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a b s t r a c t 

This paper proposes a new model for multi-sensory data classification. To tackle this problem, probabilis- 

tic modeling and variational Bayesian inference are used. A Gaussian Process (GP) classifier is built upon 

the introduced modeling. Its posterior distribution is approximated using variational Bayesian inference. 

Finally, labels of test samples are predicted employing this classifier. Very importantly, and in contrast to 

alternative approaches, the proposed method does not discard samples with missing features and utilizes 

all available information for training. Furthermore, to take into account that the quality of the informa- 

tion provided by each sensor may differ (some modalities/sensors may provide more reliable/distinctive 

information than others), we introduce two versions of the algorithm. In the first one, the parameters 

modeling each sensor performance are shared while in the second one, each sensor parameters are es- 

timated independently. Synthetic and real datasets are utilized to examine the validity of the proposed 

models. The results obtained for binary classification problems justify their use and confirm their superi- 

ority over existing fusion architectures. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

There are numerous machine learning problems where differ-

ent views of a single object exist and multimodal information can

be used to provide more global information on the object of in-

terest. In such problems, different sensors (modalities) capture in-

formation and data fusion is employed to combine the information

gathered by all sources, which should lead to a more accurate un-

derstanding of the environment. The more the sensors, the greater

the amount of available information, and therefore, the better the

performance of the system. However, fusion techniques become es-

pecially useful when the information provided by different sensors

is complementary [see 13 ]. In these cases, the combination of the

information results in an extra improvement of the performance,

which would not be possible if the information of each sensor is

processed separately. 

Kernel based methods such as Support Vector Machines (SVM)

[7] or Gaussian Processes (GP) [18] are currently two of the most

utilized fusion tools. In [3] , the authors propose a composite kernel
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achine framework for the enhanced classification of hyperspec-

ral images. 

In [1] , the authors tackle an urban tree species classification

roblem using both AVIRIS and LIDAR data. Initially, they process

he AVIRIS and LIDAR data separately, and then they apply seg-

entation algorithms to each data set to obtain regions of interest

ROI), and feature extraction techniques. After these three steps,

he extracted features are fused (concatenated) and a canonical

iscriminant analysis classifier is applied to find the label of each

ndividual pixel. Finally, each ROI is labeled by majority voting. The

uthors show that the classification accuracy improves when fu-

ion techniques are used. 

Multiple feature learning for hyperspectral image classification

s studied in [14] . In this article, the authors use both linear

nd nonlinear sets of features extracted from the original spec-

ral features. They use a combination of both types of features to

ope with linear and nonlinear boundaries between different data

lasses. Logistic regression with a variable splitting and an aug-

ented Lagrangian (LORSAL) algorithm is selected as the classifier

or this framework. 

In [9] , the authors propose a Nonlinear Multiple Kernel Learning

lgorithm which uses spectral and spatial features for the hyper-

pectral images. Principal Component Analysis is performed on the

riginal features and spatial features are extracted. Multiple ker-

els are nonlinearly combined. This algorithm is used for hyper-

pectral image classification. 

https://doi.org/10.1016/j.patrec.2018.08.035
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2018.08.035&domain=pdf
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During the last few years, Deep Learning (DL) has been shown

o be a powerful tool for solving fusion problems (see [17] for an

xtensive survey). For instance, in [11] , the authors use Convolu-

ional Neural Networks (CNNs) for fault diagnosis on a planetary

earbox. The main problem of using DL for fusion is that most of

he proposed methods in the literature cannot deal with missing

amples. Only generative methods, such as [5] or [10] can simulate

he missing modality and use it for classification. 

Regarding the model we introduce in this paper, the most sim-

lar works in the literature are [12,19] and [6] . In [12] , the authors

ntroduce one GP for modeling each sensor. The data fusion is per-

ormed in the likelihood function which is a mixture of cumulative

istribution functions of a standard normal distribution. Expecta-

ion Propagation (EP) inference is used to approximate the poste-

ior distribution of the unknowns. However, this formulation re-

uires an extra step for estimating the weights of each sensor for

lassifying a new sample. Although the proposed model shares the

ame structure, we propose a new likelihood function and Varia-

ional Inference which allow a joint estimation of all unknowns of

he model. In [19] , the authors also consider one GP for model-

ng each sensor. For data fusion, the authors introduce a consensus

unction. In Section 5 , we show that this consensus function is very

ensitive to noisy sensors, which can lead to poor performances in

ome cases. In [6] , the authors introduce one GP for two sensors,

hose prior covariance matrix is a sum of a linear and squared ex-

onential kernels [see 18 ], that is, one kernel for each sensor. We

ee in Section 5 , that it can be formulated as a particular case of

he proposed method; however the formulation proposed by the

uthors in [6] does not allow to deal with missing samples. 

The rest of the paper is organized as follows. First, we in-

roduce a Bayesian modeling of the fusion for classification in

ection 2 . Variational inference is used to derive the training al-

orithm in Section 3 . In Section 4 , we introduce the classifica-

ion rule. In Section 5 , we discuss the relationship of the pro-

osed model with early and late fusion as well as the state-of-

he-art method of Bayesian Co-Training. Experimental results are

resented in Section 6 , and Section 7 concludes the paper. 

. Bayesian modeling 

The main goal in this work is to solve a classification problem

here data are acquired by P different sensors. The feature training

et is defined by the following matrix 

 = 

⎡ 

⎢ ⎢ ⎣ 

x 11 x 12 . . . x 1 P 

x 21 x 22 . . . x 2 P 

. . . 
. . . 

. . . 
. . . 

x N1 x N2 . . . x NP 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

N×(D 1 + D 2 + ... + D P ) , (1)

here x ji ∈ R 

1 ×D i represents the j th training feature vector with

imension D i , acquired by the i th sensor. The corresponding train-

ng labels associated to each row of X are given by the vector

 = (y 1 , . . . , y N ) 
T ∈ { 0 , 1 } N×1 . Given X , two classical fusion strate-

ies are possible. We can build a classifier by concatenating the

eatures observed by all sensors, i.e. , by using x j = (x j1 , . . . , x jP )

ith associated label y j (this is the so called early fusion method).

ssociated to each sensor and using the same y for all of them, we

an also build P independent classifiers, these classifiers are later

ombined (this is the so called late fusion method). While both ap-

roaches have some interests, the second one makes an indepen-

ence assumption which is unrealistic in many real problems while

he first one does not include explicit cross-relations between sen-

ors whose knowledge may be of interest for the problem at hand.

We now describe the approach we propose for the multi-sensor

usion problem. To relate samples and labels, we introduce a set

f latent variables for each sensor, that is, f , . . . , f ∈ R 

N×1 . For
1 P 
he i th sensor, the corresponding set of latent variables f i fol-

ows a Gaussian distribution N (0 , αi K i + γ 2 
i 

I ) , where αi is the sig-

al variance parameter, γ i is a Gaussian noise variance parameter,

nd K i ∈ R 

N×N is a kernel matrix depending on a set of parame-

ers �i . The entry ( n, m ) of K i ( n, m ) is calculated as K i (n, m ) =
 �i 

(x ni , x mi ) where k �i 
(·, ·) is a kernel function depending on the

arameters �i . Concatenating all latent variables, we obtain the

ector f = [ f T 1 , . . . , f 
T 
P ] 

T ∈ R 

PN×1 , which follows a Gaussian distribu-

ion N (0 , K ) , where K ∈ R 

P N×P N is a block-diagonal matrix 

 = 

⎡ 

⎢ ⎢ ⎣ 

α1 K 1 + γ 2 
1 I 0 . . . 0 

0 α2 K 2 + γ 2 
2 I . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . αP K P + γ 2 
P I 

⎤ 

⎥ ⎥ ⎦ 

. (2) 

ventually, during the acquisition procedure, we may have sensors

hat do not work appropriately, which sometimes generate sam-

les with missing entries. Most of the proposed methods in the

usion literature are not capable of dealing with this problem, and

erform the training stage by discarding all samples with missing

ntries, furthermore they cannot make predictions for test samples

ith missing features. The model proposed in this work is trained

sing all available information and can make predictions for test

ata with missing features. Assuming x ji to be a missing feature,

nd since x ji corresponds to the latent variable f ij , we introduce

 zero degenerate prior distribution on the latent variables corre-

ponding to the missing data point. That is, if the i th sensor missed

he information of the j th sample, we set the corresponding j th

ow and column of the matrix αi K i + γ 2 
i 

I to zero. 

To relate the labels y to the latent variables f , we introduce the

ollowing likelihood function 

(y | f ) = 

N ∏ 

j=1 

p(y j | f ·, j ) = 

N ∏ 

j=1 

σ
(
1 

T f ·, j 

)y j 
σ
(
−1 

T f ·, j 

)1 −y j 
, (3) 

here σ( · ) is the sigmoid function, f ·, j = ( f 1 j , . . . , f P j ) 
T and

 

T f ·, j = 

∑ P 
i =1 f i j . The rationale behind this model is that each sen-

or is capable of providing a classifier from all information it gath-

rs independently. For a given sample x j , adding the GP values as-

ociated to the sensors i and i ′ , f ij and f i ′ j , respectively, will in-

rease (decrease) the likelihood of the observed label if they are in

greement (disagreement) in their labels. 

The joint distribution can be written as: 

(y , f , α, γ , �) = p(y | f )p(f | α, γ , �)p( α)p( γ )p( �) , (4)

here � = { �1 , . . . , �P } , α = (α1 , . . . , αP ) 
T , γ = (γ 2 

1 
, . . . , γ 2 

P 
) T ,

nd we use improper flat priors for p( α), p( γ) and p( �). 

From a Bayesian perspective, this model has an interesting in-

erpretation. For a given sensor, the prior distribution introduces

he correlations between the samples, however it considers that

he sensors are not correlated a priori as is indicated in Eq. (2) . The

ikelihood function in Eq. (3) models how to combine the infor-

ation provided by all sensors, to classify a sample. The inference

rocedure, that we introduce in Section 3 , will result in a poste-

ior distribution approximation, which will take into account both,

orrelations between samples and correlations between sensors. 

. Variational inference 

The posterior distribution of the unknowns given the obser-

ations is given by p(f , α, γ , �| y ) = p(y , α, γ , f , �) / p(y ) . However,

his posterior cannot be analytically calculated because the integral

(y ) = 

∫ 
p(y , f , α, γ , �)d(f , α, γ , �) is not tractable. 

Variational Bayesian Inference (VBI) approximates the posterior

istribution by minimizing the Kulback–Leibler (KL) divergence 
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Algorithm 1 Intermediate Fusion Training. 

Require: X , y , initials ˆ α, ˆ γ , ˆ � and 

ˆ ξ j = 1 , ∀ j = 1 , . . . , N. 

1: repeat 

2: Update ˆ q (f ) using eq.(8). 

3: Update ˆ α, ˆ γ , ˆ � by solving the problem in eq.(10). 

4: Update ˆ ξ using eq.(11). 

5: until convergence 
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KL (q(f , α, γ , �) || p(f , α, γ , �| y )) 
= 

∫ 
q(f , α, γ, �) log 

(
q(f , α, γ , �) 

p(y , f , α, γ , �) 

)
d( f , α, γ , �) + const . 

(5)

The KL divergence is always non-negative and is equal to zero if

and only if q( f, α, γ , �) and p( f, α, γ , �| y ) coincide. Unfortunately,

the functional form of p( y | f ) does not allow the direct evaluation

of the KL divergence. To alleviate this problem, we use the lower

bound σ( f ) ≥ σ(ξ ) exp { ( f − ξ ) / 2 − λ(ξ )( f 2 − ξ 2 ) } [see 2 ] which

produces the following lower bound for the joint distribution 

p(y , f , α, γ , �) ≥ M (y , f , α, γ , �, ξ) ∝ p(f | α, γ , �) 

N ∏ 

j=1 

σ(ξ j ) exp 

{(
y j −

1 

2 

)
1 

T f ·, j − λ(ξ j ) f 
T 
·, j 11 

T f ·, j + λ(ξ j ) ξ
2 
j −

ξ j 

2 

}
(6)

where λ(ξ ) = 

1 
2 ξ

(
1 

1+ e −ξ − 1 
2 

)
and ξ = (ξ1 , . . . , ξN ) 

T is a vector of

additional positive parameters to be estimated. Using the varia-

tional bound in Eq. (6) , the KL divergence in Eq. (5) is upper

bounded by KL(q( f, α, γ , �) ‖ M ( y, f, α, γ , �, ξ)), then we mini-

mize this functional with respect to q( f, α, γ , �) and ξ, to push KL

divergence in Eq. (5) to be minimum. 

Additional assumptions on q( f, α, γ , �) are imposed in order

to find the solution for this minimization problem. The mean field

theory [see 16 ] considers the following factorization for the poste-

rior approximation q(f , α, γ , �) = q(f )q( α, γ , �) where q( α, γ , �)

is restricted to be a degenerate distribution. The joint posterior ap-

proximation q( f, α, γ , �) can then be sequentially estimated by

alternating between the estimations of q( f ) and q( α, γ , �). 

Let ˆ q ( α, γ , �) and 

ˆ ξ be the current estimations of q( α, γ , �)

and ξ, respectively. Then, the estimation of q( f ) is given as 

log ̂  q (f ) = E ˆ q ( α, γ , �) 

[ 
log M (y , f , α, γ , �, ̂  ξ) 

] 
+ const , (7)

which is a quadratic function of f . That means ˆ q (f ) is a Gaussian

distribution whose mean vector and covariance matrix can be cal-

culated respectively by taking the first and the second derivatives

of Eq. (7) with respect to f , that leads to ˆ q (f ) = N (f | ̄f , �) where 

f̄ = �
(

1 �

(
y − 1 

2 

1 

))
and � = ( ̂  K 

−1 + 

ˆ W ) −1 , (8)

with 

ˆ W = 2(11 T � ˆ �) , ˆ � = diag [ λ( ̂  ξ1 ) , . . . , λ( ̂  ξN )] and � denotes

the Kronecker product. 

Given 

ˆ ξ, the approximated likelihood function q ( y | α, γ , �) [see

18 ] can be calculated by integrating M (y , f , α, γ , �, ̂  ξ) on f result-

ing in 

q (y | α, γ , �) = N 

( 

y | 1 

2 

1 , 2 ̂

 � + 4 

P ∑ 

i =1 

ˆ �
(
αi K i + γ 2 

i I 
)

ˆ �

) 

, (9)

which is used to calculate the point where ˆ q ( α, γ , �) degenerates

as 

ˆ α, ̂  γ , ˆ � = arg max 
α, γ , �

q(y | α, γ , �) . (10)

To estimate the variational parameters ξ, we maximize

E ˆ q (f , α, γ , �) 

[
log M (y , f , α, γ , �, ξ) 

]
. Taking derivatives with respect

to ξ j and equating to zero, we obtain 

ξ j = 

√ 

1 

T 
(
f̄ ·, j ̄f 

T 
·, j 

+ � j 

)
1 , (11)

where �j is obtained by removing the rows and columns of �
which do not correspond to the components of f · , j . 

The inference procedure is summarized in Algorithm 1 . 
. Classification rule 

Given a new sample x ∗ = [ x ∗1 , . . . , x ∗P ] , the classification rule is

ased on the posterior probability y ∗ , which can be written as 

(y ∗| y ) = 

∫ 
p(y ∗| f ·, ∗)p(f ·, ∗| f )p(f , α, γ, �| y )d(f ·, ∗, f , α, γ , �) , 

(12)

here f ·, ∗ = ( f 1 ∗, . . . , f P∗) T . 
The probability p( y ∗ | f · , ∗ ) is given by Eq. (3) , meanwhile the

osterior distribution, p( f, α, γ , �| y ), can be approximated by

ˆ  (f , α, γ , �) obtained by Algorithm 1 at convergence. 

The vector ( f · , ∗ , f T ) T follows a Gaussian distribution 

f ·, ∗
f 

)
∼ N 

((
0 

0 

)
, 

[
C H 

T 

H K 

])
(13)

here 

 = 

⎡ 

⎢ ⎢ ⎣ 

h 1 0 . . . 0 

0 h 2 . . . 0 

. . . 
. . . 

. . . 
. . . 

0 0 . . . h P 

⎤ 

⎥ ⎥ ⎦ 

, C = diag [ c 1 , c 2 , . . . , c P ] , (14)

ith h i = (αi k �i 
(x 1 i , x ∗i ) , . . . , αi k �i 

(x Ni , x ∗i )) 
T , and c i =

i k �i 
(x ∗i , x ∗i ) + γ 2 

i 
, which allows us to calculate the conditional

istribution p(f ·, ∗| f ) = N (f ·, ∗| H 

T K 

−1 f , C − H 

T K 

−1 H ) . 

By substituting the conditional distribution p( f · , ∗ | f ) in

q. (12) we obtain 

(y ∗ = 1 | y ) ≈
∫ 

σ
(
1 

T f ·, ∗
)
N (f ·, ∗| m (x ∗) , S (x ∗))d f ·, ∗, (15)

here m (x ∗) = 

ˆ H 

T ˆ K 

−1 f̄ and S (x ∗) = 

ˆ C − ˆ H 

T ( ̂  K + 

ˆ W 

−1 ) −1 ˆ H . The

ntegral in Eq. (15) is approximated as in [2] resulting in

(y ∗ = 1 | y ) ≈ σ( m (x ∗) κ( x ∗) ) where m (x ∗) = 1 T m (x ∗) , and

(x ∗) = 

(
1 + 

π
8 1 

T S (x ∗) 1 
)−1 / 2 

. Finally, x ∗ is assigned to class 1

f p(y ∗ = 1 | y ) is greater than a given threshold δ. Notice that if

t testing phase, x ∗i is not observed, the proposed model can still

rovide a prediction for the sample x ∗ . To do that, we set the

orresponding h i and c i in Eq. (14) equal to zero. 

. Related models 

In this section, we discuss the relationship between the pro-

osed model and alternative fusion models based on GP. 

By defining g j = f 1 j + . . . + f P j in Eq. (3) , the proposed model in

ection 2 corresponds to a GP classifier [18] , with latent variables

 = (g 1 , . . . , g N ) 
T and prior distribution 

(g | α, γ , �) = N 

( 

g | 0 , ̃  K = 

P ∑ 

i =1 

αi K i + γ 2 
i I 

) 

. (16)

s we will see in the experimental section, the formulation in-

roduced in Section 2 allows us to understand how our model

earns the correlation between different sensors, as well as, an in-

uitive modeling for the missing samples case. However, we can
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Fig. 1. (a) Original toy data set1, (b) Classification result by using Sensor 1 , (c) Classification results by using Sensor 2 , (d) Classification results by using Inter 1 fusion method. 
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se Eq. (16) to understand how the proposed model is related to

6,19] . 

The prior model proposed in [6] , is a particular case of the prior

odel in Eq. (16) when P = 2 , γ1 = γ2 = 0 , K 1 is a linear kernel

nd K 2 is a squared exponential kernel. 

In [19] , the authors introduce the following prior model on the

atent variables 

(g c , f 1 , . . . , f P | α, γ , �) ∝ 

P ∏ 

i =1 

N (f i | 0 , αi K i ) exp 

{
−‖ f i − g c ‖ 

2 

2 γ 2 
i 

}
(17) 

here g c ∈ R 

P×1 is a consensus function. As in our model, the fac-

ors N (f i | 0 , αi K i ) model the prior correlations between samples

hen the kernel matrices K 1 , . . . , K P associated to the P sensors are

sed. The second factor, which can be considered as a regularizer,

odels the relationship between the latent variables associated to

he sensors as a consensus function. Notice that each vector f i is

orced to be similar to the latent variables g c . Unfortunately, when

 sensor is not discriminative, the regularizer can lead to a poor

ehavior of g c when integrating on f 1 , . . . , f P . 

By integrating in Eq. (17) on f 1 , . . . , f P , the authors in [19] ob-

ain the following prior model on g c 

(g c | α, γ , �) = N 

⎛ 

⎝ g c | 0 , K c = 

( 

P ∑ 

i =1 

(
αi K i + γ 2 

i I 
)−1 

) −1 
⎞ 

⎠ , (18)

here K c is called the Co-training kernel. 

Using basic properties of positive definite matrices, the follow-

ng relationship between the precision matrices of both prior mod-

ls (the proposed one in this work in Eq. (16) and the proposed in

19] in Eq. (18) can be established 

 

T K 

−1 
c v ≥ v T ˜ K 

−1 v , ∀ v ∈ R 

N . (19)

he differences between both approaches are now clear. The Co-

raining model assumes a stronger prior knowledge than our

odel. Our model gives more weight to the information provided

y the observed labels. 

. Experimental results 

In this section, the proposed approach is evaluated on both,

ynthetic and real data. For each sensor, we use the squared ex-

onential kernel defined by k βi 
(x ji , x ki ) = exp {−‖ x ji − x ki ‖ 2 / 2 β2 

i 
} .

he length scale ( β i ) and signal variance parameters ( αi ) are esti-

ated for all sensors during the training step. Inter 1 is used to

enote our proposed fusion model. Inter 2 is used for the case

i = α, i = 1 , . . . , P . Both methods are compared with [3] , which

ombines different kernels to train an SVM classifier. We name this

ethod CK-SVM . Parameters are estimated following the settings

roposed by Camps-Valls et al. [3] , that is, the { β i } are estimated

y cross-validation in the set βi ∈ { 10 −3 , 10 −2 , 10 −1 , 1 , 10 } for i =
 , . . . , P . The Bayesian co-training method proposed in [19] is also
ompared with our results. In order to perform a fair compari-

on, we consider the case when all signal variance parameters take

ifferent values for each sensor ( Co-Tr1 ), and the case when all

ignal variance parameters take the same value ( Co-Tr2 ). In the

xperiments, we also include early and late fusion methods. The

arly fusion method first stacks all features and then builds the

lassifier (notice that this method cannot deal with missing fea-

ures). The late fusion method fuses the posterior probability pro-

ided by each of the P sensors by calculating their mean. These

ethods are denoted by Early and Late , respectively. We also pro-

ide the results obtained by a GP classifier applied to each sensor

eparately. Sensor i is used to denote the results obtained by the

 

th sensor. The results of deep neural network ( DNN ) are also re-

orted for the comparison. The network consists of three fully con-

ected, dense layers. The activation functions of the first two layers

re relu and the activation function of the last layer is a sigmoid .

ere, the fusion is performed in the hidden layers of the deep net-

ork as is explained in [17] . The number of epochs is set to 100

nd the Adam optimizer with binary cross entropy loss function is

sed. 

.1. Synthetic experiment 

Fig. 1 (a) displays the synthetic dataset which is used in our ex-

eriments. This dataset is called Two-moon and was introduced in

20] . The top (red) and bottom (blue) half moons correspond to

wo different classes, and as it can be observed from Fig. 1 (a), they

annot be linearly separated. 

Following the experiments presented in [12] , we associate a dif-

erent sensor to coordinate (dimension). “Sensor1” measures the

orizontal component of each sample (X coordinate) while “Sen-

or2” measures the vertical one (Y coordinate). The dataset con- 

ains 20 0 samples, 10 0 from each class. For training, 40 samples

rom each class are randomly selected, and the remaining 120 sam-

les are used for testing. To avoid biased results, the experiment is

epeated 10 times. 

In Table 1 , we report the area under ROC curve (AUC), and Over-

ll Accuracy (OA) obtained by setting the threshold value δ = 0 . 5 ,

or 10 realizations, as well as, the corresponding mean values re-

orted in the last column. First and second rows report the results

btained by Sensor 1 and Sensor 2 , respectively. The third, fourth,

fth and sixth rows report the results obtained by Early, Inter 1, In-

er 2 , and Late fusion algorithms, respectively. Finally, the last three

ows report the results for the state-of-the-art methods CK-SVM,

o-Tr1 and Co-Tr2 , respectively. 

The proposed method Inter 1 obtains 0.99 and 99.00 of mean

UC and OA, respectively, and Inter 2 obtains 0.99 and 99.25 of

ean AUC and OA, respectively. Therefore, the proposed methods

an classify all samples almost perfectly. We observe that the mean

A for Inter 2 is slightly better than Inter 1 . Notice that, in this

ase, it is realistic to assume that the scale parameters are the

ame for the two sensors and so Inter 2 performs slightly better

han Inter 1 . We observe the obtained results by Sensor 1 and Sen-

or 2 are much worse than Inter 1 . This means that information
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Table 1 

Classification Overall Accuracies (OA) and Areas under the ROC Curves (AUC) for the compared methods. 

Real. 1 2 3 4 5 6 7 8 9 10 Mean 

Sensor 1 OA% 75.00 74.16 75.83 75.83 75.83 79.16 75.00 79.16 72.50 79.16 76.16 

AUC 0.82 0.84 0.86 0.86 0.85 0.87 0.85 0.88 0.84 0.86 0.85 

Sensor 2 OA% 87.50 88.33 88.33 84.16 89.16 87.50 85.00 90.83 88.33 93.85 88.00 

AUC 0.96 0.96 0.96 0.96 0.97 0.95 0.95 0.97 0.96 0.98 0.96 

Early OA% 98.33 100 100 99.16 100 100 99.16 99.16 95.83 100 99.16 

AUC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 

Inter 1 OA% 98.33 98.33 100 98.33 100 100 99.16 99.16 96.66 100 99.00 

AUC 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.99 

Inter 2 OA% 98.33 99.16 100 99.16 100 100 99.16 99.16 97.5 100 99.25 

AUC 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99 

Late OA% 94.16 95.00 93.33 93.33 97.50 93.33 93.33 95.00 92.50 96.66 94.41 

AUC 0.96 0.98 0.98 0.97 0.99 0.98 0.96 0.98 0.97 0.99 0.98 

CK-SVM OA% 98.33 97.50 98.33 98.33 98.33 98.33 98.33 97.50 95.00 99.16 97.91 

AUC 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99 

Co-Tr1 OA% 86.66 87.50 88.33 84.16 88.33 87.50 85.00 90.00 86.66 90.83 87.50 

AUC 0.95 0.94 0.96 0.96 0.97 0.95 0.95 0.97 0.94 0.98 0.96 

Co-Tr2 OA% 87.50 88.33 88.33 84.16 89.16 87.50 85.00 90.83 88.33 90.00 87.91 

AUC 0.96 0.96 0.96 0.96 0.97 0.95 0.95 0.97 0.96 0.98 0.96 

Table 2 

Estimated signal variance values for Inter 1 and Inter 2 fusion algorithms applied to Two-Moon Dataset for 10 random 

realizations. 

Realizations 1 2 3 4 5 6 7 8 9 10 

Inter 1 α1 19.64 16.26 20.93 14.81 31.15 22.22 11.86 23.64 18.32 47.98 

α2 114.78 144.67 132.17 139.04 155.96 137.11 120.20 149.30 100.52 223.70 

Inter 2 α 46.50 47.29 54.04 47.44 63.29 58.51 45.74 56.62 38.52 95.52 
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provided by each sensor must be combined to obtain a good clas-

sification performance. We also observe in Table 1 that in this case

Inter 2 obtains a higher mean AUC and OA than Early and Late ,

which proves that performing fusion in the latent variables can

lead to a better performance, than stacking the features ( Early ) or

combining the classifiers outputs ( Late ). Regarding to CK-SVM we

observe that it obtains approximately 1% of AUC and OA less than

Inter 1 . We think this happens because CK-SVM selects the param-

eters by cross-validation from a small set of values. However, the

proposed parameter estimation method of Inter 1 and Inter 2 pro-

vides finer values of the parameters which results in a better per-

formance. We observe that Co-Tr2 , which uses the same value for

all signal variance parameters, obtains slightly better results than

Co-Tr1 which is consistent with the results obtained by Inter 1 and

Inter 2 . We also observe that Bayesian Co-Training obtains poor re-

sults, which are even worse than the obtained by Sensor 2 . Notice

that the information provided by Sensor 1 is not very discrimina-

tive and the consensus function is built on contradictory informa-

tion. 

Fig. 1 illustrates an example of how the proposed method can

combine the information provided by both sensors to obtain a bet-

ter classification performance. Fig. 1 (a) is the figure related to the

sets used in the 5th realization in Table 1 . Training samples are

depicted by green triangles. Fig. 1 (b) shows the classification map

obtained by Sensor 1 . As expected, many points are misclassified

because of the overlap in the X dimension of points from both

classes. Fig. 1 (c) shows the classification map obtained by Sensor

2 . We can observe that the number of misclassifed points is lower

than in the previous case, because less points overlap in the Y di-

rection. We can conclude the information provided by the second

sensor is more discriminative for classifying samples (as we have

seen in Table 1 ). We also observe from Fig. 1 (b) and (c), that both

classes cannot be perfectly separated using a linear classifier, be-

cause they overlap in the X and Y axes. Therefore, this problem

only can be solved by taking into account the relationship between

both sources of information. Fig. 1 (d) shows the classification ob-

tained by Inter 1 where we observe that all points are correctly

e  
lassified. Table 2 shows the estimated signal variance parameters

or Inter 1 and Inter 2 fusion methods in 10 realizations. For In-

er 1 , we can observe that in all cases α2 > α1 . In this case, the

aximum signal variance parameter coincide with the most in-

ormative sensor. For Inter 1 , we observe that all values for α are

igher than α1 and lower than α2 , which means that when we

onstrain both sensors to have the same value of signal variance,

he system returns a weighted mean of the obtained values for

nter 2 . 

.2. Radar + multispectral image classification 

In this section, we investigate the use of the proposed fusion

lgorithms on a real dataset, where the information is provided

y two sensors. We use an image from Rome (Italy) captured in

995, the goal is to classify the pixels as belonging to Urban vs.

on-Urban classes. This image has been provided by the authors of

8] and was acquired in the context of the Urban Expansion Moni-

oring Project (UrbEx) of the European Space Agency . 

The first sensor (ERS2 SAR) captures 2 backscattering intensities

mages with 35 days of difference, and returns only one intensi-

ies image ( D 1 = 1 ) representing the coherence between both ob-

ervations. The second sensor (Landsat TM) provides a multispec-

ral image with D 2 = 7 bands. In Fig. 2 (a), we plot a small part

400 × 200 pixels) of the coherence image captured by ERS2 SAR

ensor. Fig. 2 (b) shows the RGB bands captured by Landsat TM sen-

or for the same area. Finally, a reference land cover map provided

y the Italian Institute of Statistics is also available. In Fig. 2 (c),

e show the region of interest corresponding to Fig. 2 (a) and (b),

here yellow corresponds to pixels belonging to class Urban, blue

orresponds to pixels belonging to class Non-Urban and red cor-

esponds to pixels whose class is unknown. Comparing the coher-

nce band with the reference map, we can note a correspondence

etween pixels with high coherence values and pixels belonging to

he class “Urban”. In the RGB image, we can also note that most of

he pixels belonging to the class “No-urban” seem to have differ-

nt color than pixels belonging to class “Urban”. So, both sensors
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Fig. 2. Multi-spectral image classification: a) Coherence band provided by ERS2 SAR sensor, b) Original RGB image provided by Landsat TM sensor, c) Available groundtruth 

with Urban (YELLOW), No-urban (BLUE) and unknown pixels (RED). 

Table 3 

Mean classification accuracies and AUCs for probabilities p = 0, p = 0.4 and p = 0.8 of a sensor fails acquiring a sample. 

Sensor 1 Sensor 2 Early Inter 1 Inter 2 Late CK-SVM Co-Tr1 Co-Tr2 DNN 

p = 0 OA % 80.54 87.50 91.74 91.97 91.96 92.29 90.43 80.39 83.84 87.31 

AUC 0.88 0.95 0.97 0.97 0.97 0.97 0.95 0.86 0.91 0.93 

p = 0.4 OA % 80.53 87.42 91.26 91.84 91.87 80.13 87.49 81.63 81.43 77.18 

AUC 0.88 0.94 0.97 0.97 0.97 0.87 0.94 0.88 0.88 0.82 

p = 0.8 OA % 79.99 86.86 86.35 91.28 91.37 72.53 78.29 79.15 76.12 72.18 

AUC 0.87 0.94 0.95 0.97 0.97 0.80 0.84 0.86 0.82 0.78 
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eem to provide discriminative information for solving this clas-

ification problem. 100 pixels (50 from each class) are randomly

elected for training, and 10 0 0 pixels (50 0 from each class) are

andomly selected for testing. To obtain unbiased results, the ex-

eriment is repeated 10 times with different training and testing

ets. The first row in Table 3 shows the performance of the fusion

lgorithms when both sensors provide information for all training

amples, i.e., the probability of malfunctioning when collecting a

eature vector is p = 0 for both sensors. Sensor 1 obtained 0.88 and

0.54 of mean AUC and mean OA, respectively, and Sensor 2 ob-

ained 0.95 and 87.50 of mean AUC and mean OA, respectively. In

his case, we observe that the Landsat TM sensor has more dis-

riminative information than the ERS2 SAR sensor. Early fusion ob-

ained 0.97 and 91.74 of mean AUC and mean OA, respectively. In-

er 1 obtained 0.97 and 91.97, and Inter 2 obtained 0.97 and 91.96

f mean AUC and mean OA, respectively. Finally, Late fusion ob-

ained 0.97 and 92.29 of mean AUC and mean OA, respectively. In

his case, Late fusion has the best overall accuracy. Inter 1 and In-

er 2 obtained a minimum improvement over Early fusion. We ob-

erve that all these results are better than the obtained ones by

ach sensor separately. The best mean OA was obtained by Late fu-

ion which was around 0.3% better than the other fusion methods.

K-SVM obtained 0.95 and 90.43 of mean AUC and mean OA, re-

pectively, which means that the proposed methods were around

% better. Bayesian Co-training algorithms have the worst perfor-

ance among fusion algorithms. Co-Tr1 obtained 0.86 and 80.39

f mean AUC and mean OA, respectively. Co-Tr2 obtained 0.91 and

3.84 of mean AUC and mean OA, respectively. Finally, the DNN

ethod obtained 0.93 and 87.31 for mean AUC and mean OA, re-

pectively. It works better than Bayesian co-training methods and

orse than the proposed method and CK-SVM . We believe that this

s due to the small size of the training set, the low dimensionality

f the space ( d = 8 ) and the larger number of parameters that need

o be estimated with the DNN algorithm. 

Let us now investigate the use of sensors which do not al-

ays observe all features. For each of 10 training sets used for

he no-missing samples case, we simulate the loss of information

ith probability p ∈ {0.4, 0.8}. That is, the probability of each sen-

or independently missing a sample is p . The results are reported

n Table 3 . We observe that mean AUC and mean OA drop for all

ethods when p increases. For p = 0 . 8 , we observe that Early fu-

ion obtains 2% and 5% of mean AUC and OA less than for the no
issing sample case. Late fusion obtains 17% and 20% of mean AUC

nd OA less than for the no missing sample case. However, Inter 1

nd Inter 2 obtain similar values to the no missing samples case,

ith a difference lower than 1% of mean AUC and mean OA. For

he CK-SVM method, we observe that it obtains around 12% mean

UC and mean OA less than the no missing samples case. Unlike

he other methods, Inter 1 and Inter 2 are capable of managing all

nformation provided by both sensors. Early and Late fusion algo-

ithms and CK-SVM are forced to discard all incomplete samples

hich leads to a poor classification performance. The missing sam-

le case is also handled by Co-Tr1 and Co-Tr2 . We observe that for

o-Tr1 the results for p = { 0 , 0 . 4 , 0 . 8 } are very similar. However,

he Co-training mean AUC and mean OA are 9% and 6% lower than

he obtained by our method. It can be observed that the perfor-

ance of DNN also degrades drastically in missing samples sce-

ario when p increases. Here, the algorithm discards incomplete

amples and is trained using less number of training samples. 

We study now the behavior of the different methods when the

ize of the training set increases. We randomly pick training sets of

izes 10 0 , 20 0 , . . . , 10 0 0 samples. To obtain unbiased results, each

xperiment is repeated 10 times. We also consider missing sam-

les with loss probability p ∈ {0, 0.4, 0.8}. The averaged OA and

UC for each case are shown in Fig. 3 . The x-axis represents the

ize of the training set and the y-axis shows the mean OA (left)

r mean AUC (right). Fig. 3 (a), corresponds to the perfect sensor

ase ( p = 0 ). We observe that the proposed algorithms have the

ighest performance, which increases when the size of the train-

ng set also increases. The performance of the DNN is worse than

he proposed method. We believe that this happens due to the fact

hat here the size of the training set is not very large and also the

imension of the dataset is low. Note that the slope of the black

ine is larger which confirms that the improvement observed by

he DNN is larger when we have a larger number of training sam-

les. With all algorithms, the performance improves with the num-

er of training samples. In Fig. 3 (b) and (c), we plot the mean

A and mean AUC for p = 0 . 4 and p = 0 . 8 , respectively. We ob-

erve that the performance of the proposed algorithms does not

ecrease drastically when incomplete training samples are present.

owever, other algorithms suffer from that, more specifically the

erformance of the DNN becomes much worse compared to the

erfect sensor scenario which again verifies its dependency on the

umber of training samples. As expected, in all cases the perfor-
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Table 4 

Classification accuracies and area under the curve of different level fusion algorithms and composite kernel applied to 

multispectral image with perfect simulated sensors for 10 random realizations. 

Real. 1 2 3 4 5 6 7 8 9 10 Mean 

Sen. 1 OA% 78.55 79.60 74.95 79.15 76.70 79.00 77.20 79.85 80.40 77.65 78.30 

AUC 0.88 0.87 0.86 0.88 0.87 0.86 0.87 0.87 0.88 0.87 0.87 

Sen. 2 OA% 77.30 79.75 74.75 79.30 77.80 78.35 77.15 79.95 79.50 76.65 78.05 

AUC 0.87 0.87 0.85 0.87 0.86 0.86 0.86 0.87 0.87 0.87 0.86 

Sen. 3 OA% 78.00 77.75 74.70 79.10 79.15 77.65 76.60 80.05 78.90 76.55 77.84 

AUC 0.87 0.86 0.84 0.86 0.86 0.86 0.85 0.87 0.86 0.87 0.86 

Sen. 4 OA% 72.95 72.50 71.30 71.85 72.20 71.60 70.65 72.50 72.65 73.05 72.12 

AUC 0.80 0.77 0.78 0.78 0.79 0.78 0.76 0.79 0.78 0.79 0.78 

Early OA% 81.75 80.40 76.65 81.35 82.05 81.75 78.65 82.85 81.80 82.60 80.98 

AUC 0.90 0.89 0.87 0.89 0.89 0.89 0.88 0.90 0.89 0.90 0.89 

Inter 1 OA% 82.95 81.40 79.55 80.70 82.60 81.05 80.05 82.65 82.75 84.60 81.83 

AUC 0.90 0.89 0.89 0.89 0.89 0.89 0.88 0.91 0.90 0.91 0.89 

Inter 2 OA% 83.15 81.90 79.30 81.65 82.85 81.55 80.00 82.80 83.10 83.35 81.96 

AUC 0.90 0.90 0.89 0.89 0.90 0.89 0.89 0.90 0.90 0.90 0.90 

Late OA% 81.65 81.15 75.55 79.40 80.95 78.85 78.30 81.50 80.95 78.95 79.72 

AUC 0.89 0.88 0.86 0.88 0.88 0.87 0.86 0.89 0.87 0.88 0.88 

CK-SVM OA% 79.20 79.70 75.55 76.05 75.40 78.30 75.35 79.75 79.35 77.90 77.65 

AUC 0.83 0.81 0.82 0.84 0.81 0.86 0.82 0.86 0.87 0.85 0.84 

Co-Tr1 OA% 78.65 77.60 77.80 79.10 77.15 76.85 76.75 78.60 75.10 79.65 77.72 

AUC 0.85 0.86 0.87 0.87 0.87 0.86 0.85 0.87 0.85 0.87 0.86 

Co-Tr2 OA% 76.55 77.85 76.90 79.40 77.15 77.00 76.85 78.95 75.10 79.00 77.47 

AUC 0.86 0.86 0.86 0.87 0.87 0.86 0.85 0.87 0.85 0.87 0.86 

DNN OA% 76.35 79.2 75.7 74.2 78.9 76.5 79.45 81.65 74.5 77.8 77.42 

AUC 0.85 0.86 0.85 0.83 0.87 0.84 0.87 0.89 0.81 0.82 0.85 

Fig. 3. Overall accuracy and area under the ROC curve vs training set size for miss- 

ing case scenario with three different missing probabilities. 
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mance of the algorithms improves by adding more samples to the

training set. 

6.3. Pervasive change detection 

In this experiment, the dataset was provided by the authors

of [15] . The dataset is a pair of multi-spectral images captured
y Quickbird satellite. Both 864 × 1060 images were acquired over

enver (USA) on July 17th 2002 and August 22nd 2008, respec-

ively. The goal of this experiment is to detect pervasive changes

n the images. To carry out this task, a set of 2280 labeled pix-

ls is available, where 1140 correspond to the class C 1 = “pervasive

hange”, and 1140 correspond to the class C 0 = “non-pervasive

hange”. Quickbird multispectral images are acquired by P = 4 sen-

ors capturing different wavelengths: blue, green, red and near-

nfrared. For each sensor, we have a D j = 2 , j = 1 , 2 , 3 , 4 , feature

ector where the first component corresponds to the image cap-

ured on Jul 17th 2002, and the second component corresponds to

he image captured on Aug 22nd 2008. For training, 280 samples

140 from each class) are randomly selected and the remaining

0 0 0 labeled samples (10 0 0 from each class) are used for testing.

o obtain unbiased results, the experiment is repeated 10 times.

able 4 shows the results obtained by the different algorithms. Sen-

or 1 obtained 0.87 and 78.30 of mean AUC and mean OA, respec-

ively, Sensor 2 obtained 0.86 and 78.05 of mean AUC and mean

A, respectively, Sensor 3 obtained 0.86 and 77.84 of mean AUC

nd mean OA, respectively and Sensor 4 obtained 0.78 and 72.12

f mean AUC and mean OA, respectively. From these results, we

bserve that the first sensor provides the most discriminative in-

ormation and the fourth sensor is the least accurate one. Early fu-

ion obtained 0.89 and 80.98 of mean AUC and mean OA, respec-

ively. Inter 1 obtained 0.89 and 81.83, and Inter 2 obtained 0.90

nd 81.96 of mean AUC and mean OA, respectively. Late fusion ob-

ained 0.88 and 79.72 of mean AUC and mean OA, respectively. In

his case, Inter 1 and Inter 2 obtained a minimum improvement

ver Early and Late fusion methods. The accuracies of three fu-

ion algorithms, Early, Inter 1 and Inter 2 are very close to each

ther in all runs. The last three rows of Table 4 show the results

or CK-SVM, Co-Tr1 and Co-Tr2. CK-SVM obtained 0.84 and 77.65 of

ean AUC and mean OA, respectively. The other two performed

imilarly, which means that the proposed method was around 5%

etter than the ones compared with. Finally, DNN method obtained

.85 and 77.42 of mean AUC and mean OA, respectively. It works

imilar to Bayesian co-training methods and worse than proposed

ethod and CK-SVM . We believe this happens due to small size

f training set, low dimensionality of the space ( d = 8 ) and more

umber of parameters to be estimated in DNN algorithm. 
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Fig. 4. Overall accuracy and Area under ROC curve vs training set size for Occu- 

pancy Detection dataset. 
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.4. Occupancy detection 

The dataset for this experiment was collected by the authors of

4] and is available in UCI Machine Learning Repository . An office

oom with approximate dimensions of 5.85 m × 3.50 m × 3.53 m

W × D × H) was monitored with different sensors to obtain

he following variables: temperature, humidity, light and CO2 lev-

ls [4] . The goal is to detect if the room is occupied or not accord-

ng to the values of the four acquired features. 

To study the behavior of the different methods when the size

f the training set varies, we randomly pick training sets of sizes

0 0 , 20 0 , . . . , 10 0 0 samples. To obtain unbiased results for each

umber of training samples, the experiment is repeated 10 times.

he testing dataset is fixed and contains 2665 samples. As we can

bserve in Fig. 4 , the proposed algorithm outperforms the rest of

he fusion algorithms. For this dataset, the Bayesian Co-training

lgorithm demonstrated the worst performance, whereas for the

arger training sets, the performance of the DNN is comparable to

he intermediate fusion algorithms. 

. Conclusions 

In this paper, we use Gaussian Process theory to model a clas-

ification problem where information is provided by different sen-

ors. We introduce a prior model which exploits the correlations

etween the samples provided by each sensor and a likelihood

unction which links the information provided by the sensors. Vari-

tional Bayes inference is used to approximate the posterior dis-

ribution of the model unknowns. In contrast to other methods

n the literature, our proposed model can handle sensors which

o not always observe all their associated features. The method is

rained with the available information and provides predictions for

omplete as well as incomplete testing samples. We also studied

he relationship with the Bayesian Co-training model and demon-
trated which are the main advantages of the proposed model. In

he experimental section, the proposed method is evaluated on

oth synthetic and real datasets, and compared with other meth-

ds in the literature. The results justified the applicability of the

roposed algorithm. 
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