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This paper proposes a new model for multi-sensory data classification. To tackle this problem, probabilis-
tic modeling and variational Bayesian inference are used. A Gaussian Process (GP) classifier is built upon
the introduced modeling. Its posterior distribution is approximated using variational Bayesian inference.
Finally, labels of test samples are predicted employing this classifier. Very importantly, and in contrast to
alternative approaches, the proposed method does not discard samples with missing features and utilizes
all available information for training. Furthermore, to take into account that the quality of the informa-
tion provided by each sensor may differ (some modalities/sensors may provide more reliable/distinctive
information than others), we introduce two versions of the algorithm. In the first one, the parameters
modeling each sensor performance are shared while in the second one, each sensor parameters are es-
timated independently. Synthetic and real datasets are utilized to examine the validity of the proposed
models. The results obtained for binary classification problems justify their use and confirm their superi-
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ority over existing fusion architectures.
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1. Introduction

There are numerous machine learning problems where differ-
ent views of a single object exist and multimodal information can
be used to provide more global information on the object of in-
terest. In such problems, different sensors (modalities) capture in-
formation and data fusion is employed to combine the information
gathered by all sources, which should lead to a more accurate un-
derstanding of the environment. The more the sensors, the greater
the amount of available information, and therefore, the better the
performance of the system. However, fusion techniques become es-
pecially useful when the information provided by different sensors
is complementary [see 13]. In these cases, the combination of the
information results in an extra improvement of the performance,
which would not be possible if the information of each sensor is
processed separately.

Kernel based methods such as Support Vector Machines (SVM)
[7] or Gaussian Processes (GP) [18] are currently two of the most
utilized fusion tools. In [3], the authors propose a composite kernel
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machine framework for the enhanced classification of hyperspec-
tral images.

In [1], the authors tackle an urban tree species classification
problem using both AVIRIS and LIDAR data. Initially, they process
the AVIRIS and LIDAR data separately, and then they apply seg-
mentation algorithms to each data set to obtain regions of interest
(ROI), and feature extraction techniques. After these three steps,
the extracted features are fused (concatenated) and a canonical
discriminant analysis classifier is applied to find the label of each
individual pixel. Finally, each ROI is labeled by majority voting. The
authors show that the classification accuracy improves when fu-
sion techniques are used.

Multiple feature learning for hyperspectral image classification
is studied in [14]. In this article, the authors use both linear
and nonlinear sets of features extracted from the original spec-
tral features. They use a combination of both types of features to
cope with linear and nonlinear boundaries between different data
classes. Logistic regression with a variable splitting and an aug-
mented Lagrangian (LORSAL) algorithm is selected as the classifier
for this framework.

In [9], the authors propose a Nonlinear Multiple Kernel Learning
algorithm which uses spectral and spatial features for the hyper-
spectral images. Principal Component Analysis is performed on the
original features and spatial features are extracted. Multiple ker-
nels are nonlinearly combined. This algorithm is used for hyper-
spectral image classification.
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During the last few years, Deep Learning (DL) has been shown
to be a powerful tool for solving fusion problems (see [17] for an
extensive survey). For instance, in [11], the authors use Convolu-
tional Neural Networks (CNNs) for fault diagnosis on a planetary
gearbox. The main problem of using DL for fusion is that most of
the proposed methods in the literature cannot deal with missing
samples. Only generative methods, such as [5] or [10] can simulate
the missing modality and use it for classification.

Regarding the model we introduce in this paper, the most sim-
ilar works in the literature are [12,19] and [6]. In [12], the authors
introduce one GP for modeling each sensor. The data fusion is per-
formed in the likelihood function which is a mixture of cumulative
distribution functions of a standard normal distribution. Expecta-
tion Propagation (EP) inference is used to approximate the poste-
rior distribution of the unknowns. However, this formulation re-
quires an extra step for estimating the weights of each sensor for
classifying a new sample. Although the proposed model shares the
same structure, we propose a new likelihood function and Varia-
tional Inference which allow a joint estimation of all unknowns of
the model. In [19], the authors also consider one GP for model-
ing each sensor. For data fusion, the authors introduce a consensus
function. In Section 5, we show that this consensus function is very
sensitive to noisy sensors, which can lead to poor performances in
some cases. In [6], the authors introduce one GP for two sensors,
whose prior covariance matrix is a sum of a linear and squared ex-
ponential kernels [see 18], that is, one kernel for each sensor. We
see in Section 5, that it can be formulated as a particular case of
the proposed method; however the formulation proposed by the
authors in [6] does not allow to deal with missing samples.

The rest of the paper is organized as follows. First, we in-
troduce a Bayesian modeling of the fusion for classification in
Section 2. Variational inference is used to derive the training al-
gorithm in Section 3. In Section 4, we introduce the classifica-
tion rule. In Section 5, we discuss the relationship of the pro-
posed model with early and late fusion as well as the state-of-
the-art method of Bayesian Co-Training. Experimental results are
presented in Section 6, and Section 7 concludes the paper.

2. Bayesian modeling

The main goal in this work is to solve a classification problem
where data are acquired by P different sensors. The feature training
set is defined by the following matrix

X1 Xp2 X1p
X1 X2 ... Xpp

X = . ] ) . c RNX(D1+D2+..4+DP), (1)
XNt Xn2 ... XnNp

where Xx;; € R*Di represents the jth training feature vector with
dimension D;, acquired by the ith sensor. The corresponding train-
ing labels associated to each row of X are given by the vector
V= 1.....yn)T € {0, 1}N<1, Given X, two classical fusion strate-
gies are possible. We can build a classifier by concatenating the
features observed by all sensors, ie., by using x; = (Xj1,...,Xjp)
with associated label y; (this is the so called early fusion method).
Associated to each sensor and using the same y for all of them, we
can also build P independent classifiers, these classifiers are later
combined (this is the so called late fusion method). While both ap-
proaches have some interests, the second one makes an indepen-
dence assumption which is unrealistic in many real problems while
the first one does not include explicit cross-relations between sen-
sors whose knowledge may be of interest for the problem at hand.

We now describe the approach we propose for the multi-sensor
fusion problem. To relate samples and labels, we introduce a set
of latent variables for each sensor, that is, f,...,fp ¢ RN*1, For

the ith sensor, the corresponding set of latent variables f; fol-
lows a Gaussian distribution N (0, o;K; + yl.zl), where «; is the sig-
nal variance parameter, y; is a Gaussian noise variance parameter,
and K; e RN*N is a kernel matrix depending on a set of parame-
ters ;. The entry (n, m) of K;(n, m) is calculated as K;(n,m) =
kg, (Xni, Xmi) where kg (-,-) is a kernel function depending on the
parameters £2;. Concatenating all latent variables, we obtain the

vector f=[fT ... f1]T e RPNx1 which follows a Gaussian distribu-
tion A(0,K), where K € RPN*PN s 3 block-diagonal matrix
a1Ky +]/121 0 0
0 oK) + ]/221 ... 0
K= . . ) (2)

0 0 opKp + Y21
Eventually, during the acquisition procedure, we may have sensors
that do not work appropriately, which sometimes generate sam-
ples with missing entries. Most of the proposed methods in the
fusion literature are not capable of dealing with this problem, and
perform the training stage by discarding all samples with missing
entries, furthermore they cannot make predictions for test samples
with missing features. The model proposed in this work is trained
using all available information and can make predictions for test
data with missing features. Assuming x;; to be a missing feature,
and since x;; corresponds to the latent variable f;, we introduce
a zero degenerate prior distribution on the latent variables corre-
sponding to the missing data point. That is, if the ith sensor missed
the information of the jth sample, we set the corresponding jth
row and column of the matrix o/;K; + yizl to zero.

To relate the labels y to the latent variables f, we introduce the
following likelihood function

N N
j 1-y;
pWID = [Tpwjlf ) = [To(176;) o (-176;) . (3)
j=1 j=1
where o(-) is the sigmoid function, f ;= (fij..... fp;)" and

17f ; = P, fij- The rationale behind this model is that each sen-
sor is capable of providing a classifier from all information it gath-
ers independently. For a given sample x;, adding the GP values as-
sociated to the sensors i and 7, f; and fy;, respectively, will in-
crease (decrease) the likelihood of the observed label if they are in
agreement (disagreement) in their labels.

The joint distribution can be written as:

p(y.f.a, y. ) =p@ylH)pfle, y, 2)p(a)p(y)p(L). (4)

where @={Q,.... 2}, a=(o,....0p)T, y=(2 ...
and we use improper flat priors for p(ee), p(p) and p(€2).
From a Bayesian perspective, this model has an interesting in-
terpretation. For a given sensor, the prior distribution introduces
the correlations between the samples, however it considers that
the sensors are not correlated a priori as is indicated in Eq. (2). The
likelihood function in Eq. (3) models how to combine the infor-
mation provided by all sensors, to classify a sample. The inference
procedure, that we introduce in Section 3, will result in a poste-
rior distribution approximation, which will take into account both,
correlations between samples and correlations between sensors.

VAT,

3. Variational inference

The posterior distribution of the unknowns given the obser-
vations is given by p(f, a, y, |y) = p(y, &, . f, 2)/p(y). However,
this posterior cannot be analytically calculated because the integral
p(y) = [p(y.f o, y, R)d(f, o, y, ) is not tractable.

Variational Bayesian Inference (VBI) approximates the posterior
distribution by minimizing the Kulback-Leibler (KL) divergence
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KL(q(f, et, y, )||p(f, e, p, 2]y))

=/q(f,oc, Y, Sl)log( af.a. y, @)

— 2~ |d(f, o, y, ) + const.
p(y,f,a,y,ﬂ)> €er. 2

(5)

The KL divergence is always non-negative and is equal to zero if
and only if q(f, «, p, 2) and p(f, &, y, R|y) coincide. Unfortunately,
the functional form of p(y|f) does not allow the direct evaluation
of the KL divergence. To alleviate this problem, we use the lower

bound o(f) = 0'(&) exp{(f - £)/2 - A(§)(f2 — §2)} [see 2] which
produces the following lower bound for the joint distribution

p(y.fay, @) >My. f oy R 8§ <pfle,y R)

N .
[oE)exp { (y,- - %)ﬂf,j — MENET T 4 0(5)E2 - if}
j=1

(6)

where A(£) = é(ﬁ - %) and &€ = (&,...,&y)T is a vector of
additional positive parameters to be estimated. Using the varia-
tional bound in Eq. (6), the KL divergence in Eq. (5) is upper
bounded by KL(q(f, &, y, @)||M(y, f, &, p, @, &)), then we mini-
mize this functional with respect to q(f, &, p, ) and &, to push KL
divergence in Eq. (5) to be minimum.

Additional assumptions on q(f, &, p, &) are imposed in order
to find the solution for this minimization problem. The mean field
theory [see 16] considers the following factorization for the poste-
rior approximation q(f, e, p, ) = q(f)q(e, y, ) where q(a, p, 2)
is restricted to be a degenerate distribution. The joint posterior ap-
proximation q(f, ¢, y, ) can then be sequentially estimated by
alternating between the estimations of q(f) and q(«, y, ).

Let §(a, y, ) and é be the current estimations of q(e, p, )
and &, respectively. Then, the estimation of q(f) is given as

l0ga(f) = Eqap.0) [logM(y, oy 2 é)] + const, (7)

which is a quadratic function of f. That means {(f) is a Gaussian
distribution whose mean vector and covariance matrix can be cal-
culated respectively by taking the first and the second derivatives
of Eq. (7) with respect to f, that leads to §(f) = A'(f|f, £) where

= 1
fo z<1 ® (y— 51» and
with W=2(11T ® A), A =diag[A(£),...,A(€y)] and ® denotes
the Kronecker product.

Given &, the approximated likelihood function q(y|e, p, ) [see
18] can be calculated by integrating M(y, f, o, y, 2, &) on f result-
ing in

=K'+ W) T, (8)

1, = P .
q(ylec. y. 82) =N(YI21,2A +4ZA(a,-K,-+y,.21)A), (9)
i=1

which is used to calculate the point where (e, y, ) degenerates
as

a, ?,Q = argmax q(y|a, y, ). (10)
oy,
To estimate the variational parameters & we maximize
Eqma,y,m[logl\lg(y, foy Q8] Taking derivatives with respect
to &; and equating to zero, we obtain

17 (E T+ 31, (n

where X; is obtained by removing the rows and columns of X
which do not correspond to the components of f. ;.
The inference procedure is summarized in Algorithm 1.

Algorithm 1 Intermediate Fusion Training.

Require: X, y, initials &, p, @ and §j =1Vj=1,..., N.
1: repeat

2:  Update q(f) using eq.(8).

3. Update &, ¥, € by solving the problem in eq.(10).
4:  Update é using eq.(11).

5: until convergence

4. Classification rule

Given a new sample X, = [X,1, ..., X,p|, the classification rule is
based on the posterior probability y-, which can be written as

P(y.ly) = / P.IE )P IDPE o y. RIY)A(E., £, y. 2).
(12)

where £, = (fi,, ..., fp)T.

The probability p(y«|f. <) is given by Eq. (3), meanwhile the
posterior distribution, p(f, o, p, 2|y), can be approximated by
4(f, a, y, ) obtained by Algorithm 1 at convergence.

The vector (f. «, fT)T follows a Gaussian distribution

<ff> NN((ﬁ) [nc{ ﬂ) (13)

where
h, 0 0
0 h, ... O

H=| . | . . |, €=diag[c1, ¢, ..., cpl. (14)
0 0 ... hp

with by = (kg (Xqi, X,i), - .. aikg, (Xni. X,))T,  and ¢ =

aikg, (X,i, X,i) +yi2, which allows us to calculate the conditional
distribution p(f ,|f) = N'(f ,|[H'K~!f,C — HTK-'H).

By substituting the conditional distribution p(f. «|f) in
Eq. (12) we obtain

py. = 1)~ [(TE)N(E.Im(x.). S(x.))E... (15)

where m(x,) = A"R-'f and S(x,) =C—H'(R+W-1)"'H. The
integral in Eq. (15) is approximated as in [2] resulting in
Py, =1ly) # o(m(x.)k (x.)) where m(x.)=1"m(x.), and
K(X,) = (]+%1TS(X*)1)71/2. Finally, x- is assigned to class 1
if p(y. = 1]y) is greater than a given threshold §. Notice that if
at testing phase, X+; is not observed, the proposed model can still
provide a prediction for the sample x:. To do that, we set the
corresponding h; and ¢; in Eq. (14) equal to zero.

5. Related models

In this section, we discuss the relationship between the pro-
posed model and alternative fusion models based on GP.

By defining g; = f1; + ...+ fpj in Eq. (3), the proposed model in
Section 2 corresponds to a GP classifier [18], with latent variables
g=1(g1,...,gy)T and prior distribution

P
pglo, y, Q) :N(glo,f(: > oK+ yfl). (16)

i=1

As we will see in the experimental section, the formulation in-
troduced in Section 2 allows us to understand how our model
learns the correlation between different sensors, as well as, an in-
tuitive modeling for the missing samples case. However, we can
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Fig. 1. (a) Original toy data set1, (b) Classification result by using Sensor 1, (c) Classification results by using Sensor 2, (d) Classification results by using Inter 1 fusion method.

use Eq. (16) to understand how the proposed model is related to
[6,19].

The prior model proposed in [6], is a particular case of the prior
model in Eq. (16) when P=2, y; =y =0, Ky is a linear kernel
and K, is a squared exponential kernel.

In [19], the authors introduce the following prior model on the
latent variables

r If — g |12
p(ge. fi..... fpla. ¥. ) o [ [N (£;]0, aK;) exp T2
i=1 i

(17)

where g: € RP*1 is a consensus function. As in our model, the fac-
tors N(f;|0, o;K;) model the prior correlations between samples
when the kernel matrices Ki, ..., Kp associated to the P sensors are
used. The second factor, which can be considered as a regularizer,
models the relationship between the latent variables associated to
the sensors as a consensus function. Notice that each vector f; is
forced to be similar to the latent variables g.. Unfortunately, when
a sensor is not discriminative, the regularizer can lead to a poor
behavior of g. when integrating on fy, ..., fp.

By integrating in Eq. (17) on fy,...,fp, the authors in [19] ob-
tain the following prior model on g,

, -1

0K =Y (wki+y2) ") | (8

i=1

p(gcle, y, ) =N | g

where K is called the Co-training kernel.

Using basic properties of positive definite matrices, the follow-
ing relationship between the precision matrices of both prior mod-
els (the proposed one in this work in Eq. (16) and the proposed in
[19] in Eq. (18) can be established

VIK:'w>vIK v,  VveRV (19)

The differences between both approaches are now clear. The Co-
Training model assumes a stronger prior knowledge than our
model. Our model gives more weight to the information provided
by the observed labels.

6. Experimental results

In this section, the proposed approach is evaluated on both,
synthetic and real data. For each sensor, we use the squared ex-
ponential kernel defined by kg (X;i, Xy;) = exp{—[Ix;; — Xl|*/287}.
The length scale (8;) and signal variance parameters («;) are esti-
mated for all sensors during the training step. Inter 1 is used to
denote our proposed fusion model. Inter 2 is used for the case
oj=co, i=1,...,P. Both methods are compared with [3], which
combines different kernels to train an SVM classifier. We name this
method CK-SVM. Parameters are estimated following the settings
proposed by Camps-Valls et al. [3], that is, the {8;} are estimated
by cross-validation in the set ; € {10~3,102,10-1, 1,10} for i =
1, ..., P. The Bayesian co-training method proposed in [19] is also

compared with our results. In order to perform a fair compari-
son, we consider the case when all signal variance parameters take
different values for each sensor (Co-Tr1), and the case when all
signal variance parameters take the same value (Co-Tr2). In the
experiments, we also include early and late fusion methods. The
early fusion method first stacks all features and then builds the
classifier (notice that this method cannot deal with missing fea-
tures). The late fusion method fuses the posterior probability pro-
vided by each of the P sensors by calculating their mean. These
methods are denoted by Early and Late, respectively. We also pro-
vide the results obtained by a GP classifier applied to each sensor
separately. Sensor i is used to denote the results obtained by the
ith sensor. The results of deep neural network (DNN) are also re-
ported for the comparison. The network consists of three fully con-
nected, dense layers. The activation functions of the first two layers
are relu and the activation function of the last layer is a sigmoid.
Here, the fusion is performed in the hidden layers of the deep net-
work as is explained in [17]. The number of epochs is set to 100
and the Adam optimizer with binary cross entropy loss function is
used.

6.1. Synthetic experiment

Fig. 1(a) displays the synthetic dataset which is used in our ex-
periments. This dataset is called Two-moon and was introduced in
[20]. The top (red) and bottom (blue) half moons correspond to
two different classes, and as it can be observed from Fig. 1(a), they
cannot be linearly separated.

Following the experiments presented in [12], we associate a dif-
ferent sensor to coordinate (dimension). “Sensor1” measures the
horizontal component of each sample (X coordinate) while “Sen-
sor2” measures the vertical one (Y coordinate). The dataset con-
tains 200 samples, 100 from each class. For training, 40 samples
from each class are randomly selected, and the remaining 120 sam-
ples are used for testing. To avoid biased results, the experiment is
repeated 10 times.

In Table 1, we report the area under ROC curve (AUC), and Over-
all Accuracy (OA) obtained by setting the threshold value § = 0.5,
for 10 realizations, as well as, the corresponding mean values re-
ported in the last column. First and second rows report the results
obtained by Sensor 1 and Sensor 2, respectively. The third, fourth,
fifth and sixth rows report the results obtained by Early, Inter 1, In-
ter 2, and Late fusion algorithms, respectively. Finally, the last three
rows report the results for the state-of-the-art methods CK-SVM,
Co-Tr1 and Co-Tr2, respectively.

The proposed method Inter 1 obtains 0.99 and 99.00 of mean
AUC and OA, respectively, and Inter 2 obtains 0.99 and 99.25 of
mean AUC and OA, respectively. Therefore, the proposed methods
can classify all samples almost perfectly. We observe that the mean
OA for Inter 2 is slightly better than Inter 1. Notice that, in this
case, it is realistic to assume that the scale parameters are the
same for the two sensors and so Inter 2 performs slightly better
than Inter 1. We observe the obtained results by Sensor 1 and Sen-
sor 2 are much worse than Inter 1. This means that information
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Table 1
Classification Overall Accuracies (OA) and Areas under the ROC Curves (AUC) for the compared methods.
Real. 1 2 3 4 5 6 7 8 9 10 Mean
Sensor 1  OA%  75.00 74.16 75.83 7583 7583  79.16 75.00 79.16 7250  79.16 76.16
AUC 0.82 0.84 0.86 0.86 0.85 0.87 0.85 0.88 0.84 0.86 0.85
Sensor 2 OA%  87.50 8833 8833 84.16 89.16 8750 8500 90.83 8833 93.85 88.00
AUC  0.96 0.96 0.96 0.96 0.97 0.95 0.95 0.97 0.96 0.98 0.96
Early OA%  98.33 100 100 99.16 100 100 99.16 99.16 95.83 100 99.16
AUC  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99
Inter 1 OA% 9833 9833 100 9833 100 100 99.16 99.16 96.66 100 99.00
AUC  1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.99
Inter 2 OA% 9833  99.16 100 99.16 100 100 99.16 99.16 97.5 100 99.25
AUC  1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99
Late 0A%  94.16 95.00 9333 9333 9750 9333 9333 9500 9250 96.66 94.41
AUC  0.96 0.98 0.98 0.97 0.99 0.98 0.96 0.98 0.97 0.99 0.98
CK-SVM OA% 9833 9750 9833 9833 9833 9833 9833 9750 95.00 99.16 9791
AUC 1.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.99
Co-Tr1 OA% 86.66 8750 8833 84.16 8833 8750 8500 90.00 86.66 90.83 8750
AUC 095 0.94 0.96 0.96 0.97 0.95 0.95 0.97 0.94 0.98 0.96
Co-Tr2 0A%  87.50 88.33 8833 8416 89.16 8750 85.00 9083 8833 90.00 8791
AUC  0.96 0.96 0.96 0.96 0.97 0.95 0.95 0.97 0.96 0.98 0.96
Table 2
Estimated signal variance values for Inter 1 and Inter 2 fusion algorithms applied to Two-Moon Dataset for 10 random
realizations.
Realizations 1 2 3 4 5 6 7 8 9 10
Inter 1 oy 19.64 16.26 20.93 14.81 3115 22.22 11.86 23.64 18.32 47.98
o 11478  144.67 13217 139.04 15596 13711 120.20 14930 10052  223.70
Inter 2« 46.50 4729 54.04 4744 63.29 58.51 45.74 56.62 38.52 95.52

provided by each sensor must be combined to obtain a good clas-
sification performance. We also observe in Table 1 that in this case
Inter 2 obtains a higher mean AUC and OA than Early and Late,
which proves that performing fusion in the latent variables can
lead to a better performance, than stacking the features (Early) or
combining the classifiers outputs (Late). Regarding to CK-SVM we
observe that it obtains approximately 1% of AUC and OA less than
Inter 1. We think this happens because CK-SVM selects the param-
eters by cross-validation from a small set of values. However, the
proposed parameter estimation method of Inter 1 and Inter 2 pro-
vides finer values of the parameters which results in a better per-
formance. We observe that Co-Tr2, which uses the same value for
all signal variance parameters, obtains slightly better results than
Co-Tr1 which is consistent with the results obtained by Inter 1 and
Inter 2. We also observe that Bayesian Co-Training obtains poor re-
sults, which are even worse than the obtained by Sensor 2. Notice
that the information provided by Sensor 1 is not very discrimina-
tive and the consensus function is built on contradictory informa-
tion.

Fig. 1 illustrates an example of how the proposed method can
combine the information provided by both sensors to obtain a bet-
ter classification performance. Fig. 1(a) is the figure related to the
sets used in the 5th realization in Table 1. Training samples are
depicted by green triangles. Fig. 1(b) shows the classification map
obtained by Sensor 1. As expected, many points are misclassified
because of the overlap in the X dimension of points from both
classes. Fig. 1(c) shows the classification map obtained by Sensor
2. We can observe that the number of misclassifed points is lower
than in the previous case, because less points overlap in the Y di-
rection. We can conclude the information provided by the second
sensor is more discriminative for classifying samples (as we have
seen in Table 1). We also observe from Fig. 1(b) and (c), that both
classes cannot be perfectly separated using a linear classifier, be-
cause they overlap in the X and Y axes. Therefore, this problem
only can be solved by taking into account the relationship between
both sources of information. Fig. 1(d) shows the classification ob-
tained by Inter 1 where we observe that all points are correctly

classified. Table 2 shows the estimated signal variance parameters
for Inter 1 and Inter 2 fusion methods in 10 realizations. For In-
ter 1, we can observe that in all cases o > 7. In this case, the
maximum signal variance parameter coincide with the most in-
formative sensor. For Inter 1, we observe that all values for o are
higher than «; and lower than «,, which means that when we
constrain both sensors to have the same value of signal variance,
the system returns a weighted mean of the obtained values for
Inter 2.

6.2. Radar + multispectral image classification

In this section, we investigate the use of the proposed fusion
algorithms on a real dataset, where the information is provided
by two sensors. We use an image from Rome (Italy) captured in
1995, the goal is to classify the pixels as belonging to Urban vs.
Non-Urban classes. This image has been provided by the authors of
[8] and was acquired in the context of the Urban Expansion Moni-
toring Project (UrbEx) of the European Space Agency.

The first sensor (ERS2 SAR) captures 2 backscattering intensities
images with 35 days of difference, and returns only one intensi-
ties image (D; = 1) representing the coherence between both ob-
servations. The second sensor (Landsat TM) provides a multispec-
tral image with D, =7 bands. In Fig. 2(a), we plot a small part
(400 x 200 pixels) of the coherence image captured by ERS2 SAR
sensor. Fig. 2(b) shows the RGB bands captured by Landsat TM sen-
sor for the same area. Finally, a reference land cover map provided
by the Italian Institute of Statistics is also available. In Fig. 2(c),
we show the region of interest corresponding to Fig. 2(a) and (b),
where yellow corresponds to pixels belonging to class Urban, blue
corresponds to pixels belonging to class Non-Urban and red cor-
responds to pixels whose class is unknown. Comparing the coher-
ence band with the reference map, we can note a correspondence
between pixels with high coherence values and pixels belonging to
the class “Urban”. In the RGB image, we can also note that most of
the pixels belonging to the class “No-urban” seem to have differ-
ent color than pixels belonging to class “Urban”. So, both sensors
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b)

Fig. 2. Multi-spectral image classification: a) Coherence band provided by ERS2 SAR sensor, b) Original RGB image provided by Landsat TM sensor, c¢) Available groundtruth

with Urban (YELLOW), No-urban (BLUE) and unknown pixels (RED).

Table 3

Mean classification accuracies and AUCs for probabilities p=0, p=0.4 and p=0.8 of a sensor fails acquiring a sample.
Sensor 1 Sensor 2 Early Inter 1 Inter 2 Late CK-SVM  Co-Tr1 Co-Tr2  DNN
p=0 OA %  80.54 87.50 91.74 9197 91.96 9229 9043 80.39 83.84 8731
AUC 0.88 0.95 0.97 0.97 0.97 0.97 0.95 0.86 0.91 0.93
p=04 OA%  80.53 8742 9126 9184 91.87 80.13 87.49 81.63 8143 7718
AUC 0.88 0.94 0.97 0.97 0.97 0.87 0.94 0.88 0.88 0.82
p=08 OA%  79.99 86.86 8635  91.28 91.37 7253 7829 79.15 76.12 7218
AUC 0.87 0.94 0.95 0.97 0.97 0.80 0.84 0.86 0.82 0.78

seem to provide discriminative information for solving this clas-
sification problem. 100 pixels (50 from each class) are randomly
selected for training, and 1000 pixels (500 from each class) are
randomly selected for testing. To obtain unbiased results, the ex-
periment is repeated 10 times with different training and testing
sets. The first row in Table 3 shows the performance of the fusion
algorithms when both sensors provide information for all training
samples, i.e., the probability of malfunctioning when collecting a
feature vector is p = 0 for both sensors. Sensor 1 obtained 0.88 and
80.54 of mean AUC and mean OA, respectively, and Sensor 2 ob-
tained 0.95 and 87.50 of mean AUC and mean OA, respectively. In
this case, we observe that the Landsat TM sensor has more dis-
criminative information than the ERS2 SAR sensor. Early fusion ob-
tained 0.97 and 91.74 of mean AUC and mean OA, respectively. In-
ter 1 obtained 0.97 and 91.97, and Inter 2 obtained 0.97 and 91.96
of mean AUC and mean OA, respectively. Finally, Late fusion ob-
tained 0.97 and 92.29 of mean AUC and mean OA, respectively. In
this case, Late fusion has the best overall accuracy. Inter 1 and In-
ter 2 obtained a minimum improvement over Early fusion. We ob-
serve that all these results are better than the obtained ones by
each sensor separately. The best mean OA was obtained by Late fu-
sion which was around 0.3% better than the other fusion methods.
CK-SVM obtained 0.95 and 90.43 of mean AUC and mean OA, re-
spectively, which means that the proposed methods were around
2% better. Bayesian Co-training algorithms have the worst perfor-
mance among fusion algorithms. Co-Tr1 obtained 0.86 and 80.39
of mean AUC and mean OA, respectively. Co-Tr2 obtained 0.91 and
83.84 of mean AUC and mean OA, respectively. Finally, the DNN
method obtained 0.93 and 87.31 for mean AUC and mean OA, re-
spectively. It works better than Bayesian co-training methods and
worse than the proposed method and CK-SVM. We believe that this
is due to the small size of the training set, the low dimensionality
of the space (d = 8) and the larger number of parameters that need
to be estimated with the DNN algorithm.

Let us now investigate the use of sensors which do not al-
ways observe all features. For each of 10 training sets used for
the no-missing samples case, we simulate the loss of information
with probability p € {0.4, 0.8}. That is, the probability of each sen-
sor independently missing a sample is p. The results are reported
in Table 3. We observe that mean AUC and mean OA drop for all
methods when p increases. For p = 0.8, we observe that Early fu-
sion obtains 2% and 5% of mean AUC and OA less than for the no

missing sample case. Late fusion obtains 17% and 20% of mean AUC
and OA less than for the no missing sample case. However, Inter 1
and Inter 2 obtain similar values to the no missing samples case,
with a difference lower than 1% of mean AUC and mean OA. For
the CK-SVM method, we observe that it obtains around 12% mean
AUC and mean OA less than the no missing samples case. Unlike
the other methods, Inter 1 and Inter 2 are capable of managing all
information provided by both sensors. Early and Late fusion algo-
rithms and CK-SVM are forced to discard all incomplete samples
which leads to a poor classification performance. The missing sam-
ple case is also handled by Co-Tr1 and Co-Tr2. We observe that for
Co-Tr1 the results for p={0,0.4,0.8} are very similar. However,
the Co-training mean AUC and mean OA are 9% and 6% lower than
the obtained by our method. It can be observed that the perfor-
mance of DNN also degrades drastically in missing samples sce-
nario when p increases. Here, the algorithm discards incomplete
samples and is trained using less number of training samples.

We study now the behavior of the different methods when the
size of the training set increases. We randomly pick training sets of
sizes 100, 200, ..., 1000 samples. To obtain unbiased results, each
experiment is repeated 10 times. We also consider missing sam-
ples with loss probability pe{0, 0.4, 0.8}. The averaged OA and
AUC for each case are shown in Fig. 3. The x-axis represents the
size of the training set and the y-axis shows the mean OA (left)
or mean AUC (right). Fig. 3(a), corresponds to the perfect sensor
case (p=0). We observe that the proposed algorithms have the
highest performance, which increases when the size of the train-
ing set also increases. The performance of the DNN is worse than
the proposed method. We believe that this happens due to the fact
that here the size of the training set is not very large and also the
dimension of the dataset is low. Note that the slope of the black
line is larger which confirms that the improvement observed by
the DNN is larger when we have a larger number of training sam-
ples. With all algorithms, the performance improves with the num-
ber of training samples. In Fig. 3 (b) and (c), we plot the mean
OA and mean AUC for p=0.4 and p = 0.8, respectively. We ob-
serve that the performance of the proposed algorithms does not
decrease drastically when incomplete training samples are present.
However, other algorithms suffer from that, more specifically the
performance of the DNN becomes much worse compared to the
perfect sensor scenario which again verifies its dependency on the
number of training samples. As expected, in all cases the perfor-
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Table 4
Classification accuracies and area under the curve of different level fusion algorithms and composite kernel applied to
multispectral image with perfect simulated sensors for 10 random realizations.
Real. 1 2 3 4 5 6 7 8 9 10 Mean
Sen. 1 O0A% 7855 7960 7495 7915 7670 79.00 7720  79.85 8040 7765 7830
AUC 088 087 08 08 087 08 087 087 088 087 087
Sen. 2 0A% 7730 7975 7475 7930 7780 7835 7715 7995 7950 7665  78.05
AUC 087 087 08 087 08 08 08 087 087 087 086
Sen. 3 OA%  78.00 7775 74.70 79.10 79.15 77.65 76.60 80.05 7890  76.55 77.84
AUC 087 08 084 08 08 08 08 087 08 087 086
Sen. 4 0A% 7295 7250 7130 7185 7220 7160  70.65 7250  72.65 73.05 7212
AUC 080 077 078 078 079 078 076 079 078 079 078
Early 0A% 8175 8040 7665 8135 8205 8175 7865 8285 8180 8260  80.98
AUC 090 089 087 08 08 08 08 090 08 090 089
Inter 1 OA% 8295 8140 7955 8070 82.60 8105 8005 8265 8275 8460 8183
AUC 090 089 089 089 08 089 08 091 090 091 0.89
Inter 2 OA% 8315 8190 7930 8165 8285 8155 8000 8280 8310 8335 8196
AUC 090 090 089 089 090 08 08 090 090 090  0.90
Late OA%  81.65 81.15 7555 7940 80.95 7885 7830  81.50 80.95  78.95 79.72
AUC 089 088 08 08 08 087 08 08 087 088 088
CK-SYM  OA% 7920 7970 7555 7605 7540 7830 7535 7975 7935 7790 7765
AUC 083 0.81 082 084 081 086 082 086 087 085 084
Co-Tr1 OA% 7865 7760 7780 7910 7715 7685 7675 7860 7510 7965 7772
AUC 085 08 087 087 087 08 08 08 08 087 086
Co-Tr2 ~ OA% 7655 7785 7690 7940 7715 7700 7685 7895 7510 79.00 7747
AUC 086 08 08 087 087 08 08 087 08 087 086
DNN 0A% 7635 792 757 742 789 765 7945 8165 745 778 77.42
AUC 085 08 08 083 087 084 087 089 081 082 085
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Fig. 3. Overall accuracy and area under the ROC curve vs training set size for miss-
ing case scenario with three different missing probabilities.

mance of the algorithms improves by adding more samples to the
training set.

6.3. Pervasive change detection

In this experiment, the dataset was provided by the authors
of [15]. The dataset is a pair of multi-spectral images captured

of mean AUC and mean OA, respectively. From these results, we
observe that the first sensor provides the most discriminative in-
formation and the fourth sensor is the least accurate one. Early fu-
sion obtained 0.89 and 80.98 of mean AUC and mean OA, respec-
tively. Inter 1 obtained 0.89 and 81.83, and Inter 2 obtained 0.90
and 81.96 of mean AUC and mean OA, respectively. Late fusion ob-
tained 0.88 and 79.72 of mean AUC and mean OA, respectively. In
this case, Inter 1 and Inter 2 obtained a minimum improvement
over Early and Late fusion methods. The accuracies of three fu-
sion algorithms, Early, Inter 1 and Inter 2 are very close to each
other in all runs. The last three rows of Table 4 show the results
for CK-SVM, Co-Tr1 and Co-Tr2. CK-SVM obtained 0.84 and 77.65 of
mean AUC and mean OA, respectively. The other two performed
similarly, which means that the proposed method was around 5%
better than the ones compared with. Finally, DNN method obtained
0.85 and 77.42 of mean AUC and mean OA, respectively. It works
similar to Bayesian co-training methods and worse than proposed
method and CK-SVM. We believe this happens due to small size
of training set, low dimensionality of the space (d = 8) and more
number of parameters to be estimated in DNN algorithm.
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Fig. 4. Overall accuracy and Area under ROC curve vs training set size for Occu-
pancy Detection dataset.

6.4. Occupancy detection

The dataset for this experiment was collected by the authors of
[4] and is available in UCI Machine Learning Repository. An office
room with approximate dimensions of 5.85 m x3.50 m x 3.53 m
(W x D x H) was monitored with different sensors to obtain
the following variables: temperature, humidity, light and CO2 lev-
els [4]. The goal is to detect if the room is occupied or not accord-
ing to the values of the four acquired features.

To study the behavior of the different methods when the size
of the training set varies, we randomly pick training sets of sizes
100, 200, ...,1000 samples. To obtain unbiased results for each
number of training samples, the experiment is repeated 10 times.
The testing dataset is fixed and contains 2665 samples. As we can
observe in Fig. 4, the proposed algorithm outperforms the rest of
the fusion algorithms. For this dataset, the Bayesian Co-training
algorithm demonstrated the worst performance, whereas for the
larger training sets, the performance of the DNN is comparable to
the intermediate fusion algorithms.

7. Conclusions

In this paper, we use Gaussian Process theory to model a clas-
sification problem where information is provided by different sen-
sors. We introduce a prior model which exploits the correlations
between the samples provided by each sensor and a likelihood
function which links the information provided by the sensors. Vari-
ational Bayes inference is used to approximate the posterior dis-
tribution of the model unknowns. In contrast to other methods
in the literature, our proposed model can handle sensors which
do not always observe all their associated features. The method is
trained with the available information and provides predictions for
complete as well as incomplete testing samples. We also studied
the relationship with the Bayesian Co-training model and demon-

strated which are the main advantages of the proposed model. In
the experimental section, the proposed method is evaluated on
both synthetic and real datasets, and compared with other meth-
ods in the literature. The results justified the applicability of the
proposed algorithm.
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