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This paper reviews recent results in audiovisual fusion and discusses main challenges

in the area with a focus on desynchronization of the two modalities and the issue of

training and testing where one of the modalities might be absent from testing.
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ABSTRACT | In this paper, we review recent results on audio-

visual (AV) fusion. We also discuss some of the challenges and

report on approaches to address them. One important issue in

AV fusion is how the modalities interact and influence each

other. This review will address this question in the context of

AV speech processing, and especially speech recognition,

where one of the issues is that the modalities both interact

but also sometimes appear to desynchronize from each other.

An additional issue that sometimes arises is that one of the

modalities may be missing at test time, although it is available

at training time; for example, it may be possible to collect AV

training data while only having access to audio at test time. We

will review approaches to address this issue from the area of

multiview learning, where the goal is to learn a model or re-

presentation for each of the modalities separately while taking

advantage of the rich multimodal training data. In addition to

multiview learning, we also discuss the recent application of

deep learning (DL) toward AV fusion. We finally draw con-

clusions and offer our assessment of the future in the area of

AV fusion.

KEYWORDS | Audiovisual (AV) fusion; deep learning (DL); ma-

chine learning; multimodal analysis; multiview learning; stream

asynchrony

I . INTRODUCTION

Multimodal integration is the synergistic use of the
information provided by multiple modalities to assist in

the completion of a task by a system. Multimodal fusion

refers to any stage in the integration process where there is

an actual combination of different sources of information

[1]. Integration and fusion of data is meaningful when the

data provide redundant and complementary information.

It can reduce overall uncertainty and thus serve to increase

the accuracy with which the features are perceived by the
system. Redundancy can also serve to increase reliability in

the case of error or failure in some sources. Complemen-

tary information from multiple modalities allows for per-

ceiving features in the environment that are impossible to

perceive using just the information from each individual

modality operating separately. More timely information

may also be provided by multiple modalities due to either

the actual speed of operation of each modality, or the pro-
cessing parallelism that may be possible to achieve as part

of the integration process.

There are numerous application areas calling for the

integration and fusion of multimodal data. Example areas

are biomedical applications (e.g., critical care monitoring

and medical images), transportation systems (e.g., intelli-

gent vehicle and highway systems), and multimedia anal-

ysis [e.g., person identification from audiovisual (AV)
resources, multimodal interaction with robot and multi-

modal video retrieval].

AV analysis is a specific case of multimodal analysis in

which the input sources are audio and video. The two

modalities are correlated and convey complimentary infor-

mation. For example, face visibility benefits speech per-

ception. There has been significant work on investigating

the relationship between articulatory movements and vo-
cal tract shape and speech acoustics (e.g., [2]). It has also

been shown that there exists a strong correlation among

face motion, vocal tract shape, and speech acoustics (e.g.,
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[3]). Speech production and perception is bimodal. The
bimodal integration of AV information in perceiving

speech has been demonstrated by the McGurk effect [4].

The basic unit that describes how speech conveys lin-

guistic information is the phoneme. Similarly, the basic

visually distinguishable unit, utilized in the AV speech

processing and human perception literature [5], [6], is the

viseme. Phonemes capture the manner of articulation, while

visemes capture the place of articulation [5], [7]. There is no
universal agreement about the exact grouping of phonemes

into visemes, although some clusters are well defined.

There is a plethora of applications in which audio and

video are fused, such as, speech recognition [8]–[15],

speaker recognition [16], [17], biometrics verification [18]–

[23], event detection [24], concept detection [25]–[27],

human or object tracking [28]–[35], active speaker locali-

zation and tracking [7], [36]–[40], music content analysis
[41], meeting segmentation [42], emotion recognition

[43]–[45], monologue detection [46], video retrieval [47],

human–computer interaction [48], [49], story segmenta-

tion in news video [50], video shot detection [51], voice

activity detection (VAD) [52], and source separation [53]–

[55]. Clearly, in some of the applications, use of the facial

expressions and even the whole body articulation is made,

not just the visual articulators. Similarly, in certain appli-
cations, the audio (not just the speech signal) is fused with

the video signal.

In this paper, we introduce the main concepts and re-

view recent work on the challenging AV information fu-

sion problem. There are a number of review papers on the

topic (i.e., [10], [22], and [56]–[64]) and our intention is

to continue our review where these papers left off. We

present some of the challenges encountered in fusing these
two modalities, some of which are encountered in other

fusion problems as well. We discuss and compare different

ways of addressing such challenges and offer critical per-

spectives for the field and future research directions in the

area. Some of these challenges we address are the effec-

tiveness of each modality in different environmental con-

ditions, in other words, the adaptivity of the AV system to

the quality, reliability, and confidence of each modality.
We also address the asynchrony issue between the audio

and video streams, including different sensing rates and

the natural asynchrony between speech and audio clues.

We also review the most recent advances and approaches

in the field. In particular, we concentrate on the use of

deep and multiview learning for AV information fusion.

The paper is organized as follows. In Section II, we

describe the feature extraction step and the categories of
fusion. In Section III, we discuss some of the dominant

fusion techniques, namely, support vector machines

(SVMs), dynamic Bayesian networks (DBNs), hidden

Markov models (HMMs), and Kalman filters. In

Section IV, we describe some of the challenges in fusing

audio and video streams. In Section V, we review the

approaches followed in addressing some of the challenges

in AV fusion and present two recent approaches toward it,
namely deep and multiview learning. We draw conclusions

and provide our assessment about the future of the field in

Section VI.

II . AUDIOVISUAL PROCESSING

Generally, AV analysis encompasses two main steps. In the

first step, appropriate features are extracted from each
modality. This step is completely dependent on the type of

modalities utilized and also the application. In Section II-A,

we present an overview of the AV features extracted from

these modalities for different applications. In the second

step, the information conveyed by the modalities is

integrated. Different fusion approaches with their advan-

tages and disadvantages are discussed in Section II-B.

A. Feature Extraction
Representing modalities, i.e., audio and video, in an

appropriate and efficient feature space is an important step

before their fusion. For audio sources, there are some well-

known representative features that have been used widely

in the speech and audio research community, such as

spectrum-based features, like Mel-frequency cepstral coef-

ficients (MFCCs) [65], [66] and linear predictive coding
(LPC) [67], phoneme posterior features [68] and prosodic

features [44]. On the other hand, finding appropriate visual

features from video sources is challenging [56]. In most AV

applications, visual features are extracted from the infor-

mative parts of the body such as mouth and eye regions,

but, in general, they are application dependent. The ap-

proaches in extracting specific information also vary. For

example, in AV speech recognition, while MFCC features
are typically utilized to represent speech [69], a number of

approaches have been considered for extracting visual

features that can be categorized into four groups, those of

image-based, motion-based, geometry-based, and model-

based features [70]. A generic representation of an AV fea-

ture extraction system is depicted in Fig. 1. In most cases, a

dimensionality reduction step is considered after the visual

features are extracted. To capture the temporal dynamics in
both the audio and video streams, first- and second-order

derivatives (implemented through differences) are taken

from new features. Since typically the rates of the audio and

video streams differ, an interpolation step is required to

represent them at the same rate.

While, in most cases, the information about the mod-

alities is combined only after feature extraction, it is of

interest to consider this information combination during
feature extraction, as was done, for example, in [71]. We

will discuss this more in Section V-C.

B. Fusion Approaches
Fusion can be performed at different levels. Fusion at

the feature level is done before the modeling process by

integrating or combining features from all modalities;
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therefore, it is referred to as early integration [14]. On the

other hand, at the decision level, modeling of each mod-

ality is performed separately, and then the outputs or

decisions of the models are integrated to produce the final

decision [72], therefore it is referred to as late integration.

Moreover, there is another approach which is in the mid-

dle of early and late integrations, and it is referred to as

intermediate integration (in some literature, it is also con-
sidered as early integration). It is also possible to combine

two of these fusion approaches by performing fusion at

both levels, referred to as hybrid approach [73]. In the

following, these approaches are described in more detail,

focusing on their advantages and disadvantages.

1) Early Integration: An illustration of the early integra-

tion approach is shown in Fig. 2(a). As can be seen, appro-
priate features are first extracted from the two modalities.

The extracted features are then combined into one feature

set in a process referred to as feature integration. For ex-

ample, stacking the input feature vectors into a single

vector is one of the simplest forms of feature integration.

The integrated feature vector will be input to a modeling

process, which will produce the final decision or output.

In early integration, the correlation between modalities
can be found at the feature level, and only one modeling

process is needed, which will result in lower cost and

complexity compared to the other fusion techniques which

need more modeling process units [57], [72]. However, to

be in the same feature space type, the feature vectors need

to be converted and probably scaled. Another issue is the

size of the integrated feature vector that may result in

working in a high-dimensional feature space. It can make

the modeling process harder and reduce the scalability of

the system. Some techniques such as principal component

analysis (PCA) and linear discriminant analysis (LDA) can

be used to tackle this problem [57]. Additionally, there can

be some sort of asynchrony between different modalities

because of their different sensing rates and processing

times. The feature vectors that are combined together

should be from the same time, therefore some considera-
tions should be taken to address this issue [57]. It may be

worthwhile to note that while the feature integration is the

most common way of early integration, sometimes, one

modality can be used to do a particular initialization or

preparation, and the rest of the task is performed exploit-

ing just the other modality. For example, Barnard et al.
[40], for the application of visual tracking of multiple hu-

man speakers, use the audio source for the initialization to
constrain the search space of the visual face detector.

2) Intermediate Integration: Intermediate integration

techniques are very similar to the early integration ones

[57]. With these approaches, audio and video features are

provided jointly to one modeling process unit. The main

difference is that the exploited modeling process unit is

especially designed for handling several modalities. It tries
modeling each modality separately while considering the

interaction between them. Compared to early integration

which does not differentiate between features from differ-

ent modalities, intermediate approaches consider the dif-

ference between them. This enables these approaches to

handle some degree of asynchrony between modalities and

also consider weights for them in different situations. The

main difficulty with intermediate integration is the

Fig. 2. (a) Early integration. (b) Late integration.

Fig. 1. Generic representation of an AV feature extraction system.
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limitation in selecting the modeling techniques because
they should be designed specifically for the intermediate

integration process [57].

3) Late Integration: The overall process of the late inte-

gration approach is illustrated in Fig. 2(b). With this ap-

proach, for each modality, a separate modeling process is

exploited which receives the features of one modality as

input and produces an output decision. These are then
integrated to form the final result by the decision inte-

gration unit. The most straightforward techniques used in

this step are weighting, summation, and voting [57]. More

advanced machine learning algorithms such as Adaboost

[74] can also be used as was done in [52].

In late integration, the outputs of the modeling pro-

cesses have the same representation, and combining them

is easier than combining feature vectors, as is done in the
early integration. Additionally, handling asynchrony is

easier at the decision level, and also the system is scalable

with the number of modalities compared to early integra-

tion techniques. Another advantage of this approach is that

for each modality a specific technique appropriate for that

modality can be used. For example, in an AV speech re-

cognition task, SVMs represent the preferable modeling

process for visual features, while HMMs are used for
speech signals [57].

The main disadvantage of late integration is that it is

not possible to benefit from the correlation of modalities at

the feature level. Moreover, due to the need of separate

modeling for each modality, late integration is more chal-

lenging compared to early integration.

As discussed above, each type of integration has its own

pros and cons. Some studies have suggested combining
these approaches to benefit from the advantages of both

[57]. Such an approach is typically referred to as hybrid
integration. With this, both early (possibly intermediate)

and late integration are employed, and then the decisions

from both systems are combined using a decision integra-

tion unit to produce the final decision. In this way, we can

have the advantages of both early and late integrations at

the same time.

C. Data Sets
Although there are many AV databases, there is still a

great need to produce appropriate databases for AV appli-

cations. None of the existing data sets have all desirable

characteristics such as adequate data size, realistic variabi-

lity, standard experimental settings, and evaluation mea-

sures. Additionally, there is no commonly accepted
standard evaluation which makes the comparison of

different features and fusion methods difficult [22], [57].

Some of the available AV data sets which have been used in

the literature are PETS [75] (multimodal analysis tasks, for

example, object tracking), AV16.3 [76] (audio-only, video-

only, and AV speaker localization and tracking) TRECVID

[77] (used in different applications like video retrieval,

semantic video analysis, video segmentation, concept de-
tection), BIOMET [78] (contains face, speech, fingerprint,

hand, and signature modalities), M2VTS [79] (audio and

video recordings of some subjects uttering digits, used in

biometric verification applications), XM2VTS [80] (ex-

tended M2VTS), VidTIMIT [81] (video recordings of

people reciting sentences from the TIMIT [82] corpus),

DAVID [83], VALID [84], AVICAR [85] (AV speech cor-

pus in a car environment), BANCA [86] (biometric access
control for networked and e-commerce applications), and

CUAVE [87].

III . FUSION TECHNIQUES

There are a number of techniques which have been used

for the modeling and fusion steps in AV processing, such as

SVMs, graphical models, e.g., DBNs and HMMs, neural
networks, and estimation algorithms, for example, Kalman

filtering. Generally, these are modeling techniques which

are applicable to various parts of an AV system; for exam-

ple, they can be used as a technique in the modeling pro-

cess units (see Fig. 2). As the focus of the current study is

on fusion, we will not cover such works that have used

these modeling techniques in other parts of the system and

simply focus on the integration units. In the following, we
provide a short description of some of the most commonly

used techniques for fusion in AV applications.

A. Support Vector Machines
SVMs represent popular modeling techniques that

have been used widely in many classification problems. In

most of the AV works that have utilized SVMs, they have

been used for modeling a single modality independently.
However, there are studies, particularly in late integration,

which have used SVMs as a fusion technique to integrate

the decisions obtained from the other components of the

system. For example, many studies have been performed

on AV concept detection in videos [26], [27], where some

audio, visual and textual clues are modeled separately, and

the corresponding scores are produced. The obtained

scores are then concatenated to form a feature vector that
will be the input to an SVM for detecting semantic con-

cepts. The same idea is utilized in other applications such

as biometric identification. Bredin and Chollet [19] com-

bine the scores obtained from three components including

a face recognition system, a speaker verification system,

and a synchrony (correlation) estimation module using an

SVM as the decision integration unit.

B. Dynamic Bayesian Networks
Bayesian networks are probabilistic graphical models

that represent a set of random variables with their condi-

tional dependencies. The graphical representation of a

Bayesian network is done with acyclic directed graphs in

which a vertex represents each variable, and the condi-

tional dependency between two variables is represented by

Katsaggelos et al. : Audiovisual Fusion: Challenges and New Approaches

1638 Proceedings of the IEEE | Vol. 103, No. 9, September 2015



an edge between the corresponding vertices. DBNs are
Bayesian networks that model sequences of observations.

DBNs and their variants are used widely in AV applications

especially where temporal sequencing should be consid-

ered, such as speech processing and video analysis.

Noulas and Kröse [88] have suggested a two-layer DBN

modeling approach to be used in video analysis applications

to address the problem of assigning clues to the person that

created them. In the first layer, each modality, in this case
audio and visual, is modeled independently with a separate

DBN. In the second layer, another DBN is employed to

model the interaction between these two modalities. The

use of expectation–maximization (EM) is proposed to esti-

mate the parameters of the DBNs. Other researchers have

also suggested using multistream DBNs to model the inter-

actions between modalities. For example, Dielmann and

Renals [42] used an automatic meeting segmentation sys-
tem to analyze the meeting videos based on multistream

DBNs. The goal is to automatically structure a meeting

recorded with several microphones and cameras into se-

quences of group meeting actions, such as monologue, dis-

cussion, and presentation. They have proposed to model

the AV clues jointly with a multistream DBN that relates

low-level features to more complex group behaviors.

In the general multistream DBN model structure given
by Bilmes and Bartels [89], both in the AV streams, each

word is composed of a fixed number of states, and each

state is associated with observation vectors. The number of

training parameters is very large, especially for the task of

large vocabulary speech recognition. To reduce the train-

ing parameters, each word is composed of its correspond-

ing phones sequence, and each phone is associated with an

observation vector. Since phones are shared by all words,
the training parameters are enormously reduced [this is

referred to as the multistream asynchrony DBN (MS–

ADBN) model]. This model however is a word model whose

recognition basic units are words. Based on the MS–ADBN

model, Lv et al. [90] introduced an extra hidden node level

state between the phone node level and the observation

variable level in both streams, resulting in multistream

multistates asynchrony DBN (MM–ADBN) model. In it,
each phone is composed of a fixed number of states, and

each state is associated with an observation vector; besides

word, a dynamic pronunciation process of phone is also

described. Terry and Katsaggelos [11] introduced an exten-

sion to this model. In [89], the AV streams are modeled

independently with each consisting of phones as subword

units (referred to as phone/phone model). AV speech,

however, is not composed of the same subword units. The
visual speech units, visemes, are related to audio speech

units, phones, in a many-to-many mapping [91]. The ap-

proach in [11] reflects this and models the audio stream as

consisting of phones, while the video stream consists of

visemes (phone/viseme model).

DBNs have been employed in various AV fusion tasks

that need to model the multiple dependencies between

their random variables. Furthermore, they can efficiently
deal with the time-series data [92]. These advantages make

them suitable for many multimedia analysis tasks. The

main disadvantage of DBNs is the difficulty in determining

their correct state [57], [93].

C. Hidden Markov Models
An HMM can be considered as a simple form of a DBN

that represents probability distributions over sequences of
observations. Like DBNs, HMMs have been used widely in

speech and video processing tasks. In some works, a single

HMM is exploited to model AV features jointly, without

discriminating between them. These works can be catego-

rized as early integration approaches [51], [94]. For exam-

ple, an HMM is used by Wang et al. [51] to model the

extracted AV features from each frame to perform video

shot detection. On the contrary, several variations of
HMMs are proposed as intermediate integration tech-

niques that try to model the modalities separately while

considering their interactions at the same time.

Multistream HMMs (MSHMMs) employ two separate

streams for the audio and video observations. They couple

these observations at every frame. The complexity of the

decoding algorithm is linear in the number of streams [95].

This modeling has been used extensively in AV speech
recognition applications [9], [12], [13]. Instead of coupling

observations at every frame, which may be too tight, in

state-asynchronous HMMs [96], two standards HMMs are

tied at the boundaries of the modalities. In this way, the

asynchrony between modalities and also their alignments

can be maintained. In another variant of HMM, called

coupled hidden Markov models (CHMMs) [97], parallel

streams are modeled using concurrent HMMs where each
HMM state can transit within the asynchronous region, but

should remain tied at the model boundaries [98]. The main

problem with CHMMs and state-asynchronous HMMs is

that their exact training algorithms become intractable

when using more than two streams [95]. The readers may

refer to [98] for a complete explanation of the various types

of HMMs, their advantages, and disadvantages.

In addition to DBNs and HMMs, other types of graphi-
cal models, such as conditional random fields (CRFs)

and their variations [99], have been used for multimodal

fusion [100].

D. Estimation-Based Methods
The estimation-based techniques for fusion of multiple

sources include variants of the Kalman and particle filter

methods [57]. Kalman filtering is a technique to estimate a
state–space model from a sequence of noisy observations

over time. It is able to retain the history of its previous

states without extra memory. The Kalman filter represents

an optimal estimator for 1-D linear systems with additive

Gaussian noise [101]. A nonlinear version of the Kalman

filter referred to as extended Kalman filter (EKF) [102] is

used to model nonlinear systems.
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Particle filters are used to model stochastic dynamical
systems from a series of observations over a period of time.

These methods are also known as sequential Monte Carlo

(SMC) methods [103]. While the Kalman filter is typically

used to model linear systems, and the extended Kalman

filter can be used for nonlinear systems, particle filters are

more suitable for nonlinear and non-Gaussian models,

particularly with sufficiently large number of samples.

These are popular techniques in object localization,
people tracking, and also data fusion. They can be em-

ployed at both feature and decision levels of fusion. For

example, Loh et al. [39] combined the audio data from three

microphones and the video data from one camera to esti-

mate the position of the speaker, and then a Kalman filter is

employed to estimate her/his velocity and acceleration.

Gehring et al. [37] provided the recognized faces from dif-

ferent cameras and the time delay of arrival (TDOA)
between different microphones as audio and video features,

respectively, to an EKF to detect the active speaker loca-

tion. A hierarchical Kalman filter structure has been pro-

posed by Talantzis et al. [30] to track people in a 3-D space

using multiple microphones and cameras. First, two sepa-

rate local Kalman filters for audio and video streams are

considered. Then, the outputs of these two local filters are

fused employing one global Kalman filter. Kilic et al. [104]
proposed a novel approach for integration of audio and

video information for tracking multiple moving speakers

using particle filtering. They reshape the traditional

Gaussian noise distribution of particles in the propagation

step and reweight the observation model in the measure-

ment step by exploiting the audio information and the

direction of arrival (DOA) angle.

E. Task-Dependent Techniques
Additional AV fusion techniques can be found in the

literature that were developed for specific applications,

often with no general applicability. These fusion techniques

are mostly considered as intermediate approaches. For ex-

ample, Casanovas et al. [105] proposed a method based on

sparse representation for blind AV source separation. Two

dictionaries are constructed expressing redundant repre-
sentations of the audio and video modalities. Extending the

idea of using two dictionaries to model audio and video

observations separately, the ‘‘local’’ information has been

exploited by using a unique AV dictionary as in [55].

In their other work [106], an iterative video diffusion

technique is proposed that detects regions in the video that

are related to the produced sound. A measurement of syn-

chrony between audio and visual modalities is exploited to
recognize these regions. The extracted regions can be use-

ful in several AV applications such as audio source localiza-

tion in videos. This technique has also been employed to

extract objects producing sound in a video in an unsuper-

vised manner [6].

A summary of applications involving AV fusion is shown

in Table 1. Representative works under each application are

also shown. For each of them the AV features used along
with the actual fusion technique and its classification are

also shown. This is just a representative list of papers and by

no means exhaustive. Additional applications can be found

in [10], [22], [57], and the references therein.

IV. CHALLENGES

An important issue in designing an AV system is how to
integrate knowledge of diverse modalities (in our case

audio and video) to exploit the informative knowledge from

each modality while ignoring drawbacks of each one. In the

following, some of the main challenges in this area are

described.

• The effectiveness of each modality in different en-

vironmental conditions is not the same. In some

cases, the system should rely more on the audio, for
example in a dark scene, while in others it should

rely more on the video, such as in acoustically noisy

environments. In other words, the system should

be adaptive to the quality, reliability, and confi-

dence of modalities. The general approach to this

goal is to consider weights for each modality during

fusion. Weighting can be done in a dynamic scheme

by adjusting the weights constantly according to the
quality of test data [101], [107]–[109], or in a static

scheme by calculating some constant weights based

on only the training data [46], [110], [111]. In cases

where the qualities of modalities in the training and

test data are different, dynamic weighting is neces-

sary. The problem of estimating the appropriate

weights for varying conditions is still an open prob-

lem, although many researchers [112], [113] have
addressed it.

• Dealing with multiple modalities of different types

can cause many synchronization issues. There are

two main types of asynchrony in AV fusion. The

first type originates from the asynchrony between

the audio and video streams. For example, the vi-

sual and acoustic signs of speech do not necessarily

occur exactly at the same time. As a result, there is a
natural asynchrony between speech and visual

clues in AV speech recognition referred to as pre-

servatory and anticipatory coarticulation [114]. The

other type is related to the difference between

sensing rate and processing time of different mod-

alities. Also, the amount of data that is needed to

complete a specific task is application dependent;

for example, this amount is longer for AV event
detection compared to AV speech recognition.

Handling asynchrony is an important and critical

problem in real-world applications and should be

studied and addressed properly.

• These days, large amounts of data are available

which are mostly unlabeled. The process of label-

ing data requires human effort which is time
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consuming and expensive. It is necessary to have a

fusion technique that is able to benefit from such a

large amount of unlabeled resource. Exploiting

unlabeled data is not considered in most of the

conventional AV techniques. However, recently

researchers [115], [116] have been working on AV

processing in semisupervised or even unsupervised

scenarios. They mostly view the multimodal pro-

cessing problem as a multiview learning problem,

and propose new learning techniques to address

issues such as missing labels, noisy views (mod-

ality), and semisupervised learning.

Table 1 Summary of Audiovisual Applications (Adopted and Extended Based on [22] and [57])
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V. RECENT ADVANCES AND APPROACHES

Having established in the previous section the main AV

fusion challenges we choose to focus on, in this section, we
first review the recent literature in addressing the asyn-

chrony and dynamic weighting challenges. The nature of

the first challenge is specific to the two modalities under

consideration: speech and video. The approaches described

in addressing it, however, can be applied in handling the

asynchrony of other modalities as well. The dynamic

weighting challenge on the other hand is generic in some

sense, that is, it applies to any fusion application. Subse-
quently, we describe two recent technologies, deep and

multiview learning with both current and future impact on

the AV fusion. Although the amount of work utilizing these

two technologies toward AV fusion is limited, they have

demonstrated improved performance and that they are

capable in principle of addressing the challenges of unla-

beled, noisy, missing and/or conflicting data.

A. Asynchrony
AV anticipatory asynchrony is a naturally occurring

linguistic phenomenon in which the visible gestures

(mainly the lip gesture) for a speech segment occur in ad-

vance of other articulatory components of the segment, so
that the visible gestures are seen before the corresponding

phone is heard. A common example of this is the preround-

ing seen in the word ‘‘school.’’ The lips begin to round for

the /uw/ sound while the /k/ (or even /s/) is still being

produced. This phenomenon is known as anticipatory co-

articulation. Preservatory coarticulation is a similar effect,

but instead of one gesture beginning in advance, a gesture

continues after. Though anticipatory coarticulation is more
pervasive in English, the extent and directionality of coar-

ticulation patterns differ across languages [117], [118].

Anticipatory coarticulation has been studied since at

least the 1930s under the assumption that coarticulation

occurs in part because segments may lack inherent speci-

fication for particular articulations [119]. In 1966, Henke

proposed a computational model of the articulation of

English stop + vowel sequences under the assumption that
segments need not always have complete articulatory tar-

gets, and, thus, are open to coarticulation effects [120].

This work, known for its ‘‘look-ahead’’ mechanism for anti-

cipatory coarticulation, proposed that once the stop contact

is made, the stop looks ahead to the vowel’s targets for other

articulators, such as the lip-rounding present in ‘‘school.’’

In the speech recognition literature, it was shown by

Bregler and Konig [121] that, on average, acoustic features
are maximally correlated with visual features 120 ms in the

past. This was also reported in psychological experiments

by Benoit [122]. In the case of AV biometrics, Aleksic and

Katsaggelos [22] cite these asynchrony effects as one of the

major open problems.

One of the many problems in AV processing is the lack

of sufficient corpora for system development [123]. A good

database is an essential component of a research plan and
must contain the phenomena one is trying to model. The

GRID corpus [124] contains many linguistic contexts in

which one may find AV asynchrony and served as the pri-

mary database for the work in [114]. To aid in the labeling

and analysis tasks, an AV data display (AVDDisplay) tool

was developed in [113], which provides interfaces for both

human annotation and display and manipulation of auto-

matically produced alignments and recognition hypo-
theses. Using AVDDisplay human labeled data were

collected and were utilized to establish the ground truth

[113], [114].

In analyzing the human labeled data it was concluded

that the cross-annotator synchrony characterizations were

very consistent [114]. The overall asynchrony data con-

formed to our linguistic expectations that the data should

be skewed toward early video onsets. The histogram of the
amount of asynchrony at each onset, measured as the video

mark minus the audio mark, is shown in Fig. 3. The his-

togram is centered near the boundary between synchrony

and early video (20 ms) and is significantly skewed toward

early video.

Currently, a typical approach to modeling asynchrony

in AV speech modeling is the coupled HMM (CHMM)

[125], in which state transitions in each modality depend
on the state of the other modality (an alternative approach

is also represented by asynchronous multistream HMM).

In CHMM, asynchrony is typically allowed only within the

boundaries of each phone/viseme, whereas observed asyn-

chrony often crosses multiple phone boundaries. In con-

trast, the asynchronous dynamic Bayesian network model

of Saenko and Livescu [112] and Saenko et al. [126] allows

asynchrony across multiple phones/visemes within a word,

Fig. 3. Histogram of asynchrony distribution (video mark/audio mark)

in ground truth data for all words. Red lines indicate boundaries

between early audio, synchronous, and early video cases [114].
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but does not account for the asymmetry that is typical to

AV asynchrony.

Terry [114] developed a model of asynchrony that al-

lows for explicit modeling of anticipatory coarticulation,

while spanning multiple phones/visemes. Furthermore, as

speech generally appears synchronous with sporadic bursts
of asynchrony, it is posited that an AV speech system

would benefit from modeling these two regimes, synchro-

ny and asynchrony, in different manners. Based on the

assumption that AV speech in a state of asynchrony will

tend to revert back to synchrony, it was hypothesized that

the state transitions of each modality will differ based on

the amount of asynchrony. To model this, asynchrony-

dependent state transitions are introduced. The state
transitions of each modality in this new model depend on

both the current degree of asynchrony and the modality’s

current state.

The model in [114] is based on the word-synchronous

DBN used in [11] with the addition of a synchrony control

mechanism based on [112], [126]. This model also takes

inspiration from CHMMs [125] in that it allows state tran-

sitions to depend on variables other than just the current
modality’s state. In this case, however, the dependency is

on the instantaneous asynchrony rather than the state

itself, which reduces the number of parameters. In [112]

and [126], the amount of asynchrony is defined as the

absolute value of the difference between the state indices of

the streams. The work in [114] drops the absolute value,

which increases the number of parameters in the model but

allows to more correctly model the difference between

audio lead and audio lag. This asynchrony model is learned

during training. In addition to the asynchrony model itself,

an extra parameter, the asynchrony model weight, is added

to control the relative importance of the asynchrony model.

A model with asynchrony-dependent transitions is de-
noted as the ‘‘ADT’’ model and a model with the standard

transitions and asynchrony mechanism as the state-

differences or ‘‘SD’’ model. Therefore, aside from AV stream

weights, there are three main tuning parameters of these

models: the maximum number of states of audio lag, the

maximum number of states of video lag, and the weighting of

the asynchrony model. Fig. 4 shows the SD and ADT models

as DBNs. For clarity, state and phone/viseme level variables
have been collapsed into single nodes in the graph. Also,

some common elements, such as pronunciation variants and

stream weighting, are not shown. Blue nodes and edges

represent the audio modality, while red nodes and edges

represent the video. The gray nodes and edges denote the

asynchrony model and its links to the AV modalities. Nodes

with no border are deterministic and hidden, while nodes

with a solid circular border are deterministic and observed.
Dashed rectangular borders denote hidden, stochastic nodes

and dashed circular borders denote observed, stochastic

nodes. The observed audio and video input nodes have

Gaussian mixture distributions conditioned on their

respective state.

• AV state index (ASI, VSI): The index of the current

state relative to the most recent word boundary,

Fig. 4. Word-synchronous SD and ADT models for training/alignment. All variables are the same for both models and dotted edges are

excluded in the SD model and included in the ADT model. Diagram is simplified for clarity and is conditioned on word-level variables

that are not shown [114].
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used to determine the current phone/viseme and
for measuring asynchrony.

• AV state (A, V): The current AV phone/viseme and

subphone/viseme state.

• AV state transition (AST, VST): A binary variable

indicating whether an AV state transition has oc-

curred. For the SD model, the distribution is condi-

tioned only on the AV state, while for the ADT

model, the distribution is conditioned on the AV
state and the value of the asynchrony model (AM,

described below). These distributions are learned

during training. If a state transition occurs, the

state index at the next time instant will increment

or reset to zero in the case of a word transition.

• AV observation (AO, VO): Acoustic and visual fea-

ture vectors, distributed according to state-specific

Gaussian mixture models.
• Asynchrony model (AM): The instantaneous de-

gree of asynchrony (difference between the audio

and video state indices). Its probability mass func-

tion over the set of allowed asynchrony values re-

presents the probability of a given number of states

of audio or video lag.

• Asynchrony enforcement (AE): A binary variable

with observed value always equal to one that en-
forces the asynchrony constraints by ensuring that

ASIðtÞ � VSIðtÞ ¼ AMðtÞ, where t denotes time.

As explained in [126], this variable is not needed

for decoding, but is needed for training the asyn-

chrony model distribution with standard EM.

The AV speech modeling system in [114] was evaluated

in the context of a forced alignment task using the GRID

[124] corpus. It was found that the state transition proba-
bilities for /uw/ and /r/ share similar characteristics, and as

expected, the probability of transitioning varies greatly

depending on the asynchrony state. For situations when

the audio is lagging the video, the video is very unlikely to

transition until the audio has caught up (i.e., the asyn-

chrony state returns to synchronous). Similarly, when

the video is lagging, the video is very likely to transition

when it has caught up with the audio and returned to
synchrony.

Regarding the partitioning of the data that was used in

[114], ten speakers were selected from the GRID corpus:

speakers 2, 3, 4, 10, 15, 18, 19, 20, 22, 24. These speakers

were selected for more neutral accent as well as ease of

tracking for visual feature extraction. Utterances were

pooled into three mutually exclusive sets, one for training,

one for development, and one for testing. For each speaker,
700 of the 1000 total utterances were randomly selected for

the training set, 100 randomly selected for development,

and the remaining 200 were set aside for testing. Thus, the

total sizes of the training, development, and testing sets are

7000, 1000, and 2000, respectively.

Besides the AV forced alignment the ADT system was

also used for speech recognition. It was found that the

overall word recognition rate improvement is rather small,
but, interestingly, there is a significant improvement in the

first word recognition.

B. Dynamic Weighting
It is a well-known fact that the performance of automa-

tic speech recognition (ASR) systems degrades heavily in

the presence of noise. Consequently, the problem of

weighting AV modalities for speech classification naturally
arises at the description or observation levels. The weight

assigned to each modality should be related to its reliability

to perform classification. For instance, in a quiet environ-

ment with ideal AV signals, a larger weight should be given

to the audio stream, reflecting the fact that the audio mod-

ality is more reliable than the video one when it comes to

recognizing speech. In general, when one of the modalities

is degraded (due, for instance, to background noise in the
audio channel or an occlusion of the speaker’s mouth in the

visual signal) the importance assigned to it should decrease

and reflect the confidence we have on that modality in such

circumstances. Let us now examine how the weighting of

the contribution of the audio and video signals in various

scenarios has been approached in the literature. It should

be kept in mind that stronger constraints must be imposed

on the weights other than their sum being equal to one
[133]. Often the weights are tuned on heldout data (e.g.,

[112] and [113]). It is also interesting to note that there is

often a mismatch between the implicit weighting used

during training and the weights applied at test time.

Terry et al. [113] report that the best performance of their

system was achieved by tuning the training and testing

weights separately.

One of the earliest and most cited papers on weighting
is by Potamianos and Graf [134]. The authors utilize syn-

chronized AV features to train respectively audio-only and

visual-only single stream HMMs of identical topology by

maximum likelihood. A two-stream HMM is obtained by

combining the two single stream HMMs; exponents that

weight the log-likelihood of each stream are then intro-

duced. They use the minimum classification error discrimi-

native criterion to estimate the exponents. However other
criteria can also be used; see, for instance, [135] for the use

of maximum mutual information to perform the same task

and [136] for the use of maximum entropy principles.

The approach of Potamianos and Graf was adopted by

various researchers. For example, Garg et al. [137], also use

MSHMMs and they propose two reliability indicators of

the class information contained in an observation which

are then calculated for the AV streams. The exponents are
modeled as the sigmoid of a weighted function of the four

calculated reliability indicators. The weights associated

with each indicator are calculated using maximum condi-

tional likelihood of the training data labels.

Advancing the approach introduced in [138] and [137],

and utilizing the same model, Marcheret et al. [139] con-

centrate on feature selection for capturing the reliability of
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the AV streams, and weight estimation based on such
features. They consider likelihood, as was done in previous

works, and also analyze acoustic signal based features. To

estimate the weight, sigmoid functions are used and two

variants of the Gaussian mixture model (GMM) estimation

are proposed.

The approach followed by Gurban et al. [140] is also

based on finding estimators of stream reliability and map-

ping them dynamically to stream weights. The authors
estimate stream confidence directly from each classifier. If

a clear peak emerges in the posterior distribution, the

stream is reliable; otherwise ambiguity is strong and

the modality is unreliable. It uses entropy to measure the

stream reliability. Several mappings from entropy to

weights are proposed. Lee and Park [141] discuss and

compare different definitions of the reliability of a

modality. Rajavel and Sathidevi [142] propose a genetic-
algorithm-based reliability measure and the final weights

are proportional to the reliability measure of the outputs of

the acoustic and visual HMMs. They describe a neural-

network-based fusion method which uses the reliability

measures of the two modalities and produces noise-robust

recognition performance over various noise conditions.

Terry et al. [143] propose a video reliability metric

based on the extracted video features rather than the video
sequence itself. The features are extracted from clean data

and are sent through a vector quantizer with memory so

that the conditional probability mass function (PMF) of a

video state given an audio state is estimated during train-

ing. This conditional PMF along with an audio stream re-

liability metric, such as audio signal-to-noise ratio (SNR),

are utilized to determine the AV stream weights at any

given time.
In a multispeaker environment and to make the system

robust to acoustic noise, Shao and Barker [144] replace the

state likelihoods with a score based on a weighted combi-

nation of the AV likelihood components and the weights

are allowed to change from frame to frame. The proposed

weighting process learns the SNR from the complete

likelihood data using an artificial neural network (ANN).

The SNR is also used as a reliability measure in the work of
Estellers et al. [145]. They propose a dynamic scheme in

which weights are derived from instantaneous measures of

the stream reliability. The authors propose a confidence

measure on the audio stream and study how to map it to

weights in order to obtain minimum word error rate in a

noisy training data set.

Various approaches for determining the stream weights

have been followed when CHMMs are utilized toward AV
ASR. For example, Nefian et al. [146] modified the proba-

bility for each observation conditional likelihood to handle

different levels of noise. The weights assigned to each

modality are obtained experimentally to maximize the

average recognition rate for a specific acoustic SNR level.

The use of a multilayer perceptron with a CHMM is

investigated by Abdelaziz and Kolossa [109]. Finally,

Addelaziz et al. [147] used the EM algorithm to estimate
the dynamic stream weights in the context of a CHMM.

Terry and Katsaggelos [11] introduced a new model for

AV automatic speech recognition with DBNs. Stream

weighting is directly incorporated into the graphical model

and a phone/phone model is transitioned into a phone/

viseme model. The system is evaluated and compared

against one of the recently proposed systems utilizing a

large vocabulary continuous speech recognition (LVCSR)
task with noisy audio. By modeling the visual stream

more accurately through the use of visemes, the system

provides a higher recognition rate. The integration of the

information provided by AV signals is carried out by

Heckmann et al. [138] at the posterior probability level,

using the so-called separate integration model. They anal-

yze different weighting schemes and their coefficients are

learned using an ANN/HMM on noiseless environments
(see also [148]).

C. Deep Learning
A definition of deep learning (DL) is [149]: ‘‘A class of

machine learning techniques that exploit many layers of

non-linear information processing for supervised or unsup-

ervised feature extraction and transformation, and for pat-

tern analysis and classification.’’ It lies in the intersection
of neural networks, artificial intelligence, graphical model-

ing, optimization, pattern recognition, and signal process-

ing. Human information processing mechanisms (e.g.,

vision and audition) suggest the need for deep architectures

to extract complex structures and building internal repre-

sentations from rich sensory inputs. DL has shown very

good performance in a number of research areas, such as,

object recognition, computer vision, information retrieval,
language modeling and natural language processing [149].

It has also been used for multimodal fusion [150]–[153] and

representation learning in AV fusion [115]. Ngiam et al.
[115] introduced three main deep representation learning

methods, which we also adopt here in organizing the paper,

namely:

• multimodal fusion learning;

• cross-modality learning;
• shared-representation learning.

All three learning methods include the following three

phases: 1) unsupervised deep feature learning; 2) super-

vised training; and 3) testing. Deep networks have been

applied to unsupervised feature learning, that is, the net-

work is used as an audio and video feature extractor; the

resulting features are in turn utilized in the training and

testing phases of all the three learning methods. We review
next the literature along the lines of the three learning

methods mentioned above.

1) Multimodal Fusion Learning: In the multimodal fusion

learning setting, both modalities are available in all three

phases, as is the case in most multimodal works. One

option is to train deep neural networks separately for the
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audio and video streams. Then the output of the trained

model, i.e., extracted features, can be used as the new

representation for the data. Another alternative is to train

a model over the concatenated audio and video data [see

Fig. 5(a)]. A third alternative is to greedily train a deep
model over the pretrained layers for each modality. In AV

speech recognition, the outputs obtained from the two se-

parate models for AV inputs can be considered informally

as phonemes and visemes, respectively. The outputs are

then given to another layer to model the relationship be-

tween the modalities [see Fig. 5(b)]. This model is moti-

vated by the stacking idea in DL modeling.

Several researchers have adopted this strategy in
AV fusion. An example is represented by the work of

Ngiam et al. [115] for speech classification. They use re-

stricted Boltzmann machines (RBMs1) [154] for feature

learning and investigate many learning architectures. They

train separate RBMs for audio and video, one shallow RBM

model for the concatenated audio and video features [see

Fig. 5(a)], and also a bimodal deep belief network (DeBN2)

model [see Fig. 5(b)].
In another work, Kim et al. [155] used some DeBN

models, similar to the ones introduced by Ngiam et al.
[115], for an emotion detection task. They test several fea-

ture selection techniques performed either before provid-

ing the modalities to the input layer or after obtaining

features from the output layer. They have also investigated

the effect of feature reduction by adding a new layer with

lower number of nodes to the last layer of a DeBN. Better
performance is achieved compared to the baseline system

especially for nonprototypical data for which there is not

complete agreement.

Noda et al. [116] have also proposed a noise robust AV

ASR system by utilizing two different models to extract

noise robust features from audio and video. They employ a

deep denoising autoencoder and a convolutional neural

network (CNN) encoder to represent AV features, respec-
tively. Artificial Gaussian noise with various strengths is

added to the audio features, i.e., MFCC and log melscale

filter bank (LMFB), to produce noisy features. These fea-

tures with clean ones are exploited to train a deep denois-

ing autoencoder. To learn a video representation, a CNN is

trained with visual features, i.e., pixels from the mouth

area, as inputs and phoneme labels as outputs. The outputs

of the autoencoder and CNN are modeled with an
MSHMM. The system suffers from the static weights for

the audio and video streams in the MSHMM. Also, an

independent CNN should be trained for each speaker.

However, they demonstrate the effectiveness of their ap-

proach in providing a noise robust representation for audio

and video using DL techniques.

In another work of Huang and Kingsbury [156], AV

inputs are provided to two separate DeBNs. The outputs
obtained from the two DeBNs have been exploited in two

ways, as: 1) scores to estimate the posterior probabilities;

these scores are then integrated and used as the state pos-

terior probabilities for the HMM; 2) a midlevel represen-

tation; the outputs of two DeBNs are concatenated and

given to a third DeBN and then used as the input for a

conventional GMM–HMM system. AV continuous digit

recognition was the task used in their experiments. It was
shown that their two DeBN-based systems perform better

in noisy environments compared to conventional GMM/

HMM systems, but not in clean conditions.

2) Cross-Modality Learning: Compared to multimodal

fusion learning, with this method, only a single modality

can be presented at training and testing. This technique is

beneficial in situations when unlabeled data from other
modalities are available for training deep networks for

feature learning but they are not available in the next two

phases. A deep autoencoder proposed in [115] uses a cross-

modality learning method. Initially, a DeBN [the same

structure as in Fig. 5(b)] is trained with all modalities.

Then, the output of the layer corresponding to the available

modality is provided during testing to two networks, e.g.,

RBMs, to reconstruct both modalities. After training, the
output of the middle layer of the deep encoder can be used

as a new feature representation. This deep encoder can

reconstruct other modalities with only one of the mod-

alities [see Fig. 6(a)] by discovering the correlation be-

tween modalities. Ngiam et al. [115] could achieve better

representation for the video in the case of availability of video

and absence of audio in the training and testing phases.

3) Shared-Representation Learning: The problem with

cross-modality learning is that, for cases with multiple

modalities, the number of models that need to be trained

increases exponentially. To address this problem, a com-

plete bimodal deep autoencoder is proposed in [115] using

artificially noisy data. Motivated by deep denoising auto-

encoders, examples with one modality set to zero are

Fig. 5. Network architectures used for feature learning (adopted from

[115]). (a) Concatenating audio and video vectors and employing a

single input network. (b) Two-input network with separate inputs for

audio and video streams.

1An RBM is a generative model and can be used to learn a data
representation in an unsupervised manner.

2It is a type of deep neural network, composed of multiple layers of
hidden units. It can be viewed as a composition of simple, unsupervised
networks such as RBMs
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added to the training data. This way, the learned model

will be robust to missing modalities, and different combi-

nations of modalities can be utilized in the supervised

learning and testing phases [see Fig. 6(b)].
Here are some remarks on DL methods.

• The multimodal fusion learning method is the

most widely used deep AV fusion method. Various

deep networks architectures can be used with this

method, which provides the possibility of adapta-

tion based on the task at hand and the available

resources. However, the particular architecture

should be chosen very carefully. For example, since
the correlations between the raw audio and video

data are highly nonlinear, it is hard for a network

to learn these correlations from concatenated fea-

tures [Fig. 5(b)] without using a sufficiently deep
network.

• The main issue with the multimodal fusion learning

method is that all modalities should be available

during all three phases: feature learning, training,
and testing. This is certainly not always possible.

On the other hand, these days, large amounts of

unlabeled data are available. It would be very be-

neficial to have a method to make use of these data

for feature learning. This can be done with cross-

modality and shared-representation learning.

• Multimodal learning is closely related to the con-

cept of multitask learning, a machine learning ap-
proach that learns to solve several related problems

at the same time, using a shared representation

[149]. The learning domains or tasks cut across

several modalities. Multitask learning is often ap-

plied to conditions where no or very little training

data are available for the target task domain. It is

evident that multitask learning naturally fits the pa-

radigm of DL where the shared representations and

statistical strengths across tasks (e.g., those involving

separate modalities of audio and video) are expected
to greatly facilitate many machine learning scenarios

under low- or zero-resource conditions.

• Although in many of the DL-based AV fusion tech-

niques, RBM, DeBN, and CNN are used, other

variants of models can also be employed depending

on the task and resources. For example, Shah et al.
[157] proposes a multimodal emotion recognition

framework using an energy-based variant of RBMs,
known as replicated softmax model (RSM). The

effectiveness of the approach toward emotion re-

cognition was tested with facial expressions,

speech, and language as source data.

D. Multiview Learning
Multimodal tasks such as speech processing are natural

applications for techniques from the area of multiview

learning. Multiview learning is a set of techniques that

leverage relationships between views (here, audio and

video) to learn better models than would be learned from

each view separately or from a simple concatenation of the

two views. Multiview learning techniques typically pro-

duce models that can be used even if only one of the two

views is available at test time. This property is quite useful,
since it may be possible to collect AV training data while

only having access to either audio or video at test time.

One of the views may be completely missing, or may be

very corrupted by noise, and it is desirable to be able to

handle this situation gracefully.

The application of multiview learning techniques to AV

speech processing is still in its infancy, with most work

Fig. 6. Deep autoencoders in cross-modality and shared-representation learning (adopted from [115]). (a) Cross-modality learning by using a

single input autoencoder. (b) Shared-representation learning by using two-input autoencoder.
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focusing on small data sets and simple tasks. In this sec-
tion, we review the work done thus far in this category, as

well as some natural extensions that may be fruitful ave-

nues for future work.

1) Cotraining: One classic technique from multiview

learning is cotraining [158], a semisupervised approach for

learning a pair of classifiers, one for each view. In cotrain-

ing, there is a small amount of ‘‘seed’’ labeled data, which
is used to learn an initial pair of classifiers, and a large

amount of unlabeled data. The two classifiers then alter-

nate: 1) labeling unlabeled data points on which they are

most confident; and 2) retraining the classifiers. The mo-

tivation is that the multiple views are leveraged to label the

unlabeled data and therefore to effectively increase the

amount of training data and improve performance.

An approach related to cotraining is developed by
Christoudias et al. [159] which is dubbed coadaptation. In

this approach, an initial pair of classifiers are used to label

data from a new speaker or domain, and the most confi-

dent labels are kept and used as a seed set for applying

cotraining. They apply this idea to train AV viseme classi-

fiers, where models for a new speaker can be trained

without embarking on a lengthy annotation effort. While

cotraining is used where little labeled but a lot of unlabeled
data are available for a single domain or scenario, coadap-

tation is beneficial for the cases that sufficient labeled data

from a domain, e.g., a set of speakers or environmental

conditions, is available, but there is no labeled data for a

new domain or scenario, e.g., new speaker.

2) Multiview Feature Learning: Multiview learning can

also be used to learn improved representations, or features,
by taking advantage of relationships between the views. In

the case of AV speech processing, it is of course possible to

use any combination of standard acoustic features and

image features. However, it might be possible to improve

on these standard features. Multiview techniques for fea-

ture learning typically take advantage of the fact that the

sources of noise in the two views (or, more generally,

nuisance parameters) are independent or at least uncorre-
lated. For example, the acoustic view may include back-

ground noise while the video may include lighting variations.

Therefore, by looking for features that are in some sense

common to the two views, multiview feature learning tech-

niques can eliminate or reduce such noise. In addition, if the

audio and video views can be represented in a truly common

feature space, this makes it possible to directly compare

acoustic and visual signals for cross-modal retrieval or for
training on one modality and testing on another.

One typical approach for multiview feature learning is

to use canonical correlation analysis (CCA) to learn trans-

formations of each view [160], [161]. In particular, CCA

finds pairs of projections, one for each view, such that the

projected features are as highly correlated as possible.

Theoretical results (e.g., [162]) show that CCA projections

can improve class separation under certain conditions,
such as uncorrelated noise in the two views. This is expe-

rimentally demonstrated in [162] by clustering audio or

video frames from AV speech recordings into speaker

clusters; they find that clustering CCA-based features

greatly improves the speaker cluster quality, and makes it

more robust to noise, over clustering in the original acous-

tic or visual space. The same CCA-projected features are

exploited by Livescu and Stoehr [163] to improve speaker
recognition in noise. AV speaker identification is improved

in [164], [165] by combining visual (lip) features, audio

features, and correlated audio-lip features discovered via

CCA. Using CCA, they also find the best time shift for

synchronizing the audio and video relative to each other,

which also helps to boost identification performance.

CCA has been extended to the case of nonlinear pro-

jections via kernels [166] and deep neural networks [167],
but to our knowledge nonlinear CCA has not yet been ap-

plied for AV speech processing. On the other hand, non-

linear feature learning approaches with other objectives

have recently been developed and used for AV speech, ty-

pically using deep networks. For example, as already men-

tioned, improved representations for audio and/or video

are suggested by Nagim et al. [115] using deep autoencoders

with various structures, which learn to reconstruct both
audio and video from both inputs together or from video

alone, and use the learned representations to classify spok-

en digits/letters given only video or both audio and video, as

described in the previous section. They find that the

learned representations do better than the original features

and than single-modality autoencoders. Also, by applying

CCA to a hidden layer of the learned audio/video autoen-

coders, they can obtain further improvements. In addition,
they are able to learn a joint representation such that they

train a classifier using one modality data and test it using

the other modality. The results in [115] are further im-

proved in [168] using deep Boltzmann machines with a

similar structure. The deep Boltzmann machines, unlike

autoencoders, learn a generative model that can explicitly

generate data from a missing modality.

3) Measuring Audiovisual Asynchrony: The idea of using

cross-modal correlation has been applied beyond multi-

view feature learning, to detecting and measuring AV

synchrony or asynchrony. For example, in [169] and [170],

the correlation/canonical correlation between audio and

video signals is exploited as a measure of AV synchrony.

Similar measures (most successfully, pixelwise Gaussian

mutual information) are used in [7] to locate the speaker
in a video and identify the active speaker in a pair. In [171],

audio and video signals are mapped through the single-

layer perceptrons trained to maximize the mutual informa-

tion between their outputs, and use the resulting mappings

to localize a speaker as well as to enhance the speech of a

desired speaker in the case of multiple simultaneous

speakers.
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VI. CONCLUSION

We conclude the paper by summarizing our views on where

AV fusion stands and where it is probably heading. After an
analysis of recent publications it could probably be argued

that the research area has not really progressed much in the

recent past. This is not to imply that the published results

are not worthwhile but that although the main ideas have

been very successful, it seems that they have not been

pursued that much after their initial successes. Despite all

the successful work on some of the challenges we addressed

in this paper, i.e., stream weighting and asynchrony, there
is still much to be done on these topics, in the sense that it is

very hard to model reliability well and handle asynchrony

properly. There has not been much discriminative struc-

tured modeling done for AV (structured SVMs, CRFs, etc.)

and we expect that the various graphical models that have

been used for asynchrony should benefit from that.

DL will undoubtedly improve AV fusion performance,

as it has in every other area it has touched. It has only
started to be used for AV but the already obtained initial

results are highly promising and encouraging. Another

possible future change is that multimodal work might start

to become agnostic to what the specific modalities are. DL

is having this effect in some areas, where basic domain-

specific work is being replaced by deep networks that learn

from the input signal. This does not mean domain knowl-

edge is not needed, but maybe multimodal applications will
start to care less about what the modalities are as a result of

this trend.

Multiview learning for AV speech is emerging as a

promising approach. Recent work has only begun to take

advantage of multiview techniques. As mentioned above,

certain techniques, such as nonlinear CCA, have yet to be

applied to problems in this domain. In addition, there is
much room to explore the use of multiview techniques for

dealing with AV noise, beyond the very initial work de-

scribed above. We believe that multiview learning is really

barely off the ground and we expect that it will be a very

fruitful area for future research.

As mentioned earlier, although there exist a number of

AV databases, probably none of them has all desirable

characteristics such as adequate data size, realistic varia-
bility, standard experiment settings, and evaluation mea-

sures. This limits progress in the filed. Maybe by taking

better advantage of data that exist ‘‘in the wild’’, e.g.,

YouTube, the community might be helped to deal with

realistic noisy data. Since most of these data are unlabeled,

deep and multiview learning can be effective. With DL,

representation of the data can be learned in an unsuper-

vised fashion without the need to hand-engineer new sets
of features. With cotraining, unlabeled data, on which the

classifiers are most confident, can be labeled.

Finally, and to conclude, one can probably think that

AV fusion is a very special area, but one thing that makes it

particularly special is that there is so much AV data out

there, e.g., YouTube videos, as opposed to other multi-

modal data. They will contribute to the booming and

taking off of AV fusion that we all envisage. h
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