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Abstract

In this work we develop a variational framework for the combination of sev-
eral prior models in Bayesian image restoration and apply it to astronomical
images. Since each combination of a given observation model and a prior
model produces a different posterior distribution of the underlying image,
the use of variational posterior distribution approximation on each posterior
will produce as many posterior approximations as priors we want to com-
bine. A unique approximation is obtained here by finding the distribution
on the unknown image given the observations that minimizes a linear convex
combination of the Kullback-Leibler divergences associated with each poste-
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rior distribution. We find this distribution in closed form and also relate the
proposed approach to other prior combination methods in the literature. Ex-
perimental results on both synthetic images and on real astronomical images
validate the proposed approach.

Keywords: Model Combination, Bayesian Methods, Variational Methods,
Atronomical Image Processing

1. Introduction

As explained in [3, 21], the field of digital image restoration has a quite
long history that began in the 1950s with the space program. The first images
of the Earth, Moon and planet Mars were, at that time, of unimaginable reso-
lution. However, the images were obtained under major technical difficulties
such as vibrations, bad pointing, motion due to spinning, etc. These diffi-
culties resulted, in most cases, in medium to large degradations that could
be scientifically and economically devastating. The need to retrieve as much
information as possible from such degraded images was the aim of the early
efforts to adapt the one-dimensional signal processing algorithms to images,
creating a new field that is today known as Digital Image Restoration and
Reconstruction. However, for a long time image restoration was considered
as a luxury in fields such as optical astronomy.

In 1990 something happened which changed the situation of image restora-
tion in optical astronomy. After the launch of the $2 billion Hubble Space
Telescope (HST) an impossible mistake was discovered in the main mirror.
The mirror had a severe problem of spherical aberration because it was pol-
ished with the help of a faulty device and checked with the same faulty
device. Thus, the checking was perfectly coherent with the polishing but
the curvature of the mirror was wrong. Since a single minute of observing
telescope time cost about $100.000, any effort to improve the images was
cheap. Since then Astronomy has been an area of important developments
and applications of image restoration methods.

In the early 2000s, the papers [21],[30] provided reviews of image restora-
tion in Astronomy, the first paper with an emphasis on Bayesian modeling
and inference while the second emphasized the multiresolution approach and
wavelets as its mathematical framework. The wavelet framework applied to
astronomical image restoration was further developed in the book [27] (see
also [28]). Concepts such as Compressed Sensing and Sparse Image Process-

2



ing (see [7, 25, 29]) have also been applied to imaging inverse problems in
Astronomy. However, while in the field of image restoration the combination
of prior images models has received some recent attention, to our knowledge,
no work in this area has been reported in the astronomical community.

In image restoration there have been several recent attempts to combine
image priors (see [9], [24] and [31]). In [9] a Student’s-t Product of Experts
(PoE) image prior model was proposed and learnt only from the observations.
Furthermore, the introduction of Bayesian inference methodology, based on
the constrained variational approximation, allowed to bypass the difficulty of
evaluating the normalization constant of the PoE. PoE priors were learnt in
[24] and [31] using a large training set of images and also stochastic sampling
methods.

A combination of the TV image model proposed in [1] and the PoE model
of [9] has been very recently proposed in [8]. This model combination may be
considered a spatially adaptive version of the TV model which furthermore,
as the method in [9], has the ability to enforce simultaneously a number of
different properties on the image.

In this paper, we apply a novel variational Bayesian methodology to com-
bine prior models in image restoration. While the methodology can be devel-
oped more generally we present it here for simplicity for the combination of
a sparse and a non-sparse image priors. We also show that this methodology
applied to image restoration produces, as a special case, the model developed
in [10].

The paper is organized as follows. In section 2 the Bayesian modeling for
image restoration is presented. Section 3 describes the variational approxi-
mation of the posterior distribution of the unknown image and how inference
is performed. Section 4 presents experimental results and section 5 concludes
the paper.

2. Bayesian Modeling

Let us assume that x, the unknown astronomical image of size p = m×n
we would have observed under ideal conditions, is expressed as a column vec-
tor by lexicographically ordering the pixels in the image. The observed image
y of size p = m×n is also expressed as a column vector by lexicographically
ordering the pixels in the image.

In this work, we adopt a hierarchical Bayesian framework consisting of two
stages (see for example [17]). The first stage is used to model the acquisition
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process and the unknown image x. The observation y is a random vector
with conditional distribution p(y|x, β). For the unknown image x we have
M models which we want to combine. They are denoted by pi(x|γi) for
i = 1, . . . ,M . These distributions depend on additional parameters β and
γ = {γ1, . . . , γM} (called hyperparameters), which are modeled by assigning
hyperprior distributions in the second stage of the hierarchical model. Let
us now describe those probability distributions. Without lack of generality
in the following we will present the combination of two image models, i.e.,
M = 2.

2.1. Observation Model

We assume in this paper that the observed y is given by the expression

y = Hx + ν , (1)

where ν is the acquisition noise, assumed to be white Gaussian with co-
variance β−1I, which is widely used since it produces good restorations (see
[12, 18, 20, 22]). Astronomical images often include significant photon (Pois-
son) noise (see [4, 14, 21]), but we have not included here such type of noise
for simplicity. However the variational approach to be utilized in this paper
can be applied to Poisson noise as well (see [19] for details). In Eq. (1) H
represents the blurring operator, which in the case of astronomical obser-
vations from Earth telescopes is mainly due to the presence of atmospheric
turbulence. Then we obtain for the observation model the following normal
distribution

p(y|x, β) = N (Hx, β−1I) . (2)

2.2. Image Models

As we have already explained in the introduction, in this paper we com-
bine a sparse prior, the prior model proposed in [33] based on the `1 norm
of the horizontal and vertical first order differences, and a non-sparse one,
the simultaneous autoregression (SAR) model [23]. Note that the idea of
combining sparse and non-sparse models has also been proposed in other
contexts, see for instance [26]. We first consider the prior model based on
the `1 norm which, as the TV prior model [1], is very effective in preserving
edges while imposing smoothness. It is defined as

p1(x|γ1) ∝ (αhαv)
p
4 × exp

{
−

p∑
i=1

[
αh‖ ∆h

i (x)‖1 +αv‖ ∆v
i (x)‖1

]}
, (3)
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where ∆h
i (x) and ∆v

i (x) represent the horizontal and vertical first order differ-
ences at pixel i, respectively, γ1 = {αh, αv}, and αh and αv are the horizontal
and vertical model parameters.

We also consider the SAR prior, defined as

p2(x|γ2) ∝ γ
p
2
2 exp

{
−γ2

2
‖Cx‖2

}
, (4)

where C is the Laplacian operator. This prior is expected to preserve image
textures better than the `1 prior.

Notice that in principle we could have considered a prior model of the
form

p(x|γ1, γ2) =
1

Z(γ1, γ2)

exp

{
−

p∑
i=1

[
αh1 ‖∆h

i (x)‖1 +αv1 ‖∆v
i (x)‖1

]
− γ2

2
‖Cx‖2

}
, (5)

but since there is no known approximation to the partition function Z(γ1, γ2),
the estimation of the parameters would be impossible for this prior model
(see however [11] in the context of model learning).

2.3. Hyperpriors on the Hyperparameters

Our prior knowledge on the different model parameters, γ1, γ2 and β has
been modeled with the help of the gamma hyperpriors

p(ω) = Γ(ω|aoω, boω) =
(boω)a

o
ω

Γ(aoω)
ωa

o
ω−1 exp [−boωω] , (6)

where ω > 0 denotes a hyperparameter, and aoω > 0 and boω > 0 are the shape
and inverse scale parameters, respectively. Their mean and variance are

E[ω] = aoω/b
o
ω, var[ω] = aoω/b

o
ω

2 . (7)

Finally, combining Eqs. (2) and (6) with the different prior models we
obtain the joint probability distributions

pi(y,Ω, γi) =p(y|x, β)p(β)pi(x|γi) p(γi) , for i = 1, . . . ,M , (8)

where Ω = {x, β}.
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3. Bayesian Inference and Variational Approximation of the Pos-
terior Distribution

Let us denote by Θ = {Ω,γ1, γ2} the set of all unknowns. The Bayesian
inference is based on the posterior distribution p(Θ | y), that we now approx-
imate, utilizing variational methods, by the factorizable distribution mini-
mizing the linear convex combinations of Kullback-Leibler (KL) divergence
functions

q̂(Θ) = argmin
q(Θ)

M∑
i=1

λiCKL(q(Ω)q(γi) ‖ pi(y,Ω, γi)) (9)

where λi ≥ 0,
∑

i λi = 1,
q(Ω) = q(x)q(β) , (10)

q(Θ) = q(Ω)
M∏
i=1

q(γi) , (11)

and the Kullback-Leibler (KL) divergences [13] are given by

CKL(q(Ω)q(γi) ‖ pi(y,Ω, γi)) =

∫
q(Ω)q(γi) log

(
q(Ω)q(γi)

pi(y,Ω, γi)

)
dΩdγi .

(12)

The estimation of {λi} will not be addressed in this paper.
Notice that∫

q(Ω)q(γi) log

(
q(Ω)q(γi)

pi(y,Ω, γi)

)
dΩdγi =

∫
q(Θ) log

(
q(Ω)q(γi)

pi(y,Ω, γi)

)
dΘ ,

(13)

so expression (9) can be rewritten in the more compact form

q̂(Θ) = argmin
q(Θ)

∫
q(Θ) log

(
q(Ω)

p(y|x, β)p(β)

M∏
i=1

[
q(γi)

pi(x|γi)p(γi)

]λi)
dΘ . (14)

Unfortunately, we can not directly tackle the minimization of (14) be-
cause of the `1 image prior p1(x|γ1) of Eq. (3). In earlier work with `1 pri-
ors (see [32, 33]), this difficulty was overcome by resorting to majorization-
minimization (MM) approaches, which is also the method adopted in this

6



paper. The MM approach was first introduced in the image processing field
in [6, 5] as an approximation to the TV regularization problem in denoising.

The main principle of the MM approach is to find a bound of the joint dis-
tribution in (8) which makes the minimization of (14) tractable. Let us first
consider the following functional M(x,uh,uv, αh, αv) with p−dimensional
vectors uh ∈ (R+)p, uv ∈ (R+)p, with components uh(i) and uv(i), i =
1, . . . , p

M(x,uh,uv, αh, αv) = (αhαv)
p/4×

exp

{
−
∑p

i=1

[
αh

2

(∆h
i (x))2+uh(i)√

uh(i)
+ αv

2

(∆v
i (x))2+uv(i)√

uv(i)

]}
. (15)

The auxiliary variables uh and uv are quantities that need to be computed
and have, as will be shown later, an intuitive interpretation related to the
unknown image x. It can be shown that the functional M(x,uh,uv, αh, αv)
is a lower bound of the image prior p1(x|γ1), that is,

p1(x|γ1) ≥ M(x,uh,uv, αh, αv). (16)

This lower bound can be used to find a lower bound for the joint distribution,
for i = 1, in (8)

p1(y,Ω,γ1) ≥p(y|x, β)p(β)M(x,uh,uv, αh, αv) p(γ1) = F(y,uh,uv,Ω,γ1) ,
(17)

which results in an upper bound of the KL distance as

CKL(q(Ω)q(γ1) ‖ p1(y,Ω,γ1)) ≤ CKL(q(Ω)q(γ1) ‖ F(y,uh,uv,Ω,γ1)).
(18)

It can be shown (see [32]) that the minimization of CKL(q(Ω)q(γ1) ‖ p1(x,Ω
,γ1)) can be replaced by the minimization of its upper bound (18), as mini-
mizing this bound with respect to the unknowns and the auxiliary variables
uh and uv in an alternating fashion results in closer bounds at each iter-
ation. The bound in (18) is quadratic and therefore it is easy to evaluate
analytically. A detailed study of the convergence of the used MM approach
is beyond the scope of this paper and we refer the reader to [5, 6] for detail.
See also [2] on the quality of this estimated posterior distribution as well as
on the proximity of the estimated posterior to the true posterior distribution.
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To calculate q(γi) we only have to look at the only divergence where that
distribution is present. So we can write

q(γ1) = const× exp
(〈

logF (y,uh,uv,Ω,γ1)
〉

q(Ω)

)
, (19)

where the bound in (18) has been utilized, and Eq(Ω) [·] = 〈·〉q(Ω) (we will
however remove the subscript q(Ω) when the used distribution is clear from
the context). Similarly,

q(γ2) = const× exp
(
〈log p2(y,Ω, γ2)〉q(Ω)

)
. (20)

To calculate the rest of the unknown distributions q(θ) with θ ∈ Ω we
have to look at all the divergences. So we obtain

q(θ) = const× exp (〈log [p(y|x, β)p(β)[
M(x,uh,uv, αh, αv) p(γ1)

]λ1
[p2(x|γ2) p(γ2)]1−λ1

]〉
q(Ωθ)

)
, (21)

where Ωθ denotes the set Ω with the hyperparameter θ removed and we take
into account that λ2 = 1− λ1.

From Eq. (21), the distributions q(x) can be found as the multivariate
Gaussian

q(x) = N
(
x | Eq(x)[x], covq(x)[x]

)
, (22)

with

{covq(x)[x]}−1 =〈β〉HtH + (1− λ1)〈γ2〉CtC

+ λ1

(
〈αh〉∆htW (uh)∆h + 〈αv〉∆vtW (uv)∆v

)
, (23)

and

Eq(x)[x] = 〈β〉covq(x)[x]Hty , (24)

where ∆h and ∆v represent p × p convolution matrices associated with the
first order horizontal and vertical differences, respectively, and W (uh) and

W (uv) are a p×p diagonal matrices of the form W (ud) = diag
(
ud(i)

− 1
2

)
, for

i = 1, . . . , p, d = h, v. The inverse covariance in Eq. (23) is a generalization
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of the result in [10], which proposed a hierarchical spatially adaptive combi-
nation of image priors, corresponding to first order differences along different
directions. These priors were found all to contribute with the same weight to
the resulting covariance matrix. In the convex combination in Eq. (23), the
weights of the two priors can take different values, thus allowing its adapt-
ability to different scenarios.

The matrices W (uh) and W (uv) in Eq. (23) can be interpreted as spatial
adaptivity matrices since they control the amount of smoothing at each pixel
location depending on the strength of the intensity variation at that pixel,
as expressed by the horizontal and vertical intensity gradients, respectively.
Their elements are calculated as

ud(i) = 〈(∆d
i (x))2〉 , (25)

for d = h, v.
Finally, the distributions of the hyperparameters q(γ1) = q(αh)q(αv),

q(γ2) and q(β) are found from Eqs. (19), (20) and (21) as the gamma distri-
butions

q(αd) ∝ (αd)
p
4
−1+ao

αd exp

[
−αd(boαd +

∑
i

√
ud(i))

]
, (26)

for d = h, v,

q(γ2) ∝γ
p
2
−1+aoγ2

2 exp

[
−γ2

(
boγ2 +

〈‖Cx‖2〉
2

)]
, (27)

and

q(β) ∝β
p
2
−1+aoβ exp

[
−β
(
boβ +

〈‖ y −Hx ‖2〉
2

)]
. (28)

The proposed algorithm is summarized below in Algorithm 1.
The following point estimates for αd, for d = h, v, and for γ2 and β can

be utilized

Eq(αd)

[
αd
]

=
p/4 + ao

αd∑
i

√
udi + bo

αd

, (29)

Eq(γ2) [γ2] =
p+ 2aoγ2

〈‖Cx‖2〉+ 2boγ2
, (30)

Eq(β) [β] =
p+ 2aoβ

〈‖ y −Hx ‖2〉+ 2boβ
. (31)

9



Algorithm 1 Variational Bayesian Image Restoration

Calculate initial estimates of the original image and hyperparameters
while convergence criterion is not met do

1. Estimate the image x using Eq. (24).
2. Compute spatial adaptivity vectors uhb and uvb using Eq. (25).
3. Estimate the distributions of the hyperparameters γ1, γ2 and β using
Eqs. (26), (27) and (28).

4. Experimental Results

A number of experiments have been performed with the proposed method
(henceforth referred as ALG1) using several synthetically degraded and real
astronomical images and PSFs. When the parameter λ1 in Eq. (9) is set
equal to zero, the contribution of the prior model in Eq. (3) vanishes, and
the prior in Eq. (4) becomes responsible of the restoration; this model case
will be referred as SAR. When we set λ1 = 1, we arrive to the opposite
situation in which the contribution of the model in Eq. (4) vanishes. In this
case our model becomes the one in [33], and will be referred to as `1. Our
goal in this section is to study the effects of model combination, i.e., to assess
if applying ALG1, for intermediate λ1 values between 0 (SAR) and 1 (`1),
it is possible to achieve some benefit in image restoration, particularly when
restoring astronomical images. When the images are not blurred and the
only degradation is additive noise, we have also included comparisons with
the results obtained applying Hard Thresholding (HT) of the Undecimated
Wavelet Transform (UWT), using the Symmlet 4 Conjugate Mirror Filter
(see [29, 30]).

We begin dealing with synthetic images in our first experiment, in which
the 512× 512 Lena and the 256× 256 cameraman images have been blurred
and Gaussian noise of different variances added, to obtain degraded images
of Blurred Signal to Noise Ratio (BSNR) of 20 dB, 30 dB and 40 dB. Three
kinds of blur have been considered: H = I, i.e., no blur (nb), convolution with
a Gaussian kernel of variance 10 (gauss10) and motion blur corresponding to
a horizontal displacement of 9 pixels (moh9).

The obtained results for HT (for the nb case), SAR, `1, and ALG1 meth-
ods, have been numerically compared to the original images in term of the
Increase in Signal to Noise Ratio (ISNR) with respect to the degraded images,
and of the Structural Similarity Index Measure (SSIM) [34], an index which
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takes values in the range [−1, 1], where the higher the value the greater the
similarity between images. Three noise realizations have been used in each
experiment, and the obtained means and errors for ISNR and SSIM for the
Lena and cameraman images are shown in tables 1 and 2 respectively.

In this first experiment, where the noise variance β as well as the original
image xorig are known, the hyperpriors in Eq. (6) can reflect the perfect
knowledge of a given parameter ω having a value equal to ωT , by setting the
distribution parameters aoω → ∞ and b0

ω → ∞, while aoω/b
o
ω → ωT . From

equations (29) and (30) we take

ao
αd

bo
αd

=
p/4∑

i ∆
d
i (xorig)

(32)

for d = h, v, and

aoγ2
boγ2

=
p

‖Cxorig‖2 . (33)

We run the proposed algorithm until the criterion ‖Eqk(x)[x]−Eqk−1(x)[x]‖2/
‖Eqk−1(x)[x]‖2 < 5 × 10−4 is satisfied, which usually takes place after fewer
than five iterations. The experiments have been performed on a desktop PC
with an Intel(R) Core(TM) i7 860 2.80 GHz processor. When processing the
Lena image with the gauss10 blur, the SAR algorithm takes 0.13 s for initial-
ization and 0.05 s per iteration, the `1 algorithm takes 0.25 s for initialization
and 4.5 s per iteration, and finally ALG1 0.26 s for initialization and 5.7 s
per iteration. The HT method takes a total time of 66 s for the same image
for the no blur case.

For the proposed ALG1, the interval λ1 ∈ [0, 1] has been explored using
a step of 0.1 and the value corresponding to the highest ISNR value has
been selected and shown in Tables 1 and 2. As it can be observed in Tables
1 and 2, in most of the cases the value of λ1 corresponding to the highest
ISNR is an intermediate value, which indicates that the combination of the
two priors produced better results than using any of the priors alone. The
proposed ALG1 performs also better than HT in all considered cases, ex-
cept for the cameraman image with no blur and noise of 20 dB, where the
proposed method obtains mean ISNR and SSIM values slightly lower than
HT. In all other cases, the proposed algorithm outperforms HT. Certainly
the differences in favor of model combination in term of ISNR and SSIM,
even though appreciable in general, specially for higher noise intensities, are
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Figure 1: Variation with the value of λ1 of the ISNR obtained with the proposed method
in the restoration of the Lena image for gauss10 blur at 30 dB.

not numerically very significant. As an example, Figure 1 shows a plot of
the variation, with the value of λ1, of the ISNR obtained with the proposed
method in the reconstruction of the Lena image, for gauss10 blur at 30 dB.

Figure 2(a) shows the observed Lena image for gauss10 blur at 30 dB, and
the obtained restorations using the SAR method in Figure 2(b), using the `1
method in Figure 2(c) and, finally, in Figure 2(d) using the proposed method
for λ1 = 0.3, the value resulting in the higher ISNR. The SAR restoration
preserves textures better than `1 (see the top and the ribbon of the hat
of Lena in figures 2(b) and 2(c)), but produces a good amount of ringing,
while `1 preserves better edges and produces virtually no ringing, but at
the expense of an oversmoothing of some regions, like the eyes of Lena in
Figure 2(c). It can be observed in Figure 2(d) how some of the most pleasing
features of both the SAR and `1 restorations have been preserved by the
model combination in the proposed method.

For the second experiment, an astronomical image has been considered:
the 512× 512 image from the impact of the Comet Shoemaker-Levy 9 with
Jupiter, acquired using a CCD camera at the William Hershel telescope
through a narrow-band interference filter centered at the methane band at
892 nm, on July 18th, 1994, depicted in Fig. 3(a).

Although there is no exact expression describing the shape of the PSF for
images taken from ground based telescopes, previous studies [15], [22] have
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(a) (b)

(c) (d)

Figure 2: (a) Observed Lena image for gauss blur at 30 dB; (b) Restoration using SAR
method; (c) Restoration using `1 method; (d) Restoration using the proposed method for
λ1 = 0.3.
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Table 1: Mean and error values of ISNR and SSIM for the Lena image for different blurs
and noises.

nb gauss10 moh9
BSNR Method ISNR SSIM ISNR SSIM ISNR SSIM

HT 2.822 0.9276
±0.0006 ±10−4

SAR 2.427 0.9186 2.263 0.7677 3.627 0.7857
±0.008 ±10−4 ±0.014 ±9 10−4 ±0.018 ±0.002

20 dB `1 1.7 0.90 2.460 0.7885 3.867 0.8267
±0.5 ±0.01 ±0.017 ±7 10−4 ±0.018 ±6 10−4

ALG1 2.963 0.9279 2.75 0.7873 4.0 0.811
±0.017 ±4 10−4 ±0.07 ±0.004 ±0.3 ±0.024

λ1 0.4 0.3 0.2
HT −1.67 0.9720

±0.022 ±8 10−5

SAR 0.4285 0.9842 1.902 0.7873 6.02 0.8556
±0.0013 ±6 10−5 ±0.003 ±3 10−4 ±0.03 ±0.0015

30 dB `1 0.43 0.9842 1.827 0.7875 6.2 0.865
±0.16 ±7 10−4 ±0.003 ±3 10−4 ±1.3 ±0.025

ALG1 0.4825 0.9845 2.09 0.7925 6.880 0.8794
±0.0034 ±6 10−5 ±0.08 ±0.0011 ±0.017 ±0.0012

λ1 0.1 0.3 0.8
HT −1.710 0.9971

±0.0025 ±9 10−6

SAR 0.0461 0.9982 1.8934 0.7921 9.509 0.9179
±0.0013 ±5 10−6 ±6 10−4 ±4 10−5 ±0.018 ±3 10−4

40 dB `1 −0.070 0.9981 1.844 0.7906 10.2 0.926
±0.0025 ±6 10−6 ±0.003 ±2.5 10−5 ±0.8 ±0.019

ALG1 0.0503 0.9982 1.8934 0.7921 10.82 0.9396
±0.0017 ±5 10−6 ±6 10−4 ±4 10−5 ±0.12 ±0.0014

λ1 0.1 0 0.5

suggested the following radially symmetric approximation for the PSF

h(r) =

(
1 +

r2

R2

)−δ
, (34)

with δ = 3 and R = 3.5 pixels.
In this experiment we know neither the noise variance value, nor the

values of the γ parameters, and only the observed image y is available. The
hyperpriors of Eq. (6) can reflect also this lack of knowledge about the value
of a given parameter ω, by using hyperparameter values aoω → 0 and b0

ω → 0,
while aoω/b

o
ω > 0. Due to the lack of knowledge, the hyperparameter initial

values ω0 used in ALG1 can be of importance. We have taken in all cases the
following values: αd

0
= p/4∑

i ∆d
i (y))

for d = h, v, γ0
2 = p

‖Cy‖2 and β0 = p

‖(I−H)y‖2 ,

if H 6= I or β0 = 1 otherwise.
Algorithm 1 has been first applied with λ1 = 0 (SAR) obtaining the

restoration depicted in Figure 3(b). The value obtained for γ2, that we
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Table 2: Mean and error values of ISNR and SSIM for the cameraman image for different
blurs and noises.

nb gauss10 moh9
BSNR Method ISNR SSIM ISNR SSIM ISNR SSIM

HT 2.329 0.9293
±0.015 1.7 ± 10−4

SAR 1.109 0.8403 1.28 0.6320 3.038 0.6280
±0.017 ±3 10−4 ±0.01 ±0.0014 ±0.018 ±0.0012

20 dB `1 1.3 0.836 1.504 0.6839 3.489 0.751
±0.6 ±0.025 ±0.011 ±0.0015 ±0.014 ±0.004

ALG1 2.0 0.87 1.77 0.688 3.6 0.72
±0.8 ±0.04 ±0.05 ±0.005 ±0.3 ±0.06

λ1 0.4 0.2 0.3
HT 0.12 0.9754

±0.03 8 ± 10−5

SAR 0.145 0.9708 1.1355 0.6646 5.67 0.724
±0.001 ±1.4 10−4 ±0.0019 ±5 10−4 ±0.05 ±0.003

30 dB `1 0.45 0.9730 1.1543 0.6766 7.3 0.86
±0.01 ±1.9 10−4 ±6 10−4 ±6 10−4 ±0.3 ±0.03

ALG1 0.868 0.9775 1.25 0.702 7.3 0.80
±0.025 ±3 10−4 ±0.11 ±0.006 ±0.4 ±0.05

λ1 0.1 0.2 0.9
HT −1.61 0.9947

±0.03 7 ± 10−5

SAR 0.016 0.9968 1.1347 0.6777 9.82 0.8355
±0.001 ±2.3 10−5 ±7 10−4 ±9 10−5 ±0.05 ±5 10−4

40 dB `1 0.002 0.9968 1.04 0.6763 11.6 0.931
±0.014 ±1.7 10−5 ±0.05 ±0.0016 ±1.4 ±0.023

ALG1 0.093 0.9969 1.20 0.707 11.71 0.935
±0.008 ±1.8 10−5 ±0.16 ±0.007 ±0.27 ±0.005

λ1 0.4 0.2 0.2

denote as γ2SAR, was 6.57× 10−4 and the value for β, denoted as βSAR, was
0.0015. Later Algorithm 1 has been applied with λ1 = 1 (`1) obtaining the
restoration presented in Figure 3(c) and the resulting values αhl1 = 0.0040,
αvl1 = 0.0038, and βl1 = 0.0015, for αh, αv, and β`1, respectively. Finally
Algorithm 1 was run, for different λ1 values, assuming perfect knowledge of

the other parameter values and using the hyperparameter values
ao
αd

bo
αd

= αd`1,

for d = h, v,
aoγ2
boγ2

= γ2 SAR and
aoβ
boβ

= 1
2
(βSAR + β`1). The best restoration with

the proposed method, depicted in Figure 3(d), was obtained with a value of
λ1 = 0.1.

The restoration of the image of the impact of the comet Shoemaker-Levy
with Jupiter, depicted in Figure 3(a), using the proposed method (see Fig-
ure 3(d)), appears better than the SAR restoration, presented in Figure 3(b),
which appears a bit noisy, and the `1 restoration in Figure 3(c). Edges are
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better recovered in the ALG1 and `1 restorations, see the three impacts in
the lower part of Jupiter, but the restoration with ALG1 does not exhibits
the general oversmoothing of the `1 restoration.

For the third experiment, we consider the 512× 512 astronomical image
from the 8th field of the Alhambra survey (see [16]) depicted in Figure 4(a).
This image was acquired at the Calar Alto observatory, using the CCD1 1
of the wide field optical LAICA camera, with the Alhambra filter system
which covers the region from 3500Å to 9700Å. We used the PSF defined in
Eq. (34) with the same parameters δ and R as in the second experiment.
The procedure to determine the parameters used in the second experiment
has also been utilized here. The obtained values were: γ2SAR = 2.2 10−6,
βSAR = 1.9 10−6, αhl1 = 0.0042, αvl1 = 0.0169, and βl1 = 1.5 10−6. Algorithm
1 has been applied with λ1 = 0 (SAR) obtaining the restoration depicted
in Figure 4(b), with λ1 = 1 (`1) obtaining the restoration presented in Fig-
ure 4(c), and finally the restoration with the proposed method, depicted in
Figure 4(d), was obtained with λ1 = 0.7.

The SAR restoration depicted in Figure 4(b) exhibit an aliasing effect,
while the `1 restorations depicted in Figure 4(c), and the restoration using
the proposed method, depicted in Figure 4(d), have a better visual quality.
The images depicted in Figures 4 have been obtained by rescaling the full
range of each image to the interval [0, 1], and then saturating the 1% of the
data at low and high intensities.

5. Conclusions

We have presented a new method for the restoration of astronomical
images that combines the information provided by two priors: a sparse prior,
based on the `1 norm of the horizontal and vertical differences between image
pixel values, and a non-sparse one. The proposed methodology is based on
the search of the distribution of the original image given the observations,
that minimizes a linear convex combination of the KL divergences associated
with each pair of observation and prior models. Based on the presented
experimental results, combining information from different priors using the
proposed methodology can achieve better reconstructions than utilizing only
one prior.
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(a) (b)

(c) (d)

Figure 3: (a) Observed image for the impact of the Comet Shoemaker-Levy 9 with Jupiter;
(b) Restoration using SAR method; (c) Restoration using `1 method; (d) Restoration using
the proposed method for λ1 = 0.1.
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(a) (b)

(c) (d)

Figure 4: (a) Observed 512 × 512 image region of 8th field of the Alhambra survey (see
[16]); (b) Restoration using SAR method; (c) Restoration using `1 method; (d) Restoration
using the proposed method for λ1 = 0.7.
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