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A B S T R A C T

Parameter retrieval and model inversion are key problems in remote sensing and Earth observation. Currently,
different approximations exist: a direct, yet costly, inversion of radiative transfer models (RTMs); the statistical
inversion with in situ data that often results in problems with extrapolation outside the study area; and the most
widely adopted hybrid modeling by which statistical models, mostly nonlinear and non-parametric machine
learning algorithms, are applied to invert RTM simulations. We will focus on the latter. Among the different
existing algorithms, in the last decade kernel based methods, and Gaussian Processes (GPs) in particular, have
provided useful and informative solutions to such RTM inversion problems. This is in large part due to the
confidence intervals they provide, and their predictive accuracy. However, RTMs are very complex, highly
nonlinear, and typically hierarchical models, so that very often a single (shallow) GP model cannot capture
complex feature relations for inversion. This motivates the use of deeper hierarchical architectures, while still
preserving the desirable properties of GPs. This paper introduces the use of deep Gaussian Processes (DGPs) for
bio-geo-physical model inversion. Unlike shallow GP models, DGPs account for complicated (modular, hier-
archical) processes, provide an efficient solution that scales well to big datasets, and improve prediction accu-
racy over their single layer counterpart. In the experimental section, we provide empirical evidence of perfor-
mance for the estimation of surface temperature and dew point temperature from infrared sounding data, as well
as for the prediction of chlorophyll content, inorganic suspended matter, and coloured dissolved matter from
multispectral data acquired by the Sentinel-3 OLCI sensor. The presented methodology allows for more ex-
pressive forms of GPs in big remote sensing model inversion problems.

1. Introduction

Estimating variables and bio-geophysical parameters of interest
from remote sensing images is a central problem in Earth observation
(Liang, 2008; Rodgers, 2000; Gómez-Chova et al., 2011). This is usually
addressed through a very challenging model inversion problem, which
involves dealing with complex nonlinear input–output relations. In
addition, very often, the goal is to invert metamodels, that is, combi-
nations of submodels that are coupled together. In remote sensing, ra-
diative transfer models (RTMs) describe the processes which occur at
different scales (e.g. at leaf, canopy and atmospheric levels) with dif-
ferent complexities. The overall process is thus complicated, nonlinear
and hierarchical, with different sources of uncertainty propagating
through the system.

The inversion of such highly complex models has been attempted
through several strategies. One standard approach consists on running a
reasonable number of RTM simulations which generates the so called
look-up tables (LUTs). Then, for a new input observation, one assigns
the most similar parameter in the LUT. A second, more direct approach
involves the direct physics-based inversion, which results in complex
optimization problems. An alternative hybrid approach comes from the
use of statistical approaches to perform the inversion using the LUT
simulations. A review of approaches can be found in (Verrelst et al.,
2012; Gómez-Chova et al., 2011). In recent years, the remote sensing
community has turned to this type of statistical hybrid approaches for
model inversion (Gómez-Chova et al., 2011), mainly because of effi-
ciency, versatility and the interesting balance between its data driven
and physics-aware nature (Verrelst et al., 2015).
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Approximating arbitrary nonlinear functions from data is a solid
field of machine learning where many successful methods are available.
Data-driven statistical learning algorithms have attained outstanding
results in the estimation of climate variables and related geo-physical
parameters at local and global scales (Camps-Valls and Bruzzone, 2009;
Gómez-Chova et al., 2011). These algorithms avoid complicated as-
sumptions and provide flexible non-parametric models that fit the ob-
servations using large heterogeneous data. The fact is that a plethora of
regression algorithms have been used. There exist traditional models
such as random forests (Tramontana et al., 2016; Jung et al., 2017) and
standard feed-forward neural networks (Blackwell, 2005; Blackwell
et al., 2008; Camps-Valls et al., 2012) as well as convolutional neural
networks (Malmgren-Hansen et al., 2019; Ma et al., 2019).

In the last decade, more emphasis has been put on kernel methods in
general (Camps-Valls and Bruzzone, 2009; Rojo-Álvarez et al., 2018),
and Gaussian Processes (GPs) in particular. There is a considerable
amount of reasons for this. Firstly, GPs constitute a probabilistic
treatment of regression problems leading to an analytical expression for
the predictive uncertainty which is an attractive feature (Verrelst et al.,
2013; Schneider et al., 2014). This also allows for effective error pro-
pagation from the inputs to the outputs as has recently been shown in
(Johnson et al., 2019). Furthermore, GPs are not pure black box models
because, through the use and design of appropriate covariance func-
tions, one can include prior knowledge about the signal characteristics
(e.g. nonstationarity, heteroscedasticity, etc.). The covariance hy-
perparameters are learned (inferred) from data so that the model is
interpretable. For instance, by using the automatic relevance determi-
nation (ARD) covariance function (Verrelst et al., 2016), an automatic
feature ranking can be derived from the trained model, thus leading to a
explanatory model. These theoretical and practical advantages have
recently translated to a wider adoption by the geoscience and remote
sensing community in many applications and products, such as the
spatialization of in situ measurements and upscaling of carbon, energy
and water fluxes (Jung et al., 2017). Gaussian Processes have provided
very good results for retrieval in all Earth science domains, be it land
and vegetation parameter retrieval (Furfaro et al., 2006; Rivera-Caicedo
et al., 2017; Camps-Valls et al., 2018; Gustau Camps-Valls and
Sejdinovic, 2019), ocean and water bodies modeling (Ruescas et al.,
2018a; Sarkar et al., 2019), cryosphere ice sheet modeling and process
emulation (Wernecke et al., 2019), or atmospheric parameter retrieval
(Camps-Valls et al., 2012).

Despite being successful in many different applications, standard
GPs have two important shortcomings we want to highlight:

• Computational cost. A standard GP, which stores and uses all the data
at once, exhibits a high computational cost. These GPs scale cubi-
cally with the number of data points when training, and quad-
ratically when doing prediction. This hampers their adoption in
applications which involve more than just a few thousand input
points.

• Expressiveness. GPs are shallow models,1 so while accurate and
flexible, their expressive power is limited when dealing with hier-
archical structures. This is even worse due to the (ab) use of stan-
dard kernel functions like the exponentiated quadratic family (e.g.
the RBF kernel is infinite-differentiable and tends to oversmooth
functions).

The first limitation is typically addressed through sparse GPs
(Snelson and Ghahramani, 2006), which have already been used in
remote sensing applications (Morales-Alvarez et al., 2017). In order to
additionally tackle the second limitation, in this paper we introduce the

use of Deep Gaussian Process (DGP) (Salimbeni and Deisenroth, 2017)
to the field of remote sensing for the first time. A DGP is a cascaded and
hierarchical model that captures more complex data structures, while
still being able to scale well to millions of points. Our proposal is not
incidental: the complexity of the processes involved in geosciences and
remote sensing leads to highly hierarchical and modular models to be
inverted. This calls for the application of the most innovative available
techniques as shown in the following example. Fig. 1 compares the use
of a standard GP and deep GP to model a hurricane structure. It be-
comes clear that, unlike GPs, the DGP can cope with the whirl structure
efficiently by combining different latent functions hierarchically.

DGPs were originally introduced in (Titsias and Lawrence, 2010;
Damianou and Lawrence, 2013), and further analyzed in (Damianou,
2015). In (Svendsen et al., 2018), we outlined the potential use of DGPs
for surface level dew point temperature retrieval from sounding data. In
this paper we extend that work in several ways: 1) we focus the analysis
on large scale remote sensing problems, aiming for a complete treat-
ment of the two aforementioned standard GP shortcomings; 2) provide
a deeper formalization and more intuitive insight on the model for the
practitioner; 3) give more empirical evidences of performance in ocean
and land parameter retrieval applications, and using different sensory
data (optical sensors and microwave sounders); and 4) assess accuracy
and robustness to sample sizes and problem dimensionality versus both
standard and sparse implementations of GPs.

In short, this work exposes the DGP methodology to the remote
sensing community for the first time and for a wide range of applica-
tions. The proposed DGP appears to be an excellent approach for model
inversion. Moreover, sticking to the GP framework is very convenient.
GPs are based on a solid Bayesian formalism and inherit all properties
of a probabilistic treatment: possibility to derive not only point-wise
predictions but also confidence intervals, perform error quantification
and uncertainty propagation easily, and optimize hyperparameters by
log-likelihood maximization.

The remainder of the paper is organized as follows. Section 2 es-
tablishes notation, reviews the probabilistic modeling and inference of
GP and sparse GP, and presents the deep GP model - mathematical
details on modeling, inference, and prediction are provided in
Appendices A, B, and C. Section 3 provides the experimental results. We
illustrate performance in prediction of surface temperature and dew
point temperature (related to relative humidity) from superspectral
infrared sounding data (Aires, 2002; Siméoni et al., 1997; Huang et al.,
1992); as well as for the estimation of predicting chlorophyll content,
inorganic suspended matter, and coloured dissolved organic matter
from simulated multispectral data acquired by Sentinel-3 OLCI sensor.
Finally, Section 4 concludes the paper with summarizing remarks.

2. Probabilistic model and inference

In this section we provide a brief and graphical introduction to
modeling and inference for Gaussian Processes (GP) and Deep Gaussian
Processes (DGP) in supervised regression problems. We explain and
graphically show the hierarchical structure of DGPs, and also explain
how both GPs and DGPs, make use of sparse approximations to perform
inference tasks. Mathematical details are deferred to appendices.

Gaussian Processes are non-parametric probabilistic state-of-the-art
models for functions, and are successfully used in supervised learning.
In geostatistics, GPs for regression is usually referred to as kriging. The
main strength of GPs is their accurate uncertainty quantification, which
is a consequence of its sound Bayesian formulation, yielding well-cali-
brated predictions and confidence intervals (Rasmussen and Williams,
2006; Damianou, 2015).

More specifically, for input–output data × =yx{( , ) }i i
d

i
n

1, a GP
models the underlying dependence with latent variables

= =f f x{ ( ) }i i i
n

1 that jointly follow a Gaussian distribution
=f f 0 Kp( ) ( | , ). The kernel matrix = kK x x( ( , ))i j i j, encodes the prop-

erties (e.g. smoothness) of the modeled functions. The most popular

1 It can be shown that, in the limit and under some mild assumptions, a GP
corresponds to a single-hidden layer neural network with infinite neurons
(Neal, 1996).
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standard kernel is the squared exponential one (or RBF), which is given
by =k x y x y( , ) ·exp( || || /(2 ))2 2 , with (variance) and (length-
scale) called the kernel hyperparameters. Finally, in regression pro-
blems, the observation model of the outputs yi given the latent variables
fi is usually defined by the Gaussian =y f y fp( | , ) ( | , )i i i i

2 2 . The var-
iance 2 is estimated during the training step, along with the kernel
hyperparameters, by maximizing the marginal likelihood of the ob-
served data.

Since the Gaussian prior fp( ) is conjugate to the Gaussian observa-
tion model, one can integrate out f and compute the marginal like-
lihood yp( ) and the posterior f yp( | ) in closed form (parameters are
omitted for simplicity) (Rasmussen and Williams, 2006). However, this
requires inverting the ×n n matrix +K I( )2 , which scales cubically,

n( )3 where n is the number of training data points. This constraint
makes GP prohibitive for large scale applications, with =n 104 usually
being considered the practical limit (Morales-Álvarez et al., 2017).
Here, sparse GP approximations become the preferred pathway to scale
the desirable properties of GPs to larger datasets (Snelson and
Ghahramani, 2006; Hensman et al., 2013; Bauer et al., 2016; Morales-
Álvarez et al., 2017), and they will be reviewed in Section 2.1. Inter-
estingly, we will see that DGPs preserve the scalability of sparse GP
approximations (while achieving a higher expressiveness).

Additionally, GPs are limited by the expressiveness of the kernel
function. Ideally, complex kernels could be tailored for different ap-
plications (Rasmussen and Williams, 2006). However, this is usually
unfeasible in practice, as it requires a thorough application-specific
knowledge. Moreover, it usually comes with a large amount of hy-
perparameters to estimate, which may cause overfitting. As a result,
standard general-purpose kernels are normally considered in practice.
Alternatively, DGPs allow for modeling very complex data through a
hierarchy of GPs that only use simple kernels with few hyperparameters
as building blocks (like the aforementioned RBF one, which will be used
here). Fig. 2 provides an intuition on this, and DGPs will be introduced
in Section 2.2.

2.1. Sparse GP approximations

In the last years, many different sparse GP approximations have
been introduced in order to cope with increasingly large datasets
(Snelson and Ghahramani, 2006; Hensman et al., 2013; Bauer et al.,
2016; Morales-Álvarez et al., 2017). Most of them resort to the notion of
inducing points, a reduced set of m n latent variables which the

inference is based on. More specifically, these inducing points
= …u uu ( , , )m1 are GP realizations at the inducing locations
= …Z z z{ , , }m

d
1 , just like f is at the inputs = …X x x{ , , }n1 . All these

sparse methods are grouped in two big categories, depending on where
exactly the approximation takes place: in the model definition or in the
inference procedure (Bauer et al., 2016). Both types of sparse GP will be
compared against the deep GP in the experiments.

In the first group, the Fully Independent Training Conditional (FITC)
(Snelson and Ghahramani, 2006) is the most popular approach. It uses
the inducing points to approximate the GP model, and then margin-
alizes them out and perform exact inference. This yields a reduced

nm( )2 computational complexity (linear in the dataset size). Mathe-
matical details for FITC are included in Appendix A.

In the second group, the Scalable Variational Gaussian Process (SVGP)
(Hensman et al., 2013) is one of the most widespread methods. It
maintains the exact GP model, and uses the inducing points to in-
troduce the approximation in the inference process through variational
inference (Blei et al., 2017). The mathematical details are included in
Appendix B (which is devoted to DGPs because, as we explain in next
paragraph, SVGP is equivalent to DGP with one layer). Since SVGP does
not modify the original model, it is less prone to overfitting. However, if
the posterior distribution is not well approximated within the varia-
tional scheme, its performance might become poorer. Therefore, both
groups of methods are complementary, and in the machine learning
community none of them is considered to consistently outperform the
other (Bauer et al., 2016). An advantage of SVGP over FITC is its fac-
torization in mini-batches, which allows for even greater scalability. In
this case, the computational cost is n m( )b

2 , with nb the mini-batch
size.

Interestingly, the second paradigm (exact model plus approximate
inference) has proven to translate well to hierarchical concatenations of
GPs, yielding the inference process for DGPs that is presented in next
section. This justifies that SVGP will be equivalently referred to as DGP
( =L 1) hereafter. This is also graphically depicted in Fig. 3. Moreover,
as explained before, Fig. 3 shows that u is integrated out in FITC after
the model approximation, whereas it is maintained in DGP ( =L 1),
where an (approximate) posterior distribution is calculated for it. As a
general summary, Table 1 shows the main differences between the four
GP-based methods that will be used in this work (standard GP, sparse
GP FITC, sparse GP SVGP, and deep GP), which are also represented in
Fig. 3.

Fig. 1. Example of shallow versus deep GPs.
Modeling a hurricane field from the coordinates
using 1000 randomly selected training points in
both cases. The GP prediction [top left] is too
blurry and does not capture the whirl data
structure (the scale of feature relations changes
along the hurricane ridges). The DGP model [top
middle] uses only two latent functions in its first
layer. The first latent function f1 captures lower
frequencies [bottom left] –similarly to the GP
map– and the f2 [bottom middle] focuses on the
hurricane structure, while their combination
leads to an overall predictive function [top
middle] that better approximates the observa-
tion [top right].
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2.2. Deep Gaussian processes

In standard (single-layer) GPs, the output of the GP is directly used
to model the observed response y . However, this output could be used
to define the input locations of another GP. If this is repeated L times,
we obtain a hierarchy of GPs that is known as a Deep Gaussian Process
(DGP) with L layers. This is analogous to the structure of deep neural
networks, which are a cascade of generalized linear models (Damianou,
2015, Chapter 6). Intuitively, this stacked composition will be able to
capture more complex patterns in the training data, recall Fig. 2. See
also Fig. 3 for a graphical depiction of the DGP model.

DGPs were first introduced in (Damianou and Lawrence, 2013),
where the authors performed approximate variational inference ana-
lytically. In order to achieve this tractability, in each layer they define a
set of latent variables which end up inducing independence across layers
in the posterior distribution approximation. This uncorrelated posterior
fails to express the complexity of the deep model, and is not realistic in
practice. To overcome this problem, we present the recent inference
procedure of (Salimbeni and Deisenroth, 2017), which keeps a strong
conditional dependence in the posterior by marginalizing out the
aforementioned set of latent variables. In exchange, analytic tractability
is sacrificed. However, we will see that the structure of the posterior
allows one to efficiently sample from it and use Monte Carlo approx-
imations. As will be justified in Appendix B, this approach is called
Doubly Stochastic Variational Inference (Salimbeni and Deisenroth,
2017).

DGPs can be used for regression by placing a Gaussian likelihood
after the last layer. For notation simplicity, in the sequel the dimensions
of the hidden layers will be fixed to one (this can be generalized
straightforwardly, see both approaches (Damianou and Lawrence,
2013; Salimbeni and Deisenroth, 2017)). But exact inference in DGPs is
intractable (not only computationally expensive as in GPs), as it in-
volves integrating out latent variables that are used as inputs for the
next layer (i.e. they appear inside a complex kernel matrix). To over-
come this, m inducing points ul at inducing locations zl 1 are introduced
at each layer l. Interestingly, we will see that this sparse formulation
also makes DGP scale well to large datasets, transferring the scalability
of (shallow) sparse GP approximations like SVGP up to hierarchical
structures.

For observed X y{ , }, the regression joint DGP model is

=
=

y f u y f f u f z u zp( , { , } ) p( | ) p( | ; , )p( ; ).l l L L

l

L
l l l l l l

1
1

1 1 1

(1)

Here, =f X0 , and each factor in the product is the joint distribution
over f u( , )l l of a GP in the inputs f z( , )l l1 1 , but rewritten with the
conditional probability given ul. Notice that a semicolon is used to
specify the inputs of the GP. The rightmost plot in Fig. 3 shows a gra-
phical representation of the described model.

The Doubly Stochastic Variational Inference for this model is de-
tailed in Appendix B, see also (Salimbeni and Deisenroth, 2017). Basi-
cally, assuming that the inducing points are enough to summarize the
information contained in the training data, the model log-likelihood
can be lower bounded by a quantity (called the Evidence Lower Bound,
ELBO) that factorizes across data points. This allows for training in
mini-batches, just as in SVGP, which makes DGPs scalable to large
datasets. Finally, the prediction of the DGPs for a new test data point is
included in Appendix C.

2.3. Implementation and practicalities

Several implementations of DGPs are currently available. In our
experiments, we used the code integrated within GPflow (a GP frame-
work built on top of Tensorflow), which is publicly available at https://
github.com/ICL-SML/Doubly-Stochastic-DGP. We also used GPflow to
train the standard GP and both sparse GP approaches: FITC and SVGP

Fig. 2. Five random samples from a 1-dimensional DGP with three layers and
one hidden unit per layer. Each function sample uses the function of the same
color in the previous plot as input, except the function samples of the top plot
(L = 1) which use the actual values of x as input. Every layer is endowed with a
standard RBF kernel. This produces very smooth functions in the first layer (i.e.
a shallow GP, top plot). However, the concatenation of such simple GPs pro-
duces increasingly complex functions (middle and bottom plots, 2-layer and 3-
layer DGPs respectively). In particular, notice that DGP-3 captures sophisticated
patterns that combine flat regions with high-variability ones, which cannot be
described by stationary kernels. These ideas are behind the superiority of DGPs
in Fig. 1.

Fig. 3. Graphical representation of the four GP-based models used in this work.
The color indicates whether a variable is observed or must be estimated. In the
latter case, the intensity of the color represents the type of estimation: either
through a posterior distribution (light), or a point value (dark). (For inter-
pretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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(equivalently, DGP with =L 1). In addition, for the sake of reproduci-
bility, we provide illustrative code and demos in a Jupyter notebook at
http://isp.uv.es/dgp/. The used data is available upon request.

3. Experimental results

The problem of translating radiances to state parameters is chal-
lenging because of its intrinsic high nonlinearity and under-
determination. We consider two such relevant remote sensing problems
which together span both land and ocean application, namely (1) pre-
dicting surface level temperature and dew point temperature from in-
frared sounding data, and (2) predicting chlorophyll content, inorganic
suspended matter and coloured dissolved matter from S3-OLCI data.
Both problems involve inverting a model using large datasets of dif-
ferent sample size and dimensionality. In the first problem we compare
DGPs with (shallow) standard and sparse GPs, highlighting the benefit
of going deep in the GP setting. We also illustrate the predictive power
of the DGP as a function of depth and data scale. The second problem
aims at comparing the proposed model to another state-of-the-art
method in a challenging real application. Specifically, we compare the
performance of a DGP architecture with that of a state-of-the-art neural
network method described in (Hieronymi et al., 2017).

3.1. Surface temperature and moisture from infrared sounders

Temperature and water vapour are essential meteorological para-
meters for weather forecasting studies. Observations from high spectral
resolution infrared sounding instruments on board satellites provide
unprecedented accuracy of temperature and water vapour profiles.
However, it is not trivial to retrieve the full information content from
radiation measurements. Accordingly, improved retrieval algorithms
are desirable to achieve optimal performance for existing and future
infrared sounding instrumentation. The use of MetOp data observations
has an important impact on several Numerical Weather prediction
(NWP) forecasts. The Infrared Atmospheric Sounding Interferometer
(IASI) sensor is implemented on the MetOp satellite series. In particular,
IASI collects rich spectral information to derive temperature and
moisture (EUMETSAT, 2014; Tournier et al., 2002). EUMETSAT,
NOAA, NASA and other operational agencies are continuously devel-
oping product processing facilities to obtain L2 products from infrared
hyperspectral radiance instruments, such as IASI, AIRS or the upcoming
MTG-IRS. Nonlinear statistical retrieval methods, and in particular
kernel machines and Gaussian processes, have proven useful in retrieval
of temperature and dew point temperature (humidity) recently (Camps-
Valls et al., 2012; Laparra et al., 2015; Laparra et al., 2017). Here we
explore the use of deep Gaussian processes to retrieve surface tem-
perature and moisture from IASI data.

3.1.1. Data collection and pre-processing
The IASI instrument scans the Earth at an altitude of, approxi-

mately, 820 km. The instrument measures in the infrared part of the
electromagnetic spectrum (specifically between wavenumbers
645 cm−1 and 2760 cm−1, i.e. at wavelengths from 15.5 µm to 3.62
µm) at a horizontal resolution of 12 km over a swath width of, ap-
proximately, 2200 km. It obtains a global coverage of the Earth’s
surface every 12 h, representing 7 orbits in a sun-synchronous mid-
morning orbit, and the data obtained from it are used for meteor-
ological models. Each orbit consists of approximately 92000 samples
collected at a spatial resolution of 0.5 degrees. This represents more
than one million high dimensionality samples to be processed each
day.

Obtaining all the products provided by IASI with classical methods
requires an enormous computational load. Each original sample has
8461 spectral bands, but following previous recommendations (Camps-
Valls et al., 2012) we performed feature selection removing the most
noisy bands and keeping 4699. Then we projected the data into the top
50 principal components to combat the risk of overfitting when
working with such a high dimensional space. Each pixel is matched
with the temperature and dew point temperature at surface level esti-
mated using the European Center for Medium-Range Weather Forecasts
(ECMWF) model.

3.1.2. Experimental setup
We employed the data collected in 14 consecutive orbits within the

same day, namely the 1st of January 2013, by the IASI sensor. We
carried out two different experiments within this application. The first
one analyzes how the training data size influences the accuracy in all
the GP-related methods, including different depths for the DGP. The
second one compares the performance when partitioning the data ac-
cording to geographical information, such a biome and climate zones.
Additionally, it analyzes the quality of the predictive uncertainty. In the
following we refer to these two separate experiments as Experiment-1
and Experiment-2 respectively.

Experiment-1: In order to analyze the effect of the training data size,
we randomly shuffle the data, and select training sets of sizes 10000,
50000, 140000, and 250000, and a testing set of 20000. The root
mean squared error (RMSE) that will be reported is the average over
five repetitions of the experiment. The compared models are named as
follows:

DGP1–4: DGP described in Section 2.2 with 1–4 layers and 300
inducing inputs per layer. The number of hidden units per layer is 5.
Recall that DGP1 is equivalent to the sparse GP method SVGP, and the
computational cost of DGP is +…+n m D D( ( ))b

L2 1 .
FITC: Introduced in Section 2.1. Along with SVGP, it is the most

popular sparse GP approximation. The RBF kernel is used, and the code

Table 1
Summary of the main differences between the four GP-based models used in this work. VI = Variational
Inference.
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is taken from GPflow.2 The cost of training scales like nm( )2 , and the
number inducing points is 300.

GP-10 K: A standard GP using 10000 training points is provided as
a baseline. Recall that this is the limit of a standard GP in practice, since
it scales like n( )3 . Again, the RBF kernel and the GPflow library are
used.

Experiment-2: Out of the 14 available orbits we choose 11 for test
data, and partition it according to: climatic zone, the dominant biome
at the location of each data point, latitude, and whether a data point is
located at land or at sea. We then selected training data from the re-
maining 3 orbits (see Fig. 4) and trained one model from each family: A
standard, a sparse and a deep Gaussian Process. The models with their
sizes of training data were respectively: A standard GP with 10000, a
FITC with 250000 and a 3-layer DGP 250000 data points, the data size
reflecting the scalability of each training procedure. Comparing the
predictions on the test-dataset of ~106 points, we also perform an ana-
lysis of the provided estimates of predictive uncertainty.

3.1.3. Experimental results
The results of Experiment-1 are summarized in Fig. 5. We im-

mediately see that there is a clear difference in RMSE between the
shallow (GP-10 K, FITC, DGP1) and the improved deep models (DGP2-
4). As intuitively expected, the performance of all models increases with
additional training data. In this particular problem, it appears that the
majority of additional complex structure is learned by going from 104 to

×5 104 data points. As the DGP1 and FITC models are only approx-
imations of the standard GP, it is to be expected that they perform
worse when training on the same amount of data as the GP-10 K.
Nevertheless, when allowed to leverage more data, their fit improves
and outperforms the GP-10 K. It is not clear which of the two approx-
imations is superior, as it varies with the number of training data. This
agrees well with the literature, where this has been shown to depend on
the data at hand (Bauer et al., 2016). The fact that single-layer ap-
proximations can outperform a standard GP when given enough
training data underlines the importance of a model which is able to
handle large-scale data. We can see from the results that the DGP both
handles large datasets but also allows for higher model complexity and
thus a better fit of the data. From observing the performance of DGPs
with different numbers of layers, we can see that DGPs take advantage
of their hierarchical structure and achieve lower RMSE with increasing
depth. There is a considerable improvement when going from 2 to 3
layers, whereas the effect of going from 3 to 4 layers seems less sig-
nificant.

We now turn to Experiment-2 for the comparison of the three dif-
ferent GP types, trained according to what their computational cost
allows them: We compare the GP-10 K with a FITC and a 3-layer DGP
model both trained on 250000 data points. Comparing the predictions
on the ~106 test points (obtained from the 11 orbits shown in Fig. 4)

with the ground truth, we can analyze the quality of the predictive
uncertainty provided by the models. Each model provides, for a given
test point y , a Gaussian predictive distribution with a mean µ x( ) and a
variance x( )2 - see Appendix A for the expression for the GP and FITC
models, and Appendix C for the expression for DGPs. Scaling residuals
of the predictive mean by the predictive standard deviation we obtain a
variable = µ yx

x
( )

( ) which according to the model should follow a
(0, 1) distribution. Scaling the residuals from prediction on the 11 test

orbits in this way, we can make a Kernel Density Estimation (KDE) to
analyze their empirical distribution. The modes of the empirical dis-
tributions shown in Fig. 6 are shifted to the left, indicating a general
underestimation in the predictive models. If a model yields too low
uncertainties in general (over-confidence), the scaled residuals will
become very large and their empirical distributions would have long
tails. Conversely, if the model yields too high uncertainties as a rule, the
corresponding empirical distribution would be narrowly centered
around 0. It can be seen from Fig. 6 that the scaled residuals of the DGP
model follow a (0, 1) distribution closer than those of the other
models, implying that the DGP does the best job of determining the
predictive uncertainty correctly. This superior estimate of uncertainty
may be due to its higher hierarchical representation capability, ac-
counting for more complex structure in the data. In practice, this im-
plies improved estimates of how certain the model is about its results

Fig. 4. Orbit-wise partition into training and test set used for model comparison
when partitioning according to different biomes and climatic zones.

Fig. 5. Performance of the compared methods as a function of the training set
size for the surface dew point temperature (top) and temperature (bottom)
variables. The plots share the abscissa. The RMSE of the Deep Gaussian
Processes decreases with increasing depth. The DGPs outperform the FITC
which performs similarly to the GP-10K.

2 https://github.com/GPflow.
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when performing parameter retrieval.
For the problem of predicting surface temperature, the mean ab-

solute error (MAE) of the trained GP, FITC and DGP3 are shown in
Table 2 for different partitions of the test data (and the whole test set in
the last row). For the majority of partitions, DGP3 outperforms the
other models, showing that the positive effects of deeper structures are
not particular to a type of data, but extend across various meaningful
partitions. FITC in turn, being capable of leveraging more data as it
does not suffer from the cubic computational cost of the GP, outper-
forms GP which is trained on what is widely considered to be its upper

limit for the number of training points (~104). In tropical regions of the
northern hemisphere, DGP3 performs slightly less accurately than FITC,
as seen from the partition into climatic zones and different latitudes.
Differences in model assumptions and training schemes among machine
learning algorithms can cause the models to focus on slightly different
parts of the data. It can be concluded, however, that DGPs in general
provide much better performance than their shallow counterparts, both
due to their ability to leverage large amounts of data and to model more
complex data than their shallow counterparts.

3.2. Ocean color parameters from optical sensors

Since the first remote sensing images of the ocean were taken, ocean
color retrievals have been produced regularly with more or less accu-
racy, depending on the target parameter, in different regions of the
planet and for several water types. The water quality variables reported
as able to be estimated by remote sensing are: concentration of in-
organic suspended matter (ISM), turbidity, colored dissolved organic
matter (CDOM), concentration of chlorophyll-a (Chl-a), occurrence of
surface accumulating algal blooms, concentration of phycocyanin, and
Secchi depth, e.g. (Morel and Prieur, 1977; Bukata et al., 1995; Dekker
et al., 2001). Research was initially more focused on open ocean or
Case-1 waters - where optical properties are determined mainly by the
phytoplankton contribution - later with further development of algo-
rithms for more complex or Case-2 waters (Prieur and Sathyendranath,
2019). The development and validation of water quality algorithms,
many of them empirically developed and implemented using in situ data
from very specific locations, are the main topic of many of the pub-
lished investigations. The development of algorithms that do not re-
quire extensive in situ sampling for training has become an aim in re-
mote sensing of water quality (Kallio, 2006). For that reason, new
databases that combine in situ and derived simulated data with radia-
tive transfer models are becoming the training source of semi-analytic
and machine learning approaches, like neural networks or Bayesian
methods (Doerffer and Schiller, 2007; Hieronymi et al., 2017; Bayesian
methodology for inverting satellite ocean-color data, 2015). The ex-
periment carried out here uses one of those recently developed data-
bases, designed within the framework of a European Space Agency
(ESA) project called Case 2 eXtreme (C2X), in order to provide a da-
tabase for the training and validation of a neural net approach
(Hieronymi et al., 2017). A subset of this dataset has been already used
to test five machine learning approaches, including simple Gaussian
processes, for the determination of the three basic ocean colour para-
meters (Ruescas et al., 2018b).

3.2.1. Data collection and pre-processing
Within the framework of the Case 2 eXtreme (C2X) project

(Hieronymi et al., 2016), in-water radiative transfer simulations for
Sentinel 3-Ocean and Land Instrument (OLCI) were carried out with the
commercial software Hydrolight (Mobley and Sundman, 2013). For
more detail on the source of the simulations see (Hieronymi et al.,
2015; Kraseman et al., 2016). In the C2X project, the results of the
simulations were grouped into five subcategories: Case 1, Case 2 Ab-
sorbing (C2A), Case 2 Absorbing-Extreme (C2AX), Case 2 Scattering
(C2S) and Case 2 Scattering-Extreme (C2SX), depending on the optical
type of water with dominance of absorbing substances (more related to
Chl and CDOM) or scattering particles (ISM) in several magnitudes
(Hieronymi et al., 2016). Each subcategory consists of 20000 individual
combinations of concentration of water constituents, inherent optical
properties (IOPs), and sun positions. One part of the S3-OLCI simulated
dataset is put aside for validation purposes, with more than 4000
spectra per sub-category reserved exclusively for that. The C2X dataset
contains simulations in 21 bands, from which a subset of 11 bands is
used here for water quality parameter estimation as in (Hieronymi
et al., 2017). This large dataset was used for the training and testing of
the S3-OLCI Neural Network Swarm (ONNS) in-water processor

Fig. 6. KDE of residuals normalized by predictive standard deviation, which
according to the model should be standard normal distributed. The 3-layer DGP
avoids the underestimation seen in the other models, and provides better esti-
mates of predictive uncertainty.

Table 2
Mean absolute error (in [K]) and standard error for each model, for predicting
surface temperature using different partitions of the test results: land-vs-ocean,
climatic zones, per latitude and per biome over land. F and BF are short for
Forest and Broadleaf Forest, respectively. Details on climatic and biome classes
are given in Appendix D.

Land/Ocean GP-10 K FITC DGP3

Land 4.95 (0.02) 4.96 (0.02) 3.75 (0.02)
Ocean 2.10 (0.01) 1.96 (0.01) 1.59 (0.01)

Climatic zone

Tropical 1.90 (0.03) 1.84 (0.03) 1.88 (0.03)
Arid 5.17 (0.07) 5.02 (0.06) 4.72 (0.07)
Temperate 4.30 (0.18) 4.60 (0.19) 3.54 (0.18)
Cold 6.13 (0.20) 6.21 (0.20) 3.75 (0.16)
Polar 6.81 (0.06) 6.89 (0.06) 4.60 (0.07)

Latitude

+ +[ 40, 60] 2.09 (0.01) 2.01 (0.01) 1.84 (0.01)
+ +[ 20, 40] 2.52 (0.02) 2.22 (0.01) 2.20 (0.02)

+[0, 20] 1.64 (0.01) 1.45 (0.01) 1.58 (0.01)
[ 20, 0] 2.23 (0.01) 1.89 (0.01) 1.70 (0.01)
[ 40, 20] 3.96 (0.03) 4.04 (0.03) 3.26 (0.03)
[ 60, 40] 5.22 (0.03) 5.31 (0.03) 3.88 (0.02)

Biome

Needleleaf F 6.61 (0.11) 6.80 (0.11) 3.38 (0.08)
Evergreen BF 1.98 (0.03) 1.94 (0.03) 1.71 (0.02)
Deciduous BF 5.02 (0.10) 4.83 (0.10) 2.86 (0.09)
Mixed forest 7.45 (0.07) 7.48 (0.07) 5.01 (0.08)
Shrublands 6.44 (0.06) 5.66 (0.06) 4.16 (0.05)
Savannas 2.90 (0.04) 2.83 (0.04) 2.19 (0.03)
Grasslands 6.27 (0.06) 6.42 (0.06) 5.17 (0.07)
Croplands 4.87 (0.05) 4.90 (0.05) 3.44 (0.04)

Total 5.20 5.16 4.17
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(Hieronymi et al., 2017). ONNS is the result of blending various NN
algorithms, each optimized for a specific water type, covering the lar-
gest possible variability of water properties including oligotrophic and
extreme waters. Results from the DGP approach will be compared with
the ones achieved by ONNS as part of the validation process.

3.2.2. Experimental setup
In the present experiment we have selected all data available for the

five categories included in the C2X dataset. In total we have 105 records
that we use to train and test the DGP models. As already mentioned, 11
out of the 21 S3-OLCI wavebands are selected as inputs, from 400 to
885 nm. The aCDOM(440) nm absorption coefficient, using all subgroups
(C1, C2A, C2AX, C2S and C2SX), has a range between 0.098 and
20 m−1; while the Chl-a content range rises from 0.03 until 200 mg
m−3; inorganic suspended matter (ISM) ranges from 0.02 to more than
100 g m−3. This means that the dataset incorporates a broad range of
optical water combinations, making it an effective representation of
global ocean and coastal waters including extreme cases. The purpose
of this experiment is to generate the three most popular remote sensing
water quality variables (CDOM, Chl-a and ISM) per water category (C1,
C2A, C2AX, C2S and C2SX), using DGPs. Other works published on the
matter have already used GPs to calculate the three parameters with a
subset of the C2X dataset (Ruescas et al., 2018b; Ruescas et al., 2018c)
with promising results. Subsets of the data had to be used in the
aforementioned works, as a standard GP cannot leverage data in the
order of magnitude presented in the present paper. The DGP model was
trained and validated using the same data, ×8 104 training and ×2 104

test data points respectvely, as the ONNS (Hieronymi et al., 2017). The
results of the ONNS will be used as a source for comparison, that is, we
compare our results with state-of-the-art deep learning methods glob-
ally accepted in the OC community.

3.2.3. Experimental results
A 3-layer DGP with 500 inducing points and 5 GPs in each hidden

layer is trained. Adding more layers was found not to increase perfor-
mance significantly. This amount of inducing points is frequently used
in the GP literature (see e.g. (Shi et al., 2019)), and is set to deal with
the higher complexity of the C2X dataset. Table 3 shows the comparison
of the RMSE between DGP and ONNS dividing the test set by water
type, and the total (bottom row). The highlighted results are: compared
to ONNS, CDOM results improve in the extreme absorbing and scat-
tering waters, which also affects the total RMSE (DGP 0.115 mg m−3

against ONNS 0.202 mg m−3). ISM results improve in scattering waters,
staying on the same range of error for the other water types, which also
translates into almost a factor 3 improvement with the total dataset
(DGP 5.296 against ONNS 15.134 g m−3). However, the most im-
pressive results are observed for Chl, where more than a factor 3 im-
provement in the RMSE can be observed for all water cases. (Table 4).

We visualize the behaviour of measured against predicted values in
Fig. 7. In this figure the actual values (x-axis) vs. the DGP predictions
(y-axis) are compared by variable and water type, in a similar fashion as

was done by (Hieronymi et al., 2017) with the ONNS results, with the
exception of the non-log scale of our figure. In the following we make
references to model predictions in regions of low numerical value
which are better appreciated in the log-scale version of the figure lo-
cated in Appendix E. Summarizing the results by water quality para-
meter:

• CDOM: High uncertainties and distribution dispersion in Case 1 and
scattering waters (C2S(X)) for very low CDOM values (<0.2 m−1).
To separate the CDOM from suspended sediments using the ab-
sorption signal seems not to be easy. The correlation improves for
absorbing waters (C2A(X)) for all values, with good uncertainty
ranges for high values in C2A waters, with a gradual increase for the
CDOM range higher than 15 m−1 in extreme cases.

• ISM: Shows almost a perfect correlation for C2S and C2SX, which
are the scattering waters where the main component are suspended
sediments and non-algal particles. CDOM dominated waters (C2A
and C2AX) are not expected to have high non-organic suspended
sediment content, which gives less relevance to the more dispersed
and less accurate results in these water types. Some saturation is
observed in absorbing waters for very low values < 0.1 g m−3,
which is better appreciated in Fig. 8, as well as for C1 waters, where
dispersion is in general higher; however, it shows lower uncertainty
values. This result is in line with the ONNS results in which ”the
retrieval performance is less skilled if the optical signal of minerals
is weak due to low mineral concentrations as is the case in oligo-
trophic waters (C1)” (Hieronymi et al., 2017).

• Chl: Despite the lower values of uncertainty, there seems to be some
overestimation in the minimum Chl values (concentrations < 1.0 mg
m−3) of all five water types. General bias and dispersion is higher in
the C2A and C2AX cases. This is an indication of the complexity of
the separation of Chl and CDOM for these types of waters.
Uncertainty is incremented with high concentration values in all five
water types (> 100 mg m−3), increasing the dispersion of the data
points considerably in C2SX water with Chl values higher than (>
150 mg m−3), with a clear underestimation of the parameter. In any
case, in nature, cases of extreme ISM and Chl concentration are rare.

Considering in the analysis the different water types, Case 1 waters
shows quite good results for Chl values (< 100 mg m−3), with an in-
crease in the uncertainty and dispersion of the data with higher con-
centrations. ISM uncertainties are generally low but dispersion and bias
are high all through the range. CDOM detection can be problematic and
tend to underestimation for values (< 0.5 m−1). However, ISM and
CDOM are not elements usually found in oligotrophic waters, where Chl
is the main contributor to the colour of the water. In C2A and C2AX
absorbing waters, Chl values < 0.5 mg m−3 and > 100 mg m−3 will be
difficult to quantify properly. Lower Chl values would be probably
underestimated in C2AX. High Chl concentrations show higher disper-
sion and uncertainties in both types of water. The ISM distribution is
these absorbing waters looks quite good, and uncertainties keep gen-
erally low. Dispersion is higher with higher ISM values. CDOM re-
trievals, however, show a quite good fit to the 1:1 line in C2AX, with an
increase of the uncertainty with the increase of CDOM absorption. In
C2A waters there is more dispersion around the 1:1 line and more
variability in the uncertainty range in values (< 1.0 m−1). In high
scattering waters (C2S and C2SX), there is underestimation in the
quantification of high Chl values. CDOM distribution shows cases of
over or underestimation depending on the range and water type, with
medium to low uncertainties found in low CDOM values. ISM fit to the
1:1 line is very good for both scattering water types, showing C2SX
water higher uncertainties in the lower and higher ranges of ISM.

A comparison with the results of (Hieronymi et al., 2017), can be
made, taking into account the several differences between both ap-
proaches. On the one hand, the most remarkable fact is that ONNS is a
so-called swarm of neural nets designed from and for several water

Table 3
Comparison of RMSE between a 3-layer DGP and the ONNS dividing the test set
by watertype, and without dividing the test set (bottom row).

CDOM ISM Chl

DGP ONNS DGP ONNS DGP ONNS

C1 0.0584 0.0174 0.1393 0.0856 2.7913 10.2577
C2A 0.0324 0.0234 0.1648 0.116 2.2126 10.5276
C2AX 0.2429 0.4356 0.2156 0.1429 2.6765 10.3555
C2S 0.0200 0.029 0.7784 1.4917 2.6668 11.2224
C2SX 0.0270 0.0971 12.476 35.689 2.5617 16.7635

Total 0.115 0.202 5.296 15.134 2.594 11.914
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types. The predictions and uncertainties are calculated as the weighted
sum of the retrievals of all class-specific NNs. On the other hand, the
DGP approach is a single model (pr. output) with three layers and 500
inducing points and 5 GPs per layer. This makes for a more elegant
formulation in which there is less choice necessary with respect to
model decisions (e.g. 3–4 layers was usually enough to fit the data), and
which calculates all uncertainties simultaneously with the retrievals.
The main success of the experiment is the increase in the accuracy of
the Chl quantification for the five different water types. The errors
decrease up to a factor 6 in the C2SX water type (see Table 3). Un-
certainty estimation was found to be a hard problem as previously
shown in (Hieronymi et al., 2017). This is likely due to the fact that the
dataset exhibits high variability in regions of both low numeric values
and high ones (orders of magnitude from 10 2 to 102). Nevertheless, the
DGP shows some advantages over the ONNS approach: it flags many of
the outliers with high predictive uncertainty, and provides more con-
servative uncertainty estimates than the ONNS which assigns high un-
certainty to predictions with low errors as well as vice versa.

4. Conclusions

We introduced the use of deep GPs and the doubly stochastic var-
iational inference procedure for remote sensing applications involving
parameter retrieval and model inversion. The applied deep GP model
can efficiently handle the biggest challenges nowadays: dealing with
big data problems while being expressive enough to account for highly
nonlinear problems. We successfully illustrated its performance in two
scenarios involving optical simulated Sentinel-3 OLCI data and IASI
sounding data, and for different data sizes, dimensionality, and dis-
tributions of the target bio-geo-physical parameters.

We showed how DGP benefits from its hierarchical structure and
consistently outperforms both full and sparse GPs in all cases and si-
tuations on the data at hand. Depth plays a fundamental role but the
main increase in performance is achieved when going from shallow to
deep Gaussian Processes, i.e. going from 1 to 2 layers. Higher number of
layers showed little improvement and a certain risk of overfitting be-
cause of model over-parameterization. Importantly, unlike a standard

Fig. 7. Actual values (x-axis) versus values predicted by the DGP (y-axis) of test data, for each of the different water quality variables. The plots are divided by water
type, and coloured according to predictive uncertainty: x2 ( )DGP

2 . We see that the predictive uncertainty is generally quite conservative, however it does tend to
flag the point of high prediction error with higher predictive uncertainty. This behaviour is preferable compared to the more erratic uncertainty estimates in previous
attempts at modeling this data (Hieronymi et al., 2017).
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GP, the DGP model is inherently sparse and scales linearly with the
training set size.

We would like to stress that the used DGPs could make a difference
in the two applications introduced here, now and in the near future. For
instance, neural networks made a revolution in the last decade for the
estimation of atmospheric variables from infrared sounding data
(Blackwell, 2005; Blackwell et al., 2008). Later, in (Camps-Valls et al.,
2012) we showed that kernel methods can outperform neural networks
in these scenarios of high-input and output data dimensionality, but are
more computationally costly and memory demanding when bigger
datasets are available. With DGPs these shortcomings are remedied:
they are more expressive and accurate than standard kernel ridge re-
gression (i.e. one-layer plain GPs), computationally much more effi-
cient, and additionally provide a principled way to derive confidence
intervals for the predictions. The problem of estimating temperature
and moisture variables was successfully addressed with DGPs, and re-
sults were more accurate both over land/ocean, and for different lati-
tudes, climatic zones and biomes. Furthermore, the experimental results
for prediction of CDOM, ISM and Chl-a showed that it was possible to
make a 3-layer DGP outperform a Neural Network based algorithm
proposed in the literature. Although uncertainty quantification is dif-
ficult, as seen in (Hieronymi et al., 2017), it is an advantage that
training a DGP automatically yields uncertainty estimates, avoiding the
need to train additional uncertainty neural networks.

The DGP model has demonstrated excellent capabilities in terms of
accuracy and scalability, but certainly some future improvements are
needed. It does not escape our attention that, as has been shown for
deep convolutional neural networks, convolutional models can improve
predictions when there is clear spatial structure (Malmgren-Hansen
et al., 2017). Currently there are some efforts in the direction of con-
volutional GPs (Van der Wilk et al., 2017), but performance is still not
comparable to a convolutional neural network (CNN). As shown here
and in the literature, DGPs scale very well to large amounts of data, and
have been trained on problems with 109 datapoints (Salimbeni and
Deisenroth, 2017). As of now, however, feed forward neural networks
are still generally faster to train, which is not surprising as the DGP is
learning a predictive distribution instead of a single point estimate.

Lastly, when it comes to dealing with missing data and mixed data
modalities, random forest regression has often been found to be more
flexible than other methods. There is interesting work however ad-
dressing the missing data problem for GPs (Damianou and Lawrence,
2015).

The more we incorporate machine learning in the pipeline when
modeling physical systems, the more important uncertainty estimation
and error propagation become. Encoding prior knowledge about input
noise into a standard GP in a parameter retrieval setting, it has been
shown that improved uncertainty estimation can be achieved (Johnson
et al., 2019). The same approach can be imagined with a DGP model,
which in the future could additionally improve its uncertainty esti-
mates.
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Appendix A. The Fully Independent Training Conditional (FITC) method

Specifically, FITC approximates the model by assuming: i) conditional independence between train and test latent variables f f, given the
inducing points u; and ii) a factorized (fully independent) distribution for f given u. Under these hypothesis, the approximated model for FITC
(which replaces the exact f fp( , )) is:

=
+

f f 0
Q K Q Q

Q Kp( , ) ,
diag( )

,ff ff ff f

f (2)

where we abbreviate =Q K K Kab au uu ub
1 . With this approximation, the observation model y fp( | , )2 can be marginalized and the new matrix to be

inverted is + +Q K Q I( diag( ) )ff ff ff
2 . Interestingly, this new low-rank-plus-diagonal matrix can be inverted with nm( )2 cost by applying the

Woodbury matrix identity (Rasmussen and Williams, 2006). Finally, the most common practice for the inducing locations Z is to estimate them along
with the kernel hyperparameters and 2 by maximizing the marginal likelihood (Snelson and Ghahramani, 2006).

Regarding the predictive distribution, FITC leverages the conditional independence of f from f given u. Recall that the predictive distribution for
a standard GP on a new x is a Gaussian with mean and covariance given by (Rasmussen and Williams, 2006):

= +
= +

µ K K I y
K K K I K

( ) ,
( ) .

f ff

f ff f

GP
2 1
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2 2 1

Consequently, the predictive mean and variance for FITC is (Snelson and Ghahramani, 2006):

= + +
= + +

µ Q Q K Q I y
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Appendix B. Doubly Stochastic Variational Inference for DGP

The approach followed in (Salimbeni and Deisenroth, 2017) to do inference in DGPs relies on variational inference (VI). The general idea of VI is
to transform the problem of posterior distribution computation into an optimization one, by introducing a parametric family of candidate posterior
distributions. Moreover, in VI this optimization is solved together with the maximization of the marginal log-likelihood ylogp( ). More specifically,
since the selected family will not usually contain the exact posterior, the target of the optimization will be a lower bound on ylogp( ). This is the so-
called Evidence Lower Bound (ELBO) (Blei et al., 2017).

The proposed family of posterior distributions in (Salimbeni and Deisenroth, 2017) is

=
=

f u z m S f u f z uq({ , }|{ , , }) p( | ; , )q( ).l l l l l

l

L
l l l l l

1

1 1

(3)

Notice that the first factor is the prior conditional of Eq. (1), and keeps correlations between layers. The second is taken Gaussian with mean ml and
full covariance Sl (which are variational parameters of the parametric family, to be estimated). With this posterior, the ELBO for the marginal log-
likelihood ylogp( ) is then obtained3:

=
= =

y fy f u
f u
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L

(4)

Observe that the second term is tractable, as the KL divergence between Gaussians can be computed in closed form (Rasmussen and Williams, 2006).
However, the expectation in the first term involves the marginals of the posterior at the last layer, fq( )i

L . Next we see that, whereas this distribution is
analytically intractable, it can be sampled efficiently using univariate Gaussians.

Indeed, marginalizing out the inducing points in Eq. (3), the posterior for the GP layers f{ }l is

= =
= =

µf f m S f z fq({ }) q( | , ; , ) ( | , ),l

l

L
l l l l l

l

L
l l l

1
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1 (5)

where the vector µ l is given by =µ µ f[ ] ( )l
i i

l
m z,

1l l 1 and the ×n n matrix l by = f f[ ] ( , )l
ij i

l
j
l

S z,
1 1l l 1 . The explicit expression for the functions

µm z,l l 1 and S z,l l 1 can be found in (Salimbeni and Deisenroth, 2017, Eqs. (7-8)). The key point here is to observe that, although the distribution in Eq.
(5) is fully coupled between layers (and thus the posterior in the last layer is analytically intractable), the i-th marginal at each layer µf( |[ ] , [ ] )i

l l
i

l
ii

only depends on the corresponding i-th input of the previous layer. This allows one to recursively sample …f f fi i i
L1 2

from all the layers up to
the last one by means of just univariate Gaussians. Specifically, ~ (0, 1)i

l is first sampled and then for = …l L1, , :

= +f µ f f f( ) · ( , ) .i
l

i
l

i
l

i
l

i
l

m z S z,
1

,
1 1

l l l l1 1 (6)

Now, the expectation in the ELBO (recall Eq. (4)) can be approximated with a Monte Carlo sample generated with Eq. (6). This provides the first
source of stochasticity. Since the ELBO factorizes across data points and the samples can be drawn independently for each point i, scalability is
achieved through sub-sampling the data in mini-batches. This is the second source of stochasticity, which motivates the naming of this doubly
stochastic inference scheme.

The ELBO is maximized with respect to the variational parameters m S,l l, the inducing locations zl, and the kernel and likelihood hyperpara-
meters ,l 2 (which, to alleviate the notation, have not been included in the equations). Notice that the complexity to evaluate the ELBO and its
gradients is +…+n m D D( ( ))b

L2 1 , where nb is the size of the mini-batch used, and Dl is the number of hidden units in each layer (which were set to
one in this section). As mentioned before, this extends the scalability of the (shallow) sparse GP approximation SVGP (Hensman et al., 2013) to
hierarchical models, including the batching capacity.

Appendix C. Predictions

To predict in a new x in DGPs, Eq. (6) is used to sample S times4 from the posterior up to the L( 1)-th layer using the test location as initial
input. This yields a set =f s{ ( )}L

s
S1

1 with S samples. Then, the density over f L is given by the Gaussian mixture (recall that all the terms in Eq. (5) are
Gaussians):

=
=

f
S

f f sm S zq( ) 1 q( | , ; ( ), ).L

s

S
L L L L L

1

1 1

Appendix D. Climate zones and biome classification

The climate zones data were taken from the Köppen-Geiger climate classification maps.5 The biome zones are aggregations of several classes from
the standard International Geosphere-Biosphere Programme (IGBP) biome classification.6 The tables below show the IGBP class names and the
aggregations performed in this work which are used in Table 2.

3 The key idea here is that the prior conditionals of Eq. (3) cancel with those of Eq. (1). This makes Eq. (3) a very convenient posterior choice.
4 This S is related to the first source of stochasticity and, theoretically, the higher the better. In practice, results become stable after a few samples. Here, S was set to

200.
5 See http://koeppen-geiger.vu-wien.ac.at/.
6 For an implementation of the IGBP biome map with 0.05 degree spatial resolution see https://lpdaac.usgs.gov/products/mcd12c1v006/.
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Table 4
IGBP biome class names as well as the aggregations of the IGBP classes performed
in this work and their corresponding names used in Table 2.

IGBP name Acronym

Water WATWAT
Evergreen Needleleaf forest ENF
Evergreen Broadleaf forest EBF
Deciduous Needleleaf forest DNF
Deciduous Broadleaf forest DBF
Mixed forest MF
Closed shrublands CSH
Open shrublands OSH
Woody savannas WSA
Savannas SAV
Grasslands GRA
Permanent wetlands WET
Croplands CRO
Urban and built-up URB
Cropland/Natural vegetation mosaic CVM
Snow and ice SNO
Barren or sparsely vegetated BSV

Aggregate name Aggregated classes

Needle-leaf Forest ENF + DNF
Evergreen Broadleaf Forest EBF
Decidious Broadleaf Forest DBF
Mixed forest MF
Shrublands CSH + OSH
Savannas WSA + SAV
Herbaceous GRA
Cultivated CRO
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Appendix E. Ocean color results in logscale

We include here the results of Fig. 7 in log-scale in order to highlight the behaviour of the model when predicting on low numerical values of the
parameters.
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