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In this paper, a novel Bayesian image restoration method based on a combination of priors
is presented. It is well known that the Total Variation (TV) image prior preserves edge
structures while imposing smoothness on the solutions. However, it tends to oversmooth
textured areas. To alleviate this problem we propose to combine the TV and the Poisson
Singular Integral (PSI) models, which, as we will show, preserves the image textures. The
PSI prior depends on a parameter that controls the shape of the filter. A study on the
behavior of the filter as a function of this parameter is presented. Our restoration model
utilizes a bound for the TV image model based on the majorization-minimization
principle, and performs maximum a posteriori Bayesian inference. In order to assess the
performance of the proposed approach, in the experimental section we compare it with
other restoration methods.

Poisson Singular Integral

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the digital age we live in, millions of pictures are
taken every day with digital cameras or mobile devices
like cell-phones, tablets, etc. Those pictures are intended
to be a detailed representation of reality, but very often the
captured image is degraded by blur and noise. Blur can
occur, for instance, by movement during the capturing
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process or because the scene is out of focus. Furthermore,
noise can be introduced, for instance, by sensor imperfec-
tions, poor illumination or communication errors [1].
When such problems occur, the usual solution is to take
another picture, but sometimes it is not possible to retake
the same picture and the moment is lost. Image restora-
tion handles this problem by estimating the original image
from its blurred and noisy observation.

The image restoration problem has been addressed
successfully using different approaches (see [2] for a
detailed review of classical models and [1] for references
of recent restoration models). When only noise is present,
that is, the image is crisp but noisy, denoising algorithms
such as [3-5] can be used (see [6] for a recent review and
comparison of denoising method). However, if the image is
also blurred, image restoration methods, that handle
both blurring and noise, are needed. Many restoration
methods utilize a Total Variation (TV) image prior or
regularizer [7-10]. TV is well known for preserving object
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boundaries (edges) and removing noise, but it often
eliminates image texture, which plays an important role
in visual quality.

Different methods have been developed to preserve
image textures. Chen et al. [11] adopt a two-step non-
iterative processing procedure which first employs a sim-
plified Wiener filter to obtain a distortion free but noisy
estimate, and then utilizes a modified non-local means filter
to reduce the leaked colored noise in order to obtain a good
texture-preserving restoration.

Within the Bayesian paradigm, constraints on the
characteristics of the resulting image are formulated as
prior distributions. Two of the most classical prior dis-
tributions are conditional and simultaneous autoregressive
(CAR and SAR) models [12]. They impose smoothness
constraints on the original image and are able to preserve
image textures better than TV, unfortunately, they over-
smooth edge regions.

Carasso proposes in [13] a new approach to preserve
image textures. He formulates the image restoration pro-
blem in a Lipschitz space where a broader set of images can
be accommodated. The central idea is the introduction of
the Poisson singular integral (PSI), which recovers the image
texture in cases where TV fails. PSI is also utilized in [14],
where it is combined with a curvelet-type decomposition to
preserve textures while controlling the noise. Other meth-
ods based on wavelets and curvelets have also been pro-
posed in combination with shrinkage-threshold rules [1,15]
to capture and preserve sharp features in the image.

Wang et al. [16] proposes to combine a weighted aniso-
tropic TV (WATV) [17] and tetrolet shrinkage [18]. WATV can
recover sharp and clear edges along four directions, but this
approach also eliminates image textures. To alleviate this
problem, the tetrolet transform is used in combination with
a TV regularizer.

Recently, a new approach that combines different
priors has been used to solve super resolution [19], blind
deconvolution [20,21], astronomical and natural image
[22] restoration problems. The idea behind the combina-
tion of priors is that using priors that preserve edges
jointly with priors that preserve textures can achieve
better reconstructions than simply using one image prior.
Notice that this idea is also related to the model in [20].

Using this approach, Vega et al. [22] tackle image
restoration in Astronomy by combining a prior based on
the #; norm of the horizontal and vertical first order
differences which preserve edges and a simultaneous auto-
regression (SAR) prior model which preserves image tex-
ture. A similar approach was used by Villena et al. in super
resolution problems [19]. The problem of blind deconvolu-
tion is addressed in [20] using Bayesian inference with
super-Gaussian sparse image priors. This methodology can
be used in blind and non-blind image deconvolution
problems with the only knowledge of the noise variance.

Based on these recent developments, in this paper we
propose a novel Bayesian image restoration algorithm that
uses a combination of the TV and PSI prior models in order
to preserve different properties on the restored image. This
combination takes advantage of each prior: the TV prior
preserves edge structure and removes the noise while the
PSI prior preserves the image textures.

The rest of the paper is organized as follows. In Section 2,
the TV and PSI models are presented within the Bayesian
framework, their relations are established and an analysis of
the PSI is presented. Section 3 discusses the inference
procedure and proposes our algorithm to restore the
images. Section 4 contains the experimental results and
Section 5 concludes the paper.

2. Bayesian modeling

The Bayesian paradigm is one of the most popular tools
in image restoration (see [9] and references therein). The
use of prior distributions that impose constraints on the
estimates and act as regularizers allows the introduction of
additional information in the restoration process. In this
section, we first model the image acquisition process to
obtain the observed image from the original one and the
blur and then introduce the proposed combination of
priors models we will use.

2.1. Observation model

It is usual to model the degradation process as a con-
volution between the original image and a known blurring
operator that is expressed in vector-matrix notation as

y=Hx+n, M

where x and y are column vectors of size P =m x n obtained
by lexicographically ordering the pixels in the original and
observed image, respectively, H is a known blurring matrix of
size P x P, and n is Gaussian additive white noise with zero
mean and precision A. From this degradation model, the
conditional probability distribution of the observed image y
given the original image x and the noise precision parameter,
B, is given by

X, ) oc exp(fg\\nytz) )

Py

2.2. Image model

Digital images are discrete representations of contin-
uous bidimensional signals, i.e., each image x is assumed
to have been obtained by discretizing a continuous bidi-
mensional signal f that belongs to the space of signals with
bounded p-norm (LP(R?)). In this space the continuous
Total Variation (TV,.) semi-norm is defined as

TV (f) = /[R LIvE®)ll 2 ds. 3)

Notice that for constant signal f # 0, TV.(f) = 0 and, there-
fore, TV. is not a norm. The equivalent semi-norm in
discrete case is the Total Variation function, that is defined
as

P

V) = ¥ /Al +4)x)?, )
i=1

where the operators Af‘(x) and A{(x) correspond to the

horizontal and vertical first order differences at pixel i,
respectively. In other words, A?(x):xi—xl(i) and
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AY(X) =X;—Xqi with I(i) and a(i) denoting the nearest
neighbors to the left and above of pixel i, respectively.
Using this energy function we obtain the so-called TV [9]
prior defined as

P1(X|a) oc exp(— a1 TV(X)). ()

The TV prior has the advantage of preserving the edge
structure while imposing smoothness on the solution.

This model implicitly imposes that the continuous total
variation is bounded. However, it is demonstrated in [23]
that the continuous signals corresponding to images with
high texture have an unbounded total variation, and for
this reason, the TV model fails on highly textured images.

Following [13], the space of bounded total variation
(BV(R?)) is composed of all signals f e [P(R?) satisfying the
constrain

/ If(s+d)—f(s)ll ds < ConstlidIl. (6)
RZ

To preserve textures, Carasso [13] proposes to work in the
Lipschtiz (Besov) space A(a,2,00), where the weaker

a

constraint
1/2
{/2 I f(s+d)y—£(s)I? ds} <Constlldl*, O<a<1 (7)
R

must be satisfied.
In [24] it is shown that f belongs to the Lipschitz space
A(a, 2, 00) if, and only if

sup t U —fll, < oo, (8)
t>0

where U' is the Poisson integral operator defined as

U'f = /2¢(x,y, Hf(x—u,y—v)dudv, 9)
R
and ¢ is the Poisson kernel in R?
t
Xy =—. 10

Carasso [13] shows that this space contains a rich and
significant class of images, and proposes a restoration
method for them. To force the signal f to be in A(e, 2, 00),
in [13] it is imposed that fé U —£ 112 ds is bounded, and it

Fig. 1. Realizations of the PSI prior model for different values of t: (a) t=1, (b) t=0.1, (¢) t=0.03 and (d) t=0.001.
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is demonstrated that
ot

/ IUSE—f£112 ds = 112,112, 1
0

where Z. is the continuous convolution operator of the
filter z, which is defined in the Fourier domain as follows:

—tp _p—2tp _ 1/2
+u> R (]2)

2(E v, t) = (t o

where & v are coordinates in the Fourier domain,
p=+/E+12. By continuity, we have z(0,0,t)=0. The
obtained filter is normalized so that its squared compo-
nents add to 1.

Using the discrete version of the convolution operator
of the filter z, Z, which is obtained by sampling the filter at
the resolution of the image, we can define the PSI based
prior model

Py (X|a) oc exp(_%uzmﬂ), 13)

where a5 is the prior precision parameter.
The filter z in Eq. (12) depends on a parameter t. To
illustrate the effect of this parameter on the prior, Fig. 1

a

shows a set of realizations of the PSI prior model in
Eq. (13) with precision a; = 1, for four different values of
t. As it can be observed t controls the smoothness of the
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Fig. 3. Transversal cut of SAR and PSI filters in Fourier domain for
different values of t.

b

Fig. 2. Fourier spectrum of the PSI filter for (a) t=1, (b) t=0.1, (c) t=0.03, (d) t=0.001.
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texture. As t changes so does the texture granularity
(notice the log scale).

Fig. 2 shows the Fourier spectrum of the PSI filter.
Notice that as t decreases, the radius from the center of
non-preserved frequencies increases.

To see this more clearly, Fig. 3 depicts a transversal
section of the PSI filter in the Fourier domain for different
values of t. Here, we appreciate in detail the described
behavior. As the value of t decreases passing frequencies

will diminish. Furthermore we can observe that the
passing high frequency will be amplified. Notice that for
values of t <1073, the shape of the PSI filter almost does
not vary, and therefore we can define the range of useful
values of t in the interval [10~3, 1]. In [13] it was found that
the useful range of values was in the interval (0, 1]. Note,
however, that in [13] the filter was not normalized so that
its squared components add to 1, and, hence, t produces
large variations that had to be compensated with large

0.4
03

0.2

-0.4

-0.2

0.3

Fig. 4. (a) Original Barbara image, filtered images with (b) t=1, (c) t=0.1, (d) t=0.03, (e) t=0.001 and (f) SAR.
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variations on the regularization parameter. For comparison
purposes, Fig. 3 also shows a transversal section of the SAR
filter. The SAR filter presents a frequency response similar
to the PSI when the value of ¢ is close to 0, specially in the
middle frequencies, but it attenuates more the low fre-
quencies and does not amplify very high frequencies.

As it is well known, the high frequencies in an image
are associated with abrupt changes, fine details, edges, and
unfortunately also to noise in the spatial domain. In Fig. 4(b)
the original Barbara image in Fig. 4(a) was filtered using the
PSI filter with a value of t=1, which produces an image very
similar to the original where only a narrow band of low
frequencies is eliminated. In Fig. 4(c, d) the filtered images
with a parameter t=0.1 and t=0.03, respectively, are pre-
sented. In these figures the eliminated frequencies become
more evident, smooth areas are lost, and the edges and fine
details become sharper since the high frequencies are ampli-
fied. This effect is more notorious in Fig. 4(e) where the image
was filtered using a value of t=0.001, and all but the textures
are removed, and edges and fine details like the trousers,
scarf and tablecloth are highlighted. Hence, as the value of t
decreases, only high frequencies will be preserved and
smooth regions will be removed. For comparison, Fig. 4(f)
also shows the application of the SAR filter to the same
image.

In this section, we have presented two prior models:
the TV prior that preserves the edges but smooths textures
and the PSI model that preserves the textures. To take
advantage of the characteristics of both models, we com-
bine them and define the following new prior:

P(X|a1, a2) o exp(fa]TV(x)f%zHZtz). (14)

Once the prior and degradation models are defined, we
perform inference to estimate the original image.

3. Bayesian inference

In the inference stage we use the observation and prior
models presented in the previous section to obtain a
maximum a posteriori (MAP) estimation of the restored
image.

The MAP, X, satisfies

f(:argmxin{g\\y—HxH2+a1TV(x)+%2HZxH2}. (15)

Finding X is not an easy task due to the presence of the TV
prior. However, by using Majorization-Minimization (MM)
methods the MAP solution can be found iteratively [25].
Based on the average inequality [9], we utilize the follow-
ing upper bound of the TV function:

AP+ AV +u;
N

where ue (R*)” is a P-dimensional vector with compo-
nents uq,us, ..., Up that needs to be computed along with
the image and has, as will be shown later, an intuitive
interpretation related to the unknown image x.

TV(x) < % i M(x u), (16)

We then minimize
Zxu=" Hy Hx 2+ 1M(x u)+‘i2H2xu2. 17

By alternating between the minimization of x and u.
For a given X, we calculate u as

P ANX)? +A(X)? +u;

u=ar mm 18)
EMNE T (
and, obtain
= AN )% +4}(x)%. (19)

Note that vector u is a function of the spatial first order
differences of the unknown image x and represents its
local spatial activity.

For a given u, to obtain the estimation of the image,
first notice that Eq. (17) can be rewritten as

L u) = Aly—HxI2+ 2 MX, u)+ 4, 1 Zx 112, (20)
Withﬂ:(]—/l]—lz),

ai a
M=——"— and hHh=——2— 21
YT ptata T hrata @

take values in the interval [0, 1) and satisfy 1+4;+1; = 1.
Thus, 1,21 and 1, represent the relative influence on the
restored image of the fidelity to the observed data and the
combination of priors. Notice that selecting 1, and 4, in
Eq. (20) is easier and more intuitive than selecting g, «;
and a5 in Eq. (17).

Then the MAP estimator, X, is obtained as the solution,
utilizing for instance a conjugate gradient method, of the
linear equation system

Ax=H"y, (22)
where
A= HH+2;((@"H"Wa" + (4" WaY)+1,Z2"Z, (23)

A" and A" are the convolution matrices associated with
horizontal and vertical gradients, respectively, and W =
diag(1/./u;). This matrix controls the smoothness applied
at each pixel of the image. So, for pixels in areas with a low
spatial activity, the value of W will be large, thus enforcing
smoothness. In those areas, the PSI will be responsible
for the texture preservation. However, for pixels in high
spatial activity areas W will be very small which means
that no smoothness is enforced, thus preserving the edges
and other features of the image.

The proposed restoration method is summarized in
Algorithm 1.

Algorithm 1. Proposed restoration algorithm.
Require: An initial estimate of the original image, x°
Set k=0
repeat
1. Set u¥ = arg miny £(x¥, u).
2. Set x¥+1 = arg miny £ (x, u¥).
3. Set k=k+1.
until |xK+1—xk12/1xk12 < tol

Notice that if we fix 1, to zero in Eq. (23) we have a
Bayesian formulation of the TV model and, when 1; =0 we
use only the PSI model.
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4. Experimental results parameter t. We blurred the region of the original Barbara
image depicted in Fig. 5(a) scaled to the range [0, 1], using

Before comparing the proposed method with other a Gaussian kernel of size 21 x 21 and standard deviation 1,
restoration approaches, we assess the influence of the and then added white Gaussian noise of variance 10>

//////// /////"’”

Fig. 5. (a) Original Barbara image, (b) degraded observation, (c) restoration with the TV model. Restorations with PSI method for (d) t=0.001, (e) t=0.01
and (f) t=1.



P. Ruiz et al. / Signal Processing 103 (2014) 296-308 303

It produced the observation shown in Fig. 5(b), whose
peak signal-to-noise ratio is PSNR=24.68 dB.

Since we want to assess the influence of t on the final
restorations, we fixed 1; = 0, to see how the PSI restoration
method works alone. Then we obtained the restoration for
A e {0,1077,1075107°,10"4, 1073, 1072, 0.1, 0.2, 0.3,
0.4} and t € [0.001, 0.01, 0.03, 0.1, 1].

In Fig. 6(a), we plot the PSNR evolution for all con-
sidered couples of values (1, t). For a small value of 1, the
PSI model has not much influence on the restorations that
it is not enough regularized and then low PSNR values are
obtained. When 4, increases, such influence is higher and
the obtained restorations achieve up to appoint better
PSNR values.

The maximum is reached at the point (1z,t)=(0.1,
0.01), and for values of 4, higher than 0.1 the PSNR slightly
decreases. Fig. 6(b) shows the PSNR values for fixed
A2 =0.1 and the different values of t, which highlights
the influence of t on the final restorations.

To visually observe this behavior, Fig. 5(d)-(f) depicts
the obtained restorations for 1, = 0.1 and t=0.001, t=0.01
and t=1. When t=0.001 we obtain the noisiest restoration

a

PSNR

0.4
ieate201 02 03

1 jo-7 te-gle-51¢
]

26.05

26 |

25.95 |

259 |

25.85 |

PSNR

258 |

2575 |

257

0.001 0.01 0.03 0.1 1
t

Fig. 6. (a) PSNR values for the restorations using the PSI model varying
parameters 2, and t. (b) PSNR values for the restorations using the PSI
model fixing 2, = 0.1 and varying parameter t.

(Fig. 5(d)), but if we look at the scarf and the chair behind
Barbara we can see that the textures are more pronounced
than in the other two restorations. On the other extreme,
when t=1 (Fig. 5(f)) we obtain the smoothest and less
noisy restoration, but textures are less marked. Finally,
when t=0.01 the restored image (Fig. 5(e)) has an accep-
table level of noise, while the textures remain quite
marked. Hence, there exists a trade-off between the
restored textures and level of noise in the image, which
can be tuned by modifying the value of the parameter t. As
we mentioned before, this result is also numerically
supported, since the PSNR values for the restoration of
the image in Fig. 5(b) with t=0.001 and t=1 are 26.02 dB
and 25.65 dB, respectively, while the best PSNR, 26.05 dB,
is obtained for t=0.01. For comparison purposes, we
included in Fig. 5(c) the restoration with the TV model,
obtained with Alg. 1 by setting 1; =0.01 and 1, = 0, which
has a PSNR of 25.02 dB. This is an almost noise free image
but the textures in some parts of the scarf are lost.

From this experiment we can conclude that (a) neither
the TV nor the PSI image models alone are able to success-
fully recover the textures and control the noise and (b) the
parameter t of the PSI model will control the amount of
texture in the image. In the following experiments we will
show that a sensible combination of the TV and PSI models
produces better results than using just one model alone.

To obtain the restored images using the TV, PSI, and
TV+PSI priors, we run Alg. 1 starting from the degraded
image as initial estimate of the original image, that is,
x° =y, and used tol=10"* for the stopping criterion in
Alg. 1. To select the value of the parameters governing the
weight of the TV and PSI prior models on the final
restoration, 1; and 1,, we performed a search in the set
of values {0,1077 1075,107>,10-%,1073,1072,0.1,0.2, 0.3,
0.4} and, as we have already indicated, we calculated the
weight of the fidelity to the data term, 4, as 1 —21; —4,. Note
that if 1, =0, the TV model is used alone and that for
21 =0 the PSI model is selected. We have experimentally
observed that values of 1; or A, larger than 0.4 reduce
drastically the quality of the restored image so we did not
consider them in our reported experiments. Additionally,
the PSI prior in Eq. (13) depends on the parameter t. As we
explained in Section 2.2, the range of useful values for this
parameter is {103, 1} so, we explored the range t e {0.001,
0.01,0.03,0.1,1}.

We compared the performance of the proposed method
with several classical and state-of-the art methods. First, we
used the classical method in [12] that uses a simultaneous
autoregressive (SAR) prior model obtains a MAP estimate of
the image and, simultaneously, estimates the model para-
meters by maximum likelihood. Also, we compared with
the method in [22] that proposes a combination of #; and
SAR prior models. The #; prior model is similar to the TV
prior but considers a different parameter for the horizon-
tal and vertical first order differences. Following [22], we
assumed an exact knowledge of the noise variance and
let the method estimate only the #; and SAR prior para-
meters. The combination parameter that controls the rela-
tive importance of the #; and SAR restoration methods is
selected by exploring the interval [0, 1] in steps of 0.1 and
selecting the one resulting in a better PSNR. The proposed
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method was also compared with the method in [13] which the form

combines #, and PSI prior models. The objective function

in [13] to be minimized to estimate the original image has LX) = 2" Ily —HX 12+ 2% 1 X112 + 25 1 Zx 112,
a

Fig. 7. (a) Original image with the area of interest marked, (b) area of interest of the original image, (c) degraded image, (d) restored image with the SAR
model, (e) restored image with the PSI model, (f) restored image with the #, PSI model, (g) restored image with the #;+SAR model, (h) restored image
with the TV model, (i) restored image with the GSP model, (j) restored image with the proposed model.
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with 1* =1-27 — 5. We obtained restorations for 17,15 e Finally, we compared with the recently proposed log model
{0,10-7,1075,107>,10-4,1073,1072,0.1,0.2,0.3,0.4} and t in [20], named General Sparse Prior (GSP). We want to note
e {0.001, 0.01, 0.03, 0.1, 1} and reported the best results. that, although the method in [20] was originally formulated

Fig. 8. (a) Original image with the area of interest marked, (b) area of interest of the original image, (c) degraded image, (d) restored image with the SAR
model, (e) restored image with the PSI model, (f) restored image with the #,, PSI model, (g) restored image with the #;+SAR model, (h) restored image
with the TV model, (i) restored image with the GSP model, (j) restored image with the proposed model.
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as a blind deconvolution method, in this paper, we assume
that the blur is known. We supplied the method with the
real value for the noise variance.

We run all the restoration methods on four classic
images in image processing: Barbara, Cameraman, Baboon
and Lena. These test images have different levels of spatial
activity and areas with different types of texture. The
original images were synthetically degraded following
the observation model in Eq. (1) after been scaled to the
interval [0, 1]. Each image was blurred with a Gaussian blur
with support 21 x 21 and standard deviation 1. Zero mean
Gaussian noise with variance ¢2=10"", ¢3=10"" and
o2 =103 was added to the blurred images to obtain three
set of degraded images with SNR of about 50 db, 40 dB and
30 dB, respectively. We repeated each experiment three
times to decrease the dependence on a given realization of
the noise and report the mean value of the results for all
experiments.

We present detailed results on two representative
images and noise combinations and, finally, we summar-
ized and extract conclusions for the complete set of
experiments.

Fig. 7(a) shows to the original Baboon image. To better
appreciate the details in the images we show results in a
small region of interest, marked with a square, of size
200 x 200. In Fig. 7(b) the region of interest of the original
image is depicted. It contains different features that allow
us to evaluate how the method works. We can distinguish
high frequency information as the hair or the details
around the eye, as well as smoother zones as the nose.
In Fig. 7(c) we shown the degraded image for a noise
variance o2 =10"*. The PSNR for the whole image is
22.99 dB. Using the SAR model restoration is depicted in
Fig. 7(d). Notice that this model restores the details in the

Table 1

image; however, it also amplifies the noise, as can be seen
in the nose. In fact, the PSNR for this restoration is smaller
than the one of the observation, 22.85 dB. On the other
side, TV and GSP models, whose restoration are shown in
Fig. 7(h) and (i), respectively, obtain the smoothest
restorations and similar PSNR values (24.54 dB for the TV
model and 24.52 dB for the GSP model). The zone of the
nose is almost noise-free, but the details around the eye
and in the hair are smoothed out. The PSI, #,+PSI, #; +SAR
and the proposed method, shown in Fig. 7(e), (f), (g) and
(j), respectively, achieve a good balance between noise and
texture; however, if we compare the zone of the nose, we
observe that the proposed method better eliminates the
noise, while preserving a similar quality in textures. The
numerical results also support this fact. PSI model alone
obtains PSNR=24.71 dB, #,+PSI model obtains PSNR=
24.74, and the #;+SAR gets PSNR=24.27 dB, while the
proposed method obtains PSNR=24.86 dB.

For the image of Barbara, shown in Fig. 8(a), the same
behavior is repeated. In this case, we have selected an area
of interest of size 256 x 256, which is marked by the square,
and in Fig. 8(b). The degraded image was generated with
noise variance o2 = 10~4, Fig. 8(c), has PSNR=25.32 dB. In
this case, the noise amplification and edge smoothness
produced by the SAR model is much more evident (see
Fig. 8(d)), getting PSNR=24.14 dB. The TV and GSP models
in Fig. 8(h) and (i) manage to eliminate the noise almost
completely, obtaining PSNR=26.75 dB and PSNR=26.73 dB,
respectively. However, it can be appreciated that some
textures in the scarf are lost. The PSI model (Fig. 8(e)),
¢»+PSI model (Fig. 8(f)), £;+SAR model (Fig. 8(g)) and
TV +PSI model (Fig. 8(j)) are capable to restore the texture
in the scarf and obtain PSNR=27.26 dB, PSNR=27.32,
PSNR=25.93 dB and PSNR=27.55dB, respectively. If we

Peak signal to noise ratio results for Baboon and Barbara with different levels of noise.

Image Method PSNR PSNR PSNR
(SNR=30dB) (SNR=40 dB) (SNR=50 dB)
Baboon Observation 22.27 22.99 23.06
SAR 14.77 22.85 26.28
PSI 23.10 24.71 26.06
¢2+ PSI 23.10 24.74 26.28
1 + SAR 22.62 24.27 25.74
TV 22.65 24.54 26.19
GSP 23.03 24.52 25.81
TV + PSI 2318 24.86 26.34
Optimum parameters =103, n=10"* =107,
Jp=10"", Jp=10"2, Jp =103,
t=0.001 t=0.001 t=0.03
Barbara Observation 2416 2532 2546
SAR 14.45 2414 30.74
PSI 24.87 27.26 29.91
¢5+ PSI 24.87 27.32 30.79
1 + SAR 24.54 25.93 29.29
TV 24.70 26.75 30.59
GSP 25.02 26.73 30.13
TV + PSI 24.93 27.55 30.93
Optimum parameters =103, =104, 1=10772,
Jp=10"", J2=1072, Jp=1073,
t=0.01 t=0.001 t=0.001
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Table 2
Peak signal to noise ratio results for Lena and Cameraman with different levels of noise.
Image Method PSNR PSNR PSNR
(SNR=30 dB) (SNR=40 dB) (SNR=50 dB)
Lena Observation 2791 3143 32.01
SAR 15.09 24.67 33.33
PSI 30.69 33.02 34.51
#5+ PSI 30.69 33.02 34.58
71 + SAR 30.79 32.81 3443
TV 31.62 33.53 34.85
GSP 31.52 32.94 3345
TV + PSI 31.62 33.61 34.91
Optimum parameters =102, =103, 1 =10"%,
=102, =102, =102,
t=0.001 t=0.001 t=0.001
Cameraman Observation 24.51 25.82 25.97
SAR 14.38 2415 30.67
PSI 25.95 27.85 30.38
¢, + PSI 25.95 28.24 30.55
71 + SAR 25.71 28.02 3013
TV 26.93 29.83 32.46
GSP 2741 29.32 30.29
TV + PSI 26.94 29.84 3247
Optimum parameters =102, =103, 1 =10"%,
Jp=1075, Jp =103, Jp =107,
t=0.03 t=0.01 t=1

look at top and left corner of the images, we can see that the
proposed model again removes the noise better than the
PSI, #,+PSI and #;+SAR models.

To summarize the experiments, in Tables 1 and 2 we
report the mean PSNR values obtained in the experiments
for the four images. We can see that the proposed method
obtains the highest PSNR for all the restorations, except for
the Barbara and Cameraman images when the noise
variance is 62 =107 3. In these cases GSP obtains better
results since it better controls high noise. Note that, in
these cases, the differences between TV, GSP and TV +PSI
methods are small for all the images. However, as the
noise level is reduced the proposed TV+PSI method
produces better results, especially in highly textured
images. We want to note that the combination of PSI and
TV models clearly improves over a single model, PSI or TV.
In all the experiments the value of 4; and A, was greater
than zero, meaning that our method always included
information from both models. Although we evaluated
different values for the parameter ¢, it is worth mentioning
that in most cases t=0.001 produces good results. Also the
proposed method is competitive with the two state-of-
the-art methods we compared with #;+SAR model com-
bination and GSP.

5. Conclusions

In this paper, we have presented a novel image restora-
tion method that uses the Bayesian paradigm to combine
two prior models: the TV model that preserves the edge
structure while imposes smoothness on the solution and,
the PSI model which is capable to preserve the textures.
The final product is a restoration algorithm that combines
the advantages of the two models. A study of PSI model
and the parameter that controls its shape has been carried

out, and concluded that neither the TV nor the PSI image
models alone successfully recover the textures and control
the noise. Finally a set of experiments has been carried out,
where the proposed method has been compared against
both classical and state of art methods. The experimental
results supported the proposed model and demonstrated
that TV + PSI obtains high-quality restorations.

Future work will adapt the model to the local image
characteristics and perform automatic parameter estima-
tion within the Bayesian framework.
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