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This paper proposes a deep learning-based method for image restoration given an inaccurate knowledge 
of the degradation. We first show how the impulse response of a Wiener filter can approximate the 
Moore-Penrose pseudo-inverse of the blur convolution operator. The deconvolution problem is then cast 
as the learning of a residual in the null space of the blur kernel, which, when added to the Wiener 
restoration, will satisfy the image formation model. This approach is expected to make the network 
capable of dealing with different blurs since only residuals associated with the Wiener filter have to 
be learned. Artifacts caused by inaccuracies in the blur estimation and other image formation model 
inconsistencies are removed by a Dynamic Filter Network. The extensive experiments carried out on 
several synthetic and real image datasets assert the proposed method’s performance and robustness and 
demonstrate the advantage of the proposed method over existing ones.
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1. Introduction

Image restoration is the problem of estimating an image x from 
its blurred and noisy version y. Mathematically, the blurred image 
y is modeled as a convolution of the latent image x and the blur 
H as

y = Hx + n , (1)

where n is the noise, usually additive white Gaussian noise 
(AWGN). Both y and x, as well as n, are N × 1 vectors representing 
the lexicographically ordered corresponding images. In this paper, 
we assume that H the N × N matrix represents a spatially invari-
ant two-dimensional convolution matrix of a point spread function 
(PSF), h, of size M × 1. If H is known, the problem is called Non-
Blind Image Deconvolution (NBID). Otherwise, it is known as Blind 
Image Deconvolution (BID).

In the context of NBID, the presence of noise and the spectral 
properties of the operator H make it ill-posed. This means that 

✩ This work was supported by grants P20_00286 and B-TIC-324-UGR20 funded by 
Consejería de Universidad, Investigación e Innovación (Junta de Andalucía) and by 
“ERDF A way of making Europe”. Funding for open access charge: Universidad de 
Granada / CBUA.

* Corresponding author.
E-mail addresses: santiago.lopeztapia@northwestern.edu (S. López-Tapia), 

jmd@decsai.ugr.es (J. Mateos), rms@decsai.ugr.es (R. Molina), 
a-katsaggelos@northwestern.edu (A.K. Katsaggelos).
https://doi.org/10.1016/j.dsp.2023.104193
1051-2004/© 2023 The Author(s). Published by Elsevier Inc. This is an open access artic
even a small change in the data can cause a significant alteration in 
the solution. Additionally, the complexity of the problem increases 
in the blind case as it requires the estimation of H.

Traditionally, image restoration algorithms have used the ana-
lytical approach that describes the forward model explicitly, de-
cides the criteria for obtaining a solution, and chose an optimiza-
tion procedure. These techniques need to optimize an energy func-
tion for each new image and blur. This provides them with high 
flexibility, allowing them to adapt to various blurs but at a high 
computational cost. Unfortunately, they are not amortized proce-
dures. That is, there is no general fast procedure that, given an 
observed image, produces the corresponding restored image and 
blur.

In recent years, discriminative learning models, specifically 
those based on Deep Neural Networks (DNNs), have been used as 
a more efficient alternative to solve inverse problems [1]. Works 
on image denoising [2], inpainting [3] and superresolution [4]
have shown that these methods can outperform analytical ones 
while being significantly faster. Unlike analytical methods, DNNs 
use large data sets to learn the restored image’s mapping func-
tion. This makes them amortized procedures, thus significantly 
faster than approaches requiring iterative optimization for each 
new sample. Not only that but because they do not use the im-
age formation model, they can be easily trained to be robust to 
inaccuracies caused by saturated pixels, underexposed areas, salt 
and pepper noise and, in the case of NBID, errors in the PSF es-
timation. However, they lack the flexibility of analytical models, 
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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which significantly hampers their effectiveness in image restora-
tion, where there is a high variation in the degradations caused by 
the combination of all the possible PSFs and noise. This is why, un-
til recently, their application has been usually restricted to specific 
blur kernels and noise levels [5].

Recently, models that combine both approaches have been pro-
posed to take advantage of the flexibility of analytical approaches 
and the effectiveness of DNNs. They use variable splitting tech-
niques such as the alternating direction method of multipliers 
(ADMM) [6] and half-quadratic splitting (HQS) [7] to combine an-
alytical and Deep Learning (DL) techniques. They split the recovery 
problem into two [8]: a regularized recovery one (subproblem A) 
which uses as penalty the squared Euclidean distance to an image. 
This image is estimated using an appropriate denoising technique 
(subproblem B). Subproblems A and B are easier to solve than the 
original ones. For shift-invariant degradation, subproblem A can 
easily be solved using the Discrete Fourier Transform (DFT), and 
subproblem B using any denoising algorithm. However, for each 
image, the solution must be found iteratively, which incurs a high 
computational cost.

To reduce the high computational cost of these approaches, sev-
eral works [9–11] have proposed an alternative way to combine 
both analytical and DL models. It consists of two phases; First, an 
analytical model calculates one or several initial estimates of the 
reconstructed image. Then, these images are used by a DL model 
to produce the final estimation. The main idea behind these meth-
ods is to reduce the variability of the degradations that the DL 
model has to deal with. Inspired by these approaches, we propose 
a novel method to combine analytical and DL models for robust 
image restoration. Given an (inaccurate) estimation of the blur ker-
nel, H, we first approximate the Moore-Penrose pseudo-inverse of 
the blur convolution operator, H+ , by a Wiener filter. Then, we cast 
the deconvolution problem as the learning of a residual in the null 
space of the kernel, that is, the recovering of the set of frequencies 
removed by the blur. This residual is added to the Wiener filter 
restoration to obtain the final estimation, which satisfies the im-
age formation model. This strategy reduces the network’s burden 
and makes it capable of dealing with different blurs and noise in 
the image formation model. To remove artifacts caused by inac-
curacies in the estimated blur and other image formation model 
inconsistencies, we apply the kernels predicted by a Dynamic Fil-
ter Network (DFN) [12]. This results in a fast, accurate, and robust 
NBID model.

To summarize, the main contributions of this work are the fol-
lowings:

1. We study the effect of using the Moore-Penrose pseudo-
inverse, H+ , and H+y, which is approximated by the Wiener 
filter, for deconvolution problems. We show that H+H is not 
the identity. This product is one only for non-zero frequencies 
of the blur and zero for the rest. Therefore, the Wiener de-
convolution has only information on those frequencies of the 
original image. This forces us to design a robust network ca-
pable of learning the frequency components of natural images 
from partial observations.

2. The initial Wiener deconvolution obtained using a possibly in-
accurate blur estimate is utilized as input of a network with a 
novel architecture that uses filters predicted by a DFN to im-
prove the quality of the deconvolved image. To the best of our 
knowledge, this is the first time DFNs have been used to re-
move spatially variant artifacts caused by inaccuracies in the 
estimated blur and other image formation model inconsisten-
cies.

3. We show that the proposed approach outperforms similar CNN 
models twice as deep.
2

The rest of the paper is organized as follows: Section 2 presents 
a brief review of state-of-art approaches to image restoration. In 
section 3, the used notation and the proposed DL approach are 
presented. Section 4 describes the network training procedure. An 
ablation experiment is performed in Sec. 5 to determine the con-
tribution of each component of the proposed CNN model. The per-
formance of the proposed method is tested and compared to other 
classical and state-of-the-art deconvolution methods in Sec. 6. Fi-
nally, Sec. 7 concludes the paper.

2. Related works

Analytical techniques for image restoration have been studied 
for a long time. At a high level, one can group them into deter-
ministic and stochastic ones. An optimization criterion is typically 
chosen within the first class, such as minimizing the l2 error norm 
‖ y −Hx ‖2. Then, prior (or domain) knowledge is incorporated into 
the solution process through regularization. With stochastic ap-
proaches, the unknowns are treated as stochastic quantities. Then 
a maximum likelihood, or a maximum a posteriori (MAP) or a fully 
(hierarchical) Bayesian approach is followed (see [13] for a review). 
Over the years, carefully designed image priors were based on con-
straints on the image gradients, while flat priors were used for 
the blur, see however [14]. Some examples of such image priors 
are hyper-Laplacian priors [15,16], log-TV priors [17], mixture of 
Gaussians (MoG) [18], Super Gaussian (SG) [14,19], Scale Mixture 
of Gaussian (SMG) [20], non-local adaptive tight frames [21] and 
generalized �p/�q norm-based priors [22]. Approximations of the l0
function (see [23], extended with the use of a dark channel prior 
[24] and an extreme channel prior [25]) have also been success-
fully used.

As it can be deduced from the methods introduced previously, 
within the blind scenario, analytical techniques usually use an iter-
ative approach to estimate the blur and the latent sharp image in 
an alternate way. The majority of these techniques concentrate first 
on obtaining a precise blur kernel estimation. In this phase, the ex-
traction of a clear image is restricted to only the most prominent 
features that aid in estimating the blur. Later, a separate non-blind 
approach is required to compute the sharp image, leading to a 
dual-phase strategy (initially estimating the blur, followed by non-
blind deconvolution) [13,19,26]. Errors made during the initial blur 
estimation phase can cause significant issues such as ringing and 
distortions [27], even when there are minor inaccuracies in the 
kernel. This highlights the need for developing NBID methods that 
can withstand kernel inaccuracies.

There is limited research available in the literature regarding 
NBID that specifically addresses blur estimation errors. Within 
the analytical approaches, kernel inaccuracy has been modeled 
as zero-mean white noise added to the kernel [28] or a residual 
term added to the degradation model [29,30]. Although artifacts 
are well suppressed by the method in [29], details in the image 
are usually over-smoothed. In more recent studies, [31] employed 
a partial map in the Fourier domain to model kernel estimation 
errors, [32] proposed a prior tailored to remove ringing artifacts, 
and [33] introduced a robust NBID method to handle kernel errors 
through bias correction based on the classic errors-in-variables 
(EIVs) model. It should also be noted that kernel estimation errors 
are not the sole outlier type in the model presented in (1). Local 
violations of the convolution model can occur due to saturated pix-
els, underexposed regions, or hot or dead pixels. To address these 
outlier types, various robust NBID methods have been suggested, 
as seen in [34–37].

Although DL techniques were easily applied to denoising [2], 
inpainting [3] and superresolution [4], the significant diversity of 
degradations caused by the combination of all possible PSFs and 
noise has hindered the implementation of DL models in image 
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restoration. The majority of research employing only DL models 
for image restoration limits them to specific blur types, with blind 
non-uniform motion blur removal being the most frequently ad-
dressed task. Refer to [38] for an up-to-date review. In [39], a 
multi-scale residual CNN is utilized to remove non-uniform motion 
blur from images. Adopting a similar strategy, the authors of [40]
propose a multi-stage progressive image restoration network for 
retrieving blurred images. The application of GANs is introduced in 
[41] and further refined in [42].

Rather than restricting deep learning models to particular blurs, 
other studies have suggested combining them with analytical 
methods. In the case of BID, [26] introduced a deep CNN to learn 
a discriminative regularizer. This regularizer provides an output 
in the interval [0, 1], which distinguishes between clear (0) and 
blurred images (1). In [43] a generalization of the traditional iter-
ative total-variation regularization method in the gradient domain 
is unrolled to construct a neural network.

For the NBID problem, several solutions have been proposed 
using variable splitting techniques, introduced in Section 1. Such is 
the case for [44] and [45], where the proximal operator [46] associ-
ated with subproblem B is replaced by a denoising neural network. 
In [47], a combination of adversarial learning and a denoising au-
toencoder is chosen as the proximal operator to project the images 
into the natural images’ space. In [48], the authors opted for a de-
noising autoencoder network inspired by the U-Net architecture. 
The authors of [49] leverage this approach to develop a method 
robust to kernel inaccuracies. In the same context, RGDN [50] in-
tegrates both subproblems into a recurrent convolutional network, 
where a common CNN block replaces the gradient of the image 
prior unit. Similarly, [51] makes use of unrolling techniques to 
leverage a new architecture for robust NBID. The authors of [52]
extend this approximation to BID using a residual network to es-
timate the noise in subproblem B, subtracted from the currently 
estimated image to obtain the restored one.

Another approach consists of replacing the prior model by a 
deep CNN that generates the output image. Following this ap-
proach, [53] extends to image deconvolution the deep image prior 
in [54] and [55,56] further adapt it to BID. The authors of [57] fur-
ther illustrate the power of untrained neural architectures applying 
them to NBID. In the same context, [58] explicit prior models have 
been replaced by a neural network trained for denoising, and in 
[59], the image prior is learned for robust deblurring.

Recently, several NBID works have proposed a different scheme 
to combine both analytical and DL models. The analytical model 
estimates an initial solution that is then used by the DL model to 
produce the final estimation. The authors of [9] use a U-net to re-
move the noise introduced by a Tikhonov deconvolution of galaxy 
surveys. In [10], the authors introduce a CNN model fed with sev-
eral estimates of the latent image. These estimates are obtained 
using the method in [15] with different prior strengths and pro-
vide complementary information that the network combines into 
the restored image. Another approach, that explicitly handles out-
liers in the image formation model for deblurring, is proposed in 
[60] where outliers identification is performed by a CNN. This in-
formation is used by an analytical IR method. Assuming an exact 
blur knowledge, [11] integrates a classical Wiener deconvolution 
framework with learned deep features and a multi-scale feature 
refinement module to estimate the deblurred image from the de-
convolved deep features. This results in a method empirically ro-
bust to some model inaccuracies.

3. Deep learning model

As previously stated, NBID is a very challenging task for ana-
lytical and DL models due to the variability of the degradations 
and the ill-posed nature of the problem. Even if the blur is ex-
3

actly known, the data noise results in large perturbations in the 
solution. Moreover, the great variability of degradations caused by 
different combinations of blurring and noise makes it very difficult 
to train a DL model that can generalize well to blurs not seen dur-
ing its training. To ease the problem, the image formation model 
has to be separated from the network parameters’ learning.

In this section, we first introduce how we separate the degra-
dation from the network parameters’ learning in the simpler case 
of known blur and no added noise. Then, in Sect. 3.2, we extend 
it to the general model in (1) assuming a known (but possibly in-
accurate) blur. A Dynamic Filter Network (DFN) [12] is proposed 
in Sect. 3.3 to remove spatially variant artifacts that may arise in 
the restoration process. Finally, the proposed network architecture 
is presented in Section 3.4.

3.1. Noise-free known blur scenario

Let us consider the much simpler scenario of image deconvolu-
tion with known blur H and no added noise; that is, we consider 
the degradation model y = Hx.

Ideally, to estimate the sharp image x, we should calculate 
x = H−1y. However, the inverse of H may not exist. To tackle this 
problem, in this work we make use of the Moore-Penrose pseudo-
inverse of the blur, H+ . Let us first study its properties.

It can be shown [61] that

H+ = lim
δ→0+(HTH + δI)−1HT (2)

and so, H+y recovers the frequencies of x but those for which the 
Fourier transform of the blurring filter is zero. This set of frequen-
cies forms the null space of the kernel H [62]. Note that, for these 
frequencies, it is not possible to revert the blur effects by using the 
Moore-Penrose pseudo-inverse and artifacts arise. Hence, we need 
to recover (learn) those frequencies of the original image. The rest 
of the frequencies are in H+y.

It is also easy to show that for the i-th discrete Fourier fre-
quency of HH+y, FHH+y(i), we have

FHH+y(i) =
{
Fy(i) if FH(i) �= 0
0 if FH(i) = 0,

(3)

that is, in the Fourier domain, HH+y is equal to y, since Fy is zero 
when is H zero.

To learn the frequencies in x not present in H+y, we follow the 
approach proposed in [63] for image super resolution and define 
gθ (z), the solution to our deconvolution problem, as

gθ (z) = (I − H+H)fθ (z) + H+y, (4)

where fθ : RL → RN is a CNN with parameters θ , whose input z
will be clearly specified later.

Note that, since HH+H = H, we have

Hgθ (z) = H(I − H+H)fθ (z) + HH+y = HH+y = y. (5)

Using (3), this means that, although, in contrast to image and video 
super-resolution, HH+ �= I, gθ (z) is a solution to the problem y =
Hx.

Our proposed restored image, gθ (z) satisfies

x − gθ (z) = (x − H+y) − (I − H+H)fθ (z), (6)

and neither H+y nor (I − H+H) have information on the values of 
H, only on where its frequencies are (non)zero. Using this strat-
egy, we dramatically reduce the dependency of the residual on the 
blur H, thus separating the degradation from the network param-
eters’ learning. Then, with the proper network design, we can deal 
with different degradations since all of them are expected to hide 
a similar set of high frequencies.
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3.2. General model

In the previous subsection, we have shown how to solve the 
noise-free known-blur image deconvolution problem by separating 
the degradation and the learning of the parameters of a network 
that does not depend on the specific blur. Unfortunately, for the 
general scenario in (1), the presence of noise hampers the use of 
the model in (4) as is.

To ameliorate this problem and also to deal with the ill-posed 
nature of the image deconvolution, we approximate H+ defined in 
(2) by

H+
ε = (HTH + εI)−1HT, (7)

where ε > 0 is a regularization parameter. This approximation con-
trols the noise and avoids the loss of those frequencies for which 
H is zero (see (3)). Note that (7) can be seen as an approximation 
to the classical Wiener filter [64], where ε represents the ratio 
between the power spectral density of the noise and the power 
spectral density of the image.

Then, we rewrite (4) as

gθ (z) = (I − H+
ε H)fθ (z) + H+

ε y = (I − H+
ε H)fθ (z) + xw, (8)

where xw = H+
ε y is the rough estimation of the sharp image x ob-

tained by an approximation of the Wiener filter (for simplicity, we 
will use the term Wiener filter instead of approximation of the 
Wiener filter throughout the paper). It can be shown that by re-
ducing ‖ x − gθ (z) ‖2 we also reduce the data fidelity error since

‖ y − Hgθ (z) ‖2 ≤‖ Hx − Hgθ (z) ‖2 + ‖ n ‖2

≤‖ H ‖2‖ x − gθ (z) ‖2 + ‖ n ‖2

≤ N ‖ x − gθ (z) ‖2 + ‖ n ‖2, (9)

which means that we only need to learn the network fθ (z) to solve 
the problem in (1). Notice that we are making implicit use of the 
observation model and that the proposed approach constrains the 
functions that the network learns to only those that produce im-
ages consistent with the observation y.

We now have an interpretation of the goal of the network. As 
in the case of the noise-free known blur scenario presented in Sec-
tion 3.1, we have cast the deconvolution problem as the learning 
of a residual in the null space of the kernel, which when added 
to the Wiener filter restoration will satisfy the image formation 
model. The network learns the “missing” frequencies in xw and to 
remove the noise and the artifacts introduced by the Wiener filter. 
These artifacts, although dependent on the image, blur, and noise 
combination, are all very similar in nature, consisting mainly of 
amplified noise and ringing. Learning the residual associated with 
the Wiener filter reduces the burden of the network and makes 
it capable of dealing with different blurs. Furthermore, note that 
xw , although noisy, contains information on the high frequencies 
of the original image x, which makes the recovery task easier.

Let us now see what the input to the network is. The func-
tion fθ (·) (and consequently gθ (·)) takes as input both xw and y
concatenated along the channel dimension, i.e., if both images are 
one-channel gray- scale images, the input to the network would be 
an image with two channels. In other words,

z = (xw,y). (10)

The use of the blurred image y is necessary since some artifacts 
that appear in the Wiener filter solution, xw , are difficult to dis-
tinguish from real-world-like structures, making them difficult to 
remove. Fig. 1 presents an example of these artifacts. Incorporating 
y as an input helps the network distinguish between artifacts and 
4

Fig. 1. An illustration of the artifacts caused by the Wiener filter. Ringing artifacts 
in the red box are compatible with natural images and are difficult to distinguish 
from real structures, unlike those in the blue box.

real scene objects, thus removing structures not present in y and 
preserving the consistency with the observation. To avoid bound-
ary artifacts, before applying the Wiener filter, the blurred image 
is padded by repeating the last pixel of each image boundary and 
decaying their values linearly to zero.

3.3. Removal of deconvolution artifacts

Since the image formation model in (1) is only approximate 
because it does not include, for instance, saturated pixels or un-
derexposed areas, and inaccurate blur estimations, the deconvolved 
image obtained by the operator gθ (·) introduced in the previous 
subsection still exhibits some spatially variant artifacts. To remove 
them, we propose to use a DFN [12]. The DFN comprises a filter-
generating network and a dynamic filtering layer. The former dy-
namically generates filters that depend on the network input val-
ues and pixel position. The latter then applies those filters to the 
input.

For a pixel (i, j), let d
ui, j
ψ be the filter of support (2L + 1) ×

(2M + 1) generated by the filter generating network with param-
eters ψ from the input image u (notice that we are using bidi-
mensional notation and that the network generates the filter from 
a region centered around u(i, j)). The set of all filters generated 
from image u is denoted as du

ψ . Then, the pixel at position (i, j) of 
the filtered image r obtained by the dynamic filtering layer on the 
input image q with the set of filters du

ψ (notice that u and q do 
not have to coincide) is defined as

r(i, j) =
L∑

l=−L

M∑
m=−M

d
ui, j
ψ (l + L,m + M)q(i + l, j + m) (11)

Hence, the application of the dynamic filtering in (11) to gθ (·)
is expected to be a sharp, artifact-free restored image given by

x̂ = rθ,ψ (xw,y) = Dxw,y
ψ gθ (xw,y), (12)

where Dxw,y
ψ is the (spatially variant) convolution matrix associated 

with the set of kernels dxw,y
ψ . Notice that a DFN is a perfect suit for 

this final refinement since it can produce spatially-variant filters. 
In contrast, normal CNN filters are spatially-invariant, requiring far 
more parameters to adapt to these artifacts’ spatially variant na-
ture. The whole model used to deconvolve blurred images, which 
corresponds to rθ,ψ (xw, y), will be denoted by DDNet.

3.4. DDNet’s architecture

The architecture of DDNet is shown in Fig. 2. The blue box rep-
resents the model gθ (xw, y) defined in (8). To reduce the number 
of computations, its main branch, eφ(·), is shared with the filter 
generating network of the DFN, dψ(·). This main branch follows 
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Fig. 2. The proposed DDNet architecture. RDB indicates a Residual Dense Block (RDB) and Dynamic Filter refers to the operation in (12). Each non-output convolution outside 
an RDB has 64 × 3 × 3 filters. Except for the last one, which uses 64 × 1 × 1 filters, convolutions in RDBs have 32 × 3 × 3 filters. The size of the filters used during dynamic 
filtering is 5 × 5. See text for details.
an encoder-decoder structure. During the encoding phase, we ex-
tract features from the image. At the same time, we reduce its 
spatial resolution by a factor of 4 using two space-to-depth oper-
ations defined as S2 : [0, 1]2H×2W ×C → [0, 1]H×W ×4C . In this pro-
jected space, the features are transformed using 10 Residual Dense 
Blocks (RDB) [65]. An RDB is a modified Residual Block (RB) with 
dense connections between layers. These dense connections allow 
the reuse of features and provide better performance. The fea-
tures are finally up-scaled to the original image size using two 
sub-pixel convolutions [66] of factor 2. Notice that the spatial size 
reduction allows the network to process the image much faster 
and increases the receptive field without increasing the CNN mod-
el’s depth. The features obtained by the main branch are used 
to calculate the initial image estimation, gθ (xw, y), and the filters 
dψ(xw, y). The result of applying the filters, calculated via the dy-
namic filter module, produces the final estimation x̂ in (12) of our 
proposed rθ,ψ (xw, y) model.

All of the non-output convolutions outside an RDB block use 
64 × 3 × 3 filters and are followed by a Leaky ReLU with a negative 
slope set to 0.2. Convolutions in each RDB only use 32 × 3 × 3
filters, except for the last convolution that uses 64 × 1 × 1 filters, 
to control the increment in the number of parameters due to the 
use of dense connections. The size of the filters predicted by dψ(·)
is 5 × 5, M = L = 2.

4. Model training

To train the proposed model, we generated an image dataset 
based on the COCO 2017 Dataset.1 It has been used for object 
segmentation and recognition. It comprises many sharp natural 
images divided into a train set of 118287 images, a validation set 
of 5000 images and a test set of 40670 images. To simulate the de-
graded images, we proceeded as follows. First, we generated 1024 
PSFs using the method in [67] of size between 11 ×11 and 65 ×65
pixels, with T = 0.8 and anxiety 10r/1000, where r is a random 
number from a uniform [0, 1] distribution. We used 736 kernels 
for training, 32 for validation and 256 for testing. This follows ap-
proximately the same proportion of the images in each subset of 
COCO 2017. Each image in the training and validation sets was 
blurred with exactly 3 PSFs on their own set: training images with 
training kernels and validation images with validation kernels, and 
Gaussian noise of standard deviation σ = 0.01 was added to the 
blurred image. Images with a size smaller than 320 pixels in the 
shorter dimension were discarded to avoid boundary artifacts. Fi-
nally, the 256 × 256 central part of each image was cropped. This 

1 http://cocodataset .org/.
5

process generated a training set of 347436 images and a valida-
tion set of 14637 images. For testing, we created a reduced set of 
512 images, obtained by degrading two randomly chosen test im-
ages for each kernel in the test set and adding Gaussian noise with 
σ = 0.01.

Since, very frequently, the real blur kernel is not available, we 
use a variation of the fast Bayesian BID method in [19] to obtain 
sufficiently accurate estimations of the blur in an offline manner, 
i.e., before the training. The blur is estimated using a multiscale 
coarse-to-fine approach to avoid local minima. At each scale, the 
method enforces sparsity on high pass filtered reconstructions, that 
is, on the edges of the image, using a Huber Super Gaussian (HSG) 
prior. For the blur, no prior knowledge is assumed other than non-
negativity and that the blur coefficients should add to one. In this 
paper, we modify the method in [19] by adding a heuristic kernel 
cleaning step at the end of each scale [25]. This step computes the 
8-neighbors connected components of the kernel, treated as a bi-
nary image where nonzero pixels are considered to be on, those 
connected components whose sum is smaller than a given thresh-
old, i.e., 0.1, are set to zero. This removes from the kernel isolated 
pixels or sets of small valued connected pixels that are not con-
nected to a path with a high-value sum. Note that those small 
values are usually due to noise and setting them to zero con-
tributes to PSF estimates comprised of relevant connected pixels. 
We will refer to this kernel estimation method as CHSG through-
out the rest of the paper.

During training, data augmentation was performed by random 
vertically and horizontally flipping and rotating each instance by 
multiples of 90◦ . We trained our models for 35 epochs using Adam 
optimizer [68] with weight decay set to 10−4. Each epoch of the 
training consisted of 5428 batches of 64 images. The learning rate 
was set to 5 × 10−4 for the first 5 epochs, to 10−4 for the next 20 
epochs, and to 10−5 for the last 10 epochs. We set the regulariza-
tion parameter for the Wiener filter, ε , equal to 0.01.

Finally, to train the DDNet we use the Charbonnier loss, defined 
as

L(x̂,x) =
N∑

i=1

√
(x̂(i) − x(i))2 + ε2 , (13)

where x̂ and x are, respectively, the estimated and the real image 
and ε is a constant, which in our experiments was set equal to 
10−3. We use this loss instead of the Mean Squared Error (MSE) 
since it is more robust to outliers [69]. The implementation of the 
model and training was performed using Pytorch [70].

http://cocodataset.org/
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Table 1
Ablation study of components of the proposed DDNet. The comparison is done using our 
validation dataset and in terms of PSNR and SSIM. The best result is marked in bold. The 
second-best result is underlined.

fθ (y) fθ (xw) fθ (xw,y) fθ (xw,y) × 2 gθ (xw,y) rθ,ψ (xw,y)

PSNR 20.12 25.93 26.15 26.42 26.37 26.59
SSIM 0.6053 0.7189 0.7267 0.7355 0.7341 0.7516

Fig. 3. Visual comparison of components of the proposed DDNet.
5. Ablation experiments

To determine the contribution of each component of the pro-
posed DDNet to the final solution, we performed an experimental 
ablation study where we added each main component one at a 
time. We consider the following models:

1. fθ (y): The base CNN architecture. We use our proposed CNN 
architecture using only the blurred image as input without the 
Wiener filtered image; no approximation in (8) and no dy-
namic filtering.

2. fθ (xw): The base CNN architecture using only the Wiener-
filtered image as network input.

3. fθ (xw, y): The base CNN architecture using both the Wiener-
filtered image and the blurred one as network inputs.

4. fθ (xw, y) ×2: The base CNN architecture using both the Wiener 
filtered image and the blurred one as inputs, but using 20 RD-
Blocks instead of 10.

5. gθ (xw, y): The approximation defined in (8) without dynamic 
filtering.

6. rθ,ψ (xw, y): Our complete DDNet.

The results of testing each model on the validation dataset are 
shown in Table 1. We also include a visual comparison that can 
be seen in Fig. 3. From the table results, it is clear that each 
one of the proposed components significantly increases the mod-
el’s performance when added. The most remarkable performance 
increase is due to the addition of the Wiener filtered image, xw , 
to the model inputs. The difference in PSNR/SSIM between both 
fθ (y) and fθ (xw) can be explained by the fact that fθ (y) is not able 
to remove the blur from the image, as can be seen in Fig. 3(c). 
However, this behavior was expected since fθ (y) solves a much 
harder problem than the rest. By using xw , the problem is reduced 
to a denoising one. However, as can be seen by the increase in 
performance when using both y and xw as input, xw does not 
6

include enough information to easily detect and remove some of 
the noise and the artifacts present at xw . This difference in met-
rics is also apparent when comparing the results of fθ (xw) and 
gθ (xw, y) shown in Fig. 3(d-e), respectively. Indeed, the result of 
fθ (xw) shows more ringing artifacts. Notice also that incorporating 
the approximation of the Wiener filter in (8) allows gθ (xw, y) to 
obtain a performance similar to fθ (xw, y) × 2 with half the number 
of learnable parameters and being almost twice as fast. Despite the 
good PSNR/SSIM shown by gθ (xw, y), some artifacts are still notice-
able in Fig. 3(g). Finally, our complete DDNet, rθ,ψ (xw, y), clearly 
outperforms all other models while keeping a complexity similar 
to gθ (xw, y). Moreover, as shown in Fig. 3(h), gθ (xw, y) is able to 
remove most artifacts thanks to the filters predicted by the DFN.

6. Experimental results

6.1. Materials and methods

To assess the performance and robustness of the proposed 
DDNet method, we have tested it on several image datasets, in-
cluding synthetic datasets with spatially invariant blurs as well as 
real image datasets. More concretely, together with the test im-
ages from COCO 2017 dataset (see Section 4), we have used the 
datasets proposed by Levin et al. [71] and Lai et al. [72]. Details of 
each dataset are shown in Table 2. While those datasets are syn-
thetically generated, we also tested the proposed method on the 
real images dataset proposed in Lai et al. [72], a set of 100 real 
images from multiple sources and different categories.

The proposed DDNet method was compared with classic and 
state-of-the-art deconvolution methods. These include a set of BID 
methods comprised by two analytical blind deconvolution meth-
ods, the Huber super Gaussian prior (HSG) method in [19] and the 
extreme channel prior (ECP) method in [25], the combined analyt-
ical and DL (Li) method in [26], the method in [55] (SelfDeblur), 
the GAN based (DeblurGAN-v2) method in [42] and CNN based 
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Table 2
Description of the synthetic datasets used to assess the performance and robustness of the proposed DDNet method and compare against other state-of-art methods.

Dataset # Sharp 
images

# Blurred 
images

Image 
size

Type # PSFs PSF 
size

Noise

COCO 2017 512 512 256 × 256 Color 256 11 × 11 0.01 AWGN
to 65 × 65

Levin et al. [71] 4 32 255 × 255 Gray 8 13 × 13 0.01 AWGN
to 27 × 27

Lai et al. [72] 25 100 350 × 500 to Color 4 31 × 31 0.01 AWGN
1024 × 768 to 75 × 75 0.01 AWGN

Table 3
Numerical comparison of the proposed DDNet and competing methods on different image 
datasets. The best result is highlighted in bold. The second-best result is underlined.

Dataset Method PSNR SSIM Time (Total/PSF + NBD)

COCO 2017 HSG [19] 29.018 0.832 24 / 23+1
CHSG+Wiener [64] 27.497 0.743 23.2 / 23.1+0.1
CHSG+Robust [29] 29.063 0.827 323.1 / 23.1+300
ECP [25] 26.874 0.804 125
Li [26] 26.196 0.785 1095
SelfDeblur [55] 22.172 0.478 1494
DeblurGAN-v2 [42] 26.668 0.730 0.26
CHSG+DWDN [11] 27.830 0.835 24.2 / 23.1+1.1
MPRNet [40] 26.534 0.743 0.24
CHSG+MUNID [57] 28.520 0.810 1547.1 / 23.1+1524
CHSG+KerUnc [49] 29.589 0.842 30.9 / 23.1+7.8
CHSG+DDNet 30.320 0.860 23.12 / 23.1+0.02

Real PSF+DDNet 31.119 0.880 0.02

Levin [71] HSG [19] 31.800 0.931 11.2 / 10+1.2
CHSG+Wiener [64] 27.180 0.751 10.08 / 10 + 0.08
CHSG+Robust [29] 31.995 0.931 193 / 10+183
ECP [25] 31.920 0.931 100
Li [26] 30.304 0.896 149
SelfDeblur [55] 29.673 0.860 399
DeblurGAN-v2 [42] 26.239 0.800 0.2
MPRNet [40] 28.095 0.842 0.3
CHSG+MUNID [57] 31.039 0.898 170 / 10+160
CHSG+KerUnc [49] 32.286 0.926 12 / 10+2
CHSG+DDNet 33.367 0.947 10.02 / 10+0.02

Real PSF+DDNet 35.202 0.962 0.02

Lai [72] HSG [19] 24.605 0.783 169 / 156.3+12.7
CHSG+Wiener [64] 23.247 0.682 157.7 / 156.5+1.2
CHSG+Robust [29] 24.996 0.790 4235.4 / 156.5+4078.9
ECP [25] 23.988 0.752 1011
Li [26] 24.565 0.771 981
SelfDeblur [55] 22.344 0.637 3407
DeblurGAN-v2 [42] 19.644 0.581 0.4
CHSG+DWDN [11] 23.182 0.754 158.5 / 156.5+2
MPRNet [40] 18.781 0.567 0.3
CHSG+MUNID [57] 24.034 0.749 3479.4 / 156.5+3322.9
CHSG+KerUnc [49] 24.588 0.782 168.8 / 156.5+12.3
CHSG+DDNet 24.775 0.798 156.58 / 156.53+0.05

Real PSF+DDNet 27.218 0.887 0.05
method MPRNet [40]. As a baseline method, we used the Wiener 
[64] method with the kernels estimated by the CHSG method in 
Sect. 4, which we will refer to as CHSG + Wiener. Using these 
same kernels estimated by the CHSG method, we also compared 
with the non-blind deconvolution methods handling inaccurate 
kernels (CHSG + Robust) in [29], which uses an analytical ap-
proach, and (CHSG + KerUnc) in [49] which uses a DL approach. 
Also, the DL based Deep Wiener (CHSG + DWDN) method in [11]
and the (CHSG + MUNID) method in [57] were used in this com-
parison. Since the Robust method in [29] is designed to handle 
only grayscale images, the method is applied to each one of the 
RGB channels independently. Notice that we did not include the 
results of CHSG + DWDN for Levin [71] gray scale image dataset 
because the authors only provide the model weights for color im-
ages. As an upper bound of the performance of the method, we 
also run the proposed DDNet method using the real kernel as a 
7

blur estimate. All methods were run using the default parameters 
or the parameters suggested by the authors in the corresponding 
paper. For DDNet, we used ε = 0.01 for all the datasets except for 
the Lai dataset, where ε = 0.003 was used since images degraded 
with large PSFs need a smaller regularization parameter. Note that, 
for large PSFs, the values of H are smaller than ε . To simulate a 
real environment, a fixed PSF support of 65 × 65 pixels was used 
for Levin dataset, while a support of 75 × 75 pixels was used for 
Lai and COCO 2017 datasets.

For quantitative comparison, PNSR and SSIM [73] quality mea-
sures were used. To avoid the inherent shifting ambiguity in blind 
deconvolution [17], we converted the images to the YCbCr color 
space and calculated both measures in the central part of the Y 
band of the deconvolved images, trimming 25 pixels from each 
side for the Levin and Sun datasets and 37 pixels for the rest of 
the datasets. This trimmed image was shifted in a window of size 
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Fig. 4. Visual comparison of the proposed DDNet and competing methods on an image of the Levin [71] dataset.
25 × 25 or 37 × 37 with a precision of a quarter of pixel to find 
the position returning the best PSNR with respect to the original 
image. PSNR and SSIM results are reported for this position. The 
resulting figures of merit are summarized in Table 3.

6.2. Results

From Table 3, it is clear that the proposed DDNet method out-
performs all competing methods. It is worth mentioning that CHSG 
+ DDNet increases the PSNR up to 6.19 dB and the SSIM up to 
0.196 with respect to the baseline method CHSG + Wiener. Also, 
notice that the results of pure DL models DeblurGAN-v2 [42] and 
MPRNet [40] are consistently worse than the other methods be-
cause these models were trained and designed for non-uniform 
motion blur. It is worth mentioning that the proposed CHSG +
DDNet method scores are below the Real PSF + DDNet values, and 
that methods taking into account kernel inaccuracies usually ob-
tain better results than those assuming a perfect kernel estimation. 
This demonstrates that the proposed method is robust to inac-
8

curacies but that there is room for improvement both in kernel 
estimation and non-blind image deconvolution.

Fig. 4 shows the original, observed and restored images with 
the competing and the proposed method on an image of the Levin 
dataset. The insets show a detail of the area marked in yellow 
and the used PSF, when applicable. Notice that, due to the dis-
placement introduced by the blur kernel, some border artifacts 
can be observed in most of the reconstructed images. We have 
opted not to crop the images to remove these artifacts to ease the 
comparison. Although all compared methods produce good results 
on this image, most of them present artifacts that reduce their 
quality. Those artifacts include ringing artifacts (see Fig. 4(d)), blur-
riness (Fig. 4(i) and (j)), excessive smoothness (Fig. 4(c), (g) and 
(k)), phantoms (see the area of the elbow patch in Fig. 4(f) and 
(g)), excessive contrast (Fig. 4(h), (i) and (l)) or washed out details 
(see, for instance, the jumper in Fig. 4(e), (f), and (g)). In contrast 
with competing methods, the proposed method is able to recover 
the small details removing all the ringing and most other artifacts 
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Fig. 5. Visual comparison of the proposed DDNet and competing methods on an image of the Lai [72] degraded dataset.
providing a result similar to the one obtained using the real blur 
kernel.

We also present results on an image of the Lai [72] spatially in-
variant degraded dataset. The original image is shown in Fig. 5(a), 
the degraded image in Fig. 5(b), and Fig. 5(c)-(o) depict the de-
convolved images with the competing and DDNet method. From 
these images, it is clear that CHSG + DDNet produces better vi-
9

sual results than the competing ones. As for the Levin dataset, 
the methods which do not estimate the blur (DeblurGAN-v2 and 
MPRNet) obtain blurred images (see Fig. 5(i) and (k)). The baseline 
method CHSG + Wiener and SelfDeblur produce results, depicted 
in Fig. 5(d) and (h), respectively, with excessive ringing and other 
artifacts. The HSG (Fig. 5(c)), CHSG + Robust (Fig. 5(e)), CHSG +
MUNID (Fig. 5(l)) and Li (Fig. 5(g)) methods produce good but 



S. López-Tapia, J. Mateos, R. Molina et al. Digital Signal Processing 142 (2023) 104193

Fig. 6. Visual comparison of the proposed DDNet and competing methods on real images.
oversmoothed images, while CHSG + DWDN (Fig. 5(j)) oversharp-
ens the resulting image. CHSG + NBD_KerUnc (Fig. 5(m)) produces 
a sharp image but with some color artifacts around edges. For this 
particular image, the Robust and ECP methods (see Fig. 5(e) and 
Fig. 5(f)) produce images close to the proposed one, in Fig. 5(n), 
but the small details (see, for instance, the title of the books) are 
not so well resolved. The DDNet method can recover small details 
without any of the artifacts of the CHSG + Wiener restoration. 
10
Note also that the result using CHSG + DDNet is very similar to 
the obtained using the real PSF.

Fig. 6 depicts three details of challenging real images as well 
as the deconvolutions with the proposed and competing methods. 
The DDNet method provides almost artifact-free images and, com-
pared with other methods, more consistent results. When com-
pared to CHSG + Wiener, it is clear that the proposed method can 
remove most restoration artifacts while maintaining the details in 
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the image. The CHSG + DDNet method produces sharper images 
than HSG, ECP, Li, DeblurGAN-v2, CHSG + MUNID, and MPRNet 
methods, and fewer artifacts than SelfDeblur, CHSG + DWDN and 
CHSG + Robust (see, the color artifacts in Picasso’s face and hair, 
for instance) and it produces less noisy images (see the roof over 
the restaurant sign), without artifacts in flat regions and more nat-
ural looking image (see, Picasso’s cheek and T-shirt). In general, the 
proposed DDNet method is robust to different categories of images 
and blurs and provides good, natural-looking, almost artifact-free 
images.

6.3. Computation cost and efficiency

All the experiments were run on an Intel Xeon E5-
2630v@2.2 GHz CPU with a GeForce RTX 2080 Ti GPU. As shown 
in Table 3, the DDNet method achieves the third lowest total time, 
behind DeblurGAN-v2 [42] and MPRNet [40], but with a much 
higher restoration quality. Note that most of the total time is 
spent in the estimation of the blur kernel, which is carried out 
in the CPU, while the CNN cost is a few hundredths of a second. 
Compared with other non-blind image deconvolution methods, the 
DDNet method is the fastest one, even faster than Wiener method 
running on CPU. It is also much faster than other DL based meth-
ods such as MUNID [57] or KerUnc [49]. Note also that the pro-
posed method is faster than DWDN [11], which applies the Wiener 
filter in the feature space and uses a significantly larger network 
(with almost twice the number of parameters than DDNet).

7. Conclusions

We have proposed a combination of an analytical and a DL 
method for robust non-blind image deconvolution. To improve the 
DL model’s generalization to new blurs, we have separated the 
network parameters’ learning from the image formation model as 
much as possible. This has allowed the deal with (possibly inac-
curate) estimates of the blur. We have shown that the Wiener 
filter can be used to approximate the blur convolution opera-
tor’s pseudo-inverse. Non-blind image deconvolution is cast as the 
learning of a residual in the null space of the kernel which, added 
to the Wiener restoration, will satisfy the image formation model. 
Spatially variant artifacts caused by an inexact PSF estimation or 
other degradation model inconsistencies are corrected using the 
spatially-variant filters produced by a DFN. As shown by our abla-
tion experiments, this approach outperforms similar CNN models 
twice as deep. The proposed DDNet method outperforms the rest 
of the compared methods, generating good, natural-looking, nearly 
artifact-free images. It has proven to be robust, always providing 
one of the best results (on average) in a great variety of images. 
The DDNet method is faster than all other analytical methods and 
the combined analytical and DL method. Extension of the proposed 
method to deal with spatially-variant blur will be considered in fu-
ture work.
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