
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. XXX, NO. XXX, JULY 2016 1

Joint Data Filtering and Labeling using Gaussian
Processes and Alternating Direction Method of

Multipliers
Pablo Ruiz, Student Member, IEEE, Rafael Molina, Senior Member, IEEE,

and Aggelos K. Katsaggelos, Fellow, IEEE

Abstract—Sequence labeling aims at assigning a label to every
sample of a signal (or pixel of an image) while taking into account
the sequentiality (or vicinity) of the samples. To perform this task,
many works in the literature first filter and then label the data.
Unfortunately, the filtering, which is performed independently
from the labeling, is far from optimal and frequently makes
the latter task harder. In this work, a novel approach which
trains a Gaussian Process (GP) classifier and estimates the
coefficients of an optimal filter jointly is presented. The new
approach, based on Bayesian modeling and Alternating Direction
Method of Multipliers (ADMM) optimization, performs both
tasks simultaneously. All unknowns are treated as stochastic
variables which are estimated using Variational Inference and
filtering and labeling are linked with the use of ADMM. In the
experimental section synthetic and real experiments are presented
to compare the proposed method with other existing approaches.

Index Terms—Classification, Filtering, Gaussian Processes,
Bayesian Modeling, Variational Inference, ADMM.

I. INTRODUCTION

THE accelerated acquisition of data has by far exceeded
the human capacity to transform them into information.

This problem is shared by most problems of 21st century
science. The concept of Big Data [1] includes acquisition,
storage, search, sharing, analysis and visualization of the data.
The work of the data scientist focuses primarily on analysis
and visualization, for which it is necessary to develop efficient
algorithms to extract useful information. Machine Learning
[2], [3] provides powerful tools to solve various problems
such as regression, classification, clustering, and different
perspectives to address these problems.

Many classification tasks are oriented towards performing
sequence labeling, that is, assigning a label to every sample of
a signal (or pixel of an image) while taking into account the
sequentiality (or vicinity) of the samples. This task is normally
approached by first filtering the data and then performing
classification. For instance, a super resolution method can be
applied to a multispectral image [4] followed by the applica-
tion of a classification method on the improved multispectral
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image [5]; or an improved passive millimeter-wave image can
be obtained [6] followed by an object detection procedure [7].

The use of spatially localized oscillating functions as linear
feature extractors is ubiquitous across systems dealing with
images, with a wide range of applications in computer vision
and image processing. These filters, see [8] for their motivation
in the visual cortex context, are in the form of filter banks,
dictionaries or visual vocabularies, and they emerge when
different learning machines are applied to natural images, see
for instance [9]. While different criteria have been proposed to
obtain such functions their remarkable success may be related
to their intrinsic relevance to a fundamental problem of object
classification in vision.

A variety of methods in vision employ filterbanks, where
the main goal in general is the accurate representation of data
instead of classification. For instance, unsupervised learning
leads to this kind of filterbanks, but these approaches are not
related to classification. Bag of words approaches in computer
vision use this kind of filterbanks as a first stage in classifica-
tion (e.g., SIFT-like features [10]), but these are heuristically
defined, fixed, and not optimized together with the classifier.
Enforcing sparsity via these filterbanks leads to powerful priors
on images, which in turn provide good results in common
image processing tasks such as denoising, inpainting, etc.
However, when aiming at optimal classification, it is not clear
if sparsity is a necessary condition or how it should be used
[11], [12].

The recognition of real world scenes in images is a chal-
lenging problem with important consequences in content based
image retrieval, object detection, and image understanding,
among others. Scene recognition entails tagging the scene
with a finite set of labels which provides information about
its semantic category. In [13] a holistic descriptor, GIST, was
introduced to label natural images in several categories. GIST
is an attribute vector that represents different global properties
of the image based on low-level features computed using a
frequency representation of the image. Each descriptor value
is computed using a linear regression model on the feature
values.

Formally, we assume that we have access to a multichannel
sequential signal or multichannel sequential features extracted
from the signal. We use the term “multichannel features” to
refer to both concepts for simplicity. Let Zori = [z1, . . . , zP ] be
the matrix including the P input features, where each feature
zj is of length B. Instead of performing the classification
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task directly on the features Zori, our goal is to compute
new features Xori = [x1, . . . ,xP ] so as to optimize the
classification performance. Zori and Xori can be related in
two different ways. The first method, referred to as analysis
representation, obtains Xori as a linear transformation of Zori,
leading to

x = Hz, (1)

where x and z are column vectors obtained by lexicograph-
ically ordering Xori and Zori, respectively. In this case, H
has the interpretation of a linear filterbank which needs to
be estimated.

A second method, referred to as synthesis representation,
aims at representing Zori by the use of a dictionary that has
to be learnt from a set of samples, that is,

Zori = DXori. (2)

The learnt dictionary D is then used on all the samples to
obtain the new representation. The synthesis representation
problem is related, for instance, to the use of discriminative
Gaussian Process Latent Variable Models (GPLVM) [14],
where a linear discriminant prior on the latent variables is
introduced and bears some connections with learning discrim-
inative dictionaries (see, for instance, [15], [16]). Here, we
will not explore this approach and only address the analysis
representation.

The analysis representation problem appears in many signal
reconstruction problems. For instance, it can be used to
improve the classification of ElectroEncephaloGraphic (EEG)
data in Brain-Computer Interfaces (BCI) [17] and to dis-
cover causality interaction in functional Magnetic Resonance
Imaging (fMRI) [18]. In remote sensing, sensors mounted
on satellites or airborne platforms acquire information on
the energy reflected by the Earth. The acquired images are
generally multispectral/hyperspectral, and are very valuable in
terrain analysis but lead to challenging classification problems.
The analysis representation is also present in problems where
feature vectors have a sequential structure or consist of features
with sequential structure. For instance in image segmentation
or texture classification an image is locally preprocessed as-
signing to each pixel a vector with the output of different local
and global filters [19]. This is the case when histogram-based
features are used in problems like human detection where
an image is divided into small spatial regions (cells) and a
local 1-D histogram of gradient directions or edge orientations
over the cells is calculated, leading to the Histogram of
Oriented Gradient (HOG) descriptor [20]. Another example
is the Bag of Word (BoW) features in image classification or
categorization [21].

The idea of jointly optimizing a filter and a classifier dates
back to the 1990s within the field of artificial neural networks.
It was, for instance, used in convolutional networks [22] or to
define a neural model for temporal processing [23]. Recently,
Flamary et al. [24] presented a system where the filters
are learnt jointly with a Support Vector Machine (SVM) to
perform classification. Following the same line, we proposed
a Bayesian framework to estimate the filterbank jointly with
a Gaussian Process (GP) classifier [25].

In this paper we use a different model from the one
presented in [25] to combine filter estimation with GP classifi-
cation in a Bayesian framework as explained next. Variational
inference is used to simultaneously learn the classifier, the
optimal filterbank coefficients, and the model parameters.

The key step linking the filter estimation with the GP
classifier is to enforce the solution to satisfy the constraint in
Eq. (1). To do that in [25], we utilized a parameter ν ∈ R+,
which was increasing at each iteration of the algorithm.
Meanwhile the model we are proposing here, is capable
of enforce this constraint automatically. To achieve this we
introduce a new variable in the Bayesian framework, which
follows a probability distribution based on the Alternating
Directional Method of Multipliers (ADMM) [26]. ADMM is
often utilized to transform a constrained optimization problem
into an unconstrained one through the use of the augmented
Lagrangian. The GP Classifier prior has also been modified. In
[25] we introduced a parameter in order to guarantee the kernel
matrix being non-singular. In this work we have followed the
solution proposed by Rasmussen et al. [27], which in our
opinion, is more appropriate for applying the model to real
situations. The main advantage in this work is that, unlike
either [24] or [25] where the parameters must be set in
advance, our new model leads to a parameter-free algorithm.

Finally, in the experimental section we apply the proposed
method to pixel-labeling in remote sensing images, where,
given a small set of training samples, the goal is to label the
remaining pixels automatically. There are many approaches to
this problem (see [28] and [29] for a complete review). Very
few however tackle the filtering/classification problem, with
the exception of [24] and [30].

The rest of this paper is organized as follows. In Section II
Bayesian modeling is presented for the analysis representa-
tion on images. In Section III, once our modeling has been
introduced, we relate it to other approaches for solving the
same problem. In Section IV Variational Inference is per-
formed and the proposed algorithm is presented. Details on the
initialization of the algorithm are provided in Section V. The
classification rule is introduced in Section VI. In Section VII
experimental results are presented and finally Section VIII
concludes the paper.

II. BAYESIAN MODELING

Let us assume that during the training phase of a labeling
problem we have access to N < P training vector features
z1, . . . , zN and their corresponding labels y = [y1, . . . , yN ]T ,
with yi ∈ {0, 1}. We assume here that each zi is of length B.
That is, we have access to N , B-band observations. We also
assume that we have access to a k×k window around each zi.
Notice that although we are formulating here a spatial domain
problem, it can be easily extended to other dimensions.

In order to improve labeling performance, the observed
features are transformed into new ones by filtering each band
with a spatial filter ai ∈ Rk2 , i = 1, . . . , B, which has to be
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estimated. In other words, we have

X = AZ =


aT1 0 . . . 0
0 aT2 . . . 0
...

...
. . .

...
0 0 . . . aTB



z1,1 z1,2 . . . z1,N

z2,1 z2,2 . . . z2,N

...
...

. . .
...

zB,1 zB,2 . . . zB,N

 ,
(3)

where each zi,j is a column vector of size k2 containing
the neighborhood of the j-th sample in the i-th band. We
also define Zi = [zi,1, . . . , zi,N ], i = 1, . . . , B which will be
used in our derivations. To reduce the number of coefficients
to be estimated in A, we only perform intraband filtering.
Interband filtering is not performed because the classifier
utilizes multiband information.

Our filtering/labeling task becomes then equivalent to es-
timating A and classifying the data using the new features
X.

To model the classification function relating each sample xj
to its corresponding label yj we follow a two stage procedure.
Firstly, we introduce a set of latent variables f = [f1, . . . , fN ]
which are related to each yj by a sigmoid function σ(fj) =
1/(1 + e−fj ) and write the probability model

p(y|f) =

N∏
j=1

(
1

1 + e−fj

)yj ( e−fj

1 + e−fj

)1−yj
. (4)

We are using here the sigmoid function to transform fj to
a value in the interval [0,1]. Notice that other functions like
the probit function could also be used, see [27] and [31] in
the GP context.

Secondly, we relate f to X using the following Gaussian
process prior for f

p(f |X, γ) = N (f |0, γ−1K), (5)

where γ is a precision parameter to be estimated and K ∈
RN×N is a positive semidefinite kernel matrix whose entries
are calculated using a kernel function Kij = k(xi,xj). In this
work we explore Linear and Gaussian kernels (see [31] for
more details) which are the most commonly utilized kernels
in the GP literature.

Not much prior information is available for modeling the
filterbank. For this reason, in [24] only a quadratic regulariza-
tion term is added to the objective function, in order to prevent
overfitting. Following this approach and using the Bayesian
framework we write

p(A|α) =

B∏
i=1

p(ai|αi) =

B∏
i=1

N (ai|0, α−1
i Ik2), (6)

where α = (α1, . . . , αB)T are precision coefficients to be
estimated.

So far we have modeled the GP based classification and fil-
ter estimation independently; however, we link both problems
by solving the constrained problem

(f̂ ,γ̂, Â, α̂) =

argmaxf ,γ,A,αp(y|f)p(f |X, γ)p(A|α)p(α)p(γ),

subject to X = AZ. (7)

Observed  Unknowns  

X

y

f

U

A

� �↵

Fig. 1. Graphical model for the filtering/labeling problem, in which we
assume that U and y are observed

To transform the constrained problem in Eq. (7) into an uncon-
strained one, we use the generalization of ADMM proposed
in [32]. Consider the following pseudo-observation model

p(U|A,X, β) ∝ β NB2 exp

(
−β

2
‖U− (AZ−X)‖2F

)
, (8)

where β is a precision parameter to be estimated, ‖·‖F denotes
the Frobenius norm and U is the matrix containing the scaled
Lagrange multipliers associated with the equality constraint
of the optimization problem in Eq. (7). Notice that since Z
is fixed, we have removed it from p(U|A,X, β). The energy
of this distribution is obtained from the objective function in
[26] (see Section IV-C for an extended justification).

In Fig. 1 we assume that U, the scaled Lagrange multipliers,
together with y are observed and we show the graphical model
associated with our filtering/labeling problem.

Using a flat, improper prior on X as well as on the model
parameters α, β and γ, the joint distribution can then be
written as

p(y,U,Θ) = p(α)p(β)p(γ) (9)
× p(A|α)p(X)p(U|A,X, β)p(f |X, γ)p(y|f),

where Θ = {f , {ai}Bi=1,X,α, β, γ}.

III. RELATED MODELS

In this section we provide additional insights into the
proposed model and relate it to other filtering/classification
models in the literature.

In Fig. 2 we show how our method works. For the jth pixel,
the inputs are the neighborhood vectors zi,j with i = 1, . . . , B.
The new feature xij is then calculated as a linear combination
of the values in zi,j using the weights defined by the filter
ai, whose components are denoted by ali, with l = 1, . . . , k2.
Finally, a GP classifier uses the new features to assign a label
to the jth pixel.

The question we address in this paper is how the filters
should be chosen so as to improve the classifier performance.
The first option is to consider no-filtering, that is, let k = 1
and a1

i = 1, i = 1, . . . , B. In this case, the input features
to the classifier are the jth pixel intensity values (or in
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general the original features unaltered). This is the standard
GP classification which we denote by GPC.

Another option is to use heuristics. A filter could be chosen
(i.e., select the values ali) based on visual properties of the
image. That is, filtered images are sought after where the class
of interest can be easily recognized visually. For instance,
Gómez-Chova et al. [30] use a 9 × 9 filter to eliminate
multiplicative noise in a multispectral image. After the input
image has been filtered, the new image is used to train a
standard GP classifier.

The problem of using non-tailored filtering as a preprocess-
ing step is that the filters are not necessarily optimal with
respect to classification, that is, it is not guaranteed that the
best classification performance will be attained. As we will
see in Section IV, our method merges both, filter estimation
and GP training, in one inference procedure. This procedure
does not only ensure an increase or the “highest” classification
performance, but also provides us with additional information
on the problem conveyed by the estimated filter coefficients.

To link filter estimation and GP training, we use ADMM
[26]. As we will see in Section IV-C, ADMM introduces the
scaled Lagrange multiplier term in the objective function, to
transform a constrained problem into an unconstrained one.
From a Bayesian perspective, this is equivalent to considering
the pseudo-observation model in Eq. (8) [32]. In [25] we
proposed a different way to link filter estimation and GP
classification. Although the two formulations look similar,
they are conceptually very different. While here we solve
a constrained problem, in [25] we solved a regularization
problem. Instead of considering Eq. (8), in [25] we introduced
the following prior model on X:

p(X|A, ν) ∝ exp
{
−ν

2
‖X−AZ‖2F

}
. (10)

Notice that the constraint X = AZ is only satisfied when
ν →∞. However, if ν is too high, the GP model parameters
are not estimated well. To address this problem, we used in
[25] the solution proposed in [33]. Unfortunately, the way ν
should go to infinity depends on the problem and requires
parameter tunning. Another solution, proposed in [32], is to
fix ν; however for the pixel labeling problems it does not lead
to good results. In this work we provide for the first time an
estimation procedure for the precision parameter in Eq. (8).

We want to emphasize here the link between probabilistic
modeling and ADMM optimization. We believe that this
connection has not been sufficiently explored in the literature
and could lead to the solution of very interesting and complex
problems.

So far, we have used a GP classifier, but as Fig. 2 indicates
we could utilize any other classifier instead, such as, Logistic
Regression (LR). When LR is used we have a (simple) neural
network with one convolutional layer [22]. Filter and LR
coefficients can be estimated at the same time using backward
propagation. Notice that we can also consider more elaborate
neural networks. This will be explored in the experimental
section and the methods will be named Logistic Regression
Filtering (LRF) and Neural Networks Filtering (NNF).

We would like to mention that the filtering/classification
problem has also been recently addressed in [24], that is, a

zk2

B,jz1
B,j z2

B,j

a1
B a2

B ak2

B

. . .z1
1,j

z1,j

z2
1,j zk2

1,j

a1
1 a2

1 ak2

1

x1j

. . .. . .

zB,j

xBj

yj

Gaussian Process

Fig. 2. Representation of filtering and GP classification system.

Support Vector Machine (SVM) is used instead of a GP in
Fig. 2. The authors define the objective function of the SVM
on AZ (instead of Z), and add a regularization term on the
filter coefficients A. They develop an iterative algorithm based
on gradient descent to optimize the objective function. This
method is named Support Vector Machine Filtering (SVMF)
in our experiments.

The use of GPs, and in general probabilistic classification
models, has advantages over non-probabilistic ones. All its
parameters can be automatically estimated from the data, while
SVMs require manual parameter tuning. As we will see in the
experimental section, this significantly increases the computa-
tional cost of the method proposed in [24]. Furthermore, while
GP and SVM classifiers use kernel functions to solve non-
linear classification problems, NN classifiers need to select
the architecture which, together with the activation function,
will provide a solution to the non-linear problems. This is
usually a difficult task and must be performed by expert
users. In summary, GP allows us to develop, based on a
sound framework, an algorithm capable of addressing filtering
and non-linear classification problems, whose parameters are
automatically estimated from the samples.

IV. VARIATIONAL INFERENCE

In the Bayesian framework, if we knew the scaled Lagrange
multipliers U for our filtering/labeling problem our goal would
be to find

p(Θ|y,U) =
p(y,U,Θ)

p(y,U)
. (11)

However, since p(y,U) can not be calculated, this posterior
distribution must be approximated. In this work we use Vari-
ational inference (see [34] for details and application areas),
and approximate the posterior by the distribution

q̂ (Θ) = arg min
q(Θ)

KL(q(Θ)‖p(Θ|y,U)), (12)
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where the Kullback-Leibler divergence is given by

KL(q(Θ)‖p(Θ|y,U)) =

∫
q(Θ) log

(
q(Θ)

p(Θ|y,U)

)
dΘ =∫

q(Θ) log

(
q(Θ)

p(y,U,Θ)

)
dΘ + const. (13)

This quantity is always non negative, and equal to zero, if and
only if, q(Θ) and p(Θ|y,U) coincide.

Since q(Θ) is too general, we need to include constraints
on it. In this paper we use the mean field approximation [35]
and constrain the posterior to be of the form

q(Θ) = q(f)q(X)q(α, β, γ)

B∏
i=1

q(ai). (14)

We additionally constrain q(X) and q(α, β, γ) to be degener-
ate.

Due to the form of the joint likelihood defined in Eq. (4),
the KL divergence cannot be evaluated. To solve this problem
we bound the joint likelihood in Eq. (4), using the variational
lower bound [31] [36]

ln(1 + ev) ≤ λ(ξ)(v2 − ξ2) +
v − ξ

2
+ ln(1 + eξ), (15)

where λ(ξ) = 1
2ξ

(
1

1+e−ξ
− 1

2

)
. Thus we have

p(y|f) ≥ exp

{
(y − 1

2
1)T f − fTΛf

}
(16)

× exp

{
ξTΛξ +

1

2
1T ξ

} N∏
j=1

σ(−ξj) = F(y, f , ξ),

where ξ = (ξ1, . . . , ξN )T , Λ = Diag(λ(ξ1), . . . , λ(ξN )) and
σ is the sigmoidal function, and 1 denotes the vector of all
1’s. The inequality in Eq. (16) leads to the following lower
bound for the joint probability distribution:

p(y,U,Θ) ≥M(y,U,Θ, ξ) = (17)
F(y, f , ξ)p(U|A,X, β)p(f |X, γ)p(A|α).

Finally, the KL divergence in Eq. (13) is majorized by

KL(q(Θ)‖p(Θ|y,U)) ≤ KL(q(Θ)‖M(y,U,Θ, ξ)) + const.
(18)

Although a new set of unknowns ξ has been introduced, which
must be estimated, now the KL divergence between q(Θ) and
M(y,U,Θ, ξ) is mathematically tractable, and it can be used
to approximate the posterior distribution by q(Θ).

The solution to this optimization problem is given by [31]

log q̂(θ) = Eq(Θθ) [logM(y,U,Θ, ξ)] (19)

where θ ∈ Θ and Θθ = Θ \ θ.

A. Estimation of q(f), q(A) and q(X)

Since Eq(Θf ) [logM(y,U,Θ, ξ)] is a quadratic function on
f , its posterior distribution approximation is a Gaussian distri-
bution with mean and covariance matrix given by respectively

<f> = Σf

(
y − 1

2
1

)
, Σf =

(
γK−1 + 2Λ

)−1
. (20)

Notice that, depending on X, K can be singular. To overcome
this problem we follow the approach proposed in [27]. Using
the Sherman-Morrison-Woodbury identity, we have

Σf = γ−1K− γ−2KWBWK, (21)

where W = (2Λ)1/2 and B = (I + γ−1WKW)−1.
Since Eq(Θai

) [logM(y,U,Θ, ξ)], i = 1, . . . , B, are
quadratic functions on ai, the posterior distribution approxima-
tion for each filter is a Gaussian distribution with parameters

<ai> = ΣiβZi(Ui· + Xi·)
T , Σi =

(
βZiZ

T
i + αiI

)−1
,

(22)
where Xi· and Ui· denote the i-th rows of X and U,
respectively.

We derive the estimation of X for two widely used
kernels, linear and Gaussian. Since we assume that
q(X) is degenerate, in both cases we have to maximize
Eq(ΘX) [logM(y,U,Θ, ξ)] with respect to X. Taking deriva-
tives with respect to X, and equating them to 0 we obtain for
the linear kernel

XT =
(
γvvT − γ−1S− βI

)−1
β(UT − ZT<A>T ), (23)

where v = K−1<f> and S = WBW. For the Gaussian
kernel we have

xij =

∑N
t 6=j etjxit

(
γ
σ2 vjvt − 1

γσ2 stj

)
+ β(aTi zi,j − uij)∑N

t6=j etj

(
γ
σ2 vjvt − 1

γσ2 stj

)
+ β

,

(24)
where σ2 is the Gaussian kernel parameter, vj , stj and
uij are entries of v,S, and U respectively, and etj =
exp

{
− 1

2σ2 ‖xt − xj‖2
}

.
Notice that to calculate v, K−1 is again required. Using

Eqs. (20), (21) we have

v = K−1<f> =
(
γ−1I− γ−2SK

)(
y − 1

2
1

)
, (25)

which overcomes the possible singularity of K.

B. Parameter estimation

Since q(α, β, γ) is a degenerate distribution, the es-
timation of α, β, γ and ξ are obtained by maximizing
Eq(f)q(A)q(X) [logM(y,U,Θ, ξ)], which produces the follow-
ing estimates

αi =
K

<ai>T<ai>+ Tr [Σi]
, (26)

γ =
N

<f>Tv + Tr[K−1Σf ]
, (27)

ξj =
√
<fj>2 + Σf (j, j). (28)
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C. Pseudo-observations and associated precision updates

Once all of the above distributions have been updated we
need to recalculate the pseudo-observations, U, in Eq. (8) and
their associated precision parameter, β.

To provide insight on how these parameters are updated, let
us consider the following optimization problem

min
A,X

M1(A) + M2(X)

s.t. X = AZ,
(29)

where

M1(A) =
1

2

B∑
i=1

αi‖ai‖22, (30)

M2(X) =
1

2
log |K|+ γ

2
<f>TK−1<f>+

γ

2
Tr[K−1Σf ],

(31)

and again the dependency of K on X has not been made
explicit for ease of notation.

To solve the optimization problem in Eq. (29) using
ADMM, we form the augmented Lagrangian

Lβ(A,X,L) = M1(A) + M2(X)

+ Tr[LT (X−AZ)] +
β

2
‖X−AZ‖2F (32)

and utilize the following iterative procedure

An+1 := arg minA Lβ(A,Xn,Ln)
Xn+1 := arg minX Lβ(An+1,X,Ln)
Ln+1 := Ln + β(Xn+1 −An+1Z).

(33)

Using the scaled multipliers, U = L/β, we can write (see
[26] chapter 3, for details)

Tr[LT (X−AZ)]+
β

2
‖X−AZ‖2F =

β

2
‖U− (AZ−X)‖2F −

β

2
‖U‖2F, (34)

and then the iterative procedure in Eq. (33) becomes

An+1 := arg minA M1(A) + β
2 ‖U− (AZ−X)‖2F

Xn+1 := arg minX M2(X) + β
2 ‖U− (AZ−X)‖2F

Un+1 := Un − (An+1Z−Xn+1).
(35)

The scaled multipliers correspond to our pseudo observa-
tions in Eq. (8). Consequently, in the proposed estimation
procedure all unknown posterior approximations are updated
using these pseudo observations and then U is updated using
the current filtered features and mean of the filter coefficients,
that is,

Unew = Uold − (<A>newZ−<X>new). (36)

Furthermore, the Bayesian framework allows us to
estimate the associated precision parameter β without
user tuning. Taking the derivative with respect to β of
Eq(f)q(A)q(X) [M(y,U,Θ, ξ)] and equating it to 0 we obtain

βnew =
NB

‖Unew − (<A>newZ−Xnew)‖2F + T
, (37)

where

T =

B∑
i=1

Tr[ZTi ΣiZi]. (38)

We have experimentally observed (see Section VII), that the
sequence of pseudo-observations in Eq. (36) converges to zero
and that the β sequence in Eq. (37) increases to infinity. Both
conditions guarantee that at convergence the estimated filter
coefficients and the new obtained features satisfy

<A>Z−<X> = 0. (39)

The whole estimation process is presented in Algorithm 1.

V. ALGORITHM INITIALIZATION

Since the KL divergence is a convex function of q(θ)
[37], for a given set of pseudo-observations U and preci-
sion parameter β, the convergence of Algorithm 1, without
updating U and β, is guaranteed. However, U and β are
updated at each iteration which implies that the objective
function is not convex, and we cannot prove that Algorithm 1
always converges. For this reason, an important issue is the
initialization of Algorithm 1, as different initializations can
lead to different solutions. In this section we provide an
initialization method which has led to satisfactory estimations
of all the unknowns, and has not presented any convergence
problems in the carried out experiments.

At convergence we would like for Algorithm 1 to provided
filtered samples from different classes which are widely sepa-
rated by the classifier. Observing that X is the link between the
classifier and the filter estimation, we start with an X for which
both classes are fully separated. Then the filter coefficients are
estimated to transform Z into X. In the experiments we have
initialized each column of X0 to 1 ∈ RB for the samples in
Class 1, and −1 for the samples in Class 0.

For the classifier we start with q0(f) ∼ N (0, I). Then we
could use Eq. (27) to initialize γ0; however, since K may be
singular we use the following initialization γ0 = N/(

∑
i d
−1
i ),

where di are the non-zero eigenvalues of K. We also use
ξ0 = 1. The filter coefficient distributions are initialized
using q0(ai) = N (ai|0, I), and α0 = 1. We initialize
the pseudo-observations using U0 = 0 and finally utilize
Eq. (37), with X0, q0(ai) and U0 for the initialization of
β0 = NB/(‖X0‖2F + Tr [ZTZ]).

VI. CLASSIFICATION RULE

Given a new sample and its corresponding neighborhood
Z∗, we use the estimated filter to obtain its filtered version
x∗ = <A>Z∗. The estimated GP classifier allows us to
calculate the probability of belonging to Class 1 using

p(y∗ = 1|y) =

∫
p(y∗ = 1|f∗)p(f∗|y)df∗, (40)

where p(y∗ = 1|f∗) = σ(f∗) and

p(f∗|y) =

∫
p(f∗|f)p(f |y)df ≈

∫
p(f∗|f)q(f)df . (41)
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Algorithm 1 Gaussian Processes Filtering (GPF)

Require: X0, γ0, ξ0,A0,α0,U0 and β0.
1: repeat
2: Calculate qn+1(f) using Eq. (20).
3: Calculate classifier parameters γn+1 and ξn+1 using

Eq. (27) and (28) respectively.
4: Calculate the filterbank posterior qn+1(ai), i =

1, . . . , B using Eq. (22).
5: Calculate the filterbank parameters αn+1 using

Eq. (26).
6: Calculate Xn+1 using Eq. (23) (Linear kernel) or

Eq. (24) (Gaussian kernel).
7: Calculate Un+1 using Eq. (36).
8: Calculate βn+1 using Eq. (37).
9: until Convergence

To calculate p(f∗|f) we notice that

p(f , f∗) ∼ N
(
0,

[
γ−1K γ−1h
γ−1hT γ−1c

])
, (42)

where hT = (k(x∗,x1), . . . ,k(x∗,xN )) and c = k(x∗,x∗);
from this distribution we obtain the following conditional
distribution

p(f∗|f) = N
(
f∗|hTK−1f , γ−1(c− hTK−1h)

)
. (43)

Using the above equation in Eq. (41) we obtain

p(f∗|y) = N
(
f∗|hTv, γ−1c− γ−2hTSh

)
. (44)

Finally using the approximation in [31], (chapter 4) we have

p(y∗ = 1|y) ≈ σ
(
κ(γ−1c− γ−2hTSh)hTv

)
, (45)

where κ(s) = (1 + πs/8)−1/2. Thus the following classifica-
tion rule is obtained

y∗ =

{
1 if p(y∗ = 1|y) ≥ 0.5
0 if p(y∗ = 1|y) < 0.5

. (46)

Notice that since we can calculate the probability of belong-
ing to a given class, it is easy to extend the proposed method
to multiclass problems by using an one-vs-all approximation.
For each new sample, its probability of belonging to each class
is calculated, and then, the sample is assigned to the class with
maximum probability.

VII. EXPERIMENTAL RESULTS

In this section we show how the proposed method, hence-
forth denoted by GPF, works on synthetic and real data sets.
GPF was implemented in MATLAB c© and it is available
at http://decsai.ugr.es/vip/resources/GPF.html. We compare it
with the methods described in Section III: GPC [27], LRF
[22], SVMF [24] and NNF [22]. In the experiments we have
used for SVMF its MATLAB c© implementation available in
the website of the authors. For GPC we use the classification
part of the method developed here, and for LRF and NNF we
use the Neural Networks Toolbox of MATLAB c©.

A main drawback of SVMF, is that its parameters must be
estimated ahead of time. In order to perform a fair comparison,

a) b)

Fig. 3. a) 25× 25 zoomed groundtruth in synthetic experiment, b) 25× 25
zoomed observation in synthetic experiment.

the SVMF parameters are set using 5-fold cross-validation. For
NNF, in addition to the first convolutional layer, we consider
four fully connected layers with B+4 nodes in each layer. The
neural networks for LRF and NNF were initialized using the
Nguyen-Widrow method, trained using Levenberg-Marquadt
algorithm, and sigmoidal functions were used as activation
functions. Notice that with GPF we estimate all the model
parameters as well as the latent variables. All experiments
were run on an Intel i7@2.80 GHz processor.

A. Synthetic Experiment

For the first experiment we use the following synthetic
dataset: the groundtruth is an image of size 100× 100 pixels,
where black and white pixels alternate in a chess table pattern.
A zoomed version of the groundtruth is shown in Fig. 3a.
Classes C0 and C1 denote black and white pixels, respectively.

Given the groundtruth, features are generated as inde-
pendent realizations from a N (0.25, σ2) and N (0.75, σ2),
for classes C0 and C1, respectively. In Fig. 3b we see the
zoomed observed features for σ = 0.4. Notice that there are
pixels which cannot be easily classified; we therefore need
neighboring information to perform a successful classification.

We start by studying the influence of the training set size
on the final performance of our algorithm. We set σ = 0.4 and
consider training set sizes N = 8, 16, 24, 32, 40 with the same
number of samples for each class. For the test set we randomly
selected 1000 samples for each class. The experiments were
repeated 10 times. In Fig. 4 we plot the obtained mean Overall
Accuracies (OA) for varying filter and training set sizes. Notice
that for 7× 7 and 9× 9 sizes, the mean OA is always 100%.
For 3× 3 and 5× 5 sizes the curves increase until they reach
the maximum at N = 32, and then they decrease slightly for
N = 40.

Next, we study the effect of noise on the perfor-
mance of the algorithm. We generated datasets for σ =
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8} and performed training and
testing randomly selecting 20 and 1000 pixels from each class,
respectively. The experiments were repeated 10 times. In Fig.
5 we observe that for σ = 0.2 GPF obtains 100% mean OA
for all filter sizes. However, all curves decrease with higher
noise. Notice that the values of OA decrease faster for smaller
filter sizes.
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TABLE I
OVERALL ACCURACIES (%) AND MEAN TIMES (SECONDS) FOR SYNTHETIC EXPERIMENT

3× 3 5× 5 7× 7 9× 9
Realizations GPC NLM LRF NNF SVMF GPF NLM LRF NNF SVMF GPF NLM LRF NNF SVMF GPF NLM LRF NNF SVMF GPF

1 74.20 92.60 87.35 95.20 95.60 96.90 97.40 98.80 99.95 99.15 99.95 99.45 99.60 100 99.15 100 99.85 100 100 99.25 100
2 73.45 93.10 90.85 90.10 95.00 95.60 96.70 95.90 99.20 98.80 99.85 98.70 99.00 99.95 99.00 100 99.40 99.95 100 99.20 100
3 72.05 90.55 90.35 96.10 95.35 96.05 96.25 97.20 99.40 98.80 99.95 98.20 99.60 100 99.05 100 99.15 100 99.95 99.20 100
4 72.15 90.95 91.80 95.45 95.05 95.80 96.45 97.30 99.25 99.35 99.85 98.85 95.70 100 99.40 100 99.50 100 99.95 99.35 100
5 73.80 92.95 85.50 92.45 95.50 96.15 97.30 97.60 99.70 98.70 99.70 98.75 97.55 100 99.20 100 99.55 100 99.95 99.25 100
6 73.35 91.45 88.80 93.55 93.80 95.55 96.80 93.75 99.30 98.85 99.70 98.50 99.00 100 99.35 100 99.35 100 100 99.25 100
7 74.20 93.35 92.40 91.95 95.65 96.25 98.15 99.15 99.90 98.50 99.95 99.40 99.95 100 97.90 100 99.75 100 100 98.90 100
8 74.25 93.60 94.60 94.30 96.20 97.00 97.40 98.70 99.90 99.15 99.95 98.95 99.15 100 99.05 100 99.45 100 100 98.60 100
9 72.85 91.40 92.35 95.30 95.65 96.15 96.35 95.30 99.85 99.65 99.90 98.50 97.40 98.40 97.80 100 99.15 99.95 100 99.30 100
10 73.10 92.15 93.85 94.95 94.80 96.15 97.30 97.20 99.85 99.30 99.85 99.15 97.15 100 99.60 100 99.65 99.90 100 99.35 100

Mean 73.34 92.21 90.78 93.93 95.26 96.16 97.01 97.09 99.63 99.025 99.865 98.84 98.41 99.83 98.95 100 99.48 99.98 99.98 99.165 100
Mean Times 0.178 101 0.26 0.29 13.132 0.02 106 0.21 0.28 15.725 0.041 106 0.22 0.29 18.857 0.105 106 0.21 0.27 22.733 0.199

Number of Samples
8 16 24 32 40
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Fig. 4. Mean OAs for GPF varying training set and neighborhood sizes in
the synthetic experiment.
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Fig. 5. Mean OAs for GPF with different noise deviations and filter sizes in
the synthetic experiment.

To compare GPF to other methods, σ is set to 0.4. Training
and testing were performed using 20 and 1000 randomly se-
lected pixels from each class, respectively, and the experiments
were repeated 10 times.

In addition to GPC, LRF, NNF, and SVMF, we also pre-
processed the image using a Non-Local Mean (NLM) filter
for denoising, and applied GPC to the filtered image. The real
value of σ was provided to NLM as input parameter. However,
notice that normally σ will be unknown.

Table I shows the performance of GPF, GPC, NLM, LRF,
NNF, and SVMF on the 10 realizations. Filters of 4 different
sizes: 3×3, 5×5, 7×7 and 9×9 were considered. GPF obtained
a mean OA of 96.16%, 99.87%, 100%, 100% for 3×3, 5×5,
7×7, and 9×9 filter sizes, respectively. In all the realizations
the OA was greater than 95% and for large enough filters (7×7
and 9 × 9), no errors were made in the test phase. The GPC
mean OA was 73.3%, that is approximately 22% less than
the worst GPF OA value. This result demonstrates that using
only the intensity value of a given pixel, it is not sufficient
to correctly classify samples in our synthetic example; the
classifier must make use of the neighboring information to

−1 −0.5 0 0.5 1 1.5 2

Class 0 Class 1

0.43 0.45 0.47 0.49 0.51

Class 0 Class 1

a) b)

0.2 0.35 0.5 0.65 0.8

Class 0 Class 1

0 1 2 3

Class 0 Class 1

c) d)

−15 −10 −5 0 5

Class 0 Class 1

−8.5 −5.5 −2.5 0.5 3.5

Class 0 Class 1

e) f)

−0.4 −0.2 0 0.2 0.4

Class 0 Class 1

g)

Fig. 6. Synthetic experiment: a) Histogram of the original test samples.
Histogram of the filtered test samples with: b) a mean filter, c) the NLM
filter, d) the SVMF filter, e) the LRF filter, f) the NNF filter, g) the GPF
filter.

perform well. The remaining methods use this information.
For 3 × 3, 5 × 5, 7 × 7 and 9 × 9 filter sizes, the obtained
mean OAs for NLM were 92.21%, 97.01%, 98.84%, 99.48%,
respectively, for LRF they were 90.78%, 97.09%, 98.41%,
99.98%, respectively, for NNF the mean OAs were 93.93%,
99.63%, 99.83%, 99.98%, respectively. Finally for SVMF
the obtained mean OAS were 95.26%, 99.025%, 98.95%,
99.165% for the mentioned above filter sizes respectively.
In all cases, GPF obtained the best mean OA, followed be
NNF and SVMF, while NLM and LRF close the ranking. It
is interesting to note that although NLM does not calculate
an optimal filter for classification, its performance is close to
LRF (even outperforms it for the 3× 3 case).

Let us graphically analyze the obtained results. In Fig. 6a we
plot the feature histograms of the test samples for both classes.
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Since both histograms overlap substantially, this explains the
low GPC performance. A classic pre-processing step in an
image classification problem such as the one considered here,
is to filter the original image with a mean filter. In Fig. 6b we
plot the histograms of the mean filtered test samples. As the
two histograms are almost fully overlapped, this will render
the classification task impossible for any classifier. It is an
example where using a non-optimal filter leads to a harder
classification problem. Figs. 6c and 6d show the histograms
of the filtered test samples using the 9 × 9 filters provided
by NLM and SVMF, respectively, for the 6th realization. The
NLM histograms are almost separated, however there are a
small set of samples around 0.5 that NLM filter could not
separate. The same applies to SVMF, both histograms are
almost separated; however samples in class C1 spread more
than samples in class C0, and some bins in the middle overlap.
Finally, Figs. 6e-g show the histograms when the test samples
were filtered using the 9×9 filters obtained by LRF, NNF and
GPF for realization 6. As it can be observed the histograms
are completely separated.

Let us now examine the training time for each method.
We observe in Table I that the GPF mean times for the 10
realizations were 0.02, 0.04, 0.11, and 0.2 secs. for 3 × 3,
5× 5, 7× 7, and 9× 9 filter sizes, respectively. GPC needed
on the average 0.17 seconds; this time is comparable to the
GPF 9×9 case. Notice that although GPF has more unknowns
to estimate, it was even faster than GPC for small filters. It is
due to the fact that at each iteration, the classes become more
separated, and GPF needed fewer iterations to converge than
GPC. NLM required around 100 secs. for training, because it
previously has to filter the image in a highly time consuming
way. The computation time for LRF and NNF is around 0.2
secs. for all the filter sizes, which is comparable to the worst
GPF time. For SVMF, the computation times were between
13.13 seconds for filters of size 3 × 3 and 22.73 for filters
of size 9× 9. SVMF required considerable time to obtain the
values of the parameters by cross-validation.

At the top row of Fig. 7 we plot the 3× 3, 5× 5, 7× 7 and
9 × 9 filters estimated by GPF at realization 6. We observe
that the coefficients were larger for pixels belonging to the
same class as the central pixel, while they were smaller for
pixels belonging to the other class. When the observations are
filtered using this filter we obtain the images in the middle row
of Fig. 7. Pixels in class C1 output high values while pixels in
class C0 smaller ones. Finally at the bottom of Fig. 7 we plot
the classification maps for each classifier. Notice that there are
some mistakes for 3× 3 and 5× 5 filter sizes.

In Fig. 8a we plot the Frobenius norm of the scaled
multipliers U for each iteration of Algorithm 1, for filter size
3× 3. It reaches the maximum at first iteration, and decreases
until zero after 8 iterations. In Fig. 8b we plot the values of
parameter β. It starts with a small value, which is increased at
each iteration of algorithm 1. At convergence, the Frobenius
norm of U is zero, and β reaches high values, which implies
that the constraint X = AZ is fulfilled.
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Fig. 8. Synthetic experiment: a) ‖U‖F at each iteration of Algorithm 1, b)
values of β at each iteration of Algorithm 1.

B. Multispectral Two-Class Image Classification

For the second experiment we used a multispectral image
of the city of Rome (Italy). This image was captured by
ERS2 SAR and Landsat TM sensors in 1995. The goal in this
classification problem is to distinguish between Urban (Class
C1) and Non-Urban (Class C0) pixels.

The image was acquired in the context of the Urban Expan-
sion Monitoring project [30]. It is of size 1440 × 930 pixels
and has 10 bands: 2 SAR backscattering intensities captured
with 35 days difference, the correlation between them which
is called the interferometric coherence, and the 7 multispectral
bands of Landsat TM sensor. In Fig. 10a we show a small part
(400×200 pixels) of the RGB bands of the image. A reference
land cover map provided by the Italian Institute of Statistics
(ISTAT) is also available, which was used for training and also
to measure the classifier performance. The reference map is
shown in Fig. 10b where yellow pixels belong to class urban,
blue pixels to class no-urban and red pixels have unknown
class.

For training, 100 pixels were randomly selected (50 samples
from each class) and 2000 pixels were used as the test set
(1000 for each class). The experiment was repeated 10 times
with different training sets.

Table II shows the OA obtained in all realizations and
the mean OA for the compared methods. In all cases, GPF
obtained OA higher than 93%, and mean OA of 94.25%,
94.77%, 94.70%, and 94.63% for 3 × 3, 5 × 5, 7 × 7, and
9 × 9 filter sizes, respectively. For GPC, the mean OA was
90.71%, which implies approximately 4% worse performance
than GPF. The mean OA for LRF was 81.06%, 81.59%,
82.25%, and 82.09% for 3 × 3, 5 × 5, 7 × 7, and 9 × 9
filter sizes, respectively. The mean OA for NNF was 90.47%,
91.72%, 90.02%, and 90.87% for 3 × 3, 5 × 5, 7 × 7, and
9 × 9 filter sizes, respectively. The mean OA for SVMF was
92.96%, 93.25%, 94.31%, and 94.26% for 3×3, 5×5, 7×7,
and 9× 9 filter sizes, respectively. Although SVMF obtained
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Fig. 7. Synthetic experiment: Top row shows the obtained filters for the different filter sizes. Middle row shows the filtered images obtained by filtering the
observation with filters at the top row. Bottom row shows the classification maps in each case where yellow represents Class 1 and blue Class 0.

better results in some cases, GPF obtained the best mean OA
in all cases.

In Table II we also show for each method the mean times
of the training phase. The fastest method was GPC with 0.41
seconds. GPF needed 5.80, 6.66, 10.67, and 20.96 secs., for
3 × 3, 5 × 5, 7 × 7, and 9 × 9 filter sizes, respectively. LRF
needed, for training, smaller times than the other methods:
2.40, 2.41, 2.52 and 2.76 secs. for 3 × 3, 5 × 5, 7 × 7, and
9× 9 filter sizes, respectively, while NNF needed 3.70, 3.56,
4.04 and 4.77 secs. for 3 × 3, 5 × 5, 7 × 7, and 9 × 9 filter
sizes, respectively. Again, due to the use of cross-validation
for parameter selection, SVMF needed much more time for
training: 185.95, 490.58, 948.72, and 1569.94 secs., for 3×3,
5× 5, 7× 7, and 9× 9 filter sizes, respectively.

We conclude that the proposed method is capable for
obtaining better results than LRF, NNF and SMVF. Moreover
although LRF and NNF were faster, GPF obtained much better
accuracies on a reasonable amount of time.

We believe that our method outperforms the others because
it takes into account the uncertainty of the estimates which
can be very relevant when few samples are available. Notice,
however, that when the training set is large, SVMF sometimes
outperforms our method, see Table II.

In Fig. 9 we plot the GPF mean OA for each filter size.
Unlike the synthetic experiment, the maximum OA is obtained

for a 5 × 5 filter. In this case, when a pixel is far from the
central pixel it does not provide useful information towards its
classification, and therefore the OA decreases when the filter
becomes larger.

Fig. 10c shows the original coherence band. Pixels corre-
sponding to the city (urban pixels) have larger values than
pixels belonging to class non-urban. That is, coherence is a
very useful feature to distinguish between both classes. The
coherence image is noisy, because ERS2 SAR images are
corrupted by multiplicative noise [30], which is transferred
to the coherence band when correlating both SAR bands. In
[30] the authors utilized a 9×9 filter to reduce the noise in the
coherence band. The obtained filtered coherence band image
is shown in Fig. 10d. This image is smoother than the original
one and the noise has been reduced.

To evaluate the classification methods, we randomly se-
lected 100 pixels for training (50 from each class) and 2000
pixels for testing (1000 from each class) from the original
and filtered coherence bands. These experiments were repeated
10 times with different training sets, and the obtained results
were the following: GPC obtained a mean OA of 80.38%
for the original coherence band; for LRF and NNF the mean
OA values were 79.21% and 84.23%, respectively; this OA
value reached 91.24% when using the filtered coherence band.
The filters estimated by SMVF and GPF on the original
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TABLE II
OVERALL ACCURACIES (%) AND MEAN TIMES (SECONDS) FOR MULTISPECTRAL TWO-CLASS IMAGE CLASSIFICATION PROBLEM.

3× 3 5× 5 7× 7 9× 9
Realizations GPC LRF NNF SVMF GPF LRF NNF SVMF GPF LRF NNF SVMF GPF LRFF NNF SVMF GPF

1 91.05 86.65 90.60 93.85 94.00 79.15 93.75 92.70 94.70 88.95 89.75 93.55 94.40 81.45 91.60 94.45 94.15
2 88.50 80.95 90.05 93.75 93.90 77.85 89.85 93.20 94.65 82.70 86.05 94.45 93.80 80.10 92.60 93.45 93.55
3 92.45 78.35 88.95 93.80 94.85 82.20 92.45 93.25 94.95 77.50 90.25 93.50 94.35 81.55 89.90 93.55 94.20
4 90.35 76.85 90.45 94.35 94.55 82.40 90.85 94.95 95.30 78.65 89.20 94.80 95.80 77.25 89.40 94.65 95.45
5 90.60 82.95 90.30 89.75 95.20 80.30 93.25 89.75 95.90 80.00 93.35 94.20 95.00 80.05 94.25 94.25 94.90
6 90.00 87.05 90.80 94.05 93.20 84.75 89.95 93.95 94.50 85.65 86.75 94.40 94.60 84.45 85.05 95.20 94.85
7 90.90 76.90 91.30 91.25 94.25 82.60 90.65 93.60 94.65 87.65 89.65 94.05 94.95 88.50 90.70 93.95 94.95
8 91.45 79.05 91.55 92.15 93.75 77.90 90.85 94.00 93.85 86.55 93.20 96.00 94.20 81.10 92.15 95.20 94.55
9 89.90 86.85 91.20 92.65 94.45 84.90 93.00 93.15 94.20 79.90 91.20 94.15 94.35 83.30 88.65 94.60 94.55
10 91.85 75.00 89.50 94.00 94.30 83.90 92.65 93.90 95.00 75.00 90.85 93.95 95.55 83.15 94.40 93.25 95.63

Mean 90.71 81.06 90.47 92.96 94.25 81.59 91.72 93.25 94.77 82.25 90.02 94.31 94.70 82.09 90.87 94.26 94.63
Mean Times 0.41 2.40 3.70 185.95 5.80 2.41 3.56 490.58 6.66 2.52 4.04 948.72 10.67 2.76 4.77 1569.94 20.96
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Fig. 9. Mean Overall Accuracies for different filter sizes, in the multispectral
image classification problem.

coherence band performed better with 93.5% and 93.64%
mean OA, respectively. In Fig. 10e, 10f, 10g, and 10h we
show the filtered coherence band using the filters provided
by LRF, NNF, SMVF and GPF for realization 9, respectively.
Notice that LRF obtained an almost unrecognizable image,
while NNF, SMVF and GPF better preserve some image
details; notice, for instance, that the Tiber river was almost
unnoticeable in Fig.10d, but it can be observed in 10f, 10g,
and 10h.

For each method, and realization 9, in Fig. 11 we plot
the obtained filters in both the spatial and Fourier domains
(top and bottom rows, respectively). In the Fourier domain
we observe that the resulting filter for LRF in Fig. 11a,
concentrates most of its energy in high frequencies, while for
NNF, SVMF and GPF in Figs. 11b, 11c and 11d, respectively,
are low-pass filters. Notice that SVMF and GPF filters are
very similar, and they also result in similar OAs.

C. Hyperspectral Multiclass Image Classification

In this experiment we evaluate the proposed method on
a multiclass classification problem. The dataset is an hyper-
spectral image from the city of Pavia (Italy). This image was
acquired by sensor DAIS9715, and has 40 bands in the spectral
range [0.5, 1.76]µm, with high spatial resolution (5m pixel). In
Fig. 12a we show bands [8, 3, 1] in false RGB. In this case the
goal is to solve a classification problem with 9 classes: WA-
TER, MEADOWS, PARKING LOT, BITUMEN, ASPHALT,
BARE SOIL, BRICK ROOFS, TREES, and SHADOWS. Fig.
12b shows the available groundtruth, which was used to select
the training set and measure the classification performance.

a) b)

c) d)

e) f)

g) h)

Fig. 10. Multispectral image classification experiment: a) Original RGB
image, b) Available groundtruth with Urban (YELLOW), No-urban (BLUE)
and unknown pixels (RED), c) Original coherence band, d) Filtered coherence
band obtained in [30], e) Filtered coherence band obtained by LRF, f) Filtered
coherence band obtained by NNF, g) Filtered coherence band obtained by
SVMF, h) Filtered coherence band obtained by GPF.
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Fig. 11. Obtained filters for coherence band in multispectral image classi-
fication experiment. Top row corresponds to spatial domain and bottom row
to Fourier domain. Columns correspond to the different methods: a) LRF, b)
NNF, c) SVMF, and d) GPF.
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To implement the multiclass GPF, we use the one-vs-all
approximation explained in Section VI. The same approxima-
tion was also used for the multiclass GPC. For LRF and NNF
we use a output layer of size 9 (number of classes), and a
softmax activation function. For SVMF we use the multiclass
one-vs-all approximation in [24].

For the training set, we randomly selected 270 samples (30
for each class) and 1800 samples for the test set (200 for each
class), and the filter size was set to 3×3. The experiment was
repeated 10 times to obtain unbiased results.

Table III shows the obtained OA for each method with 10
realizations. GPF achieved a mean OA of 96.94%; meanwhile
GPC obtained 95.75% and LRF obtained 80.88%. Notice that
LRF sometimes performs well, even it is the best method for
realization 4. However, in some cases its OA is around 65%.
We can conclude that LRF is very sensitive to the training
set, and if it is not trained with a good set of samples its
performance deteriorates. On the other hand NNF obtained a
mean OA of 96.65%, a result very close to GPF performance.
Surprisingly SVMF obtained 92.72%, approximately 3% less
than GPC. This is due to the fact that in an one-vs-all
approximation, SVMF calculates the distance of each sample
to the decision boundary and the sample is assigned to the class
with maximum distance. That is, unlike GPC, LRF, NNF and
GPF, SVMF does not take into account the uncertainty during
classification, which leads to a higher error rate.

The Confusion Matrix is a tool to demonstrate which classes
are more difficult to distinguish for a classifier. Its columns
represent the true classes while its rows the predictions, thus
the (i, j)-th entry is the number of samples belonging to the
j-th class, which the classifier assigns to i-th class. Fig. 13a
shows the mean Confusion Matrix when GPC is applied. This
matrix has 7 non-zero values outside the main diagonal. For
GPF the mean Confusion matrix is shown in Fig. 13b, which
only has 5 non-zero values outside the main diagonal. Notice
that in comparison with the GPC Confusion Matrix, GPF does
not make any classification errors for classes 3, 6, and 9,
but it makes some mistakes for classes 2, 4 and 5. Notice
the difference between the two methods for class 3 (BRICK
ROOFS) shown in Fig. 14. We also show the Confusion
Matrices obtained by the remaining methods in Figs. 13c,
(SVMF) 13d (LRF) and 13e (NNF). In all these cases are
more than 5 non-zero values outside the main diagonal.

Finally, for the brick roofs versus the rest, we have plotted
the histograms for the obtained posterior probabilities of
belonging to class brick roofs for the test samples. Bins close
to 0 and 1 have many more elements (over 200), but they have
been cut to better display the interesting part. In Fig. 14a, some
elements not belonging to class 3 (brick roofs) have posterior
probabilities of belonging to class brick roofs between 0.6 and
0.8. However when our GPF is used, all these samples have
probabilities less than 0.5, see Fig. 14b.

VIII. CONCLUSION

In many image classification tasks, the image is first filtered
to improve the separation between classes. However, a wrong
filter selection can produce the opposite effect, i.e., make the

a) b)
Water Meadows Parking lot Bitumen
Asphalt Bare soil Brick roofs
Trees Shadows Background

Fig. 12. a) False color Pavia hyperspectral image composed by bands [8, 3, 1],
b) ground truth showing classes in colors and background in gray.

TABLE III
OVERALL ACCURACIES (%) HYPERSPECTRAL MULTICLASS IMAGE

CLASSIFICATION PROBLEM

Realizations GPC LRF NNF SVMF GPF
1 94.94 84.77 96.22 91.22 96.50
2 96.27 64.77 96.83 92.33 97.61
3 96.05 96.38 96.44 94.33 96.44
4 94.83 97.11 96.38 91.33 96.33
5 94.67 73.88 97.22 90.94 96.61
6 96.72 84.66 97.38 92.61 97.61
7 96.00 62.22 95.66 91.88 97.27
8 95.50 95.44 96.33 92.72 97.33
9 95.50 63.88 97.11 94.11 96.61
10 96.95 85.66 96.94 95.72 97.05

Mean 95.75 80.88 96.65 92.72 96.94

classification harder. To solve this problem, in this work we
have proposed a Bayesian model which combines the training
of a Gaussian process classifier with an optimal filter bank
estimation. To link both procedures, we have used the Alter-
nating Direction Method of Multipliers by including a pseudo-
observation model in our Bayesian framework. ADMM has
allowed us to alternate between the estimation of classifier
parameters and filter coefficients. Its convergence has been
empirically established.

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
0

50

100

150

200
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
0

50

100

150

200
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
0

50

100

150

200

a) GPC b) GPF c) SVMF
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
0

50

100

150

200
1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9
0

50

100

150

200

d) LRF e) NNF
Fig. 13. Pavia hyperspectral image experiment: Mean Confusion Matrices
for a) GPC, b) GPF, c) SVMF, d) LRF, e) NNF.
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Fig. 14. Pavia hyperspectral image experiment: a) Histogram of probabilities
of belonging to Class BRICK ROOFS with multiclass GPC, b) Histogram of
probabilities of belonging to Class BRICK ROOFS with multiclass GPF.

To estimate all unknowns we have utilized variational
inference and approximated the posterior distribution by min-
imizing the Kullback-Leibler divergence. This procedure has
led to a parameter-free iterative algorithm.

In the experimental section, the proposed method has been
compared for different scenarios, against a Gaussian process
classifier built on non filtered features, convolutional neural
networks and a filtering/classification approach based on the
use of SVMs. In all cases the proposed method has outper-
formed all these methods in terms of accuracy. In addition, it
is much more computationally efficient than its current SVM
competitor.
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