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Most state-of-the-art blind image deconvolution methods rely on the Bayesian paradigm to model the 
deblurring problem and estimate both the blur kernel and latent image. It is customary to model the 
image in the filter space, where it is supposed to be sparse, and utilize convenient priors to account for 
this sparsity. In this paper, we propose the use of the spike-and-slab prior together with an efficient 
variational Expectation Maximization (EM) inference scheme to estimate the blur in the image. The 
spike-and-slab prior, which constitutes the gold standard in sparse machine learning, selectively shrinks 
irrelevant variables while mildly regularizing the relevant ones. The proposed variational Expectation 
Maximization algorithm is more efficient than usual Markov Chain Monte Carlo (MCMC) inference and, 
also, proves to be more accurate than the standard mean-field variational approximation. Additionally, 
all the prior model parameters are estimated by the proposed scheme. After blur estimation, a non-
blind restoration method is used to obtain the actual estimation of the sharp image. We investigate the 
behavior of the prior in the experimental section together with a series of experiments with synthetically 
generated and real blurred images that validate the method’s performance in comparison with state-of-
the-art blind deconvolution techniques.

© 2019 Elsevier Inc. All rights reserved.
1. Introduction

Image deconvolution or deblurring aims at retrieving the un-
derlying sharp image from a blurred and noisy observation. Both 
blur and noise are usually undesired degradations inherent in im-
age acquisition which negatively affect images in a variety of fields 
including commercial photography, astronomy, medical imaging or 
remote sensing, to name a few. We focus our work on the gen-
eral and challenging case where both blur and image are unknown, 
henceforth referred to as Blind Image Deconvolution (BID).

Formally, the degradation suffered by an image x is typically 
modeled as [1]

y = Hx + n, (1)

where y is the degraded observed image, n represents the noise, 
and H is the circulant convolution matrix whose row elements are 
obtained from the blur kernel h, also known as the point spread 
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function (PSF). Note that the elements of h are non-negative and 
sum up to one in order to guarantee that, for zero mean noise, 
the real and observed images have (approximately) the same mean 
value. In blind image deconvolution, since the original image and 
the blur are unknown, they have to be estimated from the avail-
able data, that is, the degraded observed image. This inverse prob-
lem is highly underdetermined since in the estimation of the 
original image and blur there are more unknowns than available 
observations, and therefore multiple blur/image pairs will be com-
patible with the observed data. It is also an ill-posed problem in 
the sense of Hadamard [2], i.e., small variations in the observed 
data can lead to large variations in the solution and, even more, 
small variations in the estimated blur result in large variations in 
the restored image. To obtain good image and blur estimates, ad-
equate prior knowledge on the unknowns should be introduced to 
constrain the solution space and sound estimation procedures are 
needed to find appropriate solutions.

BID methods can be formulated in either the image or the fil-
ter space [1]. While in the image space, the restored image and 
blur are estimated directly from the observed image, in the filter 
space several pseudo-observations are first generated by applying 
a set of high-pass filters to the original image. Notice that these 
pseudo-observations will be sparse since natural images contain 
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many smooth regions which will be set equal to zero by the high-
pass filters, while producing higher intensity values at pixels corre-
sponding to edges. Multiple works have discussed the advantages 
and disadvantages of each space, see, for example, [3,4,1]. While 
filter space methods have access to more pseudo-observations to 
estimate the blur (one per filter) they appear to be more sensitive 
to noise. Additionally, following the estimation of the blur, a non-
blind deconvolution method is always used to recover the original 
image. Image space approaches, on the other hand, can estimate 
the image and blur simultaneously [5]. However, restored images 
often present a cartoon-like appearance since good blur estimates 
rely on images with steep edges and few details. Hence, a non-
blind deconvolution method is commonly used to recover the final 
sharp image with the blur estimated from the observed image.

Typically, stochastic blind deconvolution methods fall into two 
main classes, Maximum a Posteriori (MAP) estimation and Vari-
ational Inference (VI). We can find an interesting comparison of 
these methods in [6], where it is demonstrated that VI has a bet-
ter ability to avoid bad local solutions when the prior model is 
highly sparse. However, variational methods are usually more com-
putationally demanding than MAP-based ones [1] since they have 
to estimate the full posterior distribution, not only its maximum. 
Early attempts on BID used to apply MAP or regularization ap-
proaches (which are equivalent to MAP [7]) and assumed that the 
kernel had a given parametric form [8], reducing the blur esti-
mation problem to the estimation of the parameters of the blur 
function [9], or imposed other constraints, such as non-negativity, 
symmetry or smoothness [10,11]. To avoid the trivial delta kernel 
solution, which is a preferred MAP solution [12], carefully designed 
image and blur priors are needed [13] and ad hoc intermediate 
edge enhanced images are used [14–16]. Recent works make use, 
for instance, of hyper-Laplacian priors [17] with iteration-wise tun-
ing of parameters [18,15], log-TV priors [19], approximations of the 
�0 function (see the work in [4] extended in [16] with the use 
of a dark channel prior) or combinations of �0 and �2 priors on 
the gradient image and blur kernel [20]. Noticing that insignificant 
edges and edges of small objects result in inaccurate kernel esti-
mation, a two-phase kernel estimation with salient-edge selection 
was proposed in [21], producing a first estimate of the blur from 
heuristically selected informative edges, which is later refined by 
iterative regularization of the small values in the PSF. Gong et al. 
[22] also observed that the blur kernel can be robustly estimated 
from a subset of the image gradients and proposed an automatic 
algorithm via a cutting-plane method for selecting those gradients. 
Note that these approaches can be related to the spike-and-slab 
prior which will be presented later. Some of the most recent meth-
ods directly exploit the inherent characteristics of natural images. 
For instance, in [23] an �p prior is imposed on the blur and the 
Gaussian Scale Mixture Field of Experts prior is introduced for the 
image, whose filters are learned from natural images. Cai et al. [24]
use salient edges as well as sparse representations to incorporate 
learned data as a prior for both image and kernel estimation. The 
work in [25] utilizes a CNN as a prior that distinguishes between 
blurry and sharp images. Finally, a Gaussian mixture model based 
prior, trained on images of the specific class (i.e., text, face or fin-
gerprint) under restoration is used in [26].

Variational Inference BID methods also rely on the use of spar-
sity promoting image models (see [1] for a review of image models 
used in VI BID). The use of sparsity and VI is a successful approx-
imation of growing interest since the seminal work of [27], where 
a mixture of Gaussians (MoG) is used. Notice that the use of VI 
in image deconvolution was proposed early in [28], see also [5]. 
This method was generalized by Babacan et al. [29] where a BID 
VI framework based on Super Gaussian (SG) and Scale Mixture of 
Gaussian (SMG) priors was presented. Other popular sparse prior 
models, such as TV, �p , MoG, and Student-t [30] are included in 
the above mentioned framework. While most common SG priors 
lack differentiability around zero, Huber Super Gaussian (HSG) pri-
ors, recently proposed in [31], circumvent this problem. Recently, 
mixtures of exponential distributions, such as the Laplace distri-
bution, have been introduced [32,33]. This mixture, named Power 
Exponential Scale Mixture (PESM), is a generalization of Gaussian 
and Laplacian Scale Mixtures used to model prior sparse distribu-
tions. Although most of the BID literature concentrates on priors 
on the image and blur, work has also been carried out to force the 
posterior blur distribution to be a member of a particular class of 
probability distributions; see, for instance, [34].

Soft-sparse or shrinkage priors, such as the Laplace and other 
related SMG priors, may not be ideal sparsity-promoting priors 
[35] since they assign zero probability to the event of a random 
variable taking exactly the value zero. Recall that in continuous 
distributions, the probability of a single point is zero. As a re-
sult, there is a growing interest in priors that combine discrete 
and continuous distributions that better approximate the �0 pe-
nalization [36,37]. Such is the case of spike-and-slab priors [38], 
also named Bernoulli–Gaussian priors [37] since they consist of 
a product of a Bernoulli (discrete) and a Gaussian (continuous) 
distribution. These priors constitute the gold standard in sparse 
machine learning, having the ability to selectively shrink irrelevant 
variables, while mildly regularizing the relevant ones [39]. Appli-
cations of this prior include variable selection [40,41], denoising 
[42,35], inpainting [35], unsupervised latent variable models [43], 
hyper-spectral image fusion [44] and sparse signal recovery [45,
37]. In the BID problem at hand, we expect this prior to discard 
noisy observations and to select only pixels that are relevant to 
blur estimation.

Alternatively, the spike-and-slab prior can be modeled by a lin-
ear convex combination of a Gaussian distribution, the slab, and a 
delta function, the spike. Although this prior can be approximated 
by the mixture of two Gaussians [46], one with a very low vari-
ance, this is still a mixture of two continuous distributions and 
thus not truly sparse. Unfortunately, preserving the sparsity enforc-
ing property makes variational inference for spike-and-slab models 
a very challenging task in several ways, due to the presence of the 
delta in the prior. First, the exact posterior can not be calculated 
in closed form and, secondly, the classical mean field variational 
inference removes essential dependencies in the posterior distri-
bution approximation. Due to these problems, the costly Monte-
Carlo Markov Chain (MCMC) sampling has been the typical choice 
for inference, until recently. For multi-task and multiple Gaussian 
process learning problems, Titsias et al. [35] propose an alterna-
tive Variational EM (VEM) inference model, a kind of VI model, 
which solves these problems using a simple reparametrization of 
the prior. This reparametrization eliminates the inconvenient delta 
function and better matches the combinatorial nature of the poste-
rior, resulting in a simple and efficient algorithm (see also [47] for 
the use of Expectation Propagation for posterior approximation).

Note that prior distributions, including spike-and-slab, are gov-
erned by a set of parameters that need to be set or estimated. The 
estimation of the model parameters is crucial in BID algorithms 
since they dramatically affect the quality of the final result. Usu-
ally, their values are chosen by trial-and-error, grid search, general-
ized cross-validation [48], discrepancy principle [49], or measures 
such as the whiteness measure [50]. However, VI, and VEM specifi-
cally, allow for direct parameter estimation within their framework 
[5,29,31].

In this paper, we formulate the BID problem in the filter space 
and introduce a spike-and-slab prior to model our knowledge on 
the original image in that space. This prior endows our BID method 
with the capability to distinguish relevant from noisy observa-
tions, discarding the latter and thus produces more accurate and 
robust blur estimates. This paper adapts the variational inference 
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with the spike-and-slab prior to the blur estimation problem for 
the first time in the literature. Moreover, the prior model parame-
ters are automatically estimated from the observed data within the 
Bayesian framework. The VEM approach we propose in this paper 
handles inference in a much more efficient way than MCMC, and 
is more accurate than the standard mean-field variational approxi-
mation. A preliminary version of this formulation was presented in 
[51,52]. In this paper, however, a better parameter estimation pro-
cedure, a deep study of the spike-and-slab prior behavior, as well 
as an extensive experimental validation, have been performed.

The rest of the paper is organized as follows. Section 2 de-
scribes the proposed model for blur estimation. In Sec. 3, the 
inference procedure is detailed and, in Sec. 4, our complete BID 
algorithm is presented. The performance of the proposed method 
is assessed in Section 5. Finally, Section 6 concludes the paper and 
discusses future research directions.

2. Bayesian modeling

The BID problem in (1) is formulated here in the filter space. 
We generate L pseudo-observations yγ ∈ R

N by filtering the 
blurred and noisy image y with a set of high-pass filters {fγ }L

γ =1
obtaining

yγ = Fγ y = HFγ x + Fγ n = Hxγ + nγ , (2)

with xγ = Fγ x, where Fγ is a block-circulant convolution matrix 
associated with the filter fγ , which clearly commutes with the 
block-circulant matrix H.

Assuming independent pseudo-observations [12,1], denoting by 
y� = {yγ }L

γ =1, x� = {xγ }L
γ =1, and βγ the precision parameter 

which is assumed to be known, we can write our observation 
model as

p(y�|h,x�) =
∏

γ
p(yγ |h,xγ ) =

∏
γ
N (yγ |Hxγ ,β−1

γ I)

∝
∏

γ
exp

{
−βγ

2
‖yγ − Hxγ ‖2

}
. (3)

Notice that the images {xγ }L
γ =1 are typically sparse since they 

represent high-pass filtered instances of the original image. Follow-
ing the Bayesian approach, sparsity is enforced by the use of prior 
distributions on the solution. In this paper we use a spike-and-slab 
prior on the value of each pixel xγ i of xγ , so that

p(xγ i |αγ i,πγ ) = πγN (xγ i |0,α−1
γ i ) + (1 − πγ )δ(xγ i), (4)

where δ(·) denotes the Dirac delta function. Observe that this is 
a truly sparse prior, that is, xγ i is exactly zero with probability 
1 − πγ . However, the delta function in the prior model hampers 
the inference procedure.

We can overcome this problem with a simple but powerful 
reparametrization of xγ i , expressing it as the product of a Gaus-
sian zero-mean random variable x̃γ i ∼ N (0, α−1

γ i ) and a Bernoulli 

random variable sγ i ∼ π
sγ i
γ (1 − πγ )1−sγ i [35], i.e.,

xγ i = sγ i x̃γ i, (5)

and redefine the prior on the two components of xγ i , as

p(x̃γ i, sγ i |αγ i,πγ ) = N (x̃γ i |0,α−1
γ i )π

sγ i
γ (1 − πγ )1−sγ i , (6)

where sγ i ∈ {0, 1}.
We use the notation x̃� = {x̃γ }L

γ =1, s� = {sγ }L
γ =1, α� =

{αγ }L
γ =1, π� = {πγ }L

γ =1, � = {h, α�, π�}, and � = {x̃�, s�}. Then 
we have
p(y�, x̃�, s�|�)

=
[∏

γ

∏
i
p(x̃γ i, sγ i |αγ i,πγ )

]∏
γ

p(yγ |h, x̃γ , sγ ). (7)

3. Variational inference for blur estimation

The logarithm of the marginal likelihood, which should be used 
to estimate the model parameters, is

log p(y�|�) = log

(∑
s�

∫
p(y�, x̃�, s�|�)dx̃�

)
. (8)

The variational method maximizes the following Jensen’s lower 
bound on the above log marginal likelihood

F = log

(∑
s�

∫
q(x̃�, s�) log

p(y�, x̃�, s�|�)

q(x̃�, s�)
dx̃�

)
. (9)

Notice that since log p(y�|�) ≥ F , by increasing F on � we 
are increasing a lower bound of the log-likelihood. Furthermore, 
we will have p(x̃�, s�|�, y�) ≈ q(x̃�, s�).

The factorization q(x̃�, s�) = ∏
γ q(x̃γ , sγ ), where q(x̃γ , sγ ) =∏

i q(x̃γ i)q(sγ i), has been extensively used (see [45], for instance). 
However, as pointed out in [35], this is a unimodal distribution, 
which fails to capture the multimodality of the true posterior 
(observe that the posterior p(x̃γ |yγ , �) = ∑

sγ p(x̃γ , sγ |yγ , �) in-

volves the summation over the 2N possible values of the binary 
vector sγ , thus being able to have multiple modes). Instead, since 
the pairs {x̃γ i, sγ i} are strongly correlated (recall that xγ i = sγ i x̃γ i ), 
we treat them as a unit, and use the factorization

q(x̃γ , sγ ) =
∏

i

q(x̃γ i, sγ i). (10)

In the next two subsections we present a variational EM algo-
rithm for the maximization of F .

3.1. E-step

Given �, the stationary condition for q(x̃γ i, sγ i), i.e., the best 
distribution maximizing F , is

q(x̃γ i, sγ i) = 1

Z
e
〈log p(yγ |h,x̃γ ,sγ )〉�x̃γ i ,sγ i N (x̃γ i |0,α−1

γ i )π
sγ i
γ

× (1 − πγ )1−sγ i , (11)

where �θ denotes � with θ removed and 〈·〉�θ
denotes the mean 

calculated using the distribution q(�θ ).
Furthermore,

〈log p(yγ |h, x̃γ , sγ )〉�x̃γ i ,sγ i
= − βγ

2
〈‖yγ − H(x̃γ � sγ )‖2〉�x̃γ i ,sγ i

+ N

2
logβγ − N

2
log 2π, (12)

with

〈‖yγ − H(x̃γ � sγ )‖2〉�x̃γ i ,sγ i

= 〈‖yγ −
∑
k �=i

hksγ kx̃γ k − hi sγ i x̃γ i‖2〉�x̃γ i ,sγ i

= −2(yγ −
∑
k �=i

hk〈sγ kx̃γ k〉)Thi x̃γ i sγ i + ‖h‖2 x̃2
γ i sγ i

+ 〈‖yγ −
∑
k �=i

hksγ kx̃γ k‖2〉, (13)



J.G. Serra et al. / Digital Signal Processing 88 (2019) 116–129 119
where hi denotes the ith column of H, ‖h‖2 = hT
i hi, ∀i, since 

we assume a spatially invariant blur, � represents the Hadamard 
product, and the mean 〈sγ kx̃γ k〉 is calculated using the distribution 
q(x̃γ k, sγ k).

To compute the explicit expression for the posterior approxima-
tion we separate the derivations for q(x̃γ i |sγ i) and q(sγ i). Plugging 
(13) into (11) and setting sγ i = 0 and sγ i = 1, we obtain

q(x̃γ i |sγ i = 0) ∝ exp
{

− αγ i

2
x̃2
γ i

}
, (14)

q(x̃γ i |sγ i = 1) ∝ exp
{
βγ (yγ −

∑
k �=i

hk〈sγ kx̃γ k〉)Thi x̃γ i

− βγ

2
‖h‖2x̃2

γ i − αγ i

2
x̃2
γ i

}
. (15)

We can easily deduce from the quadratic form of (14) and (15)
that both distributions are Gaussian,

q(x̃γ i |sγ i = 0) = N (x̃γ i |0,α−1
γ i ), (16)

q(x̃γ i |sγ i = 1) = N (x̃γ i |μxγ i ,ρ
−1
γ i ), (17)

where

μxγ i = βγ

ργ
hT

i (yγ −
∑
k �=i

〈sγ kx̃γ k〉hk), (18)

ργ i = βγ ‖h‖2 + αγ i, (19)

are the mean value and the inverse of the variance of the slabs, re-
spectively. Equation (19) admits a nice interpretation. The variance 
of the slabs is always smaller than the variance of the prior since 
it includes information from the data but, more importantly, it de-
pends on the blur. If the norm of the blur is high (close to one) it 
means that the blur has a small number of significant values, i.e., 
only a few pixels contribute to the current one, and hence, the es-
timation of the image can be reliably calculated. As the number of 
pixels influenced by the blur increases, the norm of the blur will 
decrease and so will the confidence on the estimation.

We can now calculate q(sγ i) by marginalizing (11) over x̃γ i . 
Let ωγ i = q(sγ i = 1), then using simple algebraic calculation we 
observe that

ωγ i = 1

1 + e−uγ i
, (20)

with uγ i = log q(sγ i = 1) − log q(sγ i = 0). This will liberate us from 
calculating the partition function Z of the distribution q(sγ i, ̃xγ i), 
since it will be canceled out in the subtraction. We have from (11)

log q(sγ i = 1) = log
∫

q(x̃γ i,1)dx̃γ i

= N

2
logβγ − N

2
log 2π + 1

2
logαγ i

− βγ

2
〈‖yγ −

∑
k �=i

hkxγ k‖2〉 + logπγ − 1

2
logργ i

+ β2
γ

2ργ i

(
hT

i (yγ −
∑
k �=i

〈sγ kx̃γ k〉hk)
)2 − logZ,

(21)

and

log q(sγ i = 0) = log
∫

q(x̃γ i,0)dx̃γ i = N

2
logβγ − N

2
log 2π

− βγ

2
〈‖yγ −

∑
k �=i

hkxγ k‖2〉 + log(1 − πγ )

− logZ, (22)

w

u

an
eq
th
an
es
be
cl

q

Fu

〈x

〈x

w
re

3.

by

F

w

π

F

w

α

hich produces

γ i = log
πγ

1 − πγ
+ 1

2
log

αγ i

ργ i

+ β2
γ

2ργ i

(
hT

i (yγ −
∑
k �=i

〈sγ kx̃γ k〉hk)
)2

, (23)

d allows us to calculate ωγ i = q(sγ i = 1) using (20). From this 
uation it is clear that the value of ωγ i will be close to one if 
e error of the current estimation (yγ − ∑

k �=i〈sγ kx̃γ k〉hk) is high 
d the estimation will be discarded, focusing on the prior. If the 
timation is good, the value of ωγ i will depend on the relation 
tween πγ , αγ i , and ργ i but more probably it will take values 

ose to zero, valuing the importance of the estimation.
Finally, we can write the full posterior q(x̃γ i, sγ i) as

(x̃γ i, sγ i) =q(sγ i)q(x̃γ i |sγ i) = ω
sγ i

γ i (1 − ωγ i)
1−sγ i

×N (x̃γ i |sγ iμxγ i , sγ iρ
−1
γ i + (1 − sγ i)α

−1
γ i ). (24)

rthermore, using q(sγ i, ̃xγ i) we have

γ i〉 = 〈sγ i x̃γ i〉 =
∑
sγ i

∫
sγ i x̃γ iq(x̃γ i, sγ i)dx̃γ i

=
∫

x̃γ iq(x̃γ i,1)dx̃γ i

= ωγ i

∫
x̃γ iq(x̃γ i |sγ i = 1)dx̃γ i = ωγ iμxγ i , (25)

2
γ i〉 = 〈s2

γ i x̃
2
γ i〉 =

∑
sγ i

∫
s2
γ i x̃

2
γ iq(x̃γ i, sγ i)dx̃γ i

=
∫

x̃2
γ iq(x̃γ i,1)dx̃γ i

= ωγ i

∫
x̃2
γ iq(x̃γ i |sγ i = 1)dx̃γ i

= ωγ i(μ
2
xγ i

+ ρ−1
γ i ), (26)

here μxγ i , ργ i and ωγ i have been defined in (18), (19) and (20)
spectively.

2. M-step

Fixing q(x̃�, s�), we now proceed to calculate � = {h, α�, π�}
 maximizing the lower bound F in (9) on �.
In order to update πγ we have to maximize the function

(πγ ) =
∑

i

[
〈sγ i〉 logπγ + (1 − 〈sγ i〉) log(1 − πγ )

]
(27)

here 0 < πγ < 1, which produces

γ =
∑

i ωγ i

N
. (28)

To find αγ i we have to maximize

(αγ i) = ωγ i

∫
N (x̃γ i |μxγ i ,ρ

−1
γ i ) logN (x̃γ i |0,α−1

γ i )dx̃γ i

= ωγ i

[
1

2
logαγ i − 1

2
αγ i〈x̃2

γ i〉N (x̃γ i |μxγ i ,ρ
−1
γ i )

]
+ const,

(29)

hich produces

−1
γ i = μ2

xγ i
+ ρ−1

γ i . (30)
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Finally, we have to minimize

f (h) =
∑
γ

〈‖yγ − Hxγ ‖2〉� =
∑
γ

[
‖yγ − H〈xγ 〉‖2 + hTDγ h

]
,

(31)

constrained to hi ≥ 0, 
∑

i hi = 1, where Dγ is a diagonal matrix of 
the form Dγ = ∑

i(〈x2
γ i〉 −〈xγ i〉2)I. This estimation problem can be 

efficiently solved using quadratic programming, see [29].

4. Blind deconvolution algorithm

The blur estimation algorithm iterates on the estimation of each 
one of the unknowns from their respective distributions given the 
current estimate of the rest of the unknowns which leads to the 
estimation procedure summarized in Algorithm 1.

Algorithm 1 Blur estimation algorithm.

Require: y� , β� and initial values h(0) , π (0)
� , α(0)

� and 〈x�〉(0) .
Set k = 0.
repeat

Update μ(k)
xγ i

, ρ(k)
γ , and ω(k)

γ i ∀γ , ∀i, from (18), (19), and (20) respectively.

Update 〈xγ i〉(k) ∀i, from (25).

Update π (k+1)
� from (28), and α(k+1)

� from (30).
Update h(k+1) using (31).
Set k = k + 1.

until convergence.
return ĥ = h(k) .

An important issue in BID is the initialization of the blur kernel 
since most algorithms, as already pointed out in [27], are subject 
to local minima, particularly for large blur kernels. It is common 
to use a multiscale approach for blur kernel estimation (see [27,
29,31]) since it is easier to produce accurate blur estimates at 
coarser scales, which are later used as initialization for the next 
scale. However, we perform blur estimation only at the finest scale, 
initializing the blur with the final estimate produced by [31]. The 
method in [31] is a multiscale BID algorithm that imposes sparsity 
on the images of gradients by means of the Huber Super-Gaussian 
priors. These priors circumvent the differentiability problems of 
Super-Gaussian priors around zero. Image and blur kernel estima-
tions make use of the Alternating Direction Method of Multipliers 
(ADMM), which allows for a fast variational inference due to FFT 
computations. Since the method in [31] takes advantage of the FFT 
to compute the filtered images estimations it is much faster than 
our algorithm which iterates on each image pixel sequentially. So, 
we utilize this speed to obtain a sensible blur initialization for our 
algorithm.

Notice that whereas the proposed algorithm does not provide 
an estimate of the image since it works on the filtered images, not 
on the image itself, it provides an estimate of the blur. Once the 
estimate of the blur, ĥ, has been obtained, a non-blind deconvolu-
tion algorithm is used to obtain an estimate of the original sharp 
image. In this paper we obtain an estimate of the original image 
by solving the problem

x̂ = arg min
x

1

2
‖Ĥx − y‖2 + λ

p

∑
γ

‖xγ ‖p, (32)

using the fast iterative method in [53,31]. The value of p is usually 
selected so that p ∈ [0.6, 0.8] [31]. Following [54,55,31], we fixed 
p = 0.8.

Finally, note that for color images a single blur kernel is esti-
mated for all the image color bands from the luminance image. 
Afterwards, the estimated PSF is used in the above non-blind im-
age restoration algorithm to restore each of the RGB color bands 
separately.
5. Experimental results

In this section, we present a series of experiments to analyze 
the performance of the blind deconvolution algorithm presented 
in this paper. Subsection 5.1 delves into the behavior of the spike-
and-slab prior and its role in the image estimation process. Sub-
section 5.2 is devoted to compare our method with three state-of-
the-art blind deconvolution techniques: firstly, a set of experiments 
is carried out in a controlled set-up, secondly, the algorithm is 
tested on real images and, finally, a succinct time analysis is car-
ried out.

Unless otherwise stated, the algorithm is initialized as follows. 
We use the filters f1 = [1 0 −1; 1 0 −1; 1 0 −1], f2 = fT

1 to obtain 
the pseudo-observations from the observed blurred image, accord-
ing to (2). We empirically determined that the addition of more 
filters has no significant impact on the blur estimation. However, it 
clearly increases the computational burden of the algorithm. Initial 
blur is set to the final estimation from the algorithm presented in 
[31]. The value for 〈x�〉 is initialized with the pseudo-observation 
y� . Additionally, all πγ are initialized at 0.01 and αγ i = 32, ∀i. 
Estimating α−1

γ i according to (30) produces noisy estimations that 
are smoothed with the filter [0 1 0; 1 8 1; 0 1 0]/12. The preci-
sion parameters βγ are considered known and initialized to βγ =
β/‖fγ ‖2, ∀γ , with β = 104, following [12]. Notice that accurate es-
timates of the noise variance of the images can be obtained from 
flat regions of the image or with any of the various methods in 
the literature (see [56] and the references therein and [57–59] for 
more recent publications). Nevertheless, we experimentally found 
a low sensitivity to this parameter.

5.1. Spike-and-slab prior behavior

The spike-and-slab prior for BID we introduced in this paper is 
able to shrink information that is not relevant to blur estimation. 
In this section we study how this prior acts on the image estima-
tion process and its effect on the image.

Fig. 1 depicts the parameters and image estimations from the 
vertical (γ = 1) and horizontal (γ = 2) pseudo-observations as-
suming that the blur is known. The prior in (4) is a product of 
distributions which assumes that the values of xγ i come from a 
zero-mean Gaussian with variance α−1

γ i with probability πγ or 
take exactly the value 0, with probability 1 − πγ . For the image 
in Fig. 1 when γ = 1, π1 = 0.057, this means that a given pixel 
in the background will take exactly the value 0 with probabil-
ity 0.943 and a value from a zero-mean Gaussian with variance 
260−1 with probability 0.057. Even more, the full posterior distri-
bution in (24) follows the same distribution as the prior in (6) but 
with its parameters updated with the observed data. The mean of 
the posterior (see (33)) is depicted in Fig. 1 with the labels 〈x1〉
and 〈x2〉, this figure shows that the proposed algorithm recovers 
images with sharp edges.

Fig. 1 also shows the estimated values of ω1 and ω2 which con-
sist of a large number of pixels with a value very close to zero and 
a few pixels with a value very close to one. Taking into account 
that π� = {0.057, 0.028}, it means that more than 95% of the pix-
els are set to zero in the estimation. Note that most of these pixels 
correspond to flat regions which do not provide information on the 
blur, or to highly textured regions where it is difficult to discrim-
inate noise from texture. It is also important to note that some 
prominent edges in the image have also been shrunk. Such is the 
case with pixels where noise is dominant or affected by ringing 
artifacts as, for instance, the pixels around the head or the elbow 
in μx1 in Fig. 1 that have been zeroed in 〈x1〉. Therefore, only the 
pixels that provide the most reliable information for blur estima-
tion are selected by the spike-and-slab prior and they are mildly 



J.G. Serra et al. / Digital Signal Processing 88 (2019) 116–129 121
Fig. 1. Values of the parameters and image estimations. π� = {0.057,0.028}.
smoothed in the estimation of 〈xγ i〉, hence removing the noise and 
making the estimation more robust.

The variance of the full posterior in (24), var(xγ i) = ωγ iρ
−1
γ i +

(1 − ωγ i)ωγ iμ
2
xγ i

, is shown as var(x1) and var(x2) in Fig. 1. When 
ωγ i is zero, the variance is also zero as the pixel corresponds 
to the spike in the prior. When ωγ i is one, the variance is ρ−1

γ i
and, when ωγ i is between 0 and 1, the variance is increased be-
ing larger with larger absolute values of μγ i and ωγ i is closer 
to 0.5. That is, the variance increases as we go away from zero 
in the estimation and as we are more in doubt whether the 
pixel comes from a spike or a slab. This behavior is clear if we 
study the posterior distribution of x̃γ i . Marginalizing (24), we ob-
tain
q(x̃γ i) =
∑

sγ i∈{0,1} q(sγ i)q(x̃γ i |sγ i)

= ωγ iN (x̃γ i |μxγ i ,ρ
−1
γ i ) + (1 − ωγ i)N (x̃γ i |0,α−1

γ i ), (33)

that is, a convex combination of two Gaussians, one centered at 
μxγ i and another one centered at zero. The distribution in (33) has 
the following mean and variance

〈x̃γ i〉 = ωγ iμxγ i , (34)

var(x̃γ i) = ωγ iρ
−1
γ i + (1 − ωγ i)α

−1
γ i + (1 − ωγ i)ωγ iμ

2
xγ i

. (35)

Fig. 2 illustrates the result of this combination on selected pix-
els from different regions of the image. In flat regions, Fig. 2(a), 
the value of ωγ i is very close to zero and hence the prior pulls 
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Fig. 2. Behavior of the posterior q(x̃γ i) for different pixels in the image for γ = 2. (a) Pixel in flat area, μx2i = −0.03, ρ−1
2i = 0.0038, α−1

2i = 0.0038, ω2i = 0.008. (b) Edge 
pixel at the elbow μx2i = −0.36, ρ−1

2i = 0.0071, α−1
2i = 0.1429, ω2i = 0.97. (c) Edge pixel below the elbow μx2i = 0.28, ρ−1

2i = 0.0073, α−1
2i = 0.0909, ω2i = 0.58.

Fig. 3. Blur kernels used in the Levin’s dataset.
the value of the pixel to zero, removing the noise in the observa-
tion. Note that in this region, the variance is α−1

γ i . In edge regions, 
where ωγ i is very close to one, however, the outcome is obtained 
mainly from the observation (see Fig. 2(b)). Note that the variance 
of the distribution here is close to ρ−1

γ i . There are a few pixels 
where ωγ i is not clearly 0 or 1, as depicted in Fig. 2(c), and the re-
sulting mean value is obtained from the observed data smoothed 
by the prior. In this case, the variance is higher than ρ−1

γ i , reflect-
ing our uncertainty on the value of x̃γ i . In summary, the spike-
and-slab prior finds relevant pixels in image edges, which help 
to better estimate the blur. Note that, if we followed the MAP 
approach instead of approximating the full posterior distribution, 
we would have no uncertainty and the value of ωγ i would be ei-
ther 0, if q(x̃γ i |sγ i = 0) < q(x̃γ i |sγ i = 1) or 1 otherwise, and hence 
the value of x̃γ i would be either 0, if ωγ i = 0, or exactly μγ i , if 
ωγ i = 1.

The idea of selecting just a few sharp edges of the image that 
are good for kernel estimation is also applied in the MAP based 
method in [22] where an ad hoc modification of the degradation 
model is proposed to select the most active gradients, which are 
then used for kernel estimation, while the rest of the gradients are 
set to zero. The regularization parameters, as well as the number 
of pixels to select are set manually. Other MAP based algorithms 
use heuristics to prune out small edges such as bilateral filtering 
[60] or to threshold the edge response [21]. Our method, how-
ever, introduces the pixel selection as a prior on the edges and 
rigorously estimates, within the variational framework, all involved 
parameters. The proposed model can be extended to consider the 
same prior variance for different pixels of the image, for instance 
for pixels on flat regions or edge regions, and prior information 
relating those parameters can also be introduced into the model 
formulation by means of hyperpriors. Furthermore, some heuristics 
such as forcing ωγ i to take a given value (say, zero for saturated 
pixels of the image) can be considered.

5.2. Comparative study

We first evaluate the performance of the proposed algorithm 
on Levin’s dataset [12]. This dataset consists of a set of 4 images 
blurred with 8 different PSFs, displayed in Fig. 3, adding up to a 
total of 32 images. All images are 256 × 256 and blur kernel sizes 
range from 13 × 13 to 27 × 27.

The proposed method is compared with the VI algorithm in 
[31] (VI, Huber Super-Gaussian priors), namely Zhou17, and two 
recent MAP approaches with different image priors, Pan17 [16]
(MAP, dark channel prior) and Perrone15 [19] (MAP, logarithmic 
image priors). These methods can be considered to represent cur-
rent state-of-the-art algorithms in BID. Algorithms were named 
using the last name of the first author plus year of publication. 
For a fair comparison, once the PSF is estimated with the corre-
sponding method, the final image restoration is obtained by the 
non-blind restoration method in [53].

We compare the performance of these algorithms based on two 
reference metrics: PSNR and SSIM. Results are depicted graphically 
in Figs. 4 (PSNR) and 5 (SSIM). Each graph represents, for each 
kernel, the results for each method on the 4 images of the dataset. 
Table 1 shows a summary of the obtained results. For each tested 
method, the left column reports the mean PSNR values obtained 
per PSF, this is, the average PSNR over the four different images. 
Likewise, the right column shows the corresponding SSIM values. 
The standard deviation of each measure is shown between brack-
ets below the mean value. The proposed algorithm performs better 
in terms of PSNR than the rest in 4 out of the 8 tested PSFs and 
SSIM values follow a similar behavior. The overall superiority of 
the spike-and-slab deconvolution technique is reflected in the av-
erage PSNR and SSIM values, which also have a smaller standard 
deviation than all the competing methods. A one-on-one compar-
ison of the proposed method with Zhou17 shows that in most 
of the images and kernels tested we perform better, see Figs. 4
and 5, and we obtain a considerable gain in terms of both PSNR 
and SSIM (7 out of 8 PSFs). In fact, this gain has an average value 
of +0.28 dB and a lower standard deviation, with very small loss 
in the few cases where the performance is worsened and a mean 
gain of +0.51 dB in the rest. Compared with Perrone15, the pro-
posed method obtains higher PSNR and SSIM values in almost all 
the cases. Pan17 seems to be the less robust one, since it obtains 
a standard deviation in PSNR of 2.93 and 0.094 in SSIM. This is 
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Fig. 4. PSNR values for all images per kernel. Image number is displayed on the horizontal axis. Each bar represents a method: Proposed, Zhou17, Pan17, and 
Perrone15.

Fig. 5. SSIM values for all images per kernel. Image number is displayed on the horizontal axis. Each bar represents a method: Proposed, Zhou17, Pan17, and 
Perrone15.

Table 1
Mean (standard deviation) PSNR and SSIM per PSF.

PSF Proposed Zhou17 Pan17 Perrone15

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

1 29.67 0.913 29.66 0.913 29.32 0.910 29.53 0.908
(0.71) (0.007) (0.94) (0.006) (0.50) (0.010) (1.50) (0.022)

2 29.95 0.910 30.15 0.912 29.96 0.915 29.54 0.906
(1.60) (0.031) (1.61) (0.029) (0.83) (0.017) (1.87) (0.029)

3 30.50 0.919 30.38 0.917 31.32 0.930 31.47 0.931
(1.93) (0.035) (1.83) (0.035) (1.39) (0.022) (0.81) (0.013)

4 28.74 0.876 28.16 0.864 23.72 0.708 26.65 0.848
(1.71) (0.035) (2.01) (0.043) (5.27) (0.188) (0.83) (0.039)

5 30.85 0.940 30.57 0.936 30.68 0.939 30.55 0.933
(0.32) (0.010) (0.012) (0.51) (0.59) (0.011) (2.01) (0.026)

6 30.59 0.932 29.77 0.924 28.59 0.908 30.23 0.933
(1.87) (0.025) (1.85) (0.030) (1.50) (0.018) (1.42) (0.011)

7 29.19 0.912 29.05 0.911 30.20 0.925 28.87 0.914
(2.05) (0.034) (1.85) (0.034) (1.50) (0.024) (1.42) (0.024)

8 29.72 0.909 29.23 0.904 30.01 0.915 29.42 0.911
(2.27) (0.038) (2.38) (0.042) (1.26) (0.021) (2.12) (0.029)

avg. 29.90 0.914 29.62 0.910 29.23 0.894 29.53 0.911
(1.64) (0.031) (1.70) (0.034) (2.93) (0.094) (1.89) (0.035)
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Fig. 6. Sample of results on Levin’s dataset. (Top) Image 1 blurred with kernel 7. (Bottom) Image 2 blurred with kernel 6.
mainly due to the results with kernel 4 where results of Pan17 
method are much worse than any other method.

We also show a small sample of the results for visual compari-
son in Figs. 6 and 7, where the inset kernels have been drawn us-
ing a nonlinear color scheme to enhance the lower values’ visibil-
ity. The proposed method achieves sharp-looking images with no 
visible artifacts provided the size of the PSF is not too large. Large 
PSFs affect large areas of the blurred images, which hinders blur 
estimation, naturally worsening all methods’ performance. See, for 
instance, the results for PSF 4 in Fig. 7 bottom, where the PSF esti-
mations for all methods are less precise and hence the restoration. 
This is also reflected in the corresponding PSNR and SSIM values 
in Table 1. However, for this large PSF, the proposed method ob-
tains better results than the competing methods both visually, with 
sharper edges and less artifacts, and numerically, with higher PSNR 
and SSIM values. Typically, Zhou17 and Perrone15 produce noisier 
PSFs, whereas Pan17’s method produces a less robust, albeit clean, 
estimation of the blur kernel (see kernels in Figs. 6 bottom and 
7 bottom). Concretely, regarding the image in Fig. 6 bottom, we 
clearly notice that the PSF produced by the proposed method is 
notably cleaner and closer to the original one (depicted with the 
blurred image in the figure).

The result of a second set of experiments on real blurred im-
ages is shown in Figs. 8 and 9. In this scenario, all competing 
algorithms produce high quality images. The proposed algorithm 
matches the performance of the other state-of-the-art algorithms 
with little visual differences, although it produces slightly sharper 
restorations since it estimates less noisy PSFs. Again, we see that 
the proposed method produces cleaner PSFs than the methods of 
Zhou17 and Perrone15. In Fig. 9 we see that, in the central area 
of the image, all algorithms performed well. However, ringing arti-
facts appear at the borders of the image (see, for instance, the fire 
hydrant in the lower part of the image) due to the spatially variant 
nature of the blur in this image.
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Fig. 7. Sample of results on Levin’s dataset. (Top) Image 3 blurred with kernel 5. (Bottom) Image 4 blurred with kernel 4.
It is also important to study the impact of the noise level on 
the blur estimation process. For this purpose, we create a syn-
thetic set of images generated from the Lena image following the 
degradation model in (1). This is, we convolve this image using 
one of the kernels from the dataset, kernel 7, and add i.i.d. Gaus-
sian noise with different variances producing a set of images with 
blurred signal-to-noise ratios (BSNR) of 40, 35, . . . , 10 dB. The de-
graded images along with the estimated filters produced by our 
method are shown in Fig. 10. For low to mid-high noise levels, 40
to 25 dB, the algorithm produces very accurate reconstructions of 
the blur kernel. For higher noise levels, BSNR 20 dB, the effect of 
noise starts to manifest itself. As noise level increases, a greater 
number of ωγ i shift towards zero, discarding a greater number of 
potential edge pixels, which, in turn, leads to lower values of πγ . 
For very high noise levels, 15 dB and below, the noise hampers the 
blur estimation, which is gradually aggravated as the BSNR value 
drops. We therefore notice a strong robustness of the algorithm to 
the presence of noise.

To conclude this section we carry out an analysis of the com-
putational time required for the compared algorithms for the es-
timation of the blur. All algorithms were run with nonoptimized 
nonparallelized code on Matlab® on an Intel® Core i7-3960X CPU 
@ 3.30 GHz with 64 GB RAM. The results in Table 2 show the 
mean execution time over ten runs for a set of degraded images 
with different image and kernel sizes. Note that the times shown 
for the proposed algorithm include the time needed to compute 
the initial estimation using [31]. The proposed algorithm is much 
faster than the MAP based algorithms in Perrone15 [19], which 
spends a large amount of time computing the Total Variation Gra-
dient, and only needs two thirds of the time of Pan17 [16], which 
spends most of the time on the dark channel computation. How-
ever, the proposed algorithm is much slower than the variational 
based method in Zhou17 [31] since it estimates sequentially the 
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Fig. 8. Comparison of deblurring results for two real and blurred images from the dataset in [61].
image pixels, for all the filtered images, preventing the use of the 
FFT as in Zhou17 [31] and, hence, slowing down the algorithm. 
Further studies are needed to clarify if it is possible to estimate 
all the pixels simultaneously which would allow the use of FFT to 
perform image estimation.

6. Conclusion and future work

A new BID method formulated in the filter space has been 
presented. The main novelty of the method is the introduction 
of the spike-and-slab prior on the high-pass filtered image which 
allows to shrink image information that is irrelevant for blur esti-
mation. A simple but powerful reparametrization of the spike-and-
slab prior allows for the use of variational inference and a sensible 
factorization allows to capture the multimodality of the true pos-
terior distribution. We have developed an efficient and accurate 
variational EM algorithm for the blur kernel estimation. The pro-
posed algorithm also estimates automatically all the prior model 
parameters within the variational framework. Experimental results 
show the competitiveness of the proposed method. The proposed 
method provides better kernel estimates on the tested images, re-
sulting in higher PSNR with lower PSNR variance, and requires 
lower running time than most of its competitors. The method also 
presents a good tolerance to the noise in the images. A study of 
the spike-and-slab prior behavior provides a deeper understand-
ing of the pixel selection capabilities of this prior which, using a 
well-founded theoretical framework, help to better estimate the 
blur.

Extensions of the proposed method include the estimation of 
the noise variance, the inclusion of other prior distributions on the 
model’s parameters or the use of heuristics to include or discard 
pixels within the estimation procedure. For instance, model dis-
crepancies can be handled by setting ωγ i = 0 in pixels that do not 
fit the degradation model, such as saturated pixels. A hyperprior 
can be introduced to include prior information that relates the ωγ i . 
This would allow, for instance, to consider the same prior variance 
for pixels on flat regions or edge regions. Additionally, since image 
estimation is performed pixel-wise, it would be straightforward to 
adapt the algorithm to handle space-variant blur. In this case, the 
efficient shift-variant image restoration method in [62,63] can be, 
in principle, adopted for the blur estimation process.
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Fig. 9. Comparison of deblurring results on another blurred and noisy image.

Fig. 10. Degraded images along with the corresponding estimated PSFs for different BSNR values. Zoom in for realistic visualization of the noise intensity in degraded images.
Table 2
Mean CPU time (in seconds) for different BID methods.

Proposed Pan17 Zhou17 Perrone15
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