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In this paper we provide a review of the recent literature on Bayesian Blind Image Deconvolution (BID) 
methods. We believe that two events have marked the recent history of BID: the predominance of 
Variational Bayes (VB) inference as a tool to solve BID problems and the increasing interest of the 
computer vision community in solving BID problems. VB inference in combination with recent image 
models like the ones based on Super Gaussian (SG) and Scale Mixture of Gaussians (SMG) representations 
have led to the use of very general and powerful tools to provide clear images from blurry observations. 
In the provided review emphasis is paid on VB inference and the use of SG and SMG models with 
coverage of recent advances in sampling methods. We also provide examples of current state of the art 
BID methods and discuss problems that very likely will mark the near future of BID.
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1. Introduction

Thousands of millions of pictures are taken everyday. If the 
claim in [1] is right, 880 billion photos were taken in 2014. Ev-
ery minute, 27,800 pictures are uploaded to Instagram, 208,300 
photos are uploaded to Facebook and more than one thousand to 
Flickr, and the trend, with a digital camera in every mobile phone, 
is probably exponentially increasing. The quality of these pictures 
varies widely from professional to amateur, in which case in many 
instances the images are taken under adverse conditions, such as 
low lighting or with motion between the camera and the scene, 
thus resulting in blurred images. While in some cases the intro-
duction of blur in photography is intentional, being a powerful el-
ement of visual aesthetics, in most cases it is an undesirable effect 
degrading the quality of the image. Examples of the intentional in-
troduction of blur includes the silky water effect obtained by using 
a long exposure when photographing a water flow (Fig. 1(a)), the 
bokeh effect obtained in parts of the scene lying outside the depth 
of field (Fig. 1(b)) and used to focus the attention of the viewer on 
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a specific subject, or the motion blur effect (Fig. 1(c)) used to pro-
vide a sense of speed. Unintentional blur is caused by a number of 
causes, the most important ones being: camera or subject motion 
while the shutter is open (Fig. 1(d)) which leads to motion blur, 
out-of-focus (Fig. 1(e)) that blurs the whole the image or relevant 
parts of it or, simply, the presence of the atmosphere (Fig. 1(f)) as 
is the case with astrophotography.

Not only commercial photography is affected by blur. Modern 
science makes an intensive use of images in areas such as astron-
omy, remote sensing, medical imaging and microscopy and, in all 
of them, imperfections and characteristics of the capture system 
lead to images degraded during the observation process by blur, 
noise, and other degradations that diminish the quality and, hence, 
the value of the captured images.

Image deconvolution is a mature topic that aims at recovering 
the underlying original image from its blurred and noisy observa-
tions. Sometimes, the blur is completely or partially known or can 
be estimated prior to the deconvolution process. For instance, in 
astronomical imaging, an accurate representation of the blur can 
be obtained by imaging a single star first before photographing 
the astronomical object of interest. In contrast, blind image de-
convolution (BID) tackles the restoration problem without knowing 
the blur in advance, leading to one of the most challenging image 
processing problems, since many combinations of blur and “true” 
image can produce the observed image. To start with, deconvolu-
tion is an ill posed problem in the Hadamard sense [2], that is, 
small variations in the data result in large variations in the so-
lution. The problem is exacerbated in the BID problem, since in 
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Fig. 1. Blurred pictures due to intentional blur: (a) silky water effect by Geraint Rowland (https://www.flickr.com/photos/geezaweezer/15327097294), (b) bokeh by Rodrigo 
Gomez (https://www.flickr.com/photos/rgomez74/2970906336), (c) motion blur by Ernest (https://www.flickr.com/photos/viernest/3380560365). Blurred pictures due to un-
intentional blur: (d) camera motion by tunguska (https://www.flickr.com/photos/tunguska/103472115), (e) out of focus by Nacho (https://www.flickr.com/photos/gonmi/
8193430914), (f) atmosphere by Mike Durkin (https://www.flickr.com/photos/madmiked/43831827).
addition, small variations in the estimated blur can lead to large 
variations in the restored image.

BID is an underdetermined nonlinear inverse problem, which 
requires the estimation of many more unknown variables than 
the available observed data. To find meaningful solutions, not only 
prior information about the unknowns is crucial, but also a good 
and sound estimation approach. In this paper, we provide a com-
prehensive survey of BID methods reported since the publication of 
the review [3], with a focus on Bayesian approaches. In our opin-
ion, since the publication of [3], Variational Bayes (VB) inference 
has emerged as a dominant approach for the solution of BID prob-
lems. VB inference in combination with recently introduced image 
models, like the ones based on Super Gaussian (SG) and Scale Mix-
ture of Gaussian (SMG) representation, has led to the development 
of very general and powerful tools to obtain clear images from 
blurry observations. We review the recent BID literature with an 
emphasis on VB inference and the use of SG and SMG models but 
without ignoring recent advances in sampling methods. We also 
provide examples of current state of the art BID methods and dis-
cuss problems that very likely will mark the near future of BID. The 
paper is organized as follows. In Section 2, we briefly introduce 
the BID problem as well as the prior models. Section 3 shows the 
variational Bayesian methodology and its advantages over other in-
ference approaches. We also present two representation models for 
variational inference, followed by the final BID algorithm. Section 4
discusses some important outstanding challenges regarding the ap-
plications of VB based BID methods and BID as a whole research 
field. Experimental results are presented in Section 5.

2. Bayesian problem formulation

2.1. Bayesian framework for BID

In BID the image formation model is usually assumed to be:

y = x ⊗ h + n = Hx + n, (1)

where y ∈ R
N is the observed blurred image (a column vector of 

N pixels), ⊗ represents the convolution operation, x ∈ R
N is the 
unknown original image, H ∈ R
N×N is the convolution matrix ob-

tained from the also unknown blur kernel h ∈ R
K and n ∈ R

N is 
a noise term which is assumed to be i.i.d. Gaussian with vari-
ance β−1. As discussed in Section 4.4, other degradation models 
than the Linear and Spatially Invariant model above are also uti-
lized.

Notice that although the BID problem is defined here in the 
image domain, it can also be easily formulated in transformed do-
mains, such as the derivative, wavelet, and curvelet domains. The 
use of the filter space has gained popularity recently, however, 
there are still some open questions which need to be addressed 
before deciding which one is the right domain to work on, see 
Section 4.1.

From a Bayesian perspective, given the observed blurred im-
age y, the goal is to infer the latent (hidden) variables z = {x, h}
and possibly the model parameters denoted by �. The image 
degradation model in Eq. (1) can be written as:

p(y|z, β) = N (y|Hx, β−1I), (2)

where β is the precision parameter of the observation model, and 
possibly one of the model parameters to be estimated.

It is well known that the inverse problem of Eq. (1) is ill-
posed [3]. Therefore, additional information on the latent variables 
and model parameters must be provided. The Bayesian paradigm 
introduces this necessary information for the BID problem as a 
prior distribution p(z|�), which models the information on z, and 
a prior p(�) on the model parameters. Sometimes the prior on the 
model parameters is called hyperprior and the elements of � are 
called hyperparameters.

With these ingredients, the global modeling of the BID problem 
can be written as

p(z,�,y) = p(y|z,�)p(z|�)p(�). (3)

Before describing how inference is performed, we will now re-
view the image, blur and hyperparameters priors proposed for the 
BID problem since the publication of [3].
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2.2. Image prior models

An unquestionable landmark on the recent history of BID is the 
paper by Miskin and MacKay [5]. In that work the authors pro-
pose the use of a mixture of Laplacians to restore cartoon images 
and utilize, for the first time in the BID literature, VB inference (to 
be described later) to restore the observed image. Later, Likas and 
Galatsanos [6] proposed a Gaussian prior to impose smoothness on 
the image and blur, see also [7], and Fergus et al. [8] proposed a 
mixture-of-Gaussians (MOG) to impose sparsity.

The 2007 Bishop et al. [3] review on BID describes, among 
others, classical prior models such as Conditional Autoregression 
(CAR) or Simultaneous Autoregression (SAR) used by Molina et al.
[9] to impose smoothness, or Total Variation proposed by Rudin, 
Osher and Fatemi [10] to impose piecewise-smoothness. The TV 
prior model has been frequently used in BID, see for instance 
[11–15], see also [16] and [17]. Fergus et al. [8] represents the first 
publication on the use of filtered versions of the original image to 
estimate image and blur. The use in [12] of majorization methods 
with variational inference and diagonal covariance approximation 
led to a new way to approach BID in image processing (not widely 
acknowledged in the computer vision community). As we will see 
in the following, the TV prior used in [12] is a particular case of 
the use of Super Gaussian Distributions in BID.

Since the influential work of Fergus et al. [8], sparse prior mod-
els have attracted the attention of BID researchers and are, in our 
opinion, rightly considered to be the state of the art representation 
in filtered domains. It is a well known fact that when high-pass 
filters are applied to natural images, the resulting coefficients are 
sparse; i.e., most of the coefficients are zero or very small while 
only a small number of them are large (e.g., at the edges). This is 
a very important characteristic that should be taken into account 
when restoring natural images.

The �p prior has been used in a large number of works such 
[12,13,18–21]. They use a prior distribution based on the mini-
mization of quasi-norms ‖ · ‖p

p with 0 < p ≤ 1. Levin et al. [18]
suggest the use of p in the range [0.6, 0.8] for natural images.

The Super-Gaussianity property presented by Palmer in [22], 
was used in Babacan et al. [23] as the building block to propose 
a general representation for sparse priors. As we will see, almost 
all previous and very recently proposed prior models can be rep-
resented using SG. This representation is used in the same work 
[23] to introduce two new image priors log and exp. Recent mod-
els like the one proposed by Zhang and Wifp [24], or the Student-t 
prior recently proposed by Mohammad-Djafari [25] are particular 
cases of SG distributions.

2.2.1. Sparse general representation
A probability distribution is considered to be sparse when it 

is Super Gaussian (SG) [22], i.e., compared to the Gaussian dis-
tribution, it has heavier tails, it is more peaked, and has a posi-
tive excess kurtosis. These distributions are referred to as sparse 
since most of the distribution mass is located around zero (hence 
strongly favoring zero values), but the probability of occurrence of 
large signal values is higher compared to the Gaussian distribution.

Babacan et al. [23] propose the use of the following general 
framework to define the prior model either in the image or the 
filter space. First they consider L high-pass filters { fγ }L

γ =1 (such 
as derivatives, wavelets, curvelets, etc.) and define

xγ = fγ ⊗ x, γ = 1, . . . , L. (4)

Using these filters on the real underlying image the following 
prior model in the image space can be defined

p(x) ∝
L∏

γ =1

N∏
exp

(−αγ ρ(xγ (i))
)
, (5)
i=1
where ρ(·) is an energy function symmetric around zero with 
ρ(

√
s) increasing and concave for s ∈ (0, ∞) [22] and αγ a scale 

parameter.
Alternatively, the filtered original images can be assumed to be 

independent. The following set of independent priors is then con-
sidered

p(xγ ) ∝
N∏

i=1

exp
(−ρ(xγ (i))

)
, γ = 1, . . . , L. (6)

In this case, a set of blurred and noisy observations can be defined, 
associated with the filtered original images

yγ = fγ ⊗ y = h ⊗ fγ ⊗ x + fγ ⊗ n = h ⊗ xγ + nγ , (7)

where nγ is assumed to be Gaussian independent noise with pre-
cision β . It is important to note that the observations yγ , γ =
1, . . . , L, are assumed to be independent and they provide informa-
tion on the blur but not exactly on x but on its filtered versions.

Notice that the most popular recent prior models, such as TV, 
�p , or MOG are Super Gaussian distributions (see Fig. 2 for some 
examples), and therefore can be represented using Eq. (5). Notice 
also in Fig. 2, that log enforces sparsity very strongly due to its 
infinite peak at zero and heavy tails.

A sub-class of Super Gaussian distributions is the so called Scale 
Mixture of Gaussians (SMG), proposed by Andrews and Mallows 
[26] and used as a general framework for BID in Babacan et al.
[23]. Here, associated with each filter γ and each pixel i we have

p(xγ (i)) =
∫

p(xγ (i)|ξγ (i))p(ξγ (i))dξγ (i), (8)

where p(xγ (i)|ξγ (i)) is a Gaussian distribution with precision 
ξγ (i). This model can also benefit from the introduction of a global 
scale parameter αγ in Eq. (5).

SMG requires complete monotonicity of p(
√

s), i.e., (−1)np ×
(
√

s)n ≥ 0 must be satisfied for all n = 0, 1, 2, . . . . As can be seen 
in [22], this representation is more strict, in the sense that fewer 
classes of sparse priors can be represented with it than using 
Eq. (5). Finding p(ξγ (i)) is in general a difficult task; however, 
as we will see in Section 3 its full knowledge is not needed for 
our purposes. One example of SMG is the Student-t prior pro-
posed by Mohammad-Djafari [25]. It is clear that an MOG is 
an SMG model and that spike and slab distributions on z ∈ R, 
p(z) = λδ(z) + (1 − λ)N (z|0, σ 2) [27] are the limit of MOG mod-
els with two components, one of them with very small variance. 
Inference with these models is complicated due to the image size; 
however variational inference can still be carried out, see [28]. No-
tice that sparse promoting spike and slab and Bernoulli–Gaussian 
[27,29] priors will very likely receive more attention by the BID 
community especially when estimating the blur in the filter space.

2.3. Blur models

Although the above described prior models were proposed for 
the image, all of them can also be used for the blur as well. The 
BID literature also contains specific blur models which we now 
describe. Molina et al. [9] propose a Dirichlet prior for kernel mod-
eling. Since the curvelet representation can take into account both 
the continuity and sparsity of the motion blur kernel, Cai et al. [30]
suggest the use of this representation for this type of blur. Oh and 
Kim [31] propose a piecewise-linear model for motion blur in or-
der to reduce the dimensionality of the solution space and make 
the kernel estimation process more robust.

Based on the assumption that the power spectrum of natural 
images drops quadratically as the frequency increases Goldstein 
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Fig. 2. (a) and (b): examples of penalty functions ρ(s), where the MOG is obtained from Levin et al. [4]. (c): their corresponding ρ ′(s)/s. (d): plots of ρ ′(s)/s, where an upper 
bounding is taken for visualization. Note that TV is replaced with anisotropic TV (�1 prior) since isotropic TV cannot be shown in 1-D function.
and Fattal [32] introduce a power spectrum prior on the blur ker-
nel. Recently, a novel convex blur regularizer based on the spec-
tral properties of the convolution operators can be found in [33]. 
Since the spectral properties used are based on a linear and shift-
invariant model without considering the noise, these methods do 
not work well for spatially varying blurs and noisy observations.

Let us consider the observation model in Eq. (1) and assume 
that the original image x is known. In this case we have N obser-
vations and aim at estimating K coefficients, where K is the size 
of the blur. Since the image size is usually much larger than the 
blur size, N observations should be sufficient to obtain a good blur 
estimate, even more so if L filtered observations are used. Based 
on the fact that usually K << N , many authors [15,23,34,35] have 
recently advocated the use of flat priors on the blur, enforcing only 
its nonnegativity and normalization constraints.

2.4. Hyperparameters models

So far we have studied the distributions p(z|�), p(y|z, �) that 
appear in the Bayesian modeling of the BID problem in Eq. (3). We 
complete this modeling by studying now the distribution p(�).

An important problem is the estimation of the vector of pa-
rameters � when they are unknown. To deal with this estimation 
problem, the hierarchical Bayesian paradigm introduces a second 
stage, where the hyperprior p(�) is also formulated.

For parameters, ω, corresponding to inverses of variances, the 
gamma distribution is used. It is defined by:

p(ω) = 
(ω|aω,bω) = (bω)aω


(aω)
ωaω−1 exp [−bωω] , (9)

where ω > 0 denotes a hyperparameter, bω > 0 is the rate pa-
rameter, and aω > 0 is the shape parameter. These parameters are 
assumed known. The gamma distribution has the following mean, 
variance, and mode:

E(ω) = aω

bω
,Var(ω) = aω

b2
ω

,Mode(ω) = aω − 1

bω
. (10)

Note that the mode does not exist when aω ≤ 1 and that mean 
and mode do not coincide. The literature also reports the use of 
non-informative prior models, p(�) ∝ constant, which can be con-
sidered as the limits of the above described hyperpriors.

Finally, we would like to mention here that the SG and SMG 
formulations turn the parameter estimation into a difficult task, 
especially when several filtered images are considered, since their 
partition functions can not usually be calculated.

3. Bayesian inference

Once the observation and prior models have been described, 
in other words, once the elements of the joint probability model 
in (3) have been specified, the goal now becomes the drawing of 
inference of the unknown variables � = {z, �} given the observa-
tions.

In the Bayesian framework � is inferred calculating (or ap-
proximating) the posterior distribution p(�|y), expressed using the 
Bayes’ rule as

p(�|y) = p(�,y)

p(y)
= p(y|�)p(z|�)p(�)

p(y)
. (11)

Unfortunately, since the integral p(y) = ∫
p(�, y)d� is not 

tractable, the above posterior cannot be analytically calculated. 
Different estimation methods have been proposed to address this 
problem in the BID context and we will now review them.

Probably the most widely used method in the literature is Max-
imum a Posteriori (MAP). Since p(�|y) ∝ p(�, y) the maximum of 
the posterior distribution can be obtained by maximizing the joint 
distribution p(�, y) with respect to �. However, as pointed out 
in the landmark papers by Levin et al. [4,34], MAP is not a suit-
able estimation procedure in BID problems, because the associated 
cost function favors flat images for many sparse priors and leads 
to a delta blur estimate. To avoid the delta blur solution, Perrone 
and Favaro [14] show that a delayed normalization [11] should be 
used while other authors [36–38] suggest using non-dimensional 
sparsity measures.

Another very popular inference method is MAPh [24,34,39,40]. 
Unlike MAP, this method integrates the joint distribution with re-
spect to x before estimating h and �, that is, blur and parameters 
are estimated by maximizing the evidence [41]. The restored im-
age is finally calculated by maximizing the joint distribution, using 
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Table 1
Comparison of inference methods.

MAP MAPh VB MCMC

Has full posterior no partial yes yes
Has point estimates yes yes yes yes
Has uncertainty info no partial yes yes
Allows hidden data no yes yes yes
Complexity low low medium high

the estimate values of h and � through the above integration on 
the image.

Variational Bayesian inference has been widely used in BID (see 
[4–8,13,20,23,24,40]). VB generalizes MAP and MAPh (see [42] for 
a proof) providing approaches for estimation of the posterior dis-
tributions of x, h and �.

Together with the well established use of VB inference in BID, 
Markov Chain Monte Carlo (MCMC) methods are also gaining pop-
ularity. MCMC is the most general method used to approximate a 
posterior distribution, see [43–45] for details. The model in Eq. (3)
is used to generate thousands of samples of p(z, �|y), which are 
used to infer the posterior distribution. In theory, sampling meth-
ods can find the exact form of the posterior distribution, but in 
practice they are computationally intensive (especially for multidi-
mensional signals such as images) and their convergence is hard 
to establish.

In computationally cost terms, VB is much more efficient than 
MCMC, and more expensive than MAP or MAPh . The features of 
each method are summarized in Table 1.

We now describe the application of VB and MCMC to BID.

3.1. Variational inference in the image space for Super Gaussian priors

Since SG distributions are flexible enough to represent most of 
the image models used in the BID literature, we restrict, with-
out loss of generality, the VB description to this representation. 
Furthermore we will formulate the inference in the image space; 
a detailed account of the use of SMG for the filter representation 
can be found in [23].

As it has already been explained above, the posterior distri-
bution cannot be calculated analytically using the Bayes’ rule in 
Eq. (11). To approximate p(z, �|y), VB minimizes the following 
Kullback–Leibler divergence

KL(q(�)‖p(�|y)) =
∫

q(�) log
q(�)

p(�|y)
d�

=
∫

q(�)

p(�,y)
d� + const. (12)

The Kullback–Leibler divergence is always non negative and is zero 
if and only if q(�) = p(�|y). Since the minimizer q(�) = p(�|y)

cannot be calculated, some assumptions on q(�) have to be made. 
One possible assumption is that q(�) has a specific parametric 
form, e.g., a Gaussian distribution. Another widely used assump-
tion is that q(�) factorizes into disjoint groups, i.e.,

q(�) = q(x)q(h)q(�). (13)

This factorized form of variational inference is called mean field 
theory in physics [46].

Using Eq. (13), the KL divergence can be minimized with re-
spect to each factor while holding the other factors fixed. The 
optimal solution for each factor is then [47]

log q(θ) = E [ln p(�,y)]q(�̄) + const, (14)

where �̄ = � \ θ is the set of unknowns excluding θ and 
E [ln p(�,y)]q(�̄) denotes the expectation taken with respect to 
all the approximating factors �̄. This system of equations is solved 
by an alternating minimization procedure, where each distribution 
q(θ) is iteratively updated using the latest distributions of all the 
other factors. Since the KL divergence (12) is convex with respect 
to q(θ) [48], the convergence of this alternating minimization pro-
cedure is guaranteed.

The penalty function ρ(·) defined in (5) can be represented as 
(see [49])

ρ (s) = inf
ξ>0

1

2
ξ s2 − ρ∗

(
1

2
ξ

)
, (15)

where ρ∗ (ξ/2) is the concave conjugate function

ρ∗
(

1

2
ξ

)
= inf

s

1

2
ξ s2 − ρ (s) . (16)

Furthermore, the infimum in (15) is achieved at ξ = ρ ′(s)/s, as 
shown in [23]. Directly applying VB inference using p(x, h, y) is 
unfeasible, since the expectation of the logarithm of the joint dis-
tribution with respect to q(x) is intractable.

Since ρ(s) is the penalty associated to a SG distribution we can 
write

p(x) ≥ Z
L∏

γ =1

N∏
i=1

exp(−αγ (
ξγ (i)

2
x2
γ (i) − ρ∗(1

2
ξγ (i)))),

∀ξγ (i) > 0, (17)

where Z is a constant. This Gaussian like lower bound will allow 
the expectation of the joint distribution to be calculated analyti-
cally. We have

p(x,h,y) ≥ p(y|x,h)p(h)Z
L∏

γ =1

N∏
i=1

exp(−αγ (
ξγ (i)

2
x2
γ (i)

− ρ∗(1

2
ξγ (i))))

= M(y,x,h, ξ ), (18)

where ξ = {ξγ (i), γ = 1, . . . , L, i = 1, . . . , N} with all component 
positive.

We then have∫ ∫
q(x)q(h) log

q(x)q(h)

p(x,h,y)
dxdh

≤
∫ ∫

q(x)q(h) log
q(x)q(h)

M(y,x,h, ξ )
dxdh

=
∫ ∫ ∫

q(ξ)q(x)q(h) log
q(ξ)q(x)q(h)

M(y,x,h, ξ )
dxdhdξ , (19)

where q(ξ ) is a degenerate distribution on ξ .
We then minimize the above integral on q(ξ ), q(x), and q(h)

assuming that q(h) is degenerate. According to (14), we obtain

ĥ = arg max
h

E[log(M(y,x,h, ξ̂ ))]q̂(x), (20)

q̂(x) ∝ M(y,x, ĥ, ξ̂ ), (21)

ξ̂ = arg max
ξ>0

E[log(M(y,x, ĥ, ξ))]q̂(x). (22)

3.2. Estimation of blur, image, and variational parameters

For the latent image, we obtain from (21),

log q̂(x) = −β

2
‖Ĥx − y‖2

2 − 1

2

L∑
γ =1

αγ xT
γ diag(ξ̂γ )xγ , (23)
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which is a multivariate Gaussian with precision matrix

C−1
x = βĤT Ĥ +

L∑
γ =1

αγ FT
γ diag(ξ̂γ )Fγ , (24)

where Fγ is an N × N convolution matrix formed by the filter fγ , 
and Ĥ is an N × N convolution matrix obtained from ĥ. The mean 
value x̂ is used as the estimate for x, which is obtained by solving 
the following system of linear equations

C−1
x x̂ = βĤT y. (25)

For the variational parameter ξ̂ , we obtain from (22)

ξ̂γ (i) = ρ ′(νγ (i))

νγ (i)
, (26)

where νγ (i) =
√
E[x2

γ (i)], 1 ≤ i ≤ N , with the expected value cal-

culated using the distribution q̂(x).
To estimate the blur we have

ĥ = arg min
h

‖Hx̂ − y‖2
2 + hT Dxh, (27)

subject to h(i) ≥ 0,

K∑
i=1

h(i) = 1, (28)

where Dx is a K × K matrix given by

Dx(m,n) =
N∑

j=1

Cx(m + j,n + j). (29)

To estimate the variational parameters in Eq. (26) and the blur 
in Eq. (27), the matrix Cx is required. This means that the N × N
matrix C−1

x has to be inverted, a very time and memory demand-
ing task. Following [4] and [23], we approximate Cx as the inverse 
of the diagonal of C−1

x . This inverse approximation is commented 
on in the open issues Section 4.3.

The prior image model can also be made dependent on a global 
parameter, which models the general scale behavior of the prior 
model. Its estimation is a very hard problem which can be ap-
proached under some assumptions on the prior model, see [20].

3.3. Algorithm

The VB based blind deconvolution algorithm is presented in Al-
gorithm 1. However, as pointed out by Fergus et al. [8], directly 
applying it to estimate the blur may end up in the local min-
ima, especially when the kernel support is large. To handle the 
large blur support problem, they suggest using a multiscale ap-
proach, namely building an image pyramid and then applying the 
BID method at each scale, which has proved to be very effective in 
BID problems. The rationale is that at the coarsest level, the blur 
is reduced significantly, so that it is easy to estimate a kernel from 
the downsampled image. At the next finer level, this kernel esti-
mate is upsampled and can be used as a good initial guess for the 
single scale BID. Repeating this process until the finest level, we 
can obtain a better kernel estimate. After kernel estimation, we re-
construct the final sharp image using a non-blind deconvolution 
method (e.g., [18,50,51]).

The computation in Algorithm 1 is dominated by the solution 
of Eqs. (25) and (27). Since the most time consuming part when 
solving these two equations is the 2-D convolution, the compu-
tational complexity is O (N K ) or O (N log(N)), depending on the 
usage of spatial convolution or FFT, respectively. We should men-
tion that the computational complexity increases to an extremely 
Algorithm 1 Single scale Bayesian blind deconvolution using Super 
Gaussian priors.
Require: Observation y, noise level β , penalty ρ(s), prior weight α.
1: Initialization x = y, Cx = 0,
2: repeat
3: Initialize ξ
4: while not converge do
5: Update x by solving the linear system 25
6: Update ξ using Eq. (26)
7: Approximate Cx(i, i) with 1/C−1

x (i, i)
8: end while
9: Update h by solving the quadratic programming problem in Eq. (27)

10: until Convergence

large number, O (N3), if C−1
x is inverted exactly. The number of it-

erations required for convergence depends on the image priors. For 
example, the use of log prior leads to faster convergence than the 
use of �0.8 prior, because the log prior is more edge preserving and 
sparsity promoting than the �0.8 prior. It is also shown in [38] that, 
for the same optimization method and parameter settings, the use 
of the normalized �1 prior [38] results in fewer iterations for con-
vergence than the �1/�2 prior [36] in the kernel estimation step. 
Due to the use of the covariance matrix, the VB BID method is 
slower than the MAP method [36–38], and much slower than the 
edge prediction based methods [52,53].

3.4. Sampling methods

Since the posterior distribution is not analytically available, 
sampling methods can be used to draw a large number of sam-
ples from it, and Monte Carlo integration techniques provide tools 
which allow performing inference on this dataset.

To simulate the posterior distribution Markov chains are used to 
develop different sampling methods. Perhaps the most widely used 
sampling method is Gibbs sampling described by the Geman and 
Geman in [54]. More recent methods are the Metropolis adjusted 
Langevin algorithms [55] and Hamiltonian Monte Carlo [56].

To better understand the sampling methods let us see an exam-
ple of Gibbs sampling. If we can write down analytic expressions 
for the conditional distributions of all the unknowns we wish to 
estimate, given the others, we simply draw samples from each of 
the distributions in turn, conditioned on the most recently gener-
ated samples values for the other parameters. In our case we want 
to simulate p(x, h, �|y); the iterations would proceed as follows:

First iteration: x(1) ← p(x|h(0),�(0),y)

h(1) ← p(h|x(1),�(0),y)

�(1) ← p(�|x(1),h(1),y)

Second iteration: x(2) ← p(x|h(1),�(1),y)

h(2) ← p(h|x(2),�(1),y)

�(2) ← p(�|x(2),h(2),y)

... (30)

where the symbol ← means that the values are drawn form the 
distribution on the right. Once enough samples have been col-
lected, point estimates and other statistics of the distribution may 
be found using Monte Carlo integration, for example the Mini-
mum Squared Error estimator of the mean can be obtained as 
x̂ = 1

J

∑ J
j=1 x( j) , where J is the number of drawn samples.

Due to the expensive computational cost (which is even worse 
when it is applied to high-dimensional data, such as images), the 
use of sampling methods in BID is not very extended. The works in 
this field are focused on developing more efficient algorithms. Ge 
et al. [57] or Kail et al. [58] propose modified versions of the Gibbs 
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sampling, and Pereyra [35] uses the Langevin algorithm which uses 
convex analysis to simulate efficiently the distributions.

4. Open issues

Before presenting some BID examples we would like to com-
ment here on some open problems, either on the Variational 
Bayesian BID (VBBID) or BID itself, that we believe will very likely 
be explored in the near future:

4.1. Image space versus filter space

VB methods can be formulated in either the image or the fil-
ter space. Levin et al. [4] state that the filter space has better 
performance for the MOG prior. Xu et al. [37] indicate that us-
ing the image space formulation for latent image estimation and 
filter space formulation for kernel estimation is better than us-
ing the same spaces. In our opinion additional work is needed to 
establish the best spaces for image and kernel estimation. The im-
age space appears to be less sensitive to noise since the noise is 
amplified in the filter space. Furthermore, the filter space is proba-
bly more computationally expensive than the image space. On one 
hand, utilizing the same number of iterations and L derivative fil-
ters, the total computation time in the filter space is about L times 
that of the image space. On the other hand, it is shown in Cho 
and Lee [52] that the kernel estimation in the image space re-
quires more iterations to converge than in the filter space, since 
the symmetric matrix X̂T X̂ of the quadratic program in Eq. (27), 
is not as diagonally dominant as 

∑
γ X̂ T

γ X̂γ , where X̂ and X̂γ de-
note the convolution matrices formed by x̂ and x̂γ , respectively. 
Based on the above two factors, it is conceivable that the im-
age space is computationally less expansive than the filter space, 
when L ≥ 2. Additionally, filter space methods have access to more 
“observations” to estimate the blur, although with an unrealistic 
independence assumption on them. The pros and cons of both ap-
proaches should be carefully analyzed.

4.2. Bottom-up approach

The bottom-up approach, first proposed by Babacan et al. [23], 
refers to formulating a weight update scheme φ(ν) = ρ ′(ν)/ν for 
the Gaussian prior approximation (without knowing explicitly the 
penalty function) provided that φ(ν) is decreasing on (0, +∞). 
A crucial and very challenging question is how to choose a good 
penalty function ρ or φ for VB blind deconvolution.

Wipf and Zhang [59] state that the preferred distribution is not 
the one reflecting the accurate statistics of the latent image, but 
the one that is most likely to guide VB iterations to high qual-
ity global solutions by strongly differentiating between blurry and 
sharp images. This implies choosing a φ that strongly discriminates 
sharp and blurry images. To that end, φ should be strongly spar-
sity promoting and also very edge preserving, such as φ(ν) = ν−p

with (p ≥ 2).
We believe that a trade-off between preserving edges and pro-

moting sparsity should be achieved when dealing with noisy im-
ages. If noise is high, a very edge preserving φ(ν) cannot sup-
press it. Babacan et al. [23] also suggest a more general form 
φ(ν) = (Fν)−p , where F is a linear operator (e.g., nonlocal mean 
filter [60]). A variety of heuristics can easily be embedded through 
F to combat noise and increase robustness. Finally, we emphasize 
that given a φ, the value of αγ should be chosen properly, as we 
will show in the experimental section.

4.3. Covariance approximation and general optimization issues

The covariance matrix Cx plays a very important role not only 
in the image estimation step but also in the kernel estimation 
step. This matrix makes VB methods different from MAP meth-
ods. Intuitively, the introduction of Cx in the estimation of the 
weights ξ makes their estimated values slightly smaller than when 
the covariance is not considered. As a result, the edges are better 
preserved. Besides, in the kernel estimation step, it provides an 
adaptive smoothness promoting regularization term which helps 
avoid the delta kernel estimates.

Unfortunately, due to the high computational cost, Cx is ap-
proximated by the inverse of the diagonal of the weighted de-
convolution matrix C−1

x . Since C−1
x is not diagonal, the diagonal 

approximation definitely introduces an error. The diagonal approx-
imation is only reliable when β−1 and ξ are relatively large. If 
both β−1 and ξ are small, this approximation is not that reliable. 
Another alternative is the mean value approximation proposed by 
Babacan et al. [61], which replaces the weights ξγ with the average ∑N

i=1 ξγ (i)/N , so that Cx is a circulant matrix associated with the 
kernel hCx = F−1�−1

h , where F denotes the 2-D DFT and �h is a 
column vector formed by the eigenvalues of C−1

x . hCx has a large 
but finite support thanks to regularization and can be computed 
efficiently with the use of an FFT. This approximation takes the 
non-diagonal elements information into account, but the important 
information on the spatially variant weights is lost. The conse-
quences of the use of the diagonal and mean value approximation 
remain an open question. Better but also feasible approximations 
to Cx should also be explored.

Notice that the image estimation step involves solving a non-
convex problem when the penalty function is nonconvex, e.g., 
ρ(s) = sp/p (0 < p < 1). Assuming that the covariance term in ξ
is ignored, it has been shown in [21] that the IRLS method which 
alternatively solves the linear equations in (25) and updates the 
weights by (26), definitely converges to a stationary point. Since 
the problem is nonconvex, the initial weights can make a differ-
ence in the final result, especially for the extremely nonconvex 
functions like log. A typical choice for the initial weights is the 
use of a large constant (e.g., 104, see [4,23]). It is conceivable that 
a ξ whose large values are located at the blur region may lead 
to a good stationary point, as the blur will be removed accurately. 
Since it is hard to know the blur region, finding such a good ini-
tial weights is not a trivial task in BID. Finally, we would like to 
mention that the linear equations (25) can be efficiently solved by 
ADMM [21] (Alternating Direction Method of Multipliers, see [62]
for a comprehensive review), provided that the blur is spatially in-
variant.

Together with the IRLS method [21], other nonconvex optimiza-
tion methods including variable splitting and look-up-table based 
method [63], �1-decomposition based method [64], and recently 
the smoothing trust region methods [65,66] have also been applied 
to image deconvolution.

4.4. Spatially varying blur and other modeling problems

In this paper we have assumed that the blur is the same across 
the image. However, as shown in [67], even the camera optical 
system generates a considerable amount of spatially varying (SV) 
blur. In general, spatially varying degradation can be modeled as

y(s) =
∑

u

h(s, s − u)x(u) + n(s), (31)

where y(s) is the value of the observed image at position s, x(u)

is the value of the unknown ideal image at position u, h(s, s − u)

is the blur affecting the image, that depends on each image pixel 
position, and n(s) is the noise. When SV BID is addressed, some re-
strictions are applied to the way the blur varies in Eq. (31) in order 
to make the problem feasible. Such restrictions include the as-
sumption that the blur is piecewise-invariant or piecewise smooth 
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spatially varying, that is, the blur varies smoothly in the image, or 
that the blur is piecewise constant and location dependent, that is, 
different regions in the image have different blurs but the blur is 
spatially-invariant in each region. Another typical restriction is to 
assume that the type of the blur is known, for example, it is due 
to camera shake, or to consider images of a certain type, such as 
images with text [68] or star fields [69].

One approach to SV BID is to divide the image into non-
overlapping patches where the blur is assumed to be stationary, 
apply a BID method on each patch independently, and merge the 
restored patches to obtain the final image. If the patches are not 
predefined, this approach casts the SV BID into a segmentation 
problem [70] in which the simpler case is to consider just two re-
gions, a focused foreground and an out-of-focus background [71]. 
If the patches overlap and the blur varies smoothly on the image, 
the degradation model in Eq. (31) can be approximated as

y(s) =
∑

r

∑
u

hr(s − u)wr(u)xr(u) + n(s), (32)

where wr(u) ≥ 0, 
∑

r wr(u) = 1, are weights allowing the smooth 
blending of the overlapping patches [72]. The advantage of this 
model is that it allows for an efficiently implementation using the 
Efficient Flow Filter (EFF) method [73] and also for different types 
of blur. On the other hand, its accuracy depends on the accuracy of 
the estimated kernel and may produce large errors if the kernels 
are not precisely estimated. In [74] the EFF method is extended 
to handle TV priors and a method to detect and replace erro-
neous blurs is proposed making it more robust. Another method 
to estimate smoothly varying blurs, with applications to star field 
images, is proposed in [69]. The method estimates the blur at cer-
tain image positions and uses SVD to remove outliers and estimate 
a smooth PSF field from the individual PSFs.

If only camera-shake blur is considered, the Projective Motion 
Path approach [75] models the SV degradation as the average of 
multiple sharp images, each one corresponding to one of all possi-
ble camera poses, that is,

y(s) =
∑

i

x(Hiu) + n(s), (33)

where Hi are homographies, that is, combinations of rotations and 
translations, that project the sharp image given a camera orien-
tation. The homographies can be obtained from auxiliary sensors 
attached to the camera, such as gyroscopes (see [76] and Sec-
tion 4.5), and high speed low resolution cameras [77], or they are 
estimated with the image [78].

A similar approximation is considered in [79] where the SV 
degradation is modeled as a weighted sum of sharp images ob-
tained at all possible camera poses, that is,

y =
∑

i

w(i)Cix + n, (34)

where Ci is the matrix that applies the homography Hi to the im-
age x and w(i) weights the i-th projection depending on the time 
spent by the camera at the i-th pose during the capture time. In 
[80], VB is used to estimate both the image x and the weights 
w(·). The drawback of this approach is that is resource demanding 
since it has to compute and store all the projections. To alleviate 
this problem, [81] proposes an iterative method that, at each iter-
ation, restricts the solution space to a small set of camera poses 
which the camera motion trajectory is most likely to belong to.

Despite all these advances, more research is still needed to 
solve the general SV BID problem as described by Eq. (31).

Even without mentioning the spatially variant nature of the 
blur, the linear model in Eq. (1), utilized by most BID methods, 
is not a realistic one for real-life images. Common violations in-
clude the presence of defective sensor pixels, saturated pixels [82], 
a nonlinear camera response curve [83], or non additive white 
Gaussian noise [84,85] which, if not properly handled, may gen-
erate ringing artifacts when restoring the image even if the blur 
is accurately estimated [86]. We believe that developing methods 
that explicitly handle such model violations will improve the ap-
plicability of BID to real problems.

These modeling problems are alleviated with the use of more 
than one images. Considering color and, in general, multichannel 
images, remedies, to a great extend, the ill-posed nature of blind 
deconvolution [87]. Using image pairs with different properties 
facilitates blur estimation and helps handle saturated pixels and 
other camera imperfections. For instance, in [88] a near-infrared 
image is captured together with a visible blurred image and, in 
[89,90] a low exposure sharp but noisy image is used to improve 
the restoration results. If video is available, techniques can take 
into account the motion between frames [91–93] to tackle the de-
blurring problem. Of interest is also the approach in [94] where a 
single high-quality image is obtained from a sequence of images 
distorted by atmospheric turbulence. Having several images also 
allows blind image deconvolution to be addressed simultaneously 
with other problems, such as, super-resolution (see, for instance, 
[95] or [96]) or high dynamic rage (HDR) imaging [97].

Finally, to conclude this section on modeling, we would like to 
mention the need to model what a good restoration is. We be-
lieve that more BID software applications will be developed if the 
quality of a restored image can be assessed, without human inter-
vention, before presenting it to the user.

4.5. Deconvolution in mobile devices

The ubiquity of mobile devices, such as smartphones and 
tablets, and the not-so-high quality of their cameras make the 
restoration of images taken with those devices a succulent market. 
Running the deconvolution process on mobile devices is, never-
theless, difficult given their limited computational power. Some 
commercial applications that claim to remove blur from images 
are available for the different platforms (see DeblurIt Pro or Photo 
Fix de Blur for Android or Photo Doctor for iOS). However they seem 
to deal only with out-of-focus blur with a manually selected radius 
and implement simple deconvolution algorithms.

Smartphones and tablets are more than simple cameras. They 
usually have other built-in sensors to capture the device posi-
tion and trajectory and the capability of processing images. Hence, 
some methods are being proposed to perform deconvolution on 
those devices. In an effort to take advantage of the sensors present 
on the mobile phones, Šindelář and Šroubek [98] used the in-
formation provided by the gyroscope to keep track of the device 
motion while taking the picture and, hence, obtain an estimation 
of the blur by rendering the camera trajectory on the image plane. 
This blur estimate is used to deconvolve the image by a simple 
Wiener filter. An extension considering spatially variant blur and 
rolling shutter compensation is presented in [99].

A similar approach was used in [100] where the blur is ob-
tained from a combination of the kernel estimated from the fusion 
of gyroscope, magnetometer and accelerometer measurements and 
a Gaussian kernel with small variance to take into account the 
out-of-focus blur due to the motion of the camera from the finger 
movement on pressing on the screen. Additionally, to minimize ar-
tifacts on faces, a face detection algorithm is applied to the image 
and an SVM classifier is trained and used to select between deblur-
ring followed by denoising or sharpening the image, depending on 
the face characteristics.

Using a developer tablet modified by attaching a USB connected 
external gyroscope, a multi-image deconvolution which captures 
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Fig. 3. Cumulative histograms of the error ratios across the dataset [39].

and combines multiple frames in order to make deblurring more 
robust and tractable is proposed in [101]. Blur is obtained from 
the gyroscope data and multi-image deconvolution is performed 
by minimizing

n∑
i=1

‖yi − Hix‖2 + λ‖�x‖p, (35)

where λ is a regularization parameter and � is the gradient oper-
ator. The authors conclude that this deconvolution procedure out-
performs, in most situations, the align-and-average strategy, that 
is, averaging multiple noisy images captured using a short expo-
sure time, and hence blur-free, aligned using the gyroscope data. 
The optimization problem in Eq. (35) was first utilized in the work 
by Katsaggelos [102].

4.6. Implementation issues

Since BID methods need to estimate both image and blur, they 
usually take a significant amount of time. Apart from develop-
ing mathematically efficient methods to compute blur and image 
estimates, efficient implementations are needed to speed up the 
algorithms. Nowadays, most computers are equipped with graphi-
cal processing units (GPUs) that have several GFLOPS of computing 
power. Massive computing using these GPU or hybrid CPU + GPU
computing can dramatically improve the speed of the algorithms. 
Most of the deconvolution implementations using GPUs are based 
on their capability to accelerate an FFT, with the CUDA framework 
and the CUFFT library[103] being the most popular implementa-
tion.

Some BID methods have been implemented using GPUs with 
great success as proved in [104] where the time needed to blindly 
deconvolve an 8 MPixel image using the method in [105] is re-
duced from 55.6 s to 13.8 s. The EFF spatially variant blind image 
deconvolution method in [73] runs about ten times faster using 
GPU than using only CPU.

Several efforts have also been carried out to use GPU computing 
in non-blind image deconvolution. For instance, Zhang et al. [106]
performed real-time high definition 720p video processing with a 
Wiener filter using an NVIDIA GeForce GTX 460 GPU and Holder 
et al. [107] obtained an acceleration of 1:5 compared to CPU of 
the Richardson–Lucy algorithm on an NVIDIA GeForce GT640M. 
The GPU implemention of the non-blind Krishnan–Fergus [63] al-
gorithm presented in [108] runs at 15 frames per second on 
710 × 470 pixels color images on an NVIDIA GeForce GTX 260.

5. Experiments

We test the performance of 5 image priors, including log, �0.8, 
MOG, TV and bu3, where the parameters for MOG are borrowed 
from Levin et al. [4] and bu3 is referred to the bottom-up ap-
proach [20,23] with φ(ν) = ν−3 (corresponding to ρ(x) = −x−1). 
We choose the widely used dataset [39] which consists of 32 im-
ages generated by 4 groundtruth images with 8 motion blurs. For 
the priors log, �0.8, MOG, TV and bu3, we set αγ to 1, 10, 1, 20 and 
0.1 respectively. After obtaining the kernels, we use the non-blind 
deconvolution method [18] with the same parameters used in [4]
to reconstruct the final image.

Fig. 3 presents the success percent of 6 methods (ours with 
5 different priors and Levin et al. [4]) in the sense of error ra-
Fig. 4. Selected results on dataset [39] for visual comparison. (a) Blurred. (b) Groundtruth. (c) TV. (d) �0.8. (e) Levin et al. [4]. (f) MOG. (g) bu3. (h) log.
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tio metric (ratio between sum of squared difference errors of the 
restoration with the estimated kernel and the restoration with the 
groundtruth kernel, see [39] for more details). As we can see, the 
log prior has the best performance, with over 80% good restora-
tions (error ratio ≤ 2) and 90% successful restorations (error ra-
tio ≤ 3 is regarded as successful restoration, according to Levin 
et al. [4]), followed by bu and MOG. �0.8 and TV also have good 
performance with about 80% and 70% successful restorations. It 
should be emphasized that, a suitable αγ is crucial for the dif-
ferent priors to work well. Fig. 4 shows some selected results for 
visual evaluation.
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