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A B S T R A C T

Digital Forensics encompasses the recovery and investigation of data, images, and recordings found in
digital devices in order to provide evidence in the court of law. This paper is devoted to the assessment of
digital evidence which requires not only an understanding of the scientific technique that leads to
improved quality of surveillance video recordings, but also of the legal principles behind it. Emphasis is
given on the special treatment of image processing in terms of its handling and explanation that would be
acceptable in a court of law. In this context, we propose a variational Bayesian approach to multiple-
image super-resolution based on Super-Gaussian prior models that automatically enhances the quality of
outdoor video recordings and estimates all the model parameters while preserving the authenticity,
credibility and reliability of video data as digital evidence. The proposed methodology is validated both
quantitatively and visually on synthetic videos generated from single images and real-life videos and
applied to a real-life case of damages and stealing in a private property.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Digital Forensics encompasses the recovery and investigation of
data, images and recordings found in digital devices in order to
provide evidence in the court of law (cf. [1–6]). Digital evidence can
be obtained from any devices capable of storing digital data, but
there are strict national and international guidelines for its use in
criminal and civil investigations as part of legal processes. The
most common are the British ACPO [7] and US NIJ guidelines for
the appropriate use of digital evidence [8] that includes gathering
digital data, processing of digital data and the preparation of digital
data to be presented in courts by both forensic and legal
professionals.

Most of the Digital Forensics literature focuses on practical
activities of gathering digital evidence, preparing it for
$ This work was supported in part by the Spanish Ministry of Economy and Competitiv
Department of Energy under Grant DE-NA0002520, ONR award N00014-15-1-2735, NS
$$ Special thanks to Igor Borcic, lawyer, for legal advice and Dr Najah AlFaise for insigh
legal process.

E-mail addresses: svillena@ugr.es (S. Villena), mvega@ugr.es (M. Vega), jmd@decsai.
(F. Murtagh), rms@decsai.ugr.es (R. Molina), aggk@eecs.northwestern.edu (A.K. Katsagg

https://doi.org/10.1016/j.compind.2018.02.004
0166-3615/© 2018 Elsevier B.V. All rights reserved.
presentation in courts and presenting it in court by legal
professionals and expert witnesses. Issues of authenticity,
reliability and credibility addressing the concerns of the legal
professions have been raised and operational standards and
structured processes devised in order to resolve them. They have
provided regulation in digital forensic practice, but more needs to
be done.

As well as being used to prove that a criminal act has been
committed, digital evidence is required to aid in identification of
the perpetrators, confirming alibis, identifying sources of docu-
ments and confirming their authenticity. There are, however,
significant issues still to be addressed related to not only the
increasing size of digital media, but also the complexity of their
use. These complexities arise from an increasing number of users
owning multiple devices capable of storing and sharing potential
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digital evidence. In addition, the integration of digital evidence
(and scientific evidence in general) is often influenced by social,
cultural and religious factors that underpin legal systems in
different countries (cf. [9]).

To generate those high resolution (HR) images of a scene, a
general variational Bayesian approach to the super-resolution (SR)
problem [10–12] is proposed. For the first time, the general
modelling of Super Gaussian (SG) distributions [13] is applied to
SR. SGs are priors capable of capturing the sparse distribution of
edges within natural images. SG priors have been successfully
applied to blind image deconvolution [14–16]. Here, they are
combined with proper modelling of the observation process as
well as the registration parameters in order to obtain a high quality
HR image from a set of LR observations.

The rest of the paper is divided as follows. In the next section, a
bibliographic study on the status of digital evidence and SR is
presented. Section 3 introduces the SR problem and formulates it
using the Bayesian framework. Then, in Section 4 a solution to the SR
problem using variational Bayesian inference is proposed. The
proposed methodology is applied, in Section 5, to the study of a real-
life forensiccase to help identifythe culprits of damages in a property
and synthetic video sequences generated from an image and a real-
life video which allow to compare the resulting images both visually
and numerically. Finally, Section 6 concludes the article.

2. State-of-the-art

Many studies of digital evidence in legal practice are focused on
the reliability and acceptability of digital evidence as shown by
categorisations of Levels of Certainty that were devised by Casey
[3]. Therefore, in order to discover, examine and provide evidence
to legal enforcement in criminal events, a wide range of issues need
to be addressed [4]. As digital forensics is essentially a process of
applying scientific methods to the discovery, examination and
provision of evidence to legal enforcement in criminal events [17],
the credibility of digital evidence requires not only understanding
of the scientific techniques but also understanding of the legal
principles. The procedures that traditionally safeguard the
integrity of evidence, including digital evidence, involve establish-
ing that an incident has occurred, determining the nature of the
incident and identifying the culprits (as far as this is possible under
specific circumstances). Unlike physical evidence, digital evidence
is often regarded by legal professionals as fragile, that is, it can be
lost, altered, damaged, or accessed by unauthorised personnel. It is
therefore of critical importance that forensic investigations
safeguard its integrity by exercising evidential controls, such as
maintaining the chain of custody as well as ensuring that it is
gathered and protected through structured processes that are
acceptable to the courts. “Tainted evidence that may have been
acquired or protected without the requisite level of security may be
legally inadmissible.” [18]. Guidance on the process of analysing
and interpreting digital evidence is also necessary as it provides
the structure to the analytical and interpretational processes so
that different investigators working on the same digital evidence
can obtain the same results. Furthermore, any changes to the
digital evidence in the process of analysis and interpretation
should be traceable and justifiable in order to preserve the
credibility of both the evidence and the analyst in the eyes of legal
professionals. This is quite a challenge given the volume, variety
and complexity of digital evidence, and raises issues of selection
and use of forensic tools as well as proficiency and competency of
the investigators themselves [19].

In this context, video as evidence has to be authenticated sothat it
is clear whether it is original oran altered copy since the nature of the
alteration may render it inadmissible in court. This could happen if,
for example, it cannot be proved that in spite of the alterations the
video still depicts the scene of the crime and that the location, date
andtimewhentherecording wastaken haveremained thesame asin
the original. Traditional approaches of evidential control, described
briefly above, may not be sufficient to guarantee the authenticity of
the video as evidence [20]. However, digital systems usually provide
methods for authentication such as metadata or serial numbers
hidden in the video [21] as well of stronger forms of identification
based on the image or video itself. Sensors imperfections and noise,
photo response non-uniformity [22] or defective pixels can help to
authenticate digital images and videos (see [23,24].

Nowadays, surveillance cameras are ubiquitous and their
recorded videos are often used to identify the perpetrator.
However, surveillance cameras usually suffer from poor quality
and low resolution which prevent identification on the frames as
extracted from the recorder. Image SR can help bridge the gap
between poor video quality and evidence gathering [25]. The
image SR problem has received a lot of attention from the image
processing and computer vision research community in the past
two decades (see [26–29] for a review). We can distinguish
between Multiple-Image Super-resolution (MISR) and Single Image
Super-resolution (SISR). SISR [30] allows to obtain a HR image from
only one observed LR image by applying, for instance, interpolation
[31–34] or machine learning techniques based on LR/HR image
patches [35–39], see [40] for the use of deep learning techniques in
image recovery problems. However, when a video sequence or a set
of LR images is available, MISR is preferred.

MISR allows to infer a spatially HR image of a scene, from
multiple LR images affected by warping, blurring, and the noise
inherent to the capture process [41]. Frames of a video sequence
may contain many small shifted or rotated LR images of a given
object, caused by the acquisition process, and the camera and/or
scene motion, from which a HR image can be obtained using MISR
techniques. MISR can be applied to obtain either a single HR image
from a sequence of many LR images or a HR image sequence from a
LR image sequence [42–45].

Although some SR algorithms with application to forensic
investigation [46–51] have been proposed (see [46–51]), they are
mainly formulated from an image processing point-of-view. A few
briefly discuss on the use in a court of law of SR (see [25] for
instance) or image enhancement techniques in general [52,53] but,
to the best of our knowledge, no-one discusses in depth the
forensic aspects or analyses real-life cases where SR had an
important role to play.

3. Problem formulation

Let us now describe the MISR problem, i.e., the reconstruction
of a HR image x from a sequence of L LR observed images y = {yk},
k = 1, . . . , L, of the same scene.

Each LR image yk consists of N ¼ Nh � Nv pixels while the size of
the HR image x is PN, where

ffiffiffi
P

p
2 N is the factor of increase in

resolution. In this paper we adopt the matrix-vector notation,
images yk and x are arranged as N � 1 and PN � 1 column vectors,
respectively. The imaging process, illustrated in Fig. 1, introduces
warping, blurring and downsampling, which is modelled as

yk ¼ AHkCðskÞx þ nk ¼ BkðskÞx þ nk; ð1Þ
where A is the N � PN downsampling matrix, Hk is the PN � PN

matrix modelling sensor integration and blurring, C(sk) is the
PN � PN warping matrix generated by the motion vector sk, and nk

is the N � 1 acquisition noise. A detailed description of the explicit
form of the warping matrices C(sk) in Eq. (1) can be found in [11].
The effects of downsampling, blurring, and warping are combined
into the N � PN system matrix Bk(sk) = AHkC(sk), from which each
row maps the pixels of the HR image x to a given pixel in the LR
image yk.



Fig. 1. Illustration of the degradation model in Eq. (1).
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Given Eq. (1), the SR problem is expressed as the search of an
estimate of the HR image x from the set of LR images y using our
prior knowledge on {C(sk)}, {nk}, and x.

The ill-posed nature of the SR problem has been traditionally
circumvented by means of regularisation terms in the optimisation
approach, or using prior distributions in the Bayesian approach
(see [26]).

3.1. Observation model

Using the model in Eq. (1) and assuming that nk is zero-mean
white Gaussian noise with inverse variance (precision) bk, the
conditional distribution of each LR image yk is given by

pðykjx; sk; bkÞ / bN=2
k exp �bk

2
k yk � BkðskÞxk2

� �
: ð2Þ

Assuming statistical independence of the noise among the LR
image acquisitions, as already assumed in most of the existing
super-resolution methods [54–58], the conditional probability of
the set of LR images y given the unknown HR image x and the
model parameters can be expressed as

pðyjx; fskg; fbkgÞ ¼
YL
k¼1

pðykjx; sk; bkÞ: ð3Þ

3.2. Image prior model

In this paper we will use SG distributions [13] as priors. Those
distributions have the form

pðsÞ ¼ Z exp � rðsÞ; ð4Þ
with rðsÞ : R ! ½�1; 1� a penalty function symmetric around

zero and rð ffiffi
s

p Þ concave and increasing for s 2 [0, 1). This condition
is equivalent to r0(s)/s being decreasing on (0, 1). Table 1 shows
Table 1
Different choices for the penalty function r(s).

Label r(s) r0(s)/|s|

‘p, 0 < p � 2 1
p jsjp |s|p�2

log log(e + |s|) (e + |s|)�1|s|�1
some examples of energy functions r(�) associated with SG
distributions. SG distributions promote sparsity [14]. The energy,
r(�), associated with an SG distribution can be represented as (see
[59])

rðsÞ ¼ inf
j>0

1
2
js2 � r� j

2

� �
; ð5Þ

where r*(�) is the concave conjugate function of r(�).
Eq. (5) provides a quadratic upper bound to the energy of
an SG distribution which naturally leads to a Gaussian approxi-
mation.

Having defined the SG distributions in general, let us use them
in the SR problem at hand. Let us define

zj ¼ Fjx for j ¼ 1; . . . ; d: ð6Þ
where the Fj are convolution operators, we use first and second

order differences, and d is the number of filters used, and define
{z} = {z1, . . . , zd}. We propose the following prior distribution over
the unknown x

pðxÞ /
Yd
j¼1

YPN
i¼1

pðzjðiÞÞ; ð7Þ

where p(zj(i)) are SGs as defined in (4). Using (5) the following
lower bound to p(x) can be obtained

pðxÞ � pðxjjÞ

¼ Z
Yd
j¼1

YPN
i¼1

exp � 1
2
jjðiÞ k zjðiÞk2 � r� jjðiÞ

2

  !( )" #

ð8Þ
where the components of the variational parameter vector

j = {j1, . . . , jd} have already been introduced.

3.3. Modelling the registration parameters

In this paper the uncertainties on the registration parameters
{sk} are modelled following [11]. We denote by fspg the estimate of
s = {s1, . . . , sL} obtained from the LR observations in a
preprocessing step, using registration algorithms, see, for instance,
[60]. As these estimates are in general inaccurate, we model the
motion parameters as stochastic variables following Gaussian
distributions with a priori means set equal to the preliminary
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motion parameters skp; k ¼ 1; . . . ; L, that is,

pðfskgÞ ¼
YL
k¼1

N ðskjskp; Jp
kÞ; ð9Þ

with Jp
k the a priori covariance matrix. The parameters skp and

Jp
k incorporate prior knowledge about the motion parameters into

the estimation procedure. If such knowledge is not available, skp

and ðJp
kÞ�1 can be set equal to zero, which makes the observations

solely responsible for the estimation process.

3.4. Hyperpriors on the hyperparameters

In this paper we assume flat hyperpriors for the jj(i) hyper-
parameters in Eq. (8). That is p(jj(i)) / const. To model the
hyperparameters in Eq. (3), we employ Gamma distributions

pðfbkgÞ ¼
YL
k¼1

Gðbkjaobk
; bobk

Þ ; ð10Þ

where aobk
> 0 and bobk

> 0 are the shape and scale parameters,

respectively. The hyperpriors are chosen as Gamma distributions
since they are conjugate priors for the Gaussian distribution.

3.5. Joint model

Combining Eqs. (3), (7), (9) and (10) we obtain the following
lower bound to the joint probability distribution

pðQ; yÞ
� pðQ; j; yÞ
¼ pðyjx; fskg; fbkgÞpðxjjÞpðfbkgÞpðfskgÞ; ð11Þ

where Q = {x, {sk}, {bk}}.

4. Bayesian inference

The Bayesian inference is based on the posterior distribution

pðQjyÞ ¼ pðQ;yÞ
pðyÞ . As p(y) cannot be obtained, we approximate p

(Q j y) by the distribution, q(Q), having the minimum Kullback–
Leibler divergence to p(Q j y). This is the well known variational
approximation, which is described in [61,62] (see also [63,57,10]).
Within the mean field approximation, q(Q) is assumed to have the
form qðQÞ ¼Qz2Q qðzÞ, with

qðzÞ / exp
�
h log pðQ; yÞiQz

�
; ð12Þ

where Qz denotes the set Q with z removed, and
EqðQzÞ½�� ¼ h�iQz

. In the following, the subscript of the expected

value will be removed when it is clear from the context.
Instead of using p(Q, y) we utilise its lower bound p(Q, j, y) in

(11), which includes the variational parameter j, and solve
Fig. 2. Graphical description 
iteratively

log qðzÞ / h log pðQ; ĵ; yÞiQnfug 8z 2 Q; ð13Þ

ĵ ¼ arg max jh log pðQ; y; jÞiqðQÞ ð14Þ

This procedure, depicted graphically in Fig. 2, starts each
iteration by fixing the current estimates of the distribution of the
unknowns q(x) and q({sk}) and the value of j and then estimates a
new distribution of the hyperparameters q({bk}). This updated
distribution will be used, with q(x) and j, to obtain a new estimate
for the distribution of the registration parameters, q({sk}), which is
then used to update the variational parameters j. Finally, the
distribution of the super-resolved image q(x) is estimated from the
updated values of the rest of unknowns. This procedure is repeated
iteratively until convergence.

Let us now detail the equations for solving on each unknown.
From Eq. (13), we obtain for q(x)

qðxÞ / exp h log ðpðyjx; fskg; fbkgÞÞifsk;bkg þ log ðpðxjĵÞÞ
n o

;

ð15Þ
which is the multivariate Gaussian

qðxÞ ¼ N ðxjx̂; JxÞ; ð16Þ
with

J�1
x ¼

Xd
j¼1

FtjdiagðĵjÞFj þ
XL
k¼1

hbkihBðskÞtBðskÞisk ; ð17Þ

and

x̂ ¼ Jx

XL
k¼1

hbkihBðskÞitskyk; ð18Þ

which can be solved iteratively utilising a Conjugate Gradient
method.

Also, from Eq. (12), we find the following distribution for the
registration parameters

qðskÞ / exp �1
2

hbkihk yk � BkðskÞxk2ix
	�

þ sk � skp
	 
t Jp

k

	 
�1
sk � skp
	 
�i

: ð19Þ

The explicit form of the distribution q(x) in Eq. (16) depends on
the expectation values hBðskÞtBðskÞisk and hBðskÞisk , and q(sk) in
Eq. (19) depends on h k yk� Bk(sk)x k 2ix. These calculations are not
straightforward since C(sk), in Eq. (1), is nonlinear with respect to
sk. Therefore, we expand C(sk) using its first-order Taylor series

around the mean value sk ¼ hski ¼ ðuk; ck; dkÞT of the distribution q
(sk), in Eq. (19) (details can be found in [11]).
of the inference process.



Fig. 3. Original Barbara and Einstein test images.
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4.1. Estimation of the variational parameter j

Using (14), we obtain for the variational parameters

ĵjðiÞ ¼ argminjjðiÞ
1
2
jjðiÞhz2j ðiÞix � r� jjðiÞ

2

  !
ð20Þ

with

hz2j ðiÞix ¼ x̂tFtj J
iiFjx̂ þ TrðJxFtj J

iiFjÞ; ð21Þ

where Jii is a single-entry PN � PN matrix with zeros every-
where except at the entry (i, i), which is equal to one. In this paper,
Jx in Eq. (21) is calculated by applying the Jacobi approximation.

The minimum in (20) is achieved at (see [14])

ĵjðiÞ ¼ r0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2j ðiÞix

q� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hz2j ðiÞix

q
: ð22Þ

Algorithm 1. Variational Bayesian Super-resolution

Require: Low resolution image set {yk}, values fa0bk
g, fb0bk

g, fskpg, fJp
kg and

initial HR image estimation x̂ð0Þ.
Set n = 0, qð0ÞðxÞ ¼ N ðxjx̂ð0Þ; 0Þ and q(0)({sk}) = p({sk}), with p({sk}) given in
Eq. (9).
while convergence criterion is not met do

0. Set n = n + 1
1. Given q(n�1)(x) and q(n�1)({sk}), obtain q(n)({bk}) using Eq. (23).
2. Given q(n�1)(x) and q(n)({bk}), obtain q(n)({sk}) using Eq. (19).

3. Given q(n�1)(x), compute ĵðnÞ using Eq. (22).

4. Given q(n)({bk}), q(n)({sk}) and ĵðnÞ, obtain q(n)(x) using Eq. (16).
end while
Output the HR image x̂ as the mean of q(n)(x), see Eq. (18).
4.2. Estimation of the hyperparameter distributions

Finally we obtain the distributions for the hyperparameters
{bk}, which are found to be Gamma distributions. For the {bk}
hyperparameters, using Eq. (13), we obtain

qðbkÞ / b
N
2�1þa0

bk
k exp �bk b0bk

þ hk yk � BkðskÞxÞ2ix;sk
2

  !" #

ð23Þ
with

hbki ¼
N þ 2a0bk

k ykBðskÞx̂Þ2 þ TrðJxBtðskÞBðskÞÞ þ 2b0bk

: ð24Þ

Algorithm 1 summarises the proposed iterative SR method
which comprises the HR image estimation, as well as the
estimation of the registration parameters, the HR prior parameters
and the observation model hyperparameters.

5. Experimental validation

Experimental results are presented on synthetic video
sequences and a real-life video sequence of a case of damages
and stealing in a private property. The synthetic experiments
allow to quantitatively evaluate the quality of the obtained
images by comparing them to the real underlying ones. For the
real-life video sequence, we first describe how image processing
helps in providing digital evidences and the steps required to
bring digital evidence into a court and, then, show how we
proceeded to obtain a super-resolved image of the person of
interest in the video.
5.1. Validation on synthetic sequences

While tests on real video sequences will later confirm the
applicability of the proposed methodology to real-life cases, it is
not possible to provide metric analysis of the processed images. In
order to provide a quantitative evaluation, the proposed
methodology has been tested on synthetic video sequences
simulating the kind of images taken by surveillance cameras. Two
different set of tests have been performed. In the first one, a
sequence is synthesised from a single image by translating,
rotating and subsampling it. The second one simulates a low
resolution video by downsampling a high resolution video
sequence under conditions similar to the ones found in regular
surveillance cameras.

First, we tested the proposed approach on a set of low
resolution images generated from a single high resolution image
that serves as reference frame. Results are reported on the two
different standard test images shown in Fig. 3. A set of five
degraded low resolution images were generated from the original
images following the degradation model in Eq. (1) with rotations
between 	5 degrees and subpixel translations, a 3 � 3 uniform
blur to simulate sensor integration and a downsampling by a factor
of two by discarding every other pixel. Zero mean Gaussian noise
was added to obtain different SNRs ranging from 10 to 40dB, thus
obtaining images simulating different scenarios from a low
luminosity/night scene where noise is dominant due to high
camera gain to a well illuminated one. The images, of which an
upsampled example is shown in the first row of Figs. 4 and 5 , were
input to the SR methods to obtain estimates of the original high
resolution images.

In order to assess the quality of the proposed methodology, we
compare the outcome of bicubic interpolation, the method in [64]
and the proposed methods. Resulting images, for visual inspection
are shown in Figs. 4 and 5 while quantitative results, by means of
the peak signal-to-noise ratio (PSNR) and the structural similarity
(SSIM) [65] measures, are presented in Fig. 6 for an easy
comparison. Bicubic interpolation is a basic technique which is
usually used when the information is already present in a single
frame but its size is too small for a correct visualisation and hence
zooming is needed. Interpolated images, depicted in the second
row of Figs. 4 and 5, are smoothed versions of the observations and
obtain the lowest PSNR and SSIM values for both images. The
method proposed by Molina et al. [64], which utilizes a
simultaneous autoregressive (SAR) prior model for the image,
resulted in the images displayed in the third row of Figs. 4 and 5.
This model is a particular case of super-Gaussian priors where the
‘2 penalty function is used and only one convolution filter
corresponding to the Laplacian operator is considered in Eq. (6).
Resulting images show a higher level of detail than bicubic
interpolation but, also, piecewise smoothing and artifacts,
specially at low SNR, which spoil its quality and the PSNR and
SSIM figures-of-merit.

The rest of the results in Figs. 4 and 5 were obtained using the
proposed super-resolution algorithm, summarized in Algorithm 1.



Fig. 4. Super-resolved Barbara image using different methods and noise levels.
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The initial parameters were set as follows: The values of fa0bk
g and

fb0bk
g, k = 1, . . . , 4, which encode the prior information about the

noise parameters bk were set to a value very close to zero in
Eq. (10). With those values, the variance of the Gamma

distributions, fa0bk
=ðb0bk

Þ2g, are huge, letting the method to

automatically estimate the noise parameter from the observations.
The prior registration parameters fskpg and the inverse of the a

priori covariance matrices, ðJp
kÞ�1, were set to zero, hence making

the data fully responsible of the estimation of the registration
parameters. Bicubic interpolation was used as the initial high
resolution image x̂ð0Þ. The algorithm was run until the conver-

gence criterion k x̂ðiÞ � x̂ði � 1Þk2= k x̂ðiÞk2 < 10�5 is met. The
integration and blurring matrix Hk was set to the convolution
matrix obtained from a 3 � 3 uniform kernel. For the prior
distribution on the high resolution image in Eq. (7), we used the
horizontal, vertical, upper-right diagonal and lower-right diagonal
first order difference convolution operators. We want to note that
the method is both fully automatic, not needing of human
intervention for parameter tuning, and very flexible, allowing to



Fig. 5. Super-resolved Einstein image using different methods and noise levels.
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easily incorporate prior knowledge about the noise or the
registration parameters if available.

Results from the proposed methods, are visually and numerically
much more accurate than those provided by bicubic interpolation
and the SAR method in [64], with an important increase of both PSNR
and SSIM values (see Fig. 6). Results with the log and ‘1 priors are
almost identical so only log results are shown in Figs. 4 and 5.
Depending on the amount of noise, one of the proposed methods
maybepreferableovertheothers. Ifnoiseishigh,the ‘0.8method(see
the first columnof the last rowof Figs. 4 and5) providesbetterresults
since it assumes that the image is piecewise flat so it removes the
noisewhile preserving the edgesof the images. However, asthe noise
decreases, the ‘0.8 prior also removes fine details, hence producing
not very pleasant reconstructions (see, for instance, that the hair and
face of Einstein in Fig. 5 appear oversmoothed). The proposed
method using the log and ‘1penalty functions, on the other hand, are
able to recover those details, but cannot handle a large amount of
noise in the images. When a moderate amount of noise is present on
the image, all the proposed methods perform similarly and better
than bicubic and SAR methods.



Fig. 6. PSNR and SSIM comparison of the different SR methods for the Barbara and Einstein images with different noise levels.
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Additionally, we tested the proposed methods on videos which
simulate the recording of an assault. The videos were obtained
using a full-HD (1920 � 1080 pixels) camera and degraded by a
3 � 3 uniform blur to simulate sensor integration and a down-
sampling by a factor of four in each direction. To select the input
frame portions for the algorithm, faces have to be located in the
video. Face detection algorithms (see [66] for a recent review
applied to surveillance) can be used to help the investigators to
discover the location of persons in the set of video frames. This will
save a large amount of time watching the video in search of the
exact fragment where faces appear. However, the investigator still
needs to select the best pose and the most promising frames to
feed the MISR algorithm and also interpret the results. For this
synthetic experiment, we run the Viola-Jones face detection
algorithm [67] to find the bounding box where faces are located.
An example of a frame of the video with the detected face marked
in red is shown in Fig. 7. For this simulation, we selected seven of
the most promising frames from the ones with a face detected
since, in our experience, good quality frames are scarce in real
sequences.
Fig. 7. A frame of the synthetic video with the detected face marked.
The super-resolution methods were run on those frame
portions to obtain the estimated HR images depicted in Fig. 8.
The HR reference image and an upsampled LR image are depicted
in Fig. 8a and b, respectively, as a reference. Again, the proposed
methods provide much sharper and detailed images than bicubic
interpolation and the method in [64], without noticeable artifacts.
Numerical results, shown in Table 2, confirm this quality increase.
The proposed methods increase the PSNR in about 3dB and the
SSIM in almost a tenth, with respect to bicubic interpolation. Note
that we magnified the images by factor of 4 in each direction
(P = 16) using only 7 LR frames. For this particular sequence, adding
more LR frames increases slightly the quality of the reconstruction
but, in general, it might be difficult to find a significant number of
frames with the person of interest in almost the same pose.
Including different poses increases the probability of appearance of
artifacts that could challenge SR applicability.

As a final note, we want to emphasize that the proposed
pipeline allows the detection of the frames with faces and the
automatic reconstruction although the investigator needs to select
the most promising frames. We are studying the possibility of
including outlier detection techniques (see [68], for instance) into
the super-resolution algorithm to alleviate this problem. Note also,
that the proposed methodology maintains the integrity of
evidence as video sequences can be processed with different
methods without tainting the original frames.

5.2. A real-life case study of outdoor surveillance

Image and video processing are powerful tools in digital
forensics which allow to enhance recorded input images to obtain
evidence. When a criminal offence is committed, the victim needs
to report it to the police, which will initiate investigation. Digital
forensic experts will help the police with the investigation by
providing supporting evidence and processing the digital evidence
according to specific guidelines.



Fig. 8. An observed frame of the synthetic video sequence and its reconstruction using different methods.

Table 2
PSNR and SSIM figures-of-merit for the synthetic video sequence.

Bicubic Method Proposed Proposed Proposed Proposed
Interp. in [64] (log) (‘2) (‘1) (‘0.8)

PSNR 25.71 27.99 28.63 28.63 25.71 27.55
SSIM 0.777 0.843 0.872 0.872 0.857 0.881
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The empirical research method to discover and analyse
responses by legal professionals to the original video recordings
is based on social science investigations involving observation,
interviews and documentary evidence (including video record-
ings). The discovery stage begins with “use-case scenario”
describing the situation as closely as possible using the informant's
(here, the victim's) own words. The discovery data was obtained
from interviews and observations of the scene as described in
Section 5.2.1. The investigation process, described in Section 5.2.2,
is based on documentary evidence involving the internationally
accepted guidelines from ACPO, outlining how the digital forensic
investigation should be conducted. The three data sources
(interviews, observations and documents) thus provided the
context for the analysis of the authenticity, credibility and
reliability of the video recordings as digital evidence.

5.2.1. Report to the police of a criminal offence
The first step is reporting the criminal offence to the police. In

the report, special effort is needed in describing the surveillance
system, position of the cameras to ensure privacy of neighbouring
Fig. 9. Two examples of night vision camera. White 
properties and damages committed by perpetrators. In the real-life
case we study, surveillance was performed by cameras (one visible
and one hidden) recording the outside area of the victim's home.
Report to the police includes damages to the fence committed by
perpetrators identified by the victim. The victim, who describes
the process as follows, looked for help of image processing
researchers to perform digital investigation.

“My holiday home has been damaged several times over the
past couple of years, but the perpetrators have never been
identified. I put surveillance cameras and told the local police that I
had two cameras taking videos of the terrace and the fence that
were under continuous attack. I put one camera in a visible place
on the terrace (a dummy bought at Amazon for £10.00) one real
camera behind the glass window, which could be seen if you
looked carefully and the second real camera was hidden inside the
porch roof just above the outdoor lamp so that the two together
looked like one. Nobody knew about the second real camera. The
legal constraints were that the cameras should be positioned so
that they record my space but do not intrude into the neighbour's
private space, and that there were visible signs saying that the
house was under surveillance.

The first recording was taken in the middle of the night, looked
really spooky, showing white sticks moving in front of the camera,
as well as demonstrating the quality of the images in night time
(see Fig. 9). It turned out to be a spider weaving his web. The
second recording was of a hooded man with a scarf covering his
face, all camouflaged, as shown in Fig. 10(a). He covered the
dummy camera with a bucket, and used a stick to close the shutters
areas corresponds to a spider weaving his web.



Fig. 10. Day scene. Three young men break into the property and steal the garden gate.
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to cover the first real camera. Then he stood in front of the second
(hidden) real camera (Fig. 10(b)) and took his hood and scarf off.
The rest of the recordings showed three young men breaking down
the fence and stealing the garden gate as can be seen in Fig. 10(c)
and (d).

I reported it to the police who did nothing for months. Since it
was clear from the recordings that criminal damage was being
done, the perpetrators do not have the right for privacy protection
and I am free to show the recordings in public.”

5.2.2. Digital forensic investigation
The police are then expected to carry out an investigation in

order to identify the culprits. There are also digital forensic experts
to advise how digital evidence can be strengthened with
traditional empirical methods, such as going to suspects’ homes
to find clothes they were wearing, or for example, finding
photographs of the perpetrators on the web pages wearing the
same clothes. Other digital methods can also be used, for example,
measuring their height in relation to the objects in the recordings,
for example a tree, or a fence, etc. The purpose of this is to provide
the prosecutors with sufficient supporting evidence in addition to
recordings, enhanced images, confessions and other physical kinds
of evidence.

Such empirical methods are considered essential for the
prosecution to be successful, since in most countries, digital
evidence alone has not been readily accepted in the courts of law.

“It is not enough to simply produce an unbiased and technically
accurate document describing the outcome of a forensic examina-
tion. The primary purpose of the statement is to assist the court in
evaluating the admissibility and weight of any evidence found on
the digital devices examined for the case” says Ian Kennedy,
forensic computer analyst for Kent Police [69].

And he continues: “Statements are submitted to the Crown
Prosecution Service (CPS) and copies are distributed to both the
prosecution and defence counsel. The statement aids the
understanding of the examiner's findings and assists in deciding
the strategy and the legal points to prove.

Under UK law each offence has what are known as ‘points to
prove’. For example, under Section 3 of the Computer Misuse Act
1990 a person is guilty of unauthorized modification of computer
material if it can be proven that he or she:


 does any act which causes an unauthorized modification of the
contents of any computer; and


 at the time when the act was performed he or she has the
requisite intent and the requisite knowledge to do so.

These two points demonstrate what in legal terms is called the
actus reus (guilty act) and the mens rea (intent/knowledge) of the
individual.” [69]

Damage to and theft from a property was recorded by Swann
View Pro (DVR-4 1260). The video surveillance records were made
available to the police and the prosecution, together with the
victim's and the witnesses’ reports. The officially appointed digital
forensic experts carried out video analytics using Amped FIVE [70]
video enhancement software, which is “specifically designed for
investigative, forensic, military and security operations”. Amped
FIVE (and similar products currently on the market) provides the
chain of filters so that in each step of the process a filter can be
applied to deblur an input image or stabilise a video sequence. It
thus generates an output that can be passed on to another filter.
Some modification of the parameters is possible and experimen-
tation with the chain of filters is also possible in an attempt to align
the process of analysis to the features of specific images and video
sequences. This software brings the clarification tools for both
video and still images into a single package and thus helps the
investigators to ascertain that the integrity of the original evidence
has been maintained. This is an important consideration since it



Fig. 11. Amped FIVE processed image.
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has been shown that undocumented or modified files have a strong
chance of being excluded by the court.

The shortcomings of this video analytic technique are largely
due to its lack of adaptability to variations in the outdoor
environment, as demonstrated by the use-case scenario discussed
in this paper. The environmental conditions at the location where
recordings were taken were complex, with large contrast between
the sunny and the shaded areas, thus stabilising and deblurring
was exceptionally difficult using filter-based approaches as shows
the filtered image in Fig. 11. This strongly influenced the
prosecutors’ decision not to take the matter to court due to
insufficient evidence as the police provided only the digital
evidence but no supporting empirical evidence was available. The
prosecution thus acknowledged that criminal offence was indeed
committed but the surveillance videos were insufficient to identify
the perpetrators “without any reasonable doubt”. The incident was
declared to be a “criminal offence by unidentified perpetrators”.

5.2.3. Multiple images super-resolution as a forensic tool
The victim provided us with two videos recorded by camera 2

which last for 410 and 732 s, respectively. Those videos were
directly exported from the recorder and constitute an accurate and
complete replica of the primary videos. From them, the video that
showed the assailants’ faces, either totally or partially, was
extracted. It consists of 10,255 colour frames of size 704 � 576
pixels stored in an MP4 container. Video, in PAL format at 25 frames
per second, was compressed using MPEG-4 AVC (H.264) codec at
approximately 2.5 Mbps. An audio track was also recorded but no
information could be obtained from it. Video compression was not
very severe and, although compression always discards detail
information from the video sequence, artifacts were not percepti-
ble in most of the scenes with low motion.

Since the goal is to identify the assailants, we extracted from the
video those frames where faces were present. Super-resolution, as
Fig. 12. (a) Frame 6762 with the face marked. (b
presented in this paper, is based on the fact that different frames
contain complementary information from the scene. According to
the model of the registration parameters in Section 3.3, we
consider global motion between the different frames, and only
displacement and rotations are taken into account. Hence, to
obtain good results, super-resolution cannot be applied to a series
of frames with face in very different poses or with very different
sizes. With those constraints in mind, only six frames, from 6762 to
6767 in the video, were initially selected. After frame 6767, a
branch covered the face of the assailant, making impossible to
extract information from them.

Fig. 12a corresponds to frame 6762 and shows one of the
assailants with uncovered face. From frame 6762 and five
consecutive frames, an area of size 30 � 19 pixels containing the
face was selected, thus obtaining the six images depicted in Fig.12b
that were the initial input of our super-resolution algorithm. Note
that the face itself occupies a tiny area of approximately 11 �15
pixels.

Several experiments were performed to obtain enhanced
versions of the frame 6762 in Fig. 12b. From the six selected input
images, those corresponding to frames 6766 and 6767 had to be
discarded since the face was partially covered by the branch and it
degraded the quality of the output images, so only four input
images were considered, see Fig. 13a. For all the used algorithms,
given the extremely low number of input frames, the output image
size was increased by a factor of 2 in each direction, that is, P = 4
was used. Note that four is a sensible number of frames for P = 4. In
real-life video, where motion is seldom global and pose changes
transform the face images, small warping estimation artifacts may
be introduced in the reconstruction process which make the final
super-resolved image blurrier. To prevent that from happening,
better results are usually obtained by selecting a small number of
images showing the same object of interest in very similar poses.

Our first attempt was to use bicubic interpolation. Fig. 13b
shows the bicubic interpolation of the reference image (frame
6762), depicted in Fig. 12b and the upper left image in Fig. 13a.
Interpolation increases the size of the image but it does not
increase its resolution, that is, the same information in the low
resolution image is present in the interpolated image and the only
effect is to smooth pixels boundaries, thus producing an over-
smoothed image more pleasant to the visual system but not better
defined. We also used the classic method proposed by Molina et al.
[64] which utilizes a SAR prior model for the image. The resulting
image (see Fig. 13c) clearly shows better level of detail than bicubic
interpolation but ringing and other artifacts are also present in the
image.

The proposed method was also tested using Algorithm 1 with
the same initial parameters as in the synthetic experiments, except
for the integration and blurring matrix Hk which was set to the
) Extracted areas from frames 6762 to 6767.



Fig. 13. Observations and super-resolved images using different methods.
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convolution matrix obtained from a 3 � 3 Gaussian kernel of
variance 1.

The image obtained when using the log penalty function (see
Table 1) is depicted in Fig. 13d. It shows a clear improvement in
resolution, without the artifacts presented in Fig. 13c. The
proposed method was also run using the ‘p prior with several
values of p. The image obtained for p = 2 is displayed in Fig. 13e,
which has the same artifact problems as the SAR reconstruction in
Fig. 13c. This is expected since the quadratic prior is not able to
clearly define the edges of the objects. Using lower values for p
allowed us to recover a smooth image without those artifacts (see
Fig. 13f–i). ‘p penalty functions with p � 1 produce very good
results when the input images have a very high noise level [12]
since they assume piece-wise images, that is, they work well for
images with smooth areas separated by strong edges. However,
since our video does not contain a significant amount of noise,
those priors produce on our images over-smoothed cartoon-like
reconstructions. To ameliorate this effect, the super-resolution
method is stopped before convergence. So, Fig. 13f and h show the
result after one iteration of the SR algorithm in Algorithm 1 for p = 1
and p = 0.8, respectively, while Fig. 13g and i depict the
corresponding reconstructions with two iterations of the algo-
rithm. They produce over-smoothed areas with sharp edges. The
gain in resolution is spoiled by the loss of detail in the figure. The
more iterations the algorithm runs, the smoother those areas are.

The original and super-resolved images are included in a
detailed expert report. The report has to be complete, accurate, and
comprehensive and should be written for the intended audience.
The delivered report also includes all the steps required to
reproduce the results, ensuring reliability on the process as well as
the scientific facts that support the SR method. Following the
international guidelines for digital investigations, we could trace
how they were actually implemented in the use-case scenario
reported here. The correct sequence of steps was followed, but
certain aspects of the criminal investigation were neglected,
especially regarding the empirical evidence gathering on the part
of the police to support the digital evidence presented in the
surveillance video.

The proper process was triggered by the victim's report of the
crime and the statement describing the incident. Digital evidence
was submitted in its original format and the police carried out
digital investigation using commercially available software, the
two most important steps to ensure the authenticity of the images
as evidence. The police sent the outcome of the forensic
investigation to the prosecution office as the only evidence, as is
often the case when the police do not support forensic analysis
with empirical investigations. The prosecution office decided not
to pursue the case since the quality of the images was insufficient
to unambiguously identify the perpetrators and there was no
empirical evidence to compensate for this. Digital evidence alone
was deemed sufficient to establish that a criminal offense had been
committed but was not sufficient to identify the perpetrators
“beyond any reasonable doubt”.

It was therefore concluded that the authenticity requirement
was met, but the reliability requirement was not, since no other
supporting evidence was provided by the police. From the legal
perspective, the main issue was the quality of the enhanced
images, or more precisely, the enhancement process focused
primarily on preserving authenticity of the images produced
results that were of insufficient quality. Subsequently, this research
team carried out an MISR analysis which produced superior
enhanced images, in order to explore whether such images would
stand the test of image quality sufficient to establish the reliability
of digital evidence. These were the basis of the pilot study, a small-
scale investigation to identify the research issues that need to be
addressed in the main evaluation of the MISR tools for Digital
Forensic Imaging. The study was focused on visual quality
evaluation guided by usability methods of the multidisciplinary
field of Human-Computer Interaction [71]. Originally these
evaluation techniques have been developed to assess and measure
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user experience of digital media, focused on understanding how
visual images influence human perception and cognition [72].

In the pilot study the methods were predominantly qualitative
and evaluation interpretative. The sample included ten subjects. In
group 1 there were five subjects familiar with the location and the
suspects. They could in principle be regarded as potential
witnesses in a court case where digital evidence would be
presented to the court. The subjects were asked whether they
could recognize any familiar faces in the images enhanced by
commercial software (in Fig. 11) and also in the images enhanced
by the MISR technique. In group 2 the subjects were not familiar
with the content of the images (neither location nor perpetrators)
and could in principle be regarded as potential jury members. They
were asked to compare the enhanced images with photographs of
non-suspects taken by ordinary cameras, including smart phones.
In addition, both groups were asked to compare photographs of
several suspects and identify the ones shown in the enhanced
images.

The outcomes of the pilot evaluation show clearly that the
subjects in Group 1 were able to identify the perpetrators more
accurately from the MISR images. Group 2 expressed greater
certainty when comparing the MISR images with photographs,
than in similar comparisons between commercially enhanced
images and photographs. The results were thus overwhelmingly in
favour of the MISR enhanced images.

It is difficult to generalize these outcomes without further
research involving a larger data set of enhanced images, a larger
and more representative sample of informants to include also the
legal and forensic professionals involved in the legal process. The
application of MISR is therefore research in progress where the
multi-disciplinary approach described in this paper is also
providing an opportunity for the development of novel research
methods to capture both image-oriented and people-oriented
perspectives in a uniform analytical framework.

Last but not least, there is significant scientific potential of this
work. It is possible to develop an experimental method to study the
effect of MISR imaging on human perception and cognition in
general. It is also possible to study this effect in particular, for
example in the context of specific tasks, such as facial identifica-
tion, thus addressing the concerns in the digital forensics
community to improve reliability of digital evidence.

6. Conclusions

In this paper we have explored the application of imaging
science in digital forensics. More concretely, we explored the use of
super-resolution techniques, and proved their applicability as a
powerful tool for Digital Forensic Imaging able to extract images
from a surveillance video sequence with enhanced level of detail
whilst preserving the authenticity, credibility, and reliability of
video data as digital evidence.

The proposed variational Bayesian approach with super-
Gaussian priors provides a much clearer picture than interpolation
and classical super-resolution approaches both on synthetic video
sequences and the real-life case under study. This result was
corroborated by visual inspection of the processed images and, in
the case of synthetically generated sequences, also using objective
measures.

Illustrated with a real-life case of damages and stealing in a
private property, we have addressed all the steps from police
report to bringing the case to the court of law. We showed that
MISR can enhance frames extracted from an extremely low quality
video. However, although the groups of informants identified the
suspect in MISR pictures, the quality of the images was insufficient
to unambiguously identify the perpetrators. Obviously, analysis of
video sequences taken in adverse outdoor conditions, such as
those in this case study, cannot be regarded as sole evidence in a
legal process. In fact, our case study represents a worst-case
scenario from the perspective of the analysis of digital evidence,
but in real life, images of such poor quality are not uncommon.

Traditional police methods are not replaced by the analysis of
digital evidence, rather, they are enhanced by techniques such as
MISR presented in this paper. Image analysis is only one of the
available methods for processing digital evidence, in successful
prosecutions. They were combined with empirical methods, such
as metrics to establish the perpetrator's height in relation to
objects on the crime scene such as trees, fences, etc.

There are therefore considerable advantages of the MISR
approach to image enhancement in real-life digital forensics
contexts, and these are explored in our research in progress. In
addition, this kind of multi-disciplinary approach can contribute to
the broader scientific study of the effects of digital images on
human perception and cognition than is currently the case.
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