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A new Bayesian Super-Resolution (SR) image registration and reconstruction method is proposed. The 
new method utilizes a prior distribution based on a general combination of spatially adaptive, or non-
stationary, image filters, which includes an adaptive local strength parameter able to preserve both image 
edges and textures. With the application of variational techniques, the proposed method allows for the 
automatic estimation of all problem unknowns. An experimental comparison between state of the art 
methods and the proposed SR approach has been performed on both synthetic and real images.
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1. Introduction

Image SR is the post-processing image enhancement technique 
making it possible to infer a spatially High Resolution (HR) image of 
a scene, from multiple Low Resolution (LR) images affected by warp-
ing, blurring, and the noise inherent to the capture process. The 
basic principle of SR is that changes in LR images caused by the 
acquisition process and the camera (and/or scene) motion, provide 
additional information which can be utilized to reconstruct the HR 
image. Currently image SR is an active research field (see [1,2] for 
a review and [3] for a comparative study of recent SR methods).

Usually SR methods comprise two processing blocks: registra-
tion, where the motion between LR images, or an upsampled ver-
sion of them, is estimated, and image reconstruction, where the 
HR image is recovered from the LR images. In this paper, both reg-
istration and reconstruction are studied within the Bayesian frame-
work.

In the Bayesian framework a prior model on the HR image to 
be reconstructed has to be introduced, which allows to encapsu-
late prior image knowledge and to avoid the ill-posedness of the 
image reconstruction problem. The selection of this Bayesian prior 
model is critical. Prior models imposing image smoothness, like 
the Simultaneous Auto Regressive (SAR) image model (see [4]), are 
known to oversmooth edge regions. More sophisticated edge pre-
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serving prior models based on wavelets [5,6], compound Markov 
Random Fields (MRF) [7,8], and sparse image priors as TV [9] or �1
[10] have also been applied. Some of these edge preserving pri-
ors oversmooth non-edge textured regions, and to prevent this, 
a combination of sparse and non-sparse prior models exploiting 
the ability of sparse priors to recover image edges while avoiding 
their tendency to oversmooth inner regions by combining them 
with a smoothness promoting prior model was proposed in [10]. 
However, since it is not straightforward to determine the optimal 
contribution of each prior to the mixture, the weights were deter-
mined experimentally.

Accurate registration of displaced and rotated images, is vital 
in SR image reconstruction. There are two major approaches to 
registration in SR, which differ in the stage where registration is 
performed. In the first approach the motion parameters are previ-
ously estimated from the observed LR images, in a preprocessing 
step, and then used in a separate image estimation process (see 
[11–14]). The limited accuracy inherent to HR registration from 
LR images is a shortcoming of this first approach. The second ap-
proach is to alternate between HR image registration and HR image 
estimation (see [15–20,7,9,21–23,8,10]).

In this paper, we extend the work in our previous conference 
paper [24], in which the application of a spatially adaptive general 
linear filter combination prior model to the SR problem was pro-
posed. This kind of prior model includes an adaptive, local strength 
parameter, able to preserve both image edges and textures, and has 
been successfully applied to image restoration [25]. This paper is 
more than an enhanced version of our previous conference paper 
[24]. The algorithm proposed in this paper is the same as in [24], 
but both Bayesian model and inference have been reformulated in 
a clearer way, not relaying on the representation, utilized in [24], 
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of the prior model as a Scale Mixture of Gaussians. This paper dif-
fers from the previous paper [25], not only because in [25] the 
addressed problem was image deconvolution and denoising, while 
in this paper we are studying SR, but also because of the different 
Bayesian inference methods applied.

In our proposed approach, the entire SR pipeline, that is HR im-
age reconstruction, registration, and the estimation of the model 
parameters, usually called hyperparameters, a critical issue in SR 
(see for instance [9,20,23,10]), is approached from a Bayesian per-
spective. The proposed framework provides uncertainties of the 
estimates during the restoration process, which helps to prevent 
error-propagation and improves robustness. All required algorith-
mic parameters are estimated along with the HR image and the 
motion parameters, and therefore the proposed algorithms do not 
require user supervision. This is a very important characteristic of 
our method, marking the difference with respect to the method 
in [10], which used a different prior models combination, whose 
relative weights had to be determined by a long time consuming 
experimental procedure.

The rest of this paper is organized as follows. Section 2 pro-
vides the mathematical model for the LR image acquisition process. 
We provide the description of the hierarchical Bayesian frame-
work modeling the unknowns in Section 3. The inference proce-
dure to develop the proposed methods is presented in Section 4. 
We demonstrate the effectiveness of the proposed methods with 
experimental results in Section 5 and conclusions are drawn in 
Section 6.

2. Problem formulation

In this paper we study the image SR problem, i.e.: the recon-
struction of an HR image x of a scene, from a sequence of L LR 
observed images yk , k = 1, . . . , L, of the same scene. The LR im-
ages yk consist of N = Nh × Nv pixels (where Nh and Nv are the 
observations pixel numbers in horizontal and vertical directions, 
respectively) while the HR image x consists of P N pixels, where √

P ∈ N is the factor of increase in resolution. In this paper we 
adopt the matrix-vector notation such that images yk and x are 
arranged as N × 1 and P N × 1 column vectors, respectively. The 
imaging process introduces shifting, blurring and downsampling, 
which is modeled as

yk = AHkC(sk)x + nk = Bk(sk)x + nk, (1)

with the system N × P N matrix Bk = AHkC(sk), where A is the 
N × P N downsampling matrix, Hk is the P N × P N blurring matrix, 
C(sk) is the P N × P N warping matrix generated by the motion vec-
tor sk , and nk is the N × 1 acquisition noise. A detailed description 
of the explicit form of the warping matrices C(sk) in Eq. (1) can be 
found in [10]. Note that the matrices Hk and C(sk) and the noise 
nk can be different for each LR image yk .

In this work, we assume that the blurring matrices Hk are 
known and we consider a motion model consisting of translational 
and rotational motion, so that sk = (θk, ck, dk)

t , where θk is the 
rotation angle, and ck and dk are the horizontal and vertical trans-
lations of the kth HR image with respect to the reference frame x. 
We also assume that the observation set {yk} and HR image x are 
normalized between zero and one.

The effects of downsampling, blurring, and warping are com-
bined into the system matrix Bk(sk), from which each row maps 
the pixels of the HR image x to a given pixel in the LR image yk . 
Given Eq. (1), the SR problem is expressed as the search of an es-
timate of the HR image x from the set of LR images {yk} using our 
prior knowledge about {C(sk)}, {nk}, and x.
3. Hierarchical Bayesian model

It is well known the ill-posed nature of the SR problem, that 
has been traditionally circumvented by mean of regularization 
terms in the optimization approach, or using prior distributions 
in the Bayesian approach (see [1]). In this work, we adopt a hi-
erarchical Bayesian framework consisting of two stages. The first 
stage is used to model the acquisition process, the unknown HR 
image x and the motion vectors {sk}. For the unknown x we adopt 
a general non-stationary image prior combination. Prior distribu-
tions p(sk) are assigned to the unknowns motion parameters sk , 
for k = 1, . . . , L. The observation y = {yk} is also a random pro-
cess with corresponding conditional distribution p(y|x, {sk}, {βk}). 
This distribution depends on a set of additional parameters (called 
hyperparameters). They are modeled together with the hyperpa-
rameters of the distributions of x and {sk} by assigning hyperprior
distributions in the second stage of the hierarchical model.

In the following subsections we provide the description of the 
individual distributions used to model the unknowns.

3.1. Observation model

Using the model of Eq. (1) and assuming that nk is zero-mean 
white Gaussian noise with inverse variance (precision) βk , the con-
ditional distribution of the LR image yk is given by

p(yk|x, sk, βk) ∝ β
N/2
k exp

[
−βk

2

∥∥yk − Bk(sk)x
∥∥2

]
. (2)

Assuming statistical independence of the noise among the LR im-
age acquisitions, the conditional probability of the set of LR images 
y given x can be expressed as

p
(
y|x, {sk}, {βk}

) =
L∏

k=1

p(yk|x, sk, βk). (3)

The independent Gaussian model in Eq. (3) is used in most of 
the existing super-resolution methods [26,17,20,7,8].

3.2. A non-stationary image prior combination

In this paper the following prior distribution, on the unknown 
HR x image, will be used

p(x|η) =
d∏

j=1

p(z j|η j) =
d∏

j=1

P N∏
i=1

p
(
z j(i)|η j(i)

)
, (4)

with

p
(
z j(i)|η j(i)

) ∝
√

η j(i) exp

(
−1

2
η j(i)

∥∥z j(i)
∥∥2

)
. (5)

In (4) z = {z1, .., zd} is the set of d unknown filtered images 
z j = F jx, with F j being convolution operators and z j(i) the i com-
ponent of the z j filtered image vector. As previously stated, our 
prior model takes the form of a general combination of d linear 
filters. We can use for F j first order difference (f.o.d.) operators, in 
different directions, although we are not limited to it.

In (4) η = {η1, .., ηd} is the set of unknown prior parameter 
vectors η j , which has to be estimated, and η j(i) is the i compo-
nent of η j . Through the presence of the prior parameter η j(i) in 
Eq. (5), our prior model becomes spatially adaptive. Notice that in 
Eq. (4) we are approximating the partition function as an indepen-
dent product of partition functions.
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3.3. Modeling the registration parameters

In this paper the uncertainties in the registration parameters 
are modeled as in our previous paper [10]. We denote by {s̄p}
the estimate of {sk} = {s1, . . . , sL} obtained from LR observations 
in a preprocessing step, using registration algorithms, such as the 
ones reported in [27]. As these estimates are in general inaccurate, 
we model the motion parameters as stochastic variables following 
Gaussian distributions with a priori means the preliminary motion 
parameters s̄p

k , that is,

p
({sk}

) =
L∏

k=1

N
(
sk

∣∣s̄p
k ,�

p
k

)
, (6)

with �p
k the a priori covariance matrix. The parameters s̄p

k and �p
k

incorporate prior knowledge about the motion parameters into the 
estimation procedure. If such knowledge is not available, s̄p

k and 
(�

p
k )−1 can be set to zero, which makes the observations solely 

responsible for the estimation process.

3.4. Hyperpriors on the hyperparameters

In this paper we assume flat hyperpriors for the η j(i) hyperpa-
rameters in Eq. (5). That is, p(η j(i)) ∝ const . For modeling the {βk}
hyperparameters in Eq. (3), we employ Gamma distributions

p
({βk}

) =
L∏

k=1

Γ
(
βk

∣∣a0
βk

,b0
βk

)
, (7)

where a0
βk

> 0 and b0
βk

> 0 are the shape and scale parameters, 
respectively. The hyperpriors are chosen as Gamma distributions 
since they are conjugate priors for the Gaussian distribution.

3.5. Joint model

Combining Eqs. (3), (4), (6) and (7) we obtain the following 
joint probability distribution

p(Θ,y) = p
(
y|x, {sk}, {βk}

)
p(x|η)p

({βk}
)
p
({sk}

)
p(η), (8)

where Θ = {η, x, {sk}, {βk}} denote the set of all unknowns.

4. Variational Bayesian inference

Bayesian inference is based on the posterior distribution p(Θ |
y) = p(Θ,y)

p(y)
. As p(y) cannot be obtained, we approximate p(Θ | y)

by the q(Θ) distribution using the Kullback–Leibler divergence. 
This is the well known variational approximation, which is very 
well described in [28] (see also [29,7,9]). Within the mean field 
approximation, q(Θ) is approximated by the distribution q(Θ) =∏

ζ∈Θ q(ζ ). For each ζ ∈ Θ where we assume that q(ζ ) is a de-
generate distribution, its value is obtained by calculating

ζ̂ = argmax
ζ

log q(ζ ) = argmax
ζ

〈
log p(Θ,y)

〉
Θζ

, (9)

where Θζ denotes the set Θ with ζ removed, and Eq(Θζ )[·] = 〈·〉Θζ . 
In the following, the subscript of the expected value will be re-
moved when it will be clear from the context. For non-degenerate 
distributions we have

q(ζ ) ∝ exp
(〈

log p(Θ,y)
〉
Θζ

)
. (10)

We assume a degenerate distribution only for η j(i), j =
1, . . . , d, i = 1, . . . , P N . From Eq. (10), we obtain for q(x)

q(x) ∝ exp
{〈

log
(
p
({yk}|x, {sk}, {βk}

))〉 + log
(
p(x|η̂)

)}
, (11)
{sk,βk}
which is the multivariate Gaussian

q(x) = N (x|x̂,�x), (12)

with

�−1
x =

d∑
j=1

Ft
j diag(η̂ j)F j +

L∑
k=1

〈βk〉
〈
B(sk)

tB(sk)
〉
sk

, (13)

and

x̂ = �x

L∑
k=1

〈βk〉
〈
B(sk)

〉t
sk

yk, (14)

this Eq. (14) can be solved iteratively utilizing a Conjugate Gradient
method.

Also, from Eq. (10), we find the following distribution for the 
registration parameters

q(sk) ∝ exp

[
−1

2

(〈βk〉
〈∥∥yk − Bk(sk)x

∥∥2〉
x

+ (
sk − s̄p

k

)t(
�

p
k

)−1(
sk − s̄p

k

))]
. (15)

The explicit form of the distribution q(x) in Eq. (12) depends 
on the expectation values 〈B(sk)

t B(sk)〉sk and 〈B(sk)〉sk , and q(sk)

in Eq. (15) depends on 〈‖yk − Bk(sk)x‖2〉x . These calculations are 
not straightforward since C(sk), in Eq. (1), is nonlinear with respect 
to sk . Therefore, we expand C(sk) using its first-order Taylor series 
around the mean value s̄k = 〈sk〉 = (θ̄k, ̄ck, ̄dk)

T of the distribution 
q(sk), in Eq. (15); details can be found in [10].

4.1. Estimation of the hyperparameter distributions

Using Eq. (9), the following values are obtained for the compo-
nents of η̂ j in Eq. (13),

η̂ j(i) = 1

〈z2
j (i)〉x

, (16)

with

〈
z2

j (i)
〉
x = x̂tFt

jJ
iiF j x̂ + tr

(
�xFt

jJ
iiF j

)
, (17)

where Jii is a single-entry P N × P N matrix with zeros everywhere 
except at the entry (i, i), which is equal to one. In this paper,
�x in Eq. (17) is calculated by applying the Jacobi approximation.

Finally we obtain the distributions for the hyperparameters 
{βk}, which are found to be Gamma distributions. For the {βk} hy-
perparameters, using Eq. (10), we obtain

q(βk) ∝ β

N
2 −1+a0

βk
k exp

[
−βk

(
b0

βk
+ 〈‖yk − Bk(sk)x‖2〉x,sk

2

)]

(18)

with

〈βk〉 = N + 2a0
βk

‖ykB(sk)x̂‖2 + tr(�xBt(sk)B(sk)) + 2b0
βk

. (19)

We summarize below the proposed iterative SR Algorithm 1, which 
comprises the estimation of the HR image, registration parameters, 
HR prior parameters and model hyperparameters:
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Algorithm 1 Variational Bayesian super-resolution.

Require: Values {a0
βk

}, {b0
βk

}, {s̄p
k }, {�p

k } and initial HR image value x̂(0) .

Set n = 1, q(0)(x) = N (x|x(0), 0) and q(0)({sk}) = p({sk}), with p({sk}) given in 
Eq. (6).
while convergence criterion is not met do

1. Given q(n−1)(x) and q(n−1)({sk}), obtain q(n)({βk}) using Eq. (18).
2. Given q(n−1)(x) and q(n)({βk}), obtain q(n)({sk}) using Eq. (15).
3. Given q(n−1)(x), compute η̂(n) using Eq. (16).
4. Given q(n)({βk}), q(n)({sk}) and η̂(n) , obtain q(n)(x) using Eq. (12).

5. Experimental results

A number of experiments, both on simulated and real images, 
has been carried out in order to assess the performance of the 
new proposed method and compare it with: 1) bicubic interpola-
tion (denoted by BBC), 2) the SR method in [12] (denoted by ZMT), 
which is based on backprojection with median filtering, 3) the 
robust SR method in [13] (denoted by RSR), which is based on bi-
lateral TV priors, 4) the variational SR method using a TV prior in 
[9] (denoted by TV), 5) the variational SR method in [10] based on 
a combination of �1 and SAR priors (denoted by L1S).

In all experiments reported below, the observed images have 
been normalized to the interval [0, 1]. The initial HR image value 
x̂(0) in Algorithm 1 has been obtained from the bicubic interpo-
lation of observation y1. The inverse covariance matrices (�p

k )−1

are set to zero, that is, no prior information is utilized on the 
uncertainty of the motion vectors. Setting a0

βk
= 0 and b0

βk
= 0

in Eq. (19), we have used non-informative prior for βk in all 
experiments. The rest of the algorithm parameters are automat-
ically calculated using the algorithmic steps in Algorithm 1. As 
convergence criterion we used ‖x̂(n) − x̂(n−1)‖2/‖x̂(n−1)‖2 < 10−5, 
where x̂(n) and x̂(n−1) are the HR image estimates at itera-
tions n and (n − 1), respectively. In this paper, color LR images 
are first converted to grayscale, then Algorithm 1 is applied to 
them and the obtained motion parameter values {ŝk} retained. 
Next Algorithm 1 is separately applied to each color channel us-
ing those motion parameters, without executing the registration 
step 2.

5.1. Experiments with simulated images

Let us first present the experimental results obtained using sim-
ulated images. Synthetic sequences with five LR images have been 
generated from the 132 × 132 images shown in Fig. 1, through 
warping, blurring and downsampling by a factor 

√
P = 2. The 

warping of the images in the sequences consisted of translations of 
(0, 0)t , (0, 0.5)t , (0.5, 0)t , (1, 0)t and (0, 1)t pixels respectively, and 
rotations of 0◦ , 3◦, −3◦, 5◦ and −5◦ . A 3 × 3 uniform PSF has been 
used for blurring. The LR images obtained after warping, blurring 
and downsampling operations are further degraded by additive 
white Gaussian noise at SNR levels of 10 dB, 15 dB, 20 dB, 25 dB 
and 30 dB. At each SNR level, ten noise realizations per sequence 
have been obtained. The quality of the reconstructed HR images 
has been quantitatively measured in terms of the Peak Signal-to-
Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) 
[30]. The SSIM index measures visual similarity between images, 
while PSNR measures denoising effectiveness.

The proposed method uses the prior distribution on the HR im-
age in Eq. (4), which is based on a general combination of image 
filters {F j}. We have used the following first order difference (f.o.d.) 
filters: horizontal ( f 1), vertical ( f 2), upper-right diagonal ( f 3), 
and lower-right diagonal ( f 4). We have also considered the second 
order Laplacian filter ( f 5), and the following second order difference
(s.o.d.) filters: horizontal ( f 6), vertical ( f 7), upper-right diagonal 
( f 8), and lower-right diagonal ( f 9). Finally, the first order Sobel 
horizontal ( f 10), and vertical ( f 11), and the Prewitt horizontal 
Fig. 1. Images used in the synthetic experiments.

( f 12), and vertical ( f 13) filters, have also been considered. We il-
lustrate the observed dependence of the method performance on 
the selected combination of image filters {F j}, by presenting next 
results for the image in Fig. 1(c).

Fig. 2 shows a quantitative comparison in terms of grayscale 
PSNR and SSIM, of the reconstructions of the image in Fig. 1(c), 
at different noise levels, obtained using different first order fil-
ter combinations. The filter combinations compared in Fig. 2, are 
coupled by considering the distance between the positive and neg-
ative values of the filters: distance 1 1) { f 1, f 2}, distance 

√
2

2) { f 3, f 4}, distance 2 3) { f 10, f 11}, and also the filters 4) 
{ f 12, f 13}. It can be observed in Fig. 2, how the method per-
formance degrades as the distance between the values of filters 
increases. Fig. 3 shows a similar comparison for second order fil-
ters, with distances between positive and negative values of the 
corresponding first order filter 1 pixel for 1) { f 6, f 7}, 

√
2 for 2) 

{ f 8, f 9}, and 3) { f 5}. The performance of the proposed method 
when using second order filters also decreases as the distance be-
tween positive and negative values increases.

The results shown in Figs. 2 and 3 reveal that the proposed 
method performs better for the first order filters than for the sec-
ond order ones. Fig. 4 shows a comparison of the results obtained 
using first order–second order combinations. It can be concluded 
from a comparison between Figs. 2, 3, and 4, that combining first 
and second filters slightly deteriorates the performance in PSNR 
terms, while slightly improving SSIM performance. A detailed ob-
servation of the distances between compared pixels of the filters 
combinations in Fig. 4, also shows that when combining first and 
second order filters, performance degrades as distance increases, 
and that the distances corresponding to the first order filters have 
more influence on the method performance, than the correspond-
ing to the second order ones.

Fig. 5 shows a quantitative comparison in terms of grayscale 
PSNR and SSIM, of the reconstructions of the images in Fig. 1
at different noise levels, obtained using the following filter com-
binations: 1) NF2 = { f 1, f 2}, 2) NF3 = { f 1, f 2, f 5}, 3) NF4 =
{ f 1, f 2, f 3, f 4} and 4) NF5 = { f 1, f 2, f 3, f 4, f 5}.
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Fig. 2. (a) PSNR and (b) SSIM for the reconstruction of the image in Fig. 1(c) with our proposed method, using different first order filters combinations: 1) { f 1, f 2}, 
2) { f 3, f 4}, 3) { f 10, f 11}, and 4) { f 12, f 13}.

Fig. 3. (a) PSNR and (b) SSIM for the reconstruction of the image in Fig. 1(c) with our proposed method, using different second order filters combinations: 1) { f 6, f 7}, 
2) { f 8, f 9}, and 3) { f 5}.

Fig. 4. (a) PSNR and (b) SSIM for the reconstruction of the image in Fig. 1(c) with our proposed method, using different first order and second order filters combinations: 
1) { f 1, f 2, f 6, f 7}, 2) { f 1, f 2, f 8, f 9}, 3) { f 1, f 2, f 5}, 4) { f 3, f 4, f 6, f 7}, 5) { f 3, f 4, f 8, f 9}, and 6) { f 3, f 4, f 5}.
It can be observed in Fig. 5, that the best overall performance 
both in PSNR and SSIM terms is achieved by our proposed method 
with the first and second order filter combination NF3. If only 
PSNR is considered, the L1S combination of sparse and non-sparse 
prior models of [10] obtains similar results, but the proposed 
method performs better than the method in [10] in SSIM terms. 
All the filter combinations considered in Fig. 5 for our method 
give good results, except for the NF2 filter combination, which 
performs very well at low noise levels, but worse at high noise 
levels.
The difference between our proposed method and the others is 
higher in terms of SSIM than of PSNR. The results obtained using 
our proposed method, TV, and L1S, are better than the obtained 
using BBC and ZMT. The RSR method performs very well in PSNR 
terms, but it achieves the worst SSIM performance for this syn-
thetic image set, specially for high noise levels.

5.2. Experiments with real images

Let us finally perform a qualitative comparison of the results 
obtained in the SR reconstruction of real LR image sequences. The 
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Fig. 5. Mean PSNR and SSIM values, and their standard deviations, at different noise levels, corresponding to the proposed method using NF2, NF3, NF4 and NF5 prior 
combinations, and to the other methods: (a)–(b) for the image in Fig. 1(a), (c)–(d) for the image in Fig. 1(b), (e)–(f) for the image in Fig. 1(c) and (g)–(h) for the image in 
Fig. 1(d).
LR image sequences have been obtained using a Sony Nex5 digital 
camera. Three 19 image sequences of 100 × 100 RAW images have 
been obtained using 6400 ISO sensitivity. The real observed LR se-
quences have been first superresolved by a factor 

√
P = 2, using 

the different methods, assuming a 5 × 5 Gaussian integration PSF 
of variance 1.
Figs. 6, 7, and 8 show, respectively for the three LR sequences, 
the first four observations, and the HR reconstructions obtained 
using different methods. The reconstructions obtained using RSR, 
ZMT, TV, L1S and our proposed method, with the NF3 filter combi-
nation, are shown. The reconstructions obtained using ZMT and the 
proposed method are smoother, and visually more pleasant than 
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Fig. 6. Real sequence of 19 LR images, superresolved by a factor 
√

P = 2. (a) First four LR observations. HR reconstruction using the following methods: (b) RSR, (c) ZMT, 
(d) TV, (e) L1S and (f) NF3.

Fig. 7. Real sequence of 19 LR images, superresolved by a factor 
√

P = 2. (a) First four LR observations. HR reconstruction using the following methods: (b) RSR, (c) ZMT, 
(d) TV, (e) L1S and (f) NF3.
the obtained using RSR, TV and the L1S combination of sparse and 
non-sparse prior models of [10]. This is consistent with the results 
obtained for the synthetic images set, which were better in SSIM 
terms for our method than for the others. It can be observed in 
Figs. 6, 7, and 8, that our method preserves image details better 
than ZMT.

Experiments with a lower number of observations have also 
been performed. Fig. 9 shows the results obtained using the dif-
ferent methods for 

√
P = 2, on the sequence obtained by taking 

only the first four LR images of the sequence of Fig. 6. As ex-
pected, the restorations are worse with 4 than with 19 LR obser-
vations, but this decrease of quality affects less to our proposed 
method.

Finally the first 8 images of the sequence of Fig. 8 have been su-
perresolved by a factor 

√
P = 4, using the different methods, and 

the results shown in Fig. 10. Once again, the proposed method sup-
presses noise better than the other methods, and provides superior 
reconstructions.

We have used MATLAB implementations of all methods con-
sidered our code can be downloaded from http :/ /decsai .ugr.es /pi /

http://decsai.ugr.es/pi/superresolution/software.html
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Fig. 8. Real sequence of 19 LR images, superresolved by a factor 
√

P = 2. (a) First four LR observations. HR reconstruction using the following methods: (b) RSR, (c) ZMT, 
(d) TV, (e) L1S and (f) NF3.

Fig. 9. Real sequence of 4 LR images, superresolved by a factor 
√

P = 2. (a) The four LR observations. HR reconstruction using the following methods: (b) RSR, (c) ZMT, (d) TV, 
(e) L1S and (f) NF3.
superresolution /software .html. All experiments have been run on 
an @Intel(R) Core(TM) i7CPU 950 at 3.07 GHz processor. The effi-
ciency of the proposed method depends on the characteristics of 
the Bk system matrix of Eq. (1), and on the number of LR ob-
servations. For the simulated image experiments in this section, 
an iteration takes 35.94 sec. of CPU time, and 5 iterations were 
necessary. For 

√
P = 2 each iteration took 28.3 secs. and 5 iter-

ations were necessary when using 4 LR observations, 231.2 secs. 
and 4 iterations were necessary when using 19 LR observations. 
Notice how the CPU time depends on the number of observations 
used.
6. Conclusions

In this paper the SR image registration and reconstruction prob-
lem has been studied within the Bayesian framework, using a 
general non-stationary HR image prior combination. A new SR 
method has been proposed, which automatically estimates all the 
problem unknowns using variational techniques. The influence on 
the proposed method of the selected prior combination has been 
analyzed. The proposed method outperforms state of the art SR 
methods, in the reconstruction of both synthetic and real LR image 
sequences.

http://decsai.ugr.es/pi/superresolution/software.html
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Fig. 10. Real sequence of 8 LR images, superresolved by a factor 
√

P = 4. (a) The eight LR observations. HR reconstruction using the following methods: (b) RSR, (c) ZMT, 
(d) TV, (e) L1S and (f) NF3.
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