katsaggelos, R. Molina, J. Mateos, Super resolution of images and video, in: 
Synthesis Lectures on Image, Video, and Multimedia Processing, vol. 1, 2007, 
pp. 1–134.

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and 
statistical learning via the alternating direction method of multipliers, Found. 
Trends Mach. Learn. 3 (1) (2011) 1–122.

[29] Y.-H. Xiao, Z.-F. Jin, An alternating direction method for linear-constrained ma-
trix nuclear norm minimization, Numer. Linear Algebra Appl. 19 (3) (2012) 
541–554.

[30] R.T. Rockafellar, Convex Analysis, no. 28, Princeton University Press, 1997.

[31] K. Lange, Optimization, Springer-Verlag, 2013.

[32] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, D. Gorinevsky, An interior-point method 
for large-scale �1-regularized least squares, IEEE J. Sel. Top. Appl. Earth Obs. Re-
mote Sens. 1 (4) (2007) 606–617, http://dx.doi.org/10.1109/JSTSP.2007.910971.

[33] Y. He, K. Yap, L. Chen, L.-P. Chau, A nonlinear least square technique for si-
multaneous image registration and super-resolution, IEEE Trans. Image Process. 
16 (11) (2007) 2830–2841.

[34] S. Villena, M. Vega, R. Molina, A.K. Katsaggelos, Bayesian super-resolution im-
age reconstruction using an �1 prior, in: Image and Signal Processing and 
Analysis, Proceedings of 6th International Symposium on 2009, ISPA 2009, IEEE, 
2009, pp. 152–157.

[35] S. Farsiu, M. Robinson, M. Elad, P. Milanfar, Fast and robust multiframe super 
resolution, IEEE Trans. Image Process. 13 (10) (2004) 1327–1344.

[36] A. Zomet, A. Rav-Acha, S. Peleg, Robust super-resolution, in: Proceedings of 
the 2001 IEEE Computer Society Conference on Computer Vision and Pattern 
Recognition, vol. 1, CVPR 2001, 2001, pp. I-645–I-650.

http://dx.doi.org/10.1016/j.dsp.2015.12.005
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib43616E643A32303038s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib43616E643A32303038s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib666F726E617369657232303131636F6D7072657373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib666F726E617369657232303131636F6D7072657373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib63616E6465735F70726163746963616C5F32303035s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib63616E6465735F70726163746963616C5F32303035s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib63616E6465735F70726163746963616C5F32303035s1
http://dx.doi.org/10.1109/MSP.2007.914730
http://dx.doi.org/10.1063/1.2989126
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib35333234373235s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib35333234373235s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib35333234373235s1
http://dx.doi.org/10.1117/1.JEI.22.4.043003
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib36323135323132s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib36323135323132s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib36323135323132s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib656C64617232303132636F6D70726573736564s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib656C64617232303132636F6D70726573736564s1
http://dx.doi.org/10.1364/OE.21.028583
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib36333334323039s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib36333334323039s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib36333334323039s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib36333334323039s1
http://dx.doi.org/10.1109/TIP.2013.2266100
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6865323031326C6561726E696E67s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6865323031326C6561726E696E67s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6865323031326C6561726E696E67s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib79616E67323031316E6F76656Cs1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib79616E67323031316E6F76656Cs1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib79616E67323031316E6F76656Cs1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib79616E67323031316E6F76656Cs1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib35343639393638s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib35343639393638s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib35343639393638s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib7761656C32303135s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib7761656C32303135s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib7761656C32303135s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib7761656C323031356575736970636Fs1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib7761656C323031356575736970636Fs1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib7761656C323031356575736970636Fs1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib79616E67323031306E6577s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib79616E67323031306E6577s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib79616E67323031306E6577s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib4C69323031313432s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib4C69323031313432s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib4C69323031313432s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6368656E323031356170706C69636174696F6Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6368656E323031356170706C69636174696F6Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6368656E323031356170706C69636174696F6Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6368656E32303035696D6167696E67s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6368656E32303035696D6167696E67s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6368656E32303035696D6167696E67s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6C65653230313170617373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6C65653230313170617373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6C65653230313170617373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6C65653230313170617373697665s1
http://dx.doi.org/10.1117/1.OE.51.9.091614
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib676F70616C73616D6932303131636F6D7072657373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib676F70616C73616D6932303131636F6D7072657373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib676F70616C73616D6932303131636F6D7072657373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib676F70616C73616D6932303131636F6D7072657373697665s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib56696C6C656E6132303133353330s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib56696C6C656E6132303133353330s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib56696C6C656E6132303133353330s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6261626163616E32303132626179657369616Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6261626163616E32303132626179657369616Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6261626163616E32303132626179657369616Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6B617473616767656C6F73323030377375706572s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6B617473616767656C6F73323030377375706572s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6B617473616767656C6F73323030377375706572s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib626F7964323031316469737472696275746564s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib626F7964323031316469737472696275746564s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib626F7964323031316469737472696275746564s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib5869616F32303132353431s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib5869616F32303132353431s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib5869616F32303132353431s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib726F636B6166656C6C617231393937636F6E766578s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6C616E67653A32303133s1
http://dx.doi.org/10.1109/JSTSP.2007.910971
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6865323030376E6F6E6C696E656172s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6865323030376E6F6E6C696E656172s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib6865323030376E6F6E6C696E656172s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib76696C6C656E6132303039626179657369616Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib76696C6C656E6132303039626179657369616Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib76696C6C656E6132303039626179657369616Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib76696C6C656E6132303039626179657369616Es1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib4661727369753230303431333237s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib4661727369753230303431333237s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib393930353335s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib393930353335s1
http://refhub.elsevier.com/S1051-2004(15)00360-7/bib393930353335s1
http://dx.doi.org/10.1117/1.JEI.22.4.043003
http://dx.doi.org/10.1109/TIP.2013.2266100


190 W. AlSaafin et al. / Digital Signal Processing 50 (2016) 180–190
Wael AlSaafin was born in 1971, in Jordan. He re-
ceived his B.Sc. degree in electrical Engineering, and 
M.Sc. in electrical engineering-communication, both 
from University of Jordan, Jordan. Currently, he is an 
Erasmus Mundus Ph.D. student at the Department 
of Computer Science and Artificial Intelligence of the 
University of Granada, Spain. His research interests 
include image super-resolution, compressed sensing, 
millimeter wave images, and reliability of communi-
cation networks.

Mr. AlSaafin works for the United Nations agency as a technical in-
structor.

Salvador Villena was born in 1953, in Spain. He 
received his Bachelor Physics degree from Universi-
dad de Granada (1979) and Ph.D. degree from Uni-
versidad de Granada (Departamento de Lenguajes y 
Sistemas Informáticos), in 2011. He is a staff member 
(1974–1983) of Computing Center Facility of Univer-
sidad de Granada. He is an Associate Professor, from 
1983 till now, in the ETS Ingeniería informática of 
Universidad de Granada (Departamento de Lenguajes 

y Sistemas Informáticos). He teaches language processing. His research fo-
cus on image processing (super resolution image reconstruction). He has 
collaborated at several projects from the Spanish Research Council. He is 
the recipient of an ISPA Best Paper Award (2009).

Miguel Vega was born in 1956, in Spain. He re-
ceived the Bachelor Physics degree from the Univer-
sidad de Granada, Granada, Spain, in 1979, and the 
Ph.D. degree from the Universidad de Granada, in 
1984. He is with the E.T.S. Ing. Informática of the Uni-
versidad de Granada (Departamento de Lenguajes y 
Sistemas Informáticos), where he is an Associate Pro-
fessor and teaches software engineering. His research 
focuses on image processing (multichannel and super-

resolution image reconstruction). He has collaborated at several projects 
from the Spanish Research Council.

Rafael Molina was born in 1957. He received the 
degree in mathematics (statistics) and the Ph.D. de-
gree in optimal design in linear models from the 
University of Granada, Granada, Spain, in 1979 and 
1983, respectively. He became Professor of Computer 
Science and Artificial Intelligence at the University 
of Granada, Granada, Spain, in 2000. He is the for-
mer Dean of the Computer Engineering School at the 
University of Granada (1992–2002) and Head of the 

Computer Science and Artificial Intelligence department of the University 
of Granada (2005–2007). His research interest focuses mainly on using 
Bayesian modeling and inference in problems like image restoration (ap-
plications to astronomy and medicine), superresolution of images and 
video, blind deconvolution, computational photography, source recovery 
in medicine, compressive sensing, low-rank matrix decomposition, active 
learning, fusion, and classification.

Prof. Molina serves as an Associate Editor of Applied Signal Processing 
(2005–2007); the IEEE Transactions on Image Processing (2010–present); 
and Progress in Artificial Intelligence (2011–present); and an Area Editor 
of Digital Signal Processing (2011–present). He is the recipient of an IEEE 
International Conference on Image Processing Paper Award (2007) and an 
ISPA Best Paper Award (2009). He is a coauthor of a paper awarded the 
runner-up prize at Reception for early-stage researchers at the House of 
Commons.

Aggelos K. Katsaggelos (Fellow, IEEE) received the 
Diploma degree in electrical and mechanical engineer-
ing from the Aristotelian University of Thessaloniki, 
Thessaloniki, Greece, in 1979 and the M.S. and Ph.D. 
degrees in electrical engineering from the Georgia In-
stitute of Technology, Atlanta, GA, USA, in 1981 and 
1985, respectively. In 1985, he joined the Depart-
ment of Electrical Engineering and Computer Science 
at Northwestern University, Evanston, IL, USA, where 

he is currently a Professor holder of the AT&T chair. He was previously 
the holder of the Ameritech Chair of Information Technology (1997–2003). 
He is also the Director of the Motorola Center for Seamless Communi-
cations, a member of the Academic Staff, NorthShore University Health 
System, an affiliated faculty at the Department of Linguistics and he has 
an appointment with the Argonne National Laboratory. He has published 
extensively in the areas of multimedia signal processing and communica-
tions (over 230 journal papers, 500 conference papers, and 40 book chap-
ters), and he is the holder of 25 international patents. He is the coauthor 
of Rate-Distortion Based Video Compression (Norwell, MA, USA: Kluwer, 
1997), Super-Resolution for Images and Video (San Rafael, CA, USA: Clay-
pool, 2007), Joint Source-Channel Video Transmission (San Rafael, CA, USA: 
Claypool, 2007), and Machine Learning, Optimization, and Sparsity (Cam-
bridge, U.K.: Cambridge Univ. Press, forthcoming). He has supervised 50 
Ph.D. dissertations so far.

Prof. Katsaggelos was the Editor-in-Chief of the IEEE Signal Process-
ing Magazine (1997–2002), a BOG Member of the IEEE Signal Processing 
Society (1999–2001), a member of the Publication Board of the Proceed-
ings of the IEEE (2003–2007), and he is currently a Member of the Award 
Board of the IEEE Signal Processing Society. He is a Fellow of the Interna-
tional Society for Optics and Photonics (SPIE; 2009) and the recipient of 
the IEEE Third Millennium Medal (2000), the IEEE Signal Processing Soci-
ety Meritorious Service Award (2001), the IEEE Signal Processing Society 
Technical Achievement Award (2010), an IEEE Signal Processing Society 
Best Paper Award (2001), an IEEE ICME Paper Award (2006), an IEEE ICIP 
Paper Award (2007), an ISPA Paper Award (2009), and a EUSIPCO paper 
award (2013). He was a Distinguished Lecturer of the IEEE Signal Process-
ing Society (2007–2008).


	Compressive sensing super resolution from multiple observations with application to passive millimeter wave images
	1 Introduction
	2 Modeling
	3 Problem formulation
	4 A super-resolution from compressed sensing algorithm
	5 Experimental results
	5.1 Simulated images
	5.1.1 Compressed sensing reconstruction
	5.1.2 Registration parameter estimation
	5.1.3 Super resolution reconstruction
	5.1.4 The general case

	5.2 Real images
	5.3 Real passive millimeter wave images

	6 Conclusions
	Acknowledgments
	Appendix A Supplementary material
	References


