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In this paper, we propose a novel symmetrical EEG/fMRI fusion method which combines EEG and fMRI by
means of a common generative model. We use a total variation (TV) prior to model the spatial distribution of
the cortical current responses and hemodynamic response functions, and utilize spatially adaptive temporal
priors to model their temporal shapes. The spatial adaptivity of the prior model allows for adaptation to the
local characteristics of the estimated responses and leads to high estimation performance for the cortical
current distribution and the hemodynamic response functions. We utilize a Bayesian formulation with a
variational Bayesian framework and obtain a fully automatic fusion algorithm. Simulations with synthetic
data and experiments with real data from a multimodal study on face perception demonstrate the
performance of the proposed method.
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Introduction

Electroencephalography (EEG) is one of the most widely used
functional brain mapping methods. A main advantage of EEG is that it
provides a direct measure of electrical activity in the brain via voltage
sensors on the scalp and thus can achieve a high temporal resolution.
However, locating the sources of activity in the brain from the EEG
measurements is a difficult problem as there is an indefinite number
of source configurations which give rise to the same measurements.
The same problem is also encountered in magnetoencephalography
(MEG), where the electrical activity in the brain is measured using
magnetic field sensors. Due to the problem that the same measure-
ments can be generated by an indefinite number of source config-
urations, EEG and MEG source localization are referred to as ill-posed
inverse problems (Hämäläinen et al., 1993).

In the last two decades a large number of EEG and MEG source
localization methods have been proposed in the literature. Due to the
similarity of the inverse problemsmostmethods are applicable to either
modality and can be divided into two groups. The first group assumes
that there is a small number (typically 1–5) of sources, eachmodeled by
anequivalent current dipole (ECD) (Scherg andVonCramon, 1986). The
locations of the dipoles are found by performing a nonlinear
optimization whichminimizes the discrepancy to the data with respect
to the dipole locations.While ECDmethods are popular in practice, they
have some major limitations: First, the number of dipoles has to be
specified by the user and second, the optimization algorithm can get
trapped in a local minimum and thus might not be able to find the
optimal dipole locations. In fact, ECD methods are known to be
unreliable when more than one dipole is used (Yao and Dewald,
2005). The second, and more recently proposed group of methods is
referred to as distributed methods (Hämäläinen et al., 1993). Methods
in this group assume a large number, typically several thousands, of
dipoles with fixed locations which are distributed over the cortical
surface. Source localization then amounts to finding the current
amplitudes for all dipoles simultaneously, which is still an ill-posed
problem since the number of dipoles is much larger than the number of
sensors. However, the use of dipoleswithfixed locationsmeans that the
forward problem is linear and source localization can be regarded as
solving anunderdetermined linear systemof equations,which is similar
to problems encountered in signal and image processing.

In order to find a unique solution, it is necessary to make
assumptions about the solution. Such assumptions can be formulated
as deterministic regularization terms, such as in the minimum norm
method (Hämäläinen and Ilmoniemi, 1994), which finds the source
configuration with minimal energy or in the low resolution electro-
magnetic tomography (LORETA) method (Pascual-Marqui et al., 1994),
where a regularization term based on a spatial Laplacian is used to
enforce a smooth solution.

The source localization problem can also be formulated as a
Bayesian inference problem (Baillet and Garnero, 1997), which allows
for an elegant way to include a priori information about the solution in
the form of priors, such as spatial and temporal smoothness priors
(Baillet and Garnero, 1997). The priors can be either fixed or can be
automatically selected from a set of candidate priors, by means of
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Bayesian model selection. Examples of methods using fixed priors are
‘2-normmethods (Baillet et al., 2001), ‘1-normmethods (Uutela et al.,
1999; Huang et al., 2006), as well as, the Bayesian formulation of the
LORETA method (Pascual-Marqui et al., 1994). As stated in Wipf and
Nagarajan (2009) there is a number of methods which attempt to
perform Bayesian model selection. Examples of methods which
automatically select priors using Bayesian model selection are
methods which use a Gaussian prior with a linear combination of
covariance components (Phillips et al., 2005; Mattout et al., 2006;
Friston et al., 2006, 2008). These methods employ an empirical
Bayesian scheme to estimate the hyperparameters controlling the
contribution of each component. This formulation is very flexible and
allows for the combination of priors such as spatial Laplacian,
minimumnorm, and depth constraints. Methods which use automatic
relevance determination (ARD) (MacKay, 1992; Tipping, 2001;
Ramírez, 2005; Wipf, 2006; Wipf et al., 2010) are based on similar
ideas, i.e., the estimation of covariance components, but are more
effective when the number of components is large. Typically, a
separate hyperparameter is used for every diagonal element of the
covariance matrix, which leads to a sparse solution, i.e., a solution
with a small number of active dipoles, similar to ‘1-norm regulari-
zation. Many existing M/EEG source localization methods can be
formulated in a unified Bayesian framework; we refer to Wipf and
Nagarajan (2009) where the framework is introduced for a more
thorough review of Bayesian M/EEG source localization methods.

The Bayesian treatment of M/EEG source localization offers
advantages other than the automatic determination of relevant priors.
The Bayesian formulation offers a formal way to include information
from other functional neuroimaging modalities, such as functional
magnetic resonance imaging (fMRI), into the source localization
problem.

In recent years, fMRIhas becomeaprominent neuroimagingmethod
as it offers a veryhigh spatial resolution.On theother hand, the temporal
resolution is limited by technical and physical constraints, which limit
the repetition time (TR) to be in the order of seconds, as well as, by the
indirect mechanism fMRI uses to measure neuronal activity, i.e., the so-
called blood oxygen level dependent (BOLD) contrast (Ogawa et al.,
1990; Frahm et al., 1992), which depends on slow hemodynamic
processes. However, the complementary advantages of EEG and fMRI
and the fact that they can be acquired simultaneously (Laufs et al., 2008)
make the modalities attractive candidates to be combined, or “fused”,
with the goal of obtaining functional neuroimaging data with high
spatial and temporal resolution.

A number of methods have been proposed for combining M/EEG
and fMRI for source localization. They are all based on the assumption
that a subset of the neuronal activity is detectable by both modalities
(Pflieger and Greenblatt, 2001), thus fMRI data can be used to inform
the source localization method about the location of the sources. In
terms of ECD methods, it is possible to constrain the location of the
dipoles to be within fMRI active areas (George et al., 1995) or to use
them as starting points for the optimization algorithm (dipole
seeding) (Hillyard et al., 1997). More recently, an ECD method using
a Bayesian formulation with an fMRI location prior and Markov Chain
Monte Carlo sampling has been proposed (Jun et al., 2008). In the
distributed formulation, fMRI active areas can be assigned different
weights when using a weighted minimum norm method (Liu et al.,
1998), or principal component analysis (PCA) and independent
component analysis (ICA) can be used to obtain basis signals which
can explain both the EEG and fMRI observations (Brookings et al.,
2009). Another method is based on an adaptive Wiener filter where it
is assumed that the energy of the electrical activity at every location
on the cortex is proportional to the magnitude of the BOLD response
at the same location (Liu and He, 2008). It can also be assumed that
the cortical activity is sparse, i.e., there are a small but unknown
number of active dipoles, which are often located in fMRI active areas.
This assumption can be formulated in a Bayesian framework using an
ARD prior with different hyperparameters for fMRI active areas (Sato
et al., 2004). Another approach is to employ a Bayesian EEG source
localization method which can automatically select priors from a set
of candidate priors (Phillips et al., 2005; Mattout et al., 2006). When
using such a method for EEG/fMRI fusion, location priors can be
derived from fMRI activation maps (Mattout et al., 2006). An
advantage of this formulation is the possibility to include every
fMRI active cluster as a separate location prior (Henson et al., 2010).
Doing so enables the method to automatically adjust the relative prior
weights by means of model evidence maximization, which is very
powerful since it allows the method to emphasize valid fMRI priors
(Henson et al., 2010).

All these methods are considered asymmetric since the fMRI data
set is analyzed separately and location priors for source localization
are derived from the obtained fMRI activation maps. Since some
neuronal activitymay only be visible in onemodality, the introduction
of a fixed fMRI based prior can cause an estimation bias which
strongly depends on the way the fMRI prior is introduced (Mattout et
al., 2006).

Symmetrical EEG/fMRI fusionmethods, which analyze the EEG and
fMRI jointly and do not use an explicit fMRI prior are believed to be
more robust against possible discrepancies between EEG and fMRI.
Recently, a method which combines EEG and fMRI symmetrically by
means of a common generative model has been proposed (Daunizeau
et al., 2007). The method links the modalities by means of a time
invariant spatial profile and uses temporal smoothness priors for the
cortical currents and the hemodynamic response functions, as well as,
a spatial smoothness prior based on a spatial Laplacian, which is also
used in the LORETA method (Pascual-Marqui et al., 1994). By using a
fully Bayesian formulation and variational Bayesian (VB) inference
(Jordan et al., 1999; Attias, 2000) the method can estimate all
parameters from the data and does not depend on any user defined
parameters. Recently, a method with a similar generative model
structure has been proposed (Ou et al., 2010). A key difference is that
the generative model is not fully symmetric since the hemodynamic
response function for each voxel is treated as an input to the
algorithm. Together with a gradient descent based optimization
method, this leads to advantages in terms of computational efficiency.
Another difference lies in the prior model, the method uses a spatially
adaptive Laplacian spatial smoothness prior and does not use
temporal smoothness priors.

In this paper, we propose a symmetrical EEG/fMRI fusion method
which uses a common generative model and spatially adaptive priors.
We extend the method by Daunizeau et al. (2007) in several
directions and achieve a higher source localization performance.
Specifically, we assume that the spatial profile can contain sharp
boundaries between active and inactive regions. We model this by
means of a total variation (TV) prior (Rudin et al., 1992) for the spatial
profile of cortical activity. In contrast to LORETA-type, i.e., spatial
Laplacian, priors (Pascual-Marqui et al., 1994), which are commonly
employed in existing methods, the TV prior is spatially adaptive, that
is, the degree of spatial smoothness imposed by the prior varies
depending on the location. Our generative model can therefore
explain abrupt changes in cortical activity, which typically occur at the
boundaries of brain regions involved in event related processing,
while simultaneously enforcing smoothness in the solution (we refer
to Strong and Chan (2003) for a thorough analysis of the properties of
the TV prior). A fundamental difference between the spatially
adaptive Laplacian prior used in Ou et al. (2010) and the TV prior is
that the former can only adapt the degree of spatial smoothness on a
per-region basis while the TV prior can do so on a per-vertex basis.
The spatially adaptive Laplacian prior therefore depends on an a priori
segmentation of the cortex and changes in the degree of spatial
smoothness can only occur at region boundaries. The TV prior on the
other hand does not depend on such a segmentation and can explain
changes in the degree of smoothness at arbitrary locations on the
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cortex. The TV prior was used in Adde et al. (2005) as a deterministic
regularization term for the spatial current distribution at a single time
instant. The use of the TV prior in this paper in the context of Bayesian
inference is fundamentally different and also requires a different
discretization. The proposed method also utilizes spatially adaptive
temporal priors, allowing for adaptation of the amount of temporal
smoothness according to the estimated activity in different brain
regions. We use a fully Bayesian formulation and estimate all
parameters from the data. Due to the form of the TV prior, it is not
possible to directly apply standard variational Bayesian methods to
estimate the posterior distribution. Therefore, in order to draw
inference, we resort to a majorization method recently proposed in
Babacan et al. (2008). Themethod employs a Gaussian approximation
to the TV prior, which renders variational distribution approximation
possible, but retains the spatial adaptivity of the TV prior.

We demonstrate the effectiveness of the proposed method using
both simulation experiments with synthetic EEG and fMRI data and
real data from amultimodal study on face perception.We also include
comparisons with existing source localization algorithms and show
that the proposed method provides higher performance than existing
methods in terms of estimation of the spatio-temporal cortical current
distribution. Due to the novel prior model, the proposed method also
estimates the hemodynamic response functions more accurately than
previous symmetrical fusion methods.

Organization of this paper

This paper consists of 5 sections. In thefirst sectionwemodel the EEG/
fMRI fusion problem using the Bayesian paradigm and introduce new
realistic prior distributions for the spatio-temporal cortical current
distribution and the hemodynamic response functions. The Bayesian
inference scheme is introduced in the second section. In the third section
we report on experiments with simulated data and in the fourth section
we apply the proposed method to real data from a multimodal study on
face perception. The paper is discussed and conclusions are drawn in the
last section. Appendices with a description of the anatomical parceling, a
definition of the signal to noise ratio, an explanation of the qualitymetrics
used, and a detailed derivation of the calculated posterior distributions
using the variational framework complete the paper.

Notation

We use the following notation throughout this paper: Aij and Ai; j

denote the element at the i-th row and j-th column of matrix A, while
the i-th element of a vector a is denoted as ai. Ai⋅ denotes a row vector
containing the elements of the i-th row of A, while A⋅i is a column
vector containing the elements of the i-th column of A. The operator
diag Að Þ extracts the main diagonal of A as a column vector, whereas
Diag að Þ is a diagonal matrix with a as its diagonal. The operator vec Að Þ
vectorizes A by stacking its columns, tr Að Þ denotes the trace of matrix
A, and ⊗ denotes the Kronecker product.

Hierarchical Bayesian modeling

In this section we define the hierarchical generative model which
forms the basis of the proposed method. In the first part we model the
process which gives rise to the observed EEG and fMRI data when the
current distribution on the cortex and the hemodynamic response
function at every location are known. This constitutes the observation
model which corresponds to the lowest level of the hierarchical model.
In the second part we describe the spatio-temporal decomposition,
which divides the cortex into a number of temporally coherent regions
and establishes a connection between EEG and fMRI by means of an
unknown time invariant spatial profile. We proceed by describing the
spatio-temporal priormodel,wherewe introduce theTVspatial prior, as
well as, temporal priors which model varying degrees of temporal
smoothness across the surface of the cortex. Following a fully Bayesian
formulation, prior distributions for all hyperparameters of themodel are
defined next. At the end of this section, we combine the introduced
probability density functions (pdf) to obtain a joint pdf over the
observed data and all parameters of the model, which will enable us to
obtain the Bayesian inference procedure defined in the next section.

Observation model

In the following we assume that the data is only related to a single
event type. For EEG this means that the raw data is averaged over trials
for the same event type in order to obtain event relatedpotentials (ERPs)
and for fMRI the event onset times for a single event type are used.

Using the distributed source framework (Hämäläinen et al., 1993)
the EEG data is modeled as

M = LS + η1; ð1Þ

whereM is anm× t1matrix containing the EEG recordingswithduration
t1 obtained fromm electrodes placed on the scalp, S is anunknown n×t1
matrix representing the responses of n normal-oriented current dipoles
distributed on the cortical surface, i.e., a spatio-temporal cortical current
distribution, L is a known m×n forward operator, also known as lead-
fieldmatrix, which can be calculated from the head geometry and tissue
conductivities, and η1 is anm× t1 matrix representing noise.

We model the noise η1 for EEG as zero-mean, independent and
identically distributed (i.i.d.) Gaussian, resulting in

p M jS;α1ð Þ = ∏
t1

i=1
N M⋅i jLS⋅i;α−1

1 Im
� �

; ð2Þ

where α1 is the hyperparameter corresponding to the EEG noise
precision.

In order to model the fMRI observations it is assumed that there is
a linear relationship between the stimulus and the BOLD response,
which leads to the following observationmodel (Marrelec et al., 2002)

Y = BH + η2; ð3Þ

where Y is the t2×n matrix containing the fMRI measurements at n
voxels on the cortical surface (we assume here that the locations of
the voxels coincide with the locations of the EEG current dipoles),H is
an unknown k×n matrix representing the hemodynamic response
function (HRF) of length k for each voxel, and η2 is the t2×n matrix
with additive noise. The t2×k matrix B is different from the design
matrix in classical fMRI analysis (Friston et al., 1995). The matrix used
here implements a convolution and is given by

B =

x1 0 ⋯ 0
x2 x1 ⋯ 0
⋮ ⋮ ⋱ ⋮

xt2−k + 1 xt2−k ⋯ xt2−2k + 1
0 xt2−k + 1 ⋯ xt2−2k + 2

⋮ ⋮ ⋱ ⋮
0 0 ⋯ xt2−k + 1

2
666666664

3
777777775
; ð4Þ

where the experimental time course (xi)1≤ i≤ t2−k+1 is a discrete time
series in which the i-th element encodes an event onset during the i-th
fMRI acquisition, i.e., the time series is all zero except at indices
corresponding to event onsets where we use xi=1 to encode the onset.
From Eq. (3) and the structure of B in Eq. (4) it can be seen that the
acquired fMRI time series of the j-th voxel ismodeled as a convolution of
the HRF with the experimental time course x plus additive noise, i.e.,

Y⋅j = x⁎H⋅j + η2ð Þ⋅j; ð5Þ

where ⁎ denotes the (discrete) convolution operator.



Fig. 1. Illustration of the spatio-temporal decomposition model. The cortical currents
and the HRFs within a parcel are assumed to be temporally coherent, i.e., the temporal
shape is the same but with different scales, which are modeled by the time invariant
spatial profilew. The spatial profile links the EEG and fMRI modalities since wi controls
the scale of the current response as well as the scale of the HRF at the i-th vertex. This is
illustrated here for two parcels and three waveforms per parcel; the waveforms
belonging to the same vertex are drawn with the same color.
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For the fMRI noisewe also assume that the noise is zero-mean, i.i.d.
Gaussian, resulting in

p Y jH;α2ð Þ = ∏
n

i=1
N Y⋅i jBH⋅i;α

−1
2 It2

� �
; ð6Þ

where α2 is the hyperparameter corresponding to the fMRI noise
precision.

Spatio-temporal decomposition model

In this section we introduce the spatio-temporal decomposition
model, which allows us to link EEG and fMRI by means of a common
time invariant spatial profile. We adopt the model proposed in
Daunizeau et al. (2007) as it provides an elegant way to combine EEG
and fMRI. The model utilizes a hierarchical description of the cortical
current distribution and the hemodynamic response functions. In
order to obtain the hierarchical description, it is assumed that the
cortical activity can be described by a set of regions where the
responses within a region have similar temporal characteristics, i.e.,
the responses within a region are temporally coherent. In order to
introduce the spatio-temporal decomposition, let us first define a
fixed segmentation of the cortex into q regions, or parcels, which we
encode using a fixed n×q segmentation matrix C defined as

Cij =
1 if i�th vertex is in the j�th parcel;
0 otherwise:

�
ð7Þ

In this work the matrix C is obtained by a segmentation procedure
which uses a region growing algorithm; the procedure is described in
Appendix A. However, we note that the segmentation procedure itself
is not an integral part of the proposed EEG/fMRI fusion method. By
assuming that the electrical responses within each region have the
same shape with different scales, the coherency assumption for EEG is
formalized by

S = Diag wEEG
� �

CX + ρ1; ð8Þ

where wEEG is a n×1 vector representing the unknown spatial profile
of the cortical currents,X is a q× t1 matrix with the unknown temporal
shape of the currents for each region, and ρ1 is a n× t1 matrix
representing residual activity which cannot be explained by the
model. From Eqs. (7) and (8) it can be seen that if the i-th dipole lies
within the j-th parcel, the current waveform of the dipole is modeled
as the waveform of the j-th parcel Xj⋅ scaled by the scaling variable for
the i-dipole wi

EEG, i.e.,

Si⋅ = wEEG
i Xj⋅ + ρ1ð Þi⋅: ð9Þ

We assume that all the residuals in ρ1 are zero-mean, i.i.d.
Gaussian distributed and obtain the following hierarchical prior for
the cortical currents

p S jX;wEEG
; �1

� �
= ∏

t1

i=1
N S⋅i jDiag wEEG

� �
CX⋅i; �

−1
1 In

� �
: ð10Þ

Utilizing the same coherency assumption for the HRFs leads to

HT = Diag wfMRI
� �

CZ + ρ2; ð11Þ

where Z is a q×k matrix containing the unknown HRFs of the parcels,
wfMRI is a n×1 vector describing the spatial profile, and ρ2 is a n×k
matrix representing the modeling residual. Note that we use HT

instead of H in Eq. (11) since HT and S have the same spatio-temporal
structure, i.e., the rows correspond towaveforms at different locations
on the cortex. Therefore, by using HT in Eq. (11) the equation has the
same form as Eq. (8).

As for EEG, we assume that ρ2 is zero-mean, i.i.d., Gaussian and
obtain the following hierarchical prior for the HRFs

p HT jZ;wfMRI
; �2

� �
= ∏

k

i=1
N HT

� �
⋅i
jDiag wfMRI

� �
CZ⋅i; �

−1
2 In

� �
: ð12Þ

In order to establish a connection between the imaging modalities,
a common spatial profile is assumed, i.e.,

wEEG = wfMRI = w: ð13Þ

Note how the temporal characteristics of EEG and fMRI are modeled
by X and Z, respectively, while the time invariant spatial profile w is
responsible for the scale. Therefore, the hierarchical generative model
represents a spatio-temporal decomposition and no assumptions are
made about the relationship between the temporal shapes of the HRFs
and cortical currents. The spatio-temporal decomposition is illustrated
in Fig. 1where the cortical currents andHRFs are shown for twoparcels.

Spatial prior model

It is widely known that event related processing in the brain occurs
in a number of specialized brain regions. Based on this, we assume that
the spatial profile w contains sharp boundaries between active and
inactive regions. In this work, this a priori knowledge is incorporated by
utilizing a total variation (TV) prior, given by

p w jγð Þ = 1
Z γð Þ exp −γTV wð Þð Þ; ð14Þ



Fig. 2. Illustration of the tangent plane at vertex vi, which is assumed to have three
neighbors N i = q; r; sð Þ. The tangent plane is a Euclidean space in R2 oriented
orthogonal to the vertex normal ni. By projecting the neighboring vertices {vq,vr,vs}
onto the tangent plane the vectors eiq, eir, and eis in R2 are obtained. The vectors are
utilized for calculating the gradient operator matrix at vertex vi.
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where Z(γ) is the partition function and TV(⋅) is a discrete version of
the total variation integral, which is given by

TVintegral fð Þ = ∫
Ω
‖∇f xð Þ‖dx; ð15Þ

where Ω denotes the domain over which f(⋅) is defined and ‖∇ f(⋅)‖
denotes the magnitude of the gradient of f(⋅). The hyperparameter γ is
similar to theprecision (inverse variance) parameter of aGaussianprior,
i.e., it controls the strength of the prior. Aswill be shown later, following
a fully Bayesian approach γ will be treated as unknown and estimated
fromthedata. Total variationpriorshavebeenusedwithgreat success in
a number of inverse problems, such as image denoising and restoration
(Rudin et al., 1992; Babacan et al., 2008). A property of the TV prior is
that it promotes piecewise smooth solutions, which matches well with
our assumption that the spatial profile contains sharp boundaries
between smooth regions. An intuitive explanation for the promotion of
piecewise smooth solutions can be obtained by thinking of TV
regularization as ‘1-norm regularization of the magnitude of the
gradient. While regular ‘1-norm regularization leads to a sparse
solution, i.e., a solution where few entries are non-zero, TV regulariza-
tion leads to a solutionwhere only few locations have non-zero gradient
magnitudes, which corresponds to a piecewise smooth solution.

There are twomain difficulties in utilizing a TV-prior on the spatial
profilew. First, the spatial profilew is defined on the folded surface of
the cortex, such that the calculation of the gradient is not
straightforward as in image processing applications where the
image is defined on a rectangular 2-D lattice. The second difficulty is
that the partition function Z(γ) in Eq. (14) is intractable. Both these
difficulties are addressed below.

We address the first problem by defining the gradient of the spatial
profile on a differentiable 2-manifold representing the cortical surface
embedded in R3. In practice, the geometry of the manifold is
approximated by a triangular mesh denoted by M=(V,E), where V=
{v1,v2,…,vn} is the set of n vertices, and E denotes the set of edges each
connecting a pair of vertices. Let us denote ∇Mwi the gradient of w at
vertex vi. This gradient∇Mwi is the result of discretizing the gradient on
a 2-manifold, i.e., the gradient is in the tangent space ofM at vi,which is a
Euclidean space in R2 orthogonal to the surface normal vector at vi. As
the surface normal vector at a vertex we utilize the angle-weighted
average of the surfacenormal vectors of the adjacent triangles (Thürmer
and Wuthrich, 1998). In order to calculate the gradient, we project the
neighboring vertices vj∀j∈N i onto the tangent space at vi, where N i

denotes the ordered set of neighborhood vertex indices defined as
N i = j j vi vj

� �
∈E

� �
. Bydoing soweobtain for everyneighbor a vector eij

in R2 which points from vertex vi to the projected location of vj, as
depicted in Fig. 2. To calculate the gradient, note that the gradient can be
used to obtain a first order approximation, i.e.,

wi + eTij∇Mwi = wj + r ∀j∈N i; ð16Þ

where r denotes the residual error. By using all neighbors and
rewriting Eq. (16) in matrix form we obtain

r =

eTiN i 1ð Þ

eTiN i 2ð Þ

⋮
eTiN i jN i jð Þ

2
6666664

3
7777775

|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Ei

∇Mwi−

wN i 1ð Þ−wi

wN i 2ð Þ−wi

⋮
wN i jN i jð Þ−wi

2
66664

3
77775

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
di

; ð17Þ

which enables us to estimate the gradient by minimizing the residual
∥r∥2, resulting in

∇Mwi = ET
i Ei

� �−1
ET
i di = Gidi: ð18Þ
Note that since the 2× jN i j gradient matrix Gi for vertex vi solely
depends on the geometry of the mesh, the gradient matrices for all
vertices of the mesh have to be computed only once.

We also note that

di =

wN i 1ð Þ−wi
wN i 2ð Þ−wi

⋮
wN i jN i jð Þ−wi

2
664

3
775= Δiw ð19Þ

whereΔi is a jN i j×nmatrix whose j-th row consists of zeros except at
the columns i and N i jð Þ where it has the values −1 and 1,
respectively.

Finally, the discrete version of the total variation integral in Eq. (14)
can be expressed as

TV wð Þ = ∑
n

i=1
‖∇Mwi‖2 = ∑

n

i=1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wTΔT

i G
T
i GiΔiw

q
: ð20Þ

A second difficulty arising from the use of a TV prior is that the
partition function Z(γ) in Eq. (14) has to be calculated as

Z γð Þ = ∫exp −γTV wð Þð Þdw; ð21Þ

which is intractable since the integral cannot be calculated analyti-
cally. Note that we cannot resort to numerical methods, such asMonte
Carlo integration, to calculate the partition function as it would
require drawing samples from p w jγð Þ and there is no known method
for this task. To address this difficulty, we use the followingmethod to
approximate the partition function. We can express the gradient at
the i-th vertex as g = g1g2½ �T = GiΔiw and thus gTg = g21 + g22 . Using
this we can calculate the partition function for a single vertex as
follows

∫∞
−∞∫

∞
−∞ exp −γ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 + g22

q	 

dg1dg2 =

2π
γ2 : ð22Þ

By combining the partition functions of all n vertices of the mesh
we use this to approximate p w jγð Þ in Eq. (14) as

p w jγð Þ = cγφnexp −γTV wð Þð Þ; ð23Þ

where c is a constant and φ is a parameter with a value of φ=2.0 if the
gradient at every vertex is assumed to be independent from the gradients
at all other vertices. Due to the dependency between the gradient values,
we empirically found that usingφ=1.0 improves the performance of the
algorithm and we therefore used this value throughout the rest of this
paper.

image of Fig.�2
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Temporal prior model

We also make the assumption that the HRFs and the cortical currents
are smooth in the temporal dimension. This assumption can be expressed
byaGaussianpriorwhichpenalizes the secondorder temporal derivative;
a prior of this formwas also used inMarrelec et al. (2002) and Daunizeau
et al. (2007). In contrast to previous work, we assume that the degree of
temporal smoothness varies across the surface of the cortex. We model
this by utilizing a separate Gaussian prior for every parcel, i.e., for the
temporal shapes of the cortical currents we use

p X jβ1ð Þ∝ ∏
q

i=1
exp − β1ð Þi

2
Xi⋅ð ÞTT

1T1 Xi⋅ð ÞT
	 


; ð24Þ

where T1 is a t1× t1 matrix given by

T1ð Þij =
−2 if i = j;
1 if j = i� 1;
0 otherwise;

8<
: ð25Þ

and β1 is a q×1 vector with per-parcel precision hyperparameters, each
controlling the smoothness and scale of the cortical currentwaveformof
a parcel. The use of separate hyperparameters allows for spatially
adaptive temporal smoothness of the cortical currents, i.e., the model
can reduce the degree of temporal smoothness in active regions while
enforcing a higher degree of smoothness in inactive regions.

For the temporal shape of the hemodynamic response functions
we use

p Z jβ2ð Þ∝ ∏
q

i=1
exp − β2ð Þi

2
Zi⋅ð ÞTT

2T2 Zi⋅ð ÞT
	 


; ð26Þ

where T2 is a k×k matrix that is defined analogously to T1 and β2 is
a q×1 vector with per-parcel precision hyperparameters. As with the
cortical currents, the use of separate hyperparameters allows for
spatially adaptive temporal smoothness of the HRF.

Hyperparameter prior model

Following the Bayesian approachwe proceed by defining priors for
all hyperparameters of the model. In order to obtain priors for the EEG
and fMRI noise precisions, we obtain pre-stimulus data segments M0

for EEG and Y0 for fMRI containing only noise with sizes m× t1
0 and

t2
0×n, respectively. From the Gaussian noise assumption it follows that

p α1 jM0
� �

and p α2 jY0
� �

are gamma distributed (Daunizeau et al.,

2007), which motivates the use of the following prior distribution for
the EEG noise precision hyperparameter

p α1ð Þ = p α1 jM0
� �

= Γ α1 ja0α1
; b0α1

� �
;

a0α1
=

mt01
2

; b0α1
=

tr M0TM0
� �

2
:

ð27Þ

The gamma distribution is defined as

Γ x ja; bð Þ = ba

Γ að Þ x
a−1exp −bxð Þ; ð28Þ

where aN0 and bN0 are the shape and inverse scale parameters,
respectively. Similarly, we use the following prior distribution for the
fMRI noise precision hyperparameter

p α2ð Þ = p α2 jY0
� �

= Γ α2 ja0α2
; b0α2

� �
;

a0α2
=

nt02
2

; b0α2
=

tr Y0TY0
� �

2
:

ð29Þ
Note that the prior distributions become more sharply peaked as
the lengths of the pre-stimulus segments increase. Longer pre-
stimulus segments cause the fusion algorithm to rely more on the
initial noise estimates, i.e., the noise estimated by the algorithm
becomes almost entirely decided by the initial estimates. On the other
hand, as the length of the pre-stimulus segments goes towards zero,
the prior distributions become flat and the noise precision is
estimated solely by the fusion algorithm.

For the precision parameter vectors β1 and β2, which control the
per-parcel temporal smoothness and scale of the cortical currents and
hemodynamic response functions, respectively, we use a hyperpara-
meter prior model which allows us to control the degree of spatial
adaptivity. In order to do so, we use gamma priors as follows

p β1 jδ1ð Þ = ∏
q

i=1
Γ β1ð Þi ja0β1

; δ1
� �

; ð30Þ

p β2 jδ2ð Þ = ∏
q

i=1
Γ β2ð Þi ja0β2

; δ2
� �

; ð31Þ

where aβ1

0 and aβ2

0 are fixed shape parameters and the unknown inverse
scale parameters are denoted by δ1 and δ2. The use of fixed shape
parameters allows us to control the degree of spatial adaptivity. As will
become clear after the derivation of the approximate posterior
distribution in the next section, by using a value close to zero for aβ1

0

the posterior distributions of (β1)i,…, (β1)q can be drastically different.
Hence, themodel is fully spatially adaptive. On the other hand, when aβ1

0

is very large, all posterior distributions will be almost identical and the
prior model is not spatially adaptive, which is similar to the temporal
prior model in Daunizeau et al. (2007). We empirically find that the
proposed method performs best when the degree of spatial adaptivity
for theEEG side is limitedbyusingaβ1

0 =100while using a higher degree
of spatial adaptivity for the fMRI side with aβ2

0 =10−3. These values are
used throughout the rest of this paper. We note here that the proposed
method is not very sensitive to the exact values of the shape parameters,
i.e., a value in the range 10,…,200 works well for aβ1

0 while any value
close to 0 works well for aβ2

0 .
We make no assumptions about the remaining hyperparameters

and consequently use noninformative Jeffreys priors given by

p θið Þ = Γ θi j0;0ð Þ∝ θið Þ−1 ∀ θi∈θ; ð32Þ

where θ={δ1,δ2, �1,�2,γ}, to define

p θð Þ = ∏
θi∈θ

p θið Þ: ð33Þ

We note here that an important reason for selecting gamma
distributions as priors for the hyperparameters is that the gamma
distribution is the conjugate prior for the precision of a Gaussian
distribution, as well as, for the inverse scale parameter of the
gamma distribution, which simplifies the Bayesian inference since the
posterior distributions of the hyperparameters will also be gamma
distributions. As will be shown in the next section, in order to draw
inference we employ a quadratic approximation to the energy of the TV
prior in the form of a Gaussian distribution and consequently the
conjugate prior for γ is a gamma distribution.

Global modeling

By combining all distributions introduced above, we obtain the
joint probability density function as follows

p Θ;M;Yð Þ = p M jS;α1ð Þp S jX;w; �1ð Þp X jβ1ð Þ
×p Y jH;α2ð Þp H jZ;w; �2ð Þp Z jβ2ð Þp w jγð Þ
×p α1ð Þp α2ð Þp β1 jδ1ð Þp β2 jδ2ð Þp θð Þ;

ð34Þ
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where Θ = S;H;w;X;Z;α1;α2;β1;β2;f g∪θ is the set of all unknowns.
The dependencies between the variables in the joint pdf are
illustrated as a directed acyclic graphical model in Fig. 3.

The joint pdf allows us to derive a fusion algorithm using Bayesian
inference, which is described in the next section.

Bayesian inference

Inference is based on the posterior distribution

p Θ jM;Yð Þ = p Θ;M;Yð Þ
p M;Yð Þ : ð35Þ

However, the posterior p Θ jM;Yð Þ is intractable since

p M;Yð Þ = ∫p M;Y;Θð ÞdΘ ð36Þ

cannot be calculated analytically. Therefore, we utilize an approxi-
mation to the posterior. In this work, we employ the Variational
Bayesian (VB) method using the mean field approximation (Jordan
et al., 1999; Attias, 2000), i.e., we approximate the true posterior by a
distribution which factorizes over the nodes of the graphical model

q Θð Þ = q Sð Þq Hð Þq Xð Þq Zð Þq wð Þq α1ð Þq α2ð Þ

× ∏
q

i=1
q β1ð Þi
� �	 


∏
q

i=1
q β2ð Þi
� �	 


×q δ1ð Þq δ2ð Þq �1ð Þq �2ð Þq γð Þ:

ð37Þ

As stated in Jaakkola and Jordan (1998), mean field theory (Parisi,
1998) provides an intuitive explanation of the mean field approxi-
mation. That is, in a dense graph each node is influenced by many
other nodes such that the influence from each other node is weak and
the total influence is approximately additive. Hence, each node can be
characterized by its mean value, which is unknown and related to the
mean values of all other nodes. The task then becomes finding the
relation between the mean values and designing an algorithm which
can find a consistent assignment of mean values. This is exactly what
we will do in the following. First, we will find a distribution for each
node in the graphical model shown in Fig. 3. The distributions
describe the relation to all other nodes in the model and allow us to
obtain an inference algorithm in which we iteratively update the
distribution of each node leading to a consistent assignment of
distributions.
Fig. 3. Directed acyclic graphical model describing the joint pdf (gray: known, white:
unknown).
The posterior approximation q(Θ) is found by performing a
variational minimization of the Kullback–Leibler (KL) divergence,
which is given by

CKL q Θð Þ∥p Θ jM;Yð Þ� �
= ∫q Θð Þlog q Θð Þ

p Θ jM;Yð Þ
	 


dΘ

= ∫q Θð Þlog q Θð Þ
p Θ;M;Yð Þ
	 


dΘ + const

= K q Θð Þð Þ + const;

ð38Þ

and is non-negative and equal to zero only if q Θð Þ = p Θ jM;Yð Þ. In
variational Bayesian analysis, the optimal q(Θ) is found by

q Θð Þ = argmin
q Θð Þ

CKL q Θð Þ∥p Θ jM;Yð Þ� �
= argmin

q Θð Þ
K q Θð Þð Þ:

ð39Þ

Using a standard result from variational Bayesian analysis (Bishop,
2006), for each variable the distribution which minimizes Eq. (38) is
given by

q Θið Þ∝exp EΘ∖Θi
ln p Θ;M;Yð Þ½ �

� �
; ð40Þ

where EΘ∖Θi ⋅½ � denotes the expectation with respect to all variables
except the variable of interest.

Unfortunately, the form of the TV prior prevents us from
calculating the expectation in Eq. (40) and thus from finding an
analytical form of q(Θ). Therefore, we resort to a majorization method
which approximates K q Θð Þð Þ by upper-bounding functionals which
render the calculation of the expectation tractable (Babacan et al.,
2008). First, let us consider the geometric–arithmetic mean inequality
(Hardy et al., 1988) which states that for two positive numbers a≥0
and bN0

ffiffiffiffiffiffi
ab

p
≤ a + b

2
⇒

ffiffiffi
a

p
≤ a + b

2
ffiffiffi
b

p : ð41Þ

We proceed by defining for w, γ, and an n×1 vector u∈ Rþð Þn, the
following functional:

F w;u;γð Þ = cγφnexp −γ
2
∑
n

i=1

wTΔT
i G

T
i GiΔiw + uiffiffiffiffi

ui
p

 !
: ð42Þ

Using inequality Eq. (41) in Eq. (23) with a = wTΔT
i G

T
i GiΔiw and

b=ui, and comparing with Eq. (42), we obtain

p w jγð Þ≥F w;u;γð Þ: ð43Þ

The auxiliary variable u is related to the spatial smoothness in w
and needs to be updated by the inference algorithm, as will be shown
later. Using Eq. (43) in Eq. (34), we obtain a lower bound of the joint
probability density function, i.e.,

p Θ;M;Yð Þ≥p M jS;α1ð Þp S jX;w; �1ð Þp X jβ1ð Þ
×p Y jH;α2ð Þp H jZ;w; �2ð Þp Z jβ2ð Þ
×p α1ð Þp α2ð Þp β1 jδ1ð Þp β2 jδ2ð Þ
×p θð ÞF w;u;γð Þ

= F Θ;u;M;Yð Þ;

ð44Þ

which allows us to derive an inference procedure, as will be shown
below. It should be noted that the proposed method therefore does
not employ the TV prior directly; doing so would not lead to a
tractable inference. Instead, the proposed method uses the lower
bound F w;u;γð Þ to the TV prior, which retains many of its desirable

image of Fig.�3
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characteristics, i.e., the ability to model sharp boundaries, and allows
for a tractable inference.

To derive the inference procedure, let us now define

K̃ q Θð Þ;uð Þ = ∫q Θð Þlog q Θð Þ
F Θ;u;M;Yð Þ
	 


dΘ; ð45Þ

which is the KL divergence between q(Θ) and F Θ;u;M;Yð Þ. By using
Eqs. (38) and (44), we obtain

K q Θð Þð Þ≤min
u

K̃ q Θð Þ;uð Þ: ð46Þ

Therefore we can obtain a sequence of distributions {q(Θ)} which
monotonically decreases K̃ q Θð Þ;uð Þ for a fixed u. From Eq. (46) it can be
seen that this leads to a monotonically decreasing upper bound to
CKL q Θð Þ∥p Θ jM;Yð Þð Þ and therefore leads to anapproximation of the true
posterior distribution. Moreover, we can minimize K̃ q Θð Þ;uð Þ with
respect to u for each distribution q(Θ), which tightens the upper bound
to the KL divergence and thus leads to a more accurate distribution
approximation. The two interleavedminimization steps naturally lead to
the iterative distribution estimation algorithm. During each iteration the
Table 1
Distributions for the nodes of the graphical model obtained using Eq. (47). Derivations are
defined. The matrix R(k, q) is a kq×kq permutation matrix with the property R(k, q)vec(ZT)=

Functional form Pa

q Sð Þ = N vec Sð Þ jvec Sh ið Þ; It1⊗∑S
� �

〈S

∑

q Hð Þ = N vec Hð Þjvec Hh ið Þ; In⊗∑Hð Þ Hh

∑

q Xð Þ = N vec Xð Þ jvec Xh ið Þ;∑Xð Þ ve

∑

q Zð Þ = N vec Zð Þjvec Zh ið Þ;∑Zð Þ ve

∑

q wð Þ = N w j wh i;∑wð Þ wh

∑

q(α1)=Γ(α1|aα1
,bα1

) aα

bα

q(α2)=Γ(α2|aα2
,bα2

) aα

bα

q(�1)=Γ(�1|a�1,b�1) a�1

b�1

q(�2)=Γ(�2|a�2,b�2) a�2

b�2

q β1ð Þi
� �

= Γ β1ð Þi j aβ1

� �
i; bβ1

� �
i

� �
a
�
b
�

q β2ð Þi
� �

= Γ β2ð Þi j aβ2

� �
i; bβ2

� �
i

� �
a
�
b
�

q(δ1)=Γ(δ1|aδ1,bδ1) aδ
bδ

q(δ2)=Γ(δ2|aδ2,bδ2) aδ

bδ
q(γ)=Γ(γ|aγ,bγ) aγ

bγ
algorithmfirstminimizes the functional K̃ q Θð Þ;uð Þwith respect to q(Θ);
the distribution approximation whichminimizes this functional has the
same form as in standard VB analysis (see Eq. (40)) and the distribution
approximation of the node Θi∈Θ is given by

q Θið Þ∝exp EΘ∖Θi
ln F Θ;u;M;Yð Þ½ �

� �
: ð47Þ

Using Eq. (47) we obtain a distribution for every node of the
graphical model. The distributions of the nodes S, H, X, Z, and w are
found to be Gaussian while the hyperparameter distributions are
found to be gamma distributions (since conjugate priors were used).
The form of the distributions obtained by applying Eq. (47) is given in
Table 1 and the corresponding derivations are shown in Appendix D.
In order to update the distributions and therefore to minimize
K̃ q Θð Þ;uð Þ in the first step of the algorithm, the algorithm updates the
parameters of the distributions in Table 1 using the most recently
updated parameters, i.e., either from the previous or from the current
iteration. The distributions are updated in the following order: q Sð Þ, q
(α1), q Xð Þ, q(�1), q((β1)1),…, q((β1)q), q(δ1), q Hð Þ, q(α2), q Zð Þ, q(�2), q
((β2)1), …, q((β2)q), q(δ2), and q wð Þ.
shown in Appendix D, where matrices Q, P1, P2, and W(u) and the cov(⋅) operator are
vec(Z) (the matrix R(t1, q) is defined analogously).

rameters

〉=∑S(〈α1〉LTM+ 〈�1〉Diag(〈w〉)C〈X〉)

S = α1h iLTL + �1h iIn
� �−1

i = ∑H α2h iBTY + �2h i Zh iTCTDiag wh ið Þ
� �

H = α2h iBTB + �2h iIk
� �−1

c Xh ið Þ = �1h i∑X It1⊗CTDiag wh ið Þ
� �

vec Sh ið Þ

X = �1h i It1⊗Q
� �

+ RT
t1 ;qð Þ Diag β1h ið Þ⊗TT

1T1

� �
R t1 ;qð Þ

� �−1

c Zh ið Þ = �2h i∑Z Ik⊗CTDiag wh ið Þ
� �

vec Hh iT
� �

Z = �2h i Ik⊗Qð Þ + RT
k;qð Þ Diag β2h ið Þ⊗TT

2T2

� �
R k;qð Þ

� �−1

i = ∑wdiag �1h i Sh i Xh iTCT + �2h i Hh iT Zh iTCT
� �

w = �1h iP1 + �2h iP2 + γh iW uð Þð Þ−1

1 =
mt1
2

+ a0α1

1 =
1
2

tr M−L Sh ið ÞT M−L Sh ið Þ
� �

+
t1
2
tr ∑SL

TL
� �

+ b0α1

2 =
nt2
2

+ a0α2

2 =
1
2

tr Y−B Hh ið ÞT Y−B Hh ið Þ
� �

+
n
2
tr ∑HB

TB
� �

+ b0α2

=
t1n
2

=
1
2

tr Sh iT Sh i−2 Sh iTDiag wh ið ÞC Xh i + Xh iTQ Xh i
� �

+ t1tr ∑Sð Þ + tr ∑X It1⊗Q
� �� �h i

=
kn
2

=
1
2

tr Hh i Hh iT−2 Hh iDiag wh ið ÞC Zh i + Zh iTQ Zh i
� �

+ ntr ∑Hð Þ + tr ∑Z Ik⊗Qð Þð Þ
h i

β1

�
i =

t1
2

+ a0β1

β1

�
i =

1
2

Xi⋅h iTT
1T1 Xi⋅h iT +

1
2
tr TT

1T1cov Xi⋅ð ÞT
� �� �

+ δ1h i

β2

�
i =

k
2

+ a0β2

β2

�
i =

1
2

Zi⋅h iTT
2T2 Zi⋅h iT +

1
2
tr TT

2T2cov Zi⋅ð ÞT
� �� �

+ δ2h i

1
=aβ1

0q

1 = ∑q
i = 1 β1ð Þi

� �
2
=aβ2

0q

2 = ∑q
i = 1 β2ð Þi

� �
=φn
= ∑n

i = 1
ffiffiffiffiffi
ui

p
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After updating q(Θ) in the first step of an iteration of the algorithm,
the algorithmminimizes the functional K̃ q Θð Þ;uð Þwith respect to u in
the second step of an iteration, which is equivalent to

u = argmin
u

∑
n

i=1

E wTΔT
i G

T
i GiΔiw

h i
+ uiffiffiffiffi

ui
p : ð48Þ

Since Eq. (48) is a linear combination of n functions where the i-th
function is convex with respect to ui, the minimizer is found by
calculating the derivative with respect to ui and equating to zero,
which results in the following update

ui = E wTΔT
i G

T
i GiΔiw

h i
= tr ΔT

i G
T
i GiΔi ∑w + wh i wh iT

� �h i
;

ð49Þ

for i=1,…,n. It is clear from Eq. (49) that the auxiliary vector u is
related to the gradient of the estimated spatial profilew. Moreover, as
can be seen from q wð Þ (shown in Table 1), the vector u introduces
spatially adaptive smoothing through the matrix W uð Þ into the
estimation process (see Appendix D). This matrix controls the amount
of smoothing at each vertex depending on the local variation of the
spatial profile.

Computational complexity

To conclude this section we discuss the per-iteration computa-
tional complexity of the proposed method. Note that this does not
take into account the computational cost of obtaining the parcellation
of the cortex and the cost of computing the gradient projection
matrices, as these operations only have to be performed once for a
given cortical mesh. Excluding these operations from the discussion is
also justified by the fact that the time required to perform them is
typically shorter than the time required for one iteration of the
proposed method. The per-iteration computational complexity of the
proposed method is governed by the complexity of the matrix
inversions needed to compute the covariance matrices in Table 1. For
many applications it is possible to avoid the explicit inversion of
matrices by employing efficient linear system solvers, such as the
conjugate gradient method. Unfortunately, this is not possible in fully
Bayesian methods, such as the one proposed in this work, since the
covariance matrices are required for the computation of hyperpara-
meters. By assuming that the inversion of an N×N matrix has
complexity O(N3) and by taking into account the sizes of the
covariance matrices in Table 1, the per-iteration complexity of the
proposedmethod is found to be O(n3+q3(t13+k3)). From this one can
see how the number of parcels q, which is in the range [1,n], affects
the computational complexity. Ideally one would like to use a large
number of parcels, such that parcels are small and the probability of
having multiple sources in the same parcel is low. However, doing so
can lead to prohibitively high computational demands and one has to
chose q≪n in order to satisfy the constraints imposed by the
computational resources available.

Simulations

In this section we evaluate the proposedmethod using simulations
with synthetic EEG and fMRI data. The use of synthetic data enables us
to compare the proposed method and existing methods by means of
objective quality metrics.

At the end of this section we evaluate the results and compare the
proposed method to several existing methods. Two EEG/fMRI fusion
methods are used for the comparison. The first method is the
symmetrical BASTERF method (Daunizeau et al., 2007), which is
similar to the proposed method but uses a different prior model. The
second method is the fMRI weighted minimum norm method
(fWMN) (Liu et al., 1998), which can be considered one of the
simplest methods for asymmetrical EEG/fMRI fusion. As an additional
reference we include several EEG-only source localization methods in
the comparison. The MSP method (Friston et al., 2008) is a recently
proposed method that uses multiple sparse priors (256 per hemi-
sphere are used here) with an empirical Bayesian modeling and can
be considered a state of the art EEG source localization method. We
also include two classic EEG source localization methods, namely the
LORETA method (Pascual-Marqui et al., 1994), and the minimum
norm method (MNE) with Tikhonov noise regularization (Dale and
Sereno, 1993).

EEG forward model

The lead field matrix L used for the simulations was calculated as
follows. First, the template cortical mesh included in SPM8 (http://
www.fil.ion.ucl.ac.uk/spm) with a total of 8196 vertices was down-
sampled to n=1000 vertices. While the coarser mesh provides a
less accurate geometrical description of the cortex, it significantly
reduces the computational requirements. The lead field matrix
was then computed using the BEM method from FieldTrip (http://
fieldtrip.fcdonders.nl) with standard sensor locations for a 64 channel
montage and canonical scalp, outer skull, and inner skull meshes,
which are included in SPM8.

Simulated EEG and fMRI data

In order to simulate a range of source configurations and various
degrees of agreement between EEG and fMRI a total of 5 different
simulation scenarios are used in our evaluation. In the first simulation
scenario we use a complex source configuration with more wide-
spread sources, such sources are for example known to occur in
children (Friedrich and Friederici, 2004; Sanders et al., 2006). We
denote the scenario CPX and use a total of 4 sources, among which 2
are more widespread. All sources are hemodynamically, as well as,
electrically active. Due to the complexity of source configuration, it
can be expected that EEG/fMRI fusion methods have a significant
advantage over EEG-only methods for this scenario. The remaining
simulation scenarios use simpler source configurations with only 2
sources and are used to depict situations where some sources can be
detectable by either only one modality or both (a similar experiment
was presented in Daunizeau et al. (2007)). In practice such situations
can for example occur when a source is active for a short time and can
be detected by EEG but does not generate a BOLD response strong
enough to be detectable by fMRI. On the other hand, it is possible that
a source is far from the surface of the scalp, and thus generates a weak
EEG signal while having a strong BOLD response. The scenarios are
denoted as MM for the scenario with 2 multimodal, i.e., electrically
and hemodynamically active, sources, ME for the scenario with one
multimodal source and another source that only exhibits electrical
activity, MH with one multimodal source and another source that is
only hemodynamically active, and EH where one source is electrically
active and the other is hemodynamically active. The EH scenario is
included for completeness and it should be noted that it fundamen-
tally violates the assumption which motivates fusion of EEG and fMRI,
that is, the assumption that a subset of the neuronal activity is
detectable by either modality. An overview of the simulation
scenarios is given in Table 2. For each scenario, two sources each
with a spatial extent of either 8 or 16 vertices are placed at random,
non-overlapping locations on the cortical surface. Note that we
assume no knowledge about the parcellation used by our algorithm
when placing the sources on the cortex. It is therefore possible that
the sources overlap parcel boundaries or that multiple sources are
within the same parcel.
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Table 3
Summary of simulation parameters.

Common

Size cortical mesh n=1000
Number of parcels q=32

EEG fMRI

Number of sensors m=64 Length HRF k=30
Time points t1=75 Time points t2=1000
Sampling rate 1 kHz Sampling rate 1 Hz
SNR 15 dB, 20 dB, SNR 5 dB

25 dB

Table 2
Simulation scenarios used in the empirical evaluation. A multimodal source is denoted
as “M” while sources which are only electrically or hemodynamically active are
denoted as “E” and “H”, respectively. The numbers indicate the spatial extent in vertices
of the source, e.g., M(16) denotes a multimodal source with a spatial extent of 16
vertices. The source waveforms of the various sources are depicted in Fig. 4.

Scenario Source 1 Source 2 Source 3 Source 4

CPX M(8) M(8) M(16) M(16)
MM M(8) M(8)
ME M(8) E(8)
MH M(8) H(8)
EH E(8) H(8)
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To simulate source waveforms, we use sinusoids with different
starting points and frequencies as the current waveforms of
electrically active sources and a shifted canonical HRF from SPM8
with a positive peak at 5 s and a smaller negative peak at 12 s for
hemodynamically active sources. The source waveforms of the
sources, as well as, an example of the source distribution on the
cortex for the MM scenario are illustrated in Fig. 4. The rest of the
simulation parameters are as follows. For EEG we use m=64 sensors,
t1=75 (we assume a sampling rate of 1 kHz), and signal to noise
ratios (SNRs) of 15 dB, 20 dB and 25 dB (refer to Appendix B for a
definition of the SNR). For fMRI we use t2=1000, k=30 with 30
random occurrences of the event of interest, and an SNR of 5 dB. We
use q=32 anatomical parcels which are obtained using the procedure
described in Appendix A. Note that we use the same parceling for the
proposed method and for the BASTERF method. A summary of all
parameters used for the simulations is shown in Table 3.

We perform 25 simulations per scenario and SNR configuration for
each algorithm. For all algorithms the same random source config-
urations and noise manifestations are used in order to provide a fair
comparison.

Initialization

In order to start the iterative inference procedure we initialize the
parameters of the proposed method as follows. For the EEG noise
precision we assume that the noise only data windowM0 is one third of
Fig. 4. Source configurations used for simulations. The upper panel illustrates an example
current distribution of a simulation with the MM scenario (two multimodal sources); the
lowerpanels showthe currentwaveforms andHRFsused for the simulations. Thenumbers
refer to the source numbers in Table 2.
the length of M, i.e., 25 columns, and use aα1
=aα1

0 =25m/2, bα1
=bα1

0 =
aα1

σEEG
2 , where σEEG

2 is the EEG noise variance. Similarly, we use for
the fMRI noise precision hyperparameters aα2

=aα2

0 =250n/2, bα2
=

bα2

0=aα2
σfMRI

2 . The expectations of the remaining hyperparameters and
the vector u are initialized with small values of 10−3. The variables Zh i,
Xh i, and wh i and their covariance matrices are initialized with all zero
values, whileminimumnorm estimates are used for Sh i and Hh i together
with all zero covariance matrices. After the initialization the algorithm is
started and the variables are updated in the order given in the previous
section. While we do not provide a detailed analysis of the convergence
properties of the proposed method, we note here that we find that the
method is insensitive to parameter initialization, which agrees with
earlier work where the same inference scheme is used (Babacan et al.,
2008). For example, theproposedmethod typically converges to the same
solutionwhen it is initialized using themethod stated above aswhen it is
initialized with the solution found by the BASTERF method.
Results

Estimated cortical current waveforms and their spatial distribution
on the cortex in one simulation for scenario MM where both sources
are electrically and hemodynamically active are shown in Fig. 5. The
currents estimated by the proposed method are closer to the ground
truth than those estimated by existing methods, i.e., the spatial
distribution of the currents contains sharper transitions between
active and inactive regions and the temporal waveforms have an
appropriate degree of temporal smoothness. While currents estimat-
ed by the BASTERF method are both spatially and temporally smooth,
the method fails to recover the sharp transitions at the boundaries of
the sources and therefore provides a lower localization performance
than the proposed method. This behavior can be explained by the fact
that the BASTERF method uses LORETA-type spatial prior which is not
spatially adaptive. Due to the lack of spatial smoothness priors the
current distribution obtained by the fWMN method is more
widespread than the distribution obtained by the proposed and the
BASTERF methods. Considering the simplicity of the fWMN method,
the results obtained by the fWMN method are surprisingly good. It
should be noted however that in our evaluation the fWMN method
has an unfair advantage over the symmetrical fusion methods
(proposed and BASTERF) since the true locations of the hemodynam-
ically active sources are used to obtain the weights for the fWMN
method. Among the EEG-only methods, the MSP method clearly
outperforms the other methods (LORETA and MNE) but due to the
lack of fMRI information does not recover the spatio-temporal source
distribution as well as the evaluated EEG/fMRI fusion methods. The
advantage of spatially adaptive priors can also be seen when
comparing the HRFs estimated by the proposed method and the
BASTERF method, as shown in Fig. 6. As with the cortical currents,
spatial adaptivity enables the proposed method to obtain estimates
which are closer to the ground truth with sharper transitions between
active and inactive regions and a more accurate degree of temporal
smoothness.
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Fig. 5. Butterfly plots of the estimated currents (Ŝ) and their projection onto the cortical mesh at t=27 ms for one simulation of the scenario MM (SNR EEG=20 dB). The ground
truth for this simulation is depicted in Fig. 4. Note that the color scales are adjusted for each method to show the full range of the source distribution and that the y-axis of the
butterfly plots for the MSP, LORETA, and MNE methods has been adjusted to allow for a clear depiction of the estimated current waveforms.
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Objective quality metric scores from all simulations are shown in
Fig. 7. To evaluate the reconstruction of the current distribution we
use the mean squared error (MSE), denoted MSE EEG, as well as, the
area under the ROC curve (AUC EEG). For fMRI we evaluate the
reconstruction of the HRFs using theMSE, whichwe denoteMSE fMRI.
Refer to Appendix C for the definition of the quality metrics used.

We observe that the proposedmethod clearly outperforms the other
evaluated methods for medium and high EEG SNRs (20 dB and 25 dB),
except for theEH scenariowhere theMSPmethodperformsbetter. Note,
however, that such a result is not unexpected since the EH scenario,
which uses one source that is only electrically active and another source
that is only hemodynamically active, fundamentally violates the
assumption which motivates EEG/fMRI fusion, i.e., that a subset of
activity is detectable by both modalities. A method which does not use
fMRI information has an advantage in this case since it does not have a
Fig. 6. Estimated HRFs (Ĥ) by the proposed method and the BASTERF method for one simu
depicted in Fig. 4 (hemodynamic sources 1 and 2 are active).
bias towards fMRI active locations. From the results for scenario EH it can
also be seen that the proposed method is more robust against
disagreements between EEG and fMRI than the other EEG/fMRI fusion
methods (BASTERF and fWMN). Also note that whenever there is a
strong agreement between EEG and fMRI (scenarios CPX and MM), the
fusionmethods (proposed, BASTERF and fWMN) clearly outperform the
EEG-onlymethods (MSP, LORETA andMNE). It is also interesting to note
that the performance for all fusion algorithms is worse when there are
current sourceswhicharehemodynamically inactive (scenarioME) than
when there are spurious hemodynamic sources (scenarioMH), which is
in agreement with previously reported results (Liu et al., 1998; Ahlfors
and Simpson, 2004; Daunizeau et al., 2005; Daunizeau et al., 2007). As
expected, the performance of all evaluated methods degrades when
lowering the EEG SNR to 15 dB. It should be noted that the performance
of some methods degrades more than that of others, e.g., the advantage
lation of the scenario MM (SNR EEG=20 dB). The ground truth for this simulation is

image of Fig.�5
image of Fig.�6


Fig. 7.Objective quality metric scores for different simulation scenarios. The mean squared error scores for the estimated currents and hemodynamic response functions are denoted
as MSE EEG and MSE fMRI, respectively. The area under the ROC curve for EEG is denoted as AUC EEG. For mean squared error scores lower values are better while a value of 1.0
indicates the best performance in terms of AUC EEG. The error bars indicate the 95% confidence intervals.

Fig. 8. Results for the CPX scenario (SNR EEG=20 dB) for the proposed method, the
BASTERF method, and intermediate methods, denoted by ALG1 and ALG2. The method
ALG1 uses a Laplacian spatial prior (as in BASTERF) together with spatially adaptive
temporal priors (as in the proposed method) and ALG2 uses a TV prior (as in the
proposed method) together with temporal priors that are not spatially adaptive (as in
BASTERF). It can be seen that the improved spatial prior as well as the improved
temporal priors contribute to the higher performance of the proposed method. The
error bars indicate the 95% confidence intervals.
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of the proposed method over the BASTERF method typically becomes
clearerwhen lowering SNR. A surprising result is that the fWMNmethod
performs better than the other fusion methods for the CPX scenario at a
low SNR. However, the same is not true for the other simulation
scenarios. Potentially, this is again due to the fact that the fWMN has an
unfair advantage over the other methods since the true source locations
are used to obtain theweights used in themethod. From Fig. 7 it can also
be seen that the proposed method clearly outperforms the BASTERF
method in terms of MSE of the hemodynamic response function, which
can mainly be attributed to the use of spatially adaptive temporal
smoothness priors in the proposed method. Another observation is that
the reconstruction of the HRFs is largely unaffected by the EEG SNR and
the agreement between EEG and fMRI and mainly depends on the
number of hemodynamically active sources (CPX: 4 sources, MM,MH: 2
sources, ME,EH: 1 source). This result is not unexpected since unlike the
estimation of S, the estimation of H does not amount to a localization
problem, i.e., it is not possible to use a source configurationwithdifferent
source locations and obtain the same observation (assuming no noise).
Hence, it can be concluded that for realistic fMRI SNRs the estimation of
the HRFs does not benefit from the EEG information.

The advantage of the proposed method comes from the improved
prior model, consisting of a spatially adaptive TV prior for the spatial
profile and spatially adaptive temporal priors for the estimated currents
and HRFs. An interesting question is how is the estimation performance
affected by each prior? We try to answer this question by repeating the
simulations of the CPX scenario with two modified versions of the
proposedmethod,where one prior is replacedwith the prior used in the
BASTERFmethod.More specifically, thefirstmethod (denoted byALG1)
adopts the spatial Laplacian prior from BASTERF to model w and
employs spatially adaptive temporal priors to model X and Z, while the
second method (denoted by ALG2) uses a TV prior together with the
temporal priors from BASTERF, which are not spatially adaptive. As can
be seen from the results in Fig. 8, both additional priors contribute to the
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improved performance in terms of MSE EEG and MSE HRF. An
interesting observation is that for the area under the ROC curve (AUC
EEG), methods that use spatially adaptive temporal priors (proposed
and ALG1) have higher scores than methods that use temporal priors
without spatial adaptivity (ALG2 and BASTERF). While we only show
results for the CPX scenario, these results are typical and correspond
well with our observations that both parts (spatial and temporal) of the
improved prior model contribute to the higher performance of the
proposed method.

To conclude this evaluation, we also mention run times and
convergence properties of the evaluated algorithms. Naturally, while
using amore complex symmetricalmodel, aswith the proposed and the
BASTERFmethods, allows for higher performance, doing so comes at the
cost of higher computational complexity. For the simulations used in
this evaluation, all methods except the proposed method and the
BASTERF method require less than 1 s to perform one simulation. The
symmetrical fusion methods (proposed and BASTERF) are significantly
more complex and both require about 10 s for one iteration (on a
standard 2.6 GHz PC). Note that the time required for one iteration is
about the same since the computationally most expensive operations
are matrix inversions and both methods perform matrix inversions of
the same order during each iteration, i.e., the proposed method and the
BASTERFmethodhave the sameper-iteration timecomplexity. The time
required for one simulation is in the order of 1 h, as both methods
typically require several hundred iterations to reach convergence.

Application to real data

In this section, we demonstrate the performance of the proposed
method in a real data set. The EEG and fMRI data was acquired for a
multimodal study on face perception; details of the experimental
paradigm can be found in Henson et al. (2003) and the data is available
at http://www.fil.ion.ucl.ac.uk/spm/data/mmfaces/. The experiment
involved the subjects making symmetry judgments for pictures of
familiar faces, unfamiliar faces, and scrambled faces. In the following,
familiar and unfamiliar faces are combined to create the face condition
(F)whereas scrambled faces form the scrambled face condition (S). The
data set available contains the data for one subject (male, 33 years old,
neurologically healthy).

EEG data

The EEG data was collected using a 128-channel BioSemi ActiveTwo
system with two additional electrodes, one on each earlobe, and a
sampling rate of 2048 Hz. Faces and scrambled faces were presented in
random order for 600 ms, every 3600 ms. Data was collected in two
(identical) sessions; 86 faces and 86 scrambled faces were presented in
each session. The EEG data was downsampled to 200 Hz, referenced to
the average across all channels, and epoched from−100 ms to 600 ms.
Trials for which the voltage exceeded 120 μV at any channel were
rejected, leavinga total of 136 trials for faces and134 trials for scrambled
faces. The remaining trials were baseline corrected from −100 ms to
0 ms and averaged to create one ERP for the face condition and one ERP
for the scrambled face condition.

EEG forward model

The EEG forward operator G was calculated using a BEM method
implemented in FieldTrip (http://fieldtrip.fcdonders.nl). Subject specific
meshes were used for the calculation; the cortex mesh was obtained
from a high resolution T1-weighted structural MRI (1 mm3 resolution)
of the subject using BrainVisa 3.2 (http://brainvisa.info). The high
resolution cortex mesh obtained by BrainVisa was downsampled to
5998 vertices. The remaining meshes needed for the BEM calculation,
namely the scalp, outer skull, and inner skull meshes, were obtained as
follows. A nonlinear inverse normalization transform using the T1-
weighted structural MRI of the subject was calculated using SPM8
(http://www.fil.ion.ucl.ac.uk/spm/). The transform was used to warp
template scalp, outer skull, inner skull, and cortex meshes from a
standard space into a subject specific space (the template meshes are
included in SPM8). Themeshes were then used together with electrode
locations, which were obtained using a Polhemus Isotrak digitizer, as
inputs to the BEMmethod.

fMRI data

The fMRI data was collected in 2 sessions; 64 faces and 86 scrambled
faces were presented in each session. The experimental paradigm was
slightly different from that used for EEG, i.e., the stimuli were presented
for 600 ms but the time between trials was randomly distributed
between 3 s and 18 s to allow for an estimation of theHRF. The data was
acquired using a gradient-echo EPI sequence on a 3 T Siemens TIM Trio
scanner with 32 slices, voxel size 3×3×3 mm (skip 0.75 mm), and a TR
of 2 s. For each session 390 volumes were obtained. The fMRI data was
preprocessed using SPM8, which involved the following steps: Slice
timing correction to account for descending slice order, realignment for
motion correction using 4-th degree b-spline interpolation, co-registra-
tion with the T1-weighted structural MRI of the subject, and spatial
smoothing using a symmetric Gaussian kernel with a full width at half
maximum(FWHM)of 8 mm. Inorder tobeable touse fMRI data as input
to the fusion algorithm, the volumetric data has to be interpolated onto
the cortical surface, i.e., the corticalmesh of 5998 verticeswhichwas also
used for theEEGBEMmodel.Weuse themethodproposed inGrova et al.
(2006) to perform the interpolation. The method uses a binary gray
matter mask to construct a 3D geodesic Voronoi diagram with one
Voronoi cell for eachvertexof themesh. The interpolatedvalue at a given
vertex is then obtained by averaging the voxels belonging to theVoronoi
cell which is associated with the vertex. Compared to simplistic
interpolation methods, such as integrating over a sphere around each
vertex, this interpolation method has the advantage that each gray
matter voxel is associated with exactly one vertex. Therefore no signal
mixing occurs between neighboring vertices and no signal is lost due to
gray matter voxels being too far away from the closest vertex. Here, the
gray matter mask was obtained from the T1-weighted structural MRI
using BrainVisa 3.2. After interpolation of the fMRI data for each session
onto the corticalmesh, low frequency driftswere removed byfitting and
subtracting a third order polynomial to the fMRI waveform of each
vertex. The interpolated data from the two sessions were then
concatenated and upsampled by a factor of 2 to obtain a pseudo TR of
1 s resulting in an fMRI data matrix Y of size 1560×5998.

Noise estimates

Theproposedmethoduses twonoise-only data segmentsM0 andY0,
for EEG and fMRI, respectively, to obtain noise precision hyperpara-
meters using Eqs. (27) and (29). The pre-stimulus time window from
−100 ms to−5 ms was used to obtain an EEG noise matrix M0 of size
128×20. For fMRI, ideally the data segment Y0 is obtained from a
sufficiently long time window during which no event onsets occurred,
i.e., it can be assumed that the data segment only contains noise
(consisting of measurement noise from theMRI scanner and noise from
other sources such as spontaneous brain activity). Unfortunately, the
fMRI data provided in the dataset does not contain data from a long
period during which no event onsets occurred. In order to obtain an
initial noise estimate, first note that the SNR for fMRI is very low and
only a small number of brain regions exhibit significant task induced
hemodynamic activity. Therefore, calculated across thewhole brain and
over a long time window, the power of the event related signal is
negligible compared to the noise power. Hence, we simply used data
from thefirst 30 s of the experiment, i.e., thefirst 30 rows inY, asY0. Due
to the above arguments the noise parameter bα2

0 is quite accurate but
may be slightly larger than the “true” bα2

0 due to event onsets during the
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Fig. 9. Ventral (left) and right lateral (right) views of the cortical mesh showing the
parcellation of 5998 vertices into 48 regions.

Fig. 11. Estimated hemodynamic response functions for a vertex in the right fusiform
region corresponding to the location of the dipole used in Fig. 10.
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first 30 s of the experiment. It can be expected that this inaccuracy does
not affect the result since the noise precision is mostly estimated by the
fusion algorithm itself.

Application of the fusion algorithm

The preprocessed EEG and fMRI data were used as inputs to the
proposed EEG/fMRI fusion method, as well as, to the BASTERF method
(Daunizeau et al., 2007), which was included for comparison
purposes. The fusion methods were applied for each condition (face
and scrambled face) separately. Prior to applying the algorithms, the
cortical mesh was parcellated into 48 regions using the procedure
described in Appendix A; the parcellation is illustrated in Fig. 9. The
size EEG data matrixMwas 128×61 corresponding to a time window
from 0 ms to 300 ms after event onset. The length of the HRF for fMRI
was chosen to 20 s, resulting in a design matrix B of size 1560×20.
The design matrix was obtained using Eq. (4) with an experimental
time course which was zero everywhere except at locations
corresponding to the onset times of the condition of interest, where
the value of the time course was set equal to 1.

Results

Previous EEG studies (Henson et al., 2003) have shown that the
difference between the face (F) and scrambled face (S) conditions is
apparent in the negative component of the right occipito-temporal
channels at 170 ms after event onset, which is known as N170. This
effect is clearly visible in the estimated current waveforms of the
dipoles in the right fusiform region, as illustrated in Fig. 10. Notice that
the difference between the F and the S condition is larger for the
proposed method than for the BASTERF method. The difference
between the methods can be attributed to the spatial adaptivity of the
proposed method which allows for more focal sources with adaptive
temporal smoothness.

The hemodynamic response functions estimated by both methods
look mostly similar as shown in Fig. 11. The similarity between the
Fig. 10. Estimated current waveforms for a dipole in the right fusiform region. The
dipole was selected as the dipole with the maximum current magnitude over all time
instants for the face condition and the proposed method. The difference between the
face (F) and the scrambled face (S) condition at t=170 ms is clearly visible. Note that
the difference is larger for the proposed method than for the BASTERF method.
methods indicates that for this particular example the improved prior
model has little influence on the estimates. An explanation for this is
that there is a large amount of fMRI data available (86 event onsets for
each condition) for the estimation of the HRFs. Hence, the Bayesian
methods reduce theweight of the priors and the particular type of prior
used has less influence on the estimate. The distributions of the current
magnitudes for the F and S conditions at 170 ms are shown in Fig. 12.
The results for both, the proposed and the BASTERF methods, are
generally consistent with previously reported EEG source localization
results for the same data (Trujillo-Barreto et al., 2008; Friston et al.,
2008). There is bilateral activity in the fusiform regionwith emphasis on
the right side, as well as, activity in the right superior temporal sulcus
and the right middle frontal gyrus. Compared to previously reported
results, the current sources, especially the ones in the bilateral fusiform
regions, are more clearly separated from inactive regions. This is clear
from the sharp boundaries between active and inactive regions shown
in Fig. 12. This effect can be explained by the fact that the evaluated EEG/
fMRI fusion methods use fMRI information, which allows for more
accurate source localization and estimation of the spatial extent of the
sources. While the current distributions estimated by the proposed
method and the BASTERF method are quite similar, notice that the
proposed method obtains sharper boundaries and therefore a better
localization of the brain activity. Bothmethods alsofind some activity in
the medial superior frontal region, which is inconsistent with previous
EEG source localization results (Trujillo-Barreto et al., 2008; Friston
et al., 2008). Notice that for the BASTERF method, the dipole with the
largest magnitude at 170 ms is located in the medial superior frontal
region and not in the right fusiform region. More recent MEG results
(Henson et al., 2007) show some activity in the medial superior frontal
region for some subjects, which suggests that it is possible that previous
EEG source localization studies did not report this activity since the
employed source localization methods simply failed to detect the
activity in themedial superior frontal region. On the other hand, activity
in the medial superior frontal region for fMRI and positivity in the
frontocentral electrodes for EEG at 550 ms has been reported to be
related to the familiarity of faces (Henson et al., 2003).While not shown
here, both fusion methods find some hemodynamic medial superior
frontal activity. This activity is much weaker than the activity in the
fusiform region but may in fact be related to electrical activity that
occurs at 550 ms, i.e., outside the EEG timewindowused in our analysis.
The currents in the medial superior frontal regions found by the fusion
algorithms may therefore be spurious estimates caused by hemody-
namic activity which is related to electrical activity outside the time
window of interest. This behavior illustrates a possible shortcoming of
EEG/fMRI fusion methods: As the estimated hemodynamic response
function is much longer than the EEG time window of interest,
information about cortical activity occurring after 300 ms is included
into the fusion process, which causes invalid fMRI location priors in the
time invariant spatial profile w. While both the proposed method and
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Fig. 12. Distributions of the current magnitudes at t=170 ms for the multimodal face data. Results obtained by the proposed method are shown in the top panel while the bottom
panel shows the results obtained by the BASTERF method. The color maps are scaled to the range of the current magnitudes for the face condition for each algorithm.

127M. Luessi et al. / NeuroImage 55 (2011) 113–132
the BASTERF method have some robustness against spurious hemody-
namic sources, the current estimates are still biased towards regions
with hemodynamic activity and the currents in the medial superior
frontal region at 170 ms may in fact be spurious current estimates
caused by invalid fMRI location priors.
Conclusions

In this paper we proposed a novel symmetrical EEG/fMRI fusion
method. The method utilizes a hierarchical generative model with
symmetrical structure which explains both EEG and fMRI observations.
In contrast to previous symmetrical fusion methods, the proposed
method uses spatially adaptive signal priors, leading to an improved
performance. Specifically, the use of a total variation (TV) prior allows
sharp boundaries between active and inactive brain regions. Unlike
LORETA-type (Pascual-Marqui et al., 1994) spatial priors, the TV prior is
spatially adaptive, such that it not only imposes spatial smoothness but
also allows for abrupt changes in brain activity at the boundaries of
active regions. We also assume that although each response is
temporally smooth, the degree of smoothness varies from one spatial
location to another, which is incorporated by utilizing a spatially
adaptive temporal smoothness prior. We use a fully Bayesian formu-
lationwitha variational Bayesian inferencemethod. Themethodutilizes
a spatially adaptive bound to the TVpriorwhichmakes the calculation of
the variational posterior distribution approximation possible.

We used simulations with synthetic EEG and fMRI data and
objective quality metrics to evaluate the proposed method and to
compare it to existing methods. In terms of estimation of the spatio-
temporal cortical current distribution, our results show that the
proposed method outperforms existing methods for simulation
scenarios with high agreement between EEG and fMRI, i.e., scenarios
where the sources of cortical activity are detectable by either
modality. In situations where there is a strong disagreement between
EEG and fMRI, the performance of the proposed method was slightly
lower than that of the EEG-only MSP method but higher than the
performance of other fusion methods, suggesting that the proposed
method is more robust against disagreement between EEG and fMRI.
In terms of estimation of the hemodynamic response function, the
proposed method consistently outperformed the BASTERF method
(Daunizeau et al., 2007), which can be attributed to the improved
prior model.
We also demonstrated the performance of the proposed method
using a multimodal EEG/fMRI dataset from an experiment with face
evoked responses (Henson et al., 2003). For comparison purposes, we
also applied the BASTERF method to the same data. The results of both
methods generally agree with previously reported results for the same
data (Trujillo-Barreto et al., 2008; Friston et al., 2008), i.e., 170 ms after
event onset the cortical current distribution exhibits clusters of activity
in the bilateral fusiform region, as well as, activity in the right superior
temporal sulcus and in the right middle frontal gyrus. Compared to
previously reported results and to the current distribution obtained by
the BASTERF method, the proposed method delineates the clusters in
the bilateral fusiformmore clearly. The proposed method also obtains a
larger difference in terms of current amplitudes between the conditions
than the BASTERF method. This can be attributed to the use of the
spatially adaptive priormodel in the proposedmethod,which allows for
sharp transitions in the cortical current density and for adaptation of the
degree of temporal smoothness.
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Appendix A. Anatomical parceling

In this workwe assume a fixed cortical parceling, which is encoded
by the matrix C. Since there has been no published method to obtain a
functional parceling jointly based on EEG and fMRI data, we resort to
parceling based on anatomical information. We empirically find that
the proposed method, as well as the BASTERF method (Daunizeau
et al., 2007), performs better when all parcels are approximately equal
in size. Therefore, we use a simple parcellation procedure which tries
to segment the cortical mesh in a number of compact parcels with
equal size. The parcellation procedure is similar to that in Daunizeau
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et al. (2007), i.e., the cortical mesh is first down-sampled to obtain a
number of seed vertices and then a region growing algorithm is used
to obtain the final parcellation. More specifically, in order to obtain a
parcellation with q parcels of a cortical mesh M=(V,E) with n
vertices, we first down-sample the mesh of each hemisphere to a
mesh with q/2 vertices using the Matlab function “reducepatch”. Note
that we require that q is an even number. The down-sampled meshes
are then combined to obtain a mesh MD=(VD,ED) with a total of q
vertices. The vertices in VD are used as initial labels for the region
growing algorithm. In order to start the algorithm we define a label
assignment map Linit of length n as

Linit ið Þ = j if vi = vj; vi∈V; vj∈VD;
0 otherwise;

�
ðA:1Þ

where vi∈V and vj∈VD denote the i-th and j-th vertices of the meshes,
M and MD, respectively. The map Linit and the meshM are then used as
inputs to the region growing algorithm in Fig. A.13. The algorithm keeps
a map Fwhich indicates if a parcel cannot be grown any further. During
each iteration, the algorithm first selects the smallest parcel which can
still be grown. In a second step, the neighboring vertex with the largest
number of edges connecting the vertex to the selectedparcel is added to
the parcel. Finally, the algorithm terminateswhen all vertices have been
assigned to a parcel. The n×q parcellationmatrix C used in the proposed
method is then obtained from L as follows

Cij =
1 if L ið Þ = j;
0 otherwise:

�
ðA:2Þ

Appendix B. Definition of the SNR

Throughout this paper we use the following definition for the EEG
signal to noise ratio

SNREEG = 10log10
‖vec LSð Þ‖2∞

σ2
1

; ðB:1Þ

where ‖⋅‖∞ denotes the infinity norm; i.e., the largest absolute value
of the vector, and σ1

2 is the noise variance. This definition corresponds
to the peak signal to noise ratio and has the advantage that it is not
affected by the length of silent periods before and after the evoked
responses (a similar definition is used in Lapalme et al. (2006)).
Similarly, we use the following definition for the fMRI signal to noise
ratio

SNRfMRI = 10log10
‖vec BHð Þ‖2∞

σ2
2

; ðB:2Þ
Fig. A.13. Region growing algorithm used to obtain a parcellation of the cortical mesh.
whereσ2
2 denotes the noise variance. One advantage of this definition of

the SNR is that the signal power, and thus the SNR, is not affected by the
number of voxels for which we assume no hemodynamic response.

Appendix C. Quality metrics

The following objective quality metrics are used in the evaluation.
The mean squared error (MSE) score for EEG measures the deviation
of the estimated currents Ŝ from the true currents S and is defined as

MSE EEG = ∥ Ŝ−S∥2F
∥S∥2F ; ðC:1Þ

where ∥⋅ ∥ F denotes the Frobenius norm. In addition to the MSE, we
use the area under the ROC curve, denoted as EEG AUC, to evaluate the
EEG source localization performance. In order to calculate the AUC we
calculate the power map PS (Daunizeau et al., 2007) of size n×1 from
the estimated currents Ŝ as follows

PSð Þi = Ŝi⋅ Ŝ
T
i⋅; ðC:2Þ

i.e., PSð Þi contains the power of the estimated source waveform of the
i-th dipole. The AUC is then calculated from PSð Þi and a binary mask
encoding the true locations of vertices belonging to electrically active
sources. Unlike the MSE, the AUC does not measure the quality of the
estimation based on the spatio-temporal shape of the estimated
currents but measures the ability of a method to correctly classify
dipoles as either active or inactive based on the energy of the
estimated source waveforms. The AUC lies in the range [0,1] where 1
corresponds to perfect classification performance. To evaluate the
quality of the estimation of the HRFs we use the MSE, which is
analogously defined to the EEG side, i.e.,

MSE fMRI = ∥Ĥ−H∥2F
∥H∥2F ; ðC:3Þ

with Ĥ and H being the estimated and the true HRFs, respectively.

Appendix D. Derivation of the approximate posterior distribution

In this appendix we show the derivations to obtain the
approximate posterior distribution shown in Table 1.

To obtain q Sð Þ, we use Eq. (47) and write

ln q Sð Þ = EΘ∖S ln p M jS;α1ð Þ + lnp S jX;w; �1ð Þ½ � + c; ðD:1Þ

where all terms that do not depend on S have been absorbed into the
additive normalization constant c.1 To perform the calculations it is
more convenient to rewrite both p M jS;α1ð Þ and p S jX;w; �1ð Þ in
vector form. They are given by

vec Mð Þ m⋅t1ð Þ×1 = It1⊗Lm×n

� �
vec Sð Þ n⋅t1ð Þ×1 + vec η1ð Þ m⋅t1ð Þ×1; ðD:2Þ

vec η1ð Þ m⋅t1ð Þ×1∼N 0;α−1
1 Im⋅t1

� �
; ðD:3Þ

and

vec Sð Þ n⋅t1ð Þ×1 = It1⊗Diag wð Þn×nCn×q

� �
vec Xð Þ q⋅t1ð Þ×1

+ vec ρð Þ n⋅t1ð Þ×1;
ðD:4Þ
1 Note that in this appendix c is used for simplicity to denote any terms which are
not of interest for a particular derivation. Therefore, the value of c can be different for
every equation shown.

image of Fig. A.13
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vec ρ1ð Þ n⋅t1ð Þ×1∼N 0; �−1
1 In⋅t1

� �
; ðD:5Þ

respectively. Note that we include the sizes of the matrices and
vectors in the subscripts as a reference. Using these equations we can
write Eq. (D.1) as

ln q Sð Þ = EΘ∖S½−α1

2
vec Mð Þ− It1⊗L

� �
vec Sð Þ

� �T
× vec Mð Þ− It1⊗L

� �
vec Sð Þ

� �
− �1

2
vec Sð Þ− It1⊗Diag wð ÞC

� �
vec Xð Þ

� �T
× vec Sð Þ− It1⊗Diag wð ÞC

� �
vec Xð Þ

� �� + c:

ðD:6Þ

Due to the conjugacy of the priors (Gaussian for themean and gamma
for the precision) we know that q Sð Þwill be Gaussian as well and we can
find vec Sh ið Þ by taking the derivative with respect to vec Sð Þ, equating to
zero, and calculating the expectation; by doing so we obtain

vec Sh ið Þ = α1h i It1⊗LTL
� �

+ �1h iIn⋅t1
� �−1

× α1h i It1⊗LT
� �

vec Mð Þ + �1h i It1⊗Diag wh ið ÞC
� �

vec Xh ið Þ
� �

;
ðD:7Þ

where we can see by inspection that the first part corresponds to the
covariance matrix. The covariance matrix can also be obtained by
calculating the second derivative of Eq. (D.6) with respect to vec Sð Þ,
equating to zero, and calculating the expectation. Using the properties
of the Kronecker product and vec(⋅) operators, Eq. (D.7) can also be
written as

Si = α1h iLTL + �1h iIn
� �−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
=∑S

× α1h iLTM + �1h iDiag wh ið ÞC Xh i
� �

;

ðD:8Þ

which is the form given in Table 1.
To obtain the distribution q Hð Þwe use the same procedure, i.e., we

first write

ln q Hð Þ = EΘ∖H ln p Y jH;α2ð Þ + ln p H jZ;w; �2ð Þ½ � + c ðD:9Þ

and use vector notation to obtain

ln q Hð Þ = EΘ∖H½−α2

2
vec Yð Þ− In⊗Bð Þvec Hð Þð ÞT

× vec Yð Þ− In⊗Bð Þvec Hð Þð Þ
− �2

2
vec Hð Þ− CTDiag wð Þ⊗Ik

� �
vec ZT
� �� �T

× vec Hð Þ− CTDiag wð Þ⊗Ik
� �

vec ZT
� �� �� + c:

ðD:10Þ

Since q Hð Þ is Gaussian, we can obtain the mean by calculating the
derivative with respect to vec Hð Þ and equating to zero. By doing so
and by using the properties of the Kronecker product and vec(⋅)
operators we get

Hh i = α2h iBTB + �2h iIk
� �−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
=∑H

× α2h iBT Yh i + �2h i Zh iTCTDiag wh ið Þ
� �

:

ðD:11Þ

The distribution q Xð Þ is obtained similarly, i.e., we collect all terms
that depend on X and write

ln q Xð Þ = EΘ∖X ln p S jX;w; �1ð Þ + ln p X jβ1ð Þ½ � + c: ðD:12Þ
Next we rewrite p X jβ1ð Þ in vector form as

vec XT
� �

t1⋅qð Þ×1
= 0 + vec ν1ð Þ t1⋅qð Þ×1; ðD:13Þ

vec ν1ð Þ t1⋅qð Þñ1∼N 0; Diag β1ð Þq×q⊗ TT
1T1

� �
t1×t1

	 
−1	 

: ðD:14Þ

Using this we can write Eq. (D.12) as

ln q Xð Þ = EΘ∖X½− �1
2

vec Sð Þ− It1⊗Diag wð ÞC
� �

vec Xð Þ
� �T

× vec Sð Þ− It1⊗Diag wð ÞC
� �

vec Xð Þ
� �

−1
2
vec XT
� �T

Diag β1ð Þ⊗TT
1T1

� �
vec XT
� �� + c:

ðD:15Þ

Since the prior used for X is conjugate, we know that q Xð Þ is
Gaussian. In order to be able to calculate the derivative with respect to
vec Xð Þ, we define the t1 ⋅q× t1 ⋅q permutation matrix R t1 ;qð Þ with the
property

R t1 ;qð Þvec XT
� �

= vec Xð Þ; ðD:16Þ

which allows us to rewrite Eq. (D.15) as

ln q Xð Þ = EΘ∖X½− �1
2

vec Sð Þ− It1⊗Diag wð ÞC
� �

vec Xð Þ
� �T

× vec Sð Þ− It1⊗Diag wð ÞC
� �

vec Xð Þ
� �

−1
2
vec Xð ÞTRT

t1 ;qð Þ Diag β1ð Þ⊗TT
1T1

� �
R t1 ;qð Þvec Xð Þ� + c:

ðD:17Þ

By taking the derivative with respect to vec Xð Þ, equating to zero,
and calculating the expectation we obtain

vec Xh ið Þ = �1h i It1⊗Q
� �

+ RT
t1 ;qð Þ Diag β1h ið Þ⊗TT

1T1

� �
R t1 ;qð Þ

� �−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
=∑X

× �1h i It1⊗CTDiag wh ið Þ
� �

vec Sh ið Þ; ðD:18Þ

where

Q = E CTDiag wð ÞTDiag wð ÞC
h i

;

= CT Diag wh ið ÞTDiag wh ið Þ + Diag diag ∑wð Þð Þ
� �

C:
ðD:19Þ

To derive q Zð Þ we write

ln q Zð Þ = EΘ∖Z ln p HT jZ;w; �2

� �
+ ln p Z jβ2ð Þ

h i
+ c: ðD:20Þ

By comparing the distributions in Eq. (D.20)with those in Eq. (D.12)
we see that the distributions have the same form and consequently q Zð Þ
has the same form as q Xð Þ. Therefore, by applying the same steps that
we used for the EEG side we obtain

vec Zh ið Þ = ε2h i Ik⊗Qð Þ + RT
k;qð Þ Diag β2h ið Þ⊗TT

2T2

� �
R k;qð Þ

� �−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
=∑Z

× ε2h i Ik⊗CTDiag wh ið Þ
� �

vec Hh iT
� �

: ðD:21Þ
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To obtain the distribution q wð Þ for the spatial profile, we collect all
the terms depending on w, which results in

ln q wð Þ = EΘ∖w ln p S jX;w; �1ð Þ + ln p HT jZ;w; �2

� �
+ lnM w;u;γð Þ

h i
+ c: ðD:22Þ

This can be rewritten as

ln q wð Þ = EΘ∖w½− �1
2
tr S−Diag wð ÞCXð ÞT S−Diag wð ÞCXð Þ
� �

− �2
2
tr HT−Diag wð ÞCZ
� �T

HT−Diag wð ÞCZ
� �� �

−γ
2
∑
n

i=1

wTΔT
i G

T
i GiΔiw + uiffiffiffiffi

ui
p � + c:

ðD:23Þ

Note that there are several terms which do not depend on w. By
absorbing all of them into the additive normalization constant and
rewriting the remaining terms using w instead of Diag wð Þ we obtain

ln q wð Þ = EΘ∖w½�1wTdiag SXTCT
� �

− �1
2
wTDiag diag CXXTCT

� �� �
w

+ �2w
Tdiag HTZTCT

� �
− �2

2
wTDiag diag CZZTCT

� �� �
w

−γ
2
wT ∑

n

i=1

ΔT
i G

T
i GiΔiffiffiffiffi
ui

p
 !

w� + c; ðD:24Þ

which has the form of a multivariate Gaussian distribution. We find
the mean of the distribution by setting the derivative with respect to
w to zero, resulting in

wh i = �1h iP1 + �2h iP2 + γh iW uð Þð Þ−1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
∑w

× diag �1h i Sh i Xh iTCT + �2h i Hh iT Zh iTCT
� �

;

ðD:25Þ

where P1 and P2 are given by

P1 = E Diag diag CXXTCT
� �� �h i

= Diag diag C Xh i Xh iT + ∑
t1

i=1
∑ i½ �

X

" #
CT

 ! !
; ðD:26Þ

P2 = E Diag diag CZZTCT
� �� �h i

= Diag diag C Zh i Zh iT + ∑
k

i=1
∑ i½ �

Z

" #
CT

 ! !
; ðD:27Þ

where ∑ i½ �
X and ∑ i½ �

Z denote the i-th block of size q×q on the main
diagonal of the corresponding covariance matrix. The n×n matrix
W uð Þ is defined as

W uð Þ = ∑
n

i=1

ΔT
i G

T
i GiΔiffiffiffiffi
ui

p : ðD:28Þ

Distributions for hyperparameters

Next, we show the derivations of the approximate posterior
distributions for the hyperparameters. To obtain the distribution for
the EEG noise precision we write

ln q α1ð Þ = EΘ∖α1
ln p M jS;α1ð Þ + ln p α1 ja0α1

; b0α1

� �h i
+ c: ðD:29Þ

By using vector notation, calculating the logarithms, absorbing
constant parts into the constant c, and rearranging, we obtain

ln q α1ð Þ = EΘ∖α1 ½ mt1
2

+ a0α1
−1

	 

ln α1ð Þ−α1

2
vec Mð Þ− It1⊗L

� �
vec Sð Þ

� �T
× vec Mð Þ− It1⊗L

� �
vec Sð Þ

� �
−b0α1

α1� + c:

ðD:30Þ
By comparing this with the functional form of a gamma
distribution, i.e.,

p x ja; bð Þ = ba

Γ að Þ x
a−1e−bx

; ðD:31Þ

where Γ(⋅) denotes the gamma function, we see that q(α1) is gamma
distributed with parameters

aα1
=

mt1
2

+ a0α1
; ðD:32Þ

bα1
=

1
2
tr M−L Sh ið ÞT M−L Sh ið Þ
� �

+
t1
2
tr ΣSL

TL
� �

+ b0α1
; ðD:33Þ

where we have used the properties of the vec(⋅) and Kronecker
product operators to write bα1

in a compact form using the trace
operator. The term t1tr ∑SL

TL
� �

comes from the term that is
quadratic with respect to S in Eq.(D.30), i.e.,

E vec Sð ÞT It1⊗LTL
� �

vec Sð Þ
h i

= vec Sh ið ÞT It1⊗LTL
� �

vec Sh ið Þ

+ tr It1⊗∑S

� �
It1⊗LTL
� �� �

= tr Sh iTLTL Sh i
� �

+ t1tr ∑SL
TL

� �
:

ðD:34Þ

To obtain the distribution for the noise precision of the fMRI side
we collect all the terms depending on α2 and obtain

ln q α2ð Þ = EΘ∖α2
ln p Y jH;α2ð Þ + ln p α2 ja0α2

; b0α2

� �h i
+ c: ðD:35Þ

Clearly, since the distributions in Eq. (D.29) have exactly the same
form as the distributions in Eq. (D.35), q(α2) is gamma distributed
with parameters that have the same form as the parameters of q(α1);
they are given by

aα2
=

nt2
2

+ a0α2
; ðD:36Þ

bα2
=

1
2
tr Y−B Hh ið ÞT Y−B Hh ið Þ
� �

+
n
2
tr ∑HB

TB
� �

+ b0α2
: ðD:37Þ

The distribution of the hyperparameter �1, which controls the
strength of the hierarchical prior obtained from the spatio-temporal
decomposition model on the EEG side, is obtained by

ln q �1ð Þ = EΘ∖�1 ln p S jX;w; �1ð Þ + p �1ð Þ½ � + c; ðD:38Þ

which we can write as

ln q �1ð Þ = EΘ∖�1 ½ t1n
2

−1
	 


ln �1ð Þ− �1
2

vec Sð Þ− It1⊗Diag wð ÞC
� �

vec Xð Þ
� �T

× vec Sð Þ− It1⊗Diag wð ÞC
� �

vec Xð Þ
� �� + c:

ðD:39Þ

Like for the previous hyperparameter distributions, we can see by
inspection that q(�1) is gamma distributed with a shape parameter
a�1= t1n/2. In order to obtain the parameter b�1 we have to calculate
the expectation of the second term in Eq. (D.39). We break the
calculation of the expectation into several parts. The calculation of

E vec Sð ÞTvec Sð Þ
h i

is similar to Eq. (D.34), i.e.,

E vec Sð ÞTvec Sð Þ
h i

= vec Sh ið ÞTvec Sh ið Þ + tr It1⊗∑S

� �� �
= tr Sh iT Sh i

� �
+ t1tr ∑Sð Þ: ðD:40Þ
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The expectation of the second quadratic term is calculated as follows

E vec Xð ÞT It1⊗CTDiag wð ÞTDiag wð ÞC
� �

vec Xð Þ
h i

= E vec Xð ÞT It1⊗Q
� �

vec Xð Þ
h i

= tr Xh iTQ Xh i
� �

+ tr ∑X It1⊗Q
� �� �

: ðD:41Þ

By combining Eqs. (D.40) and (D.41) and by also including
E vec Sð ÞT It1⊗Diag wð ÞC� �

vec Xð Þ
h i

we obtain

b�1 =
1
2 ½tr Sh iT Sh i−2 Sh iTDiag wh ið ÞC Xh i + Xh iTQ Xh i

� �
+ t1tr ∑Sð Þ + tr ∑X It1⊗Q

� �� ��: ðD:42Þ

To obtain the distribution q(�2) we again make use of the
symmetry of the model by realizing that the distributions in

ln q �2ð Þ = EΘ∖�2 ln p HT jZ;w; �2

� �
+ p �2ð Þ

h i
+ c ðD:43Þ

have the same form as the distributions in Eq. (D.38). Therefore, q(�2) is
gamma distributed with parameters

a�2 =
kn
2

ðD:44Þ

b�2 =
1
2 ½tr Hh i Hh iT−2 Hh iDiag wh ið ÞC Zh i + Zh iTQ Zh i

� �
+ ntr ∑Hð Þ + tr ∑Z Ik⊗Qð Þð Þ�:

ðD:45Þ

Next, we show the derivation of q((β1)i), i.e., the distribution of
the hyperparameter (β1)i which controls the degree of temporal
smoothness and scale of the current waveforms in the i-th parcel. As
before, we only need to keep distributions depending on (β1)i when
applying Eq. (47), resulting in

ln q β1ð Þi
� �

= EΘ∖ β1ð Þi ln p X jβ1ð Þ + ln p β1 jδ1ð Þ½ � + c: ðD:46Þ

Note that we can assign all parts of p X jβ1ð Þ and p(β1|δ1) which are
independent of (β1)i to the additive normalization constant, which
allows us to write

ln q β1ð Þi
� �

= EΘ∖ β1ð Þi½ln det 2π β1ð ÞiTT
1T1

� �� �1
2− β1ð Þi

2
Xi⋅T

T
1T1X

T
i⋅

−δ1 β1ð Þi + ln β1ð Þi
� �

a0β1
−1

� ��+ c; ðD:47Þ

where det(⋅) denotes the determinant. By using the properties of the
determinant and the logarithm, calculating the expectation, and
rearranging we obtain

ln q β1ð Þi
� �

= − β1ð Þi
2

Xi⋅h iTT
1T1 Xi⋅h iT + tr TT

1T1cov Xi⋅ð ÞT
� �� �� �

− β1ð Þi δ1h i + ln β1ð Þi
� � t1

2
+ a0β1

−1
	 


+ c;
ðD:48Þ

where cov Xi⋅ð ÞT
� �

denotes the t1× t1 covariancematrix of the i-th row
of X; it can be extracted from ∑X as follows

cov Xi⋅ð ÞT
� �

r;c
= ∑Xð Þi + r−1ð Þq; i + c−1ð Þq: ðD:49Þ

By comparing Eq. (D.48) with the functional form of a gamma
distribution (Eq. (D.31)) we see that q((β1)i) is gamma distributed
with parameters

aβ1

� �
i
=

t1
2

+ a0β1
; ðD:50Þ
bβ1

� �
i
=

1
2

Xi⋅h iTT
1T1 Xi⋅h iT + tr TT

1T1cov Xi⋅ð ÞT
� �� �h i

+ δ1h i: ðD:51Þ

To obtain q((β2)i), we write

ln q β2ð Þi
� �

= EΘ∖ β2ð Þi ln p Z jβ2ð Þ + ln p β2 jδ2ð Þ½ � + c ðD:52Þ

andagainnotice that due to the symmetryof themodel thedistributions
have the exact same form as the distributions in Eq. (D.46). Thus, by
following the same procedure that we used to obtain q((β1)i) we find
that q((β2)i) is gamma distributed with parameters

aβ2

� �
i
=

k
2

+ a0β2
; ðD:53Þ

bβ2

� �
i
=

1
2

Zi⋅h iTT
2T2 Zi⋅h iT + tr TT

2T2cov Zi⋅ð ÞT
� �� �h i

+ δ2h i: ðD:54Þ

The distribution q(δ1) is obtained by calculating

ln q δ1ð Þ = EΘ∖δ1 ln p β1 jδ1ð Þ + ln p δ1ð Þ½ � + c; ðD:55Þ

which, by absorbing terms into c, can be written as

ln q δ1ð Þ = EΘ∖δ1 −δ1 ∑
q

i=1
β1ð Þi + ln δ1ð Þ qa0β1

−1
� � �

+ c: ðD:56Þ

From this it can be seen that q(δ1) is gamma distributed with
parameters

aδ1 = qa0β1
; bδ1 = ∑

q

i=1
β1ð Þi

� �
: ðD:57Þ

Similarly, we find that q(δ2) is gamma distributedwith parameters

aδ2 = qa0β2
; bδ2 = ∑

q

i=1
β2ð Þi

� �
; ðD:58Þ

by calculating

ln q δ2ð Þ = EΘ∖δ2 ln p β2 jδ2ð Þ + ln p δ2ð Þ½ � + c: ðD:59Þ

Finally, we show the derivation of q(γ), i.e., the distribution of the
hyperparameter which controls the strength of the TV prior. By
collecting all terms that depend on γ and absorbing independent parts
into the additive constant we obtain

ln q γð Þ = EΘ∖γ ln F w;u;γð Þ + ln p γð Þ½ � + c: ðD:60Þ

By calculating the logarithm and absorbing parts independent of γ
into c we obtain

ln q γð Þ = EΘ∖γ ln γð Þ φn−1ð Þ−γ
2
∑
n

i=1

wTΔT
i G

T
i GiΔiw + uiffiffiffiffi

ui
p

" #
+ c:

ðD:61Þ

Fromwhich we can see that q(γ) is gamma distributed and that the
shape parameter is given by aγ=φn. To calculate bγ we use Eq. (49) to
obtain

bγ =
1
2
EΘ∖γ ∑

n

i=1

wTΔT
i G

T
i GiΔiw + uiffiffiffiffi

ui
p

" #
= ∑

n

i=1

ffiffiffiffi
ui

p
: ðD:62Þ
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